Toward
New Applications of the Adjoint Sensitivity Tools in Data Assimilation
D.N. Daescu and R.H. Langland
In Data Assimilation
for Atmospheric, Oceanic and Hydrologic Applications (Vol. III).
Seon K. Park and Liang Xu (Editors). Print ISBN: 978-3-319-43414-8, Online
ISBN: 978-3-319-43415-5, Springer 2017.
The
Adjoint Sensitivity Guidance to Diagnosis and Tuning of Error Covariance
Parameters
D.N. Daescu and R.H. Langland
In Data
Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II),
p. 205--232.
Seon K. Park and Liang Xu (Editors), ISBN: 978-3-642-35087-0, Springer 2013.
Sensitivity
Analysis in Nonlinear Variational Data Assimilation: Theoretical Aspects and
Applications
D.N. Daescu and I.M. Navon
In Advanced
Numerical Methods for Complex Environmental Models: Needs and Availability,
p. 276--300.
Istvan Farago, Agnes Havasi, and Zahari Zlatev (Editors). Bentham Science
Publishers, ISBN: 978-1-60805-777-1, eISBN: 978-1-60805-778-8, 2013.
Sensitivity
Analysis Methods in Air Quality Models
D.N. Daescu
In
Modelling of Pollutants in Complex Environmental Systems: Volume I, p.
241-259.
Grady Hanrahan (Editor), ILM Publications 2009.
An FSO-based Optimization Framework for Improved Observation Performance: Theoretical Formulation and Experiments with NAVDAS-AR/NAVGEM
D.N. Daescu, R.H. Langland
Monthly Weather Review,
150 (6), 1335-1353, 2022.
The Quest for Model Uncertainty Quantification: A Hybrid
Ensemble and Variational Data Assimilation Framework
P. Abbaszadeh, H. Moradkhani, D.N. Daescu
Water Resources Research,
vol. 55 (3), 2407--2431, 2019.
Sensitivity
of the model error parameter specification in weak-constraint four-dimensional
variational data assimilation
J.A. Shaw, D.N. Daescu
Journal
of Computational Physics, 343, 115-129, 2017.
Accounting for satellite radiance inter-channel
correlations in GSI
R. Todling, W. Gu, D.N. Daescu
JCSDA Quarterly , No. 52, 6--9, 2015.
Error
covariance sensitivity and impact estimation with adjoint 4D-Var: theoretical
aspects and first applications to NAVDAS-AR
D.N. Daescu, R.H. Langland
Quarterly
Journal of the Royal Meteorological Society, 139: 226-241, 2013.
Effect of random perturbations on
adaptive observation techniques
M.J. Hossen, I. M. Navon, D.N. Daescu
International
Journal for Numerical Methods in Fluids, 69: 110-123, 2012.
Ensemble methods for dynamic data assimilation
of chemical observations in atmospheric models
A. Sandu, E. Constantinescu, G.R. Carmichael, T. Chai, D. Daescu,
J.H. Seinfeld
Journal
of Algorithms and Computational Technology , Volume 5, No. 4, 667-692,
2011.
Observation
targeting with a second-order adjoint method for increased predictability
H.C. Godinez and D.N. Daescu
Computational
Geosciences , 15, 477-488, 2011.
Adjoint sensitivity of the model
forecast to data assimilation system error covariance parameters
D.N. Daescu and R. Todling
Quarterly
Journal of the Royal Meteorological Society, 136, 2000-2012, 2010.
On the deterministic observation impact
guidance: a geometrical perspective
D.N. Daescu
Monthly
Weather Review, 137, 3567-3574, 2009.
Adjoint estimation of the variation in
model functional output due to the assimilation of data
D.N. Daescu and R. Todling
Monthly
Weather Review, 137 (5), 1705-1716, 2009.
A single particle impact model for
motion in avalanches
J.J.P. Veerman, D. Daescu, M.J. Romero-Valles, and P.J. Torres
Physica
D: Nonlinear Phenomena, 238 (18), 1897--1908, 2009.
On the sensitivity equations of
four-dimensional variational (4D-Var) data assimilation
D.N. Daescu
Monthly
Weather Review, 136 (8), 3050-3065, 2008.
A Dual-Weighted Approach to Order
Reduction in 4D-Var Data Assimilation
D.N. Daescu and I.M. Navon
Monthly
Weather Review, 136, 1026-1041, 2008.
Predicting Air Quality: Improvements through
advanced methods to integrate models and measurements
GR Carmichael, A Sandu, T Chai, DN Daescu, EM Constantinescu, Y
Tang
Journal
of Computational Physics, 227, 3540-3571, 2008.
Efficiency of a POD-based reduced second
order adjoint model in 4D-Var data assimilation
D.N. Daescu and I.M. Navon
International
Journal for Numerical Methods in Fluids, 53:985-1004, 2007.
Initiation of ensemble data assimilation
Zupanski M, Fletcher SJ, Navon
IM, Uzunoglu B, Heikes RP,
Randall DA, Ringler TD, Daescu DN
Tellus
Series A - Dynamic Meteorology and Oceanography, 58 (2): 159-170 MAR
2006
Chemical data assimilation of Transport
and Chemical Evolution over the Pacific (TRACE-P) aircraft measurements
T.F. Chai, G.R. Carmichael, A. Sandu, Y.H. Tang, D.N. Daescu
Journal
of Geophysical Research-Atmospheres 111 (D2): Art. No. D02301 JAN 17
2006
Adjoint sensitivity analysis of regional
air quality models
A. Sandu, D.N. Daescu, G.R. Carmichael, and Tianfeng Chai
Journal
of Computational Physics, 204, 222-252, 2005
Adaptive observations in the context of
4D-Var data assimilation
D.N. Daescu and I.M. Navon
Meteorology
and Atmospheric Physics, vol. 85, 205-226, 2004
Direct and adjoint sensitivity analysis
of chemical kinetic systems with KPP: I - theory and software tools
A. Sandu, D.N. Daescu, and G.R. Carmichael
Atmospheric
Environment 37 (36), 5083-5096, 2003
Direct and adjoint sensitivity analysis of
chemical kinetic systems with KPP: II - numerical validation and applications
D.N. Daescu, A. Sandu, and G.R. Carmichael
Atmospheric
Environment 37 (36), 5097-5114, 2003
An analysis of a hybrid optimization
method for variational data assimilation
D.N. Daescu and I.M. Navon
International
Journal of Computational Fluid Dynamics, Vol. 17, No. 4, 299-306, 2003
An adjoint sensitivity method for the
adaptive location of the observations in air quality modeling
D.N. Daescu and G.R. Carmichael
Journal
of the Atmospheric Sciences, Vol. 60, No. 2, 434-450, 2003
A communication library for the
parallelization of air quality models on structured grids
Philipp Miehe, Adrian Sandu, Gregory R. Carmichael, Dacian N. Daescu
Atmospheric
Environment, 36 (24) 3917-3930, 2002.
Second order information in data
assimilation
F.-X. Le Dimet, I.M. Navon, and D.N. Daescu
Monthly
Weather Review, Vol. 130, No. 3 , 629-648,
2002
Adjoint Implementation of Rosenbrock
Methods Applied to Variational Data Assimilation Problems
D.N. Daescu, G.R. Carmichael, and A. Sandu
Journal
of Computational Physics 165 (2), 496-510, 2000
Computational challenges of modelling interactions between aerosol and gas phase processes in large‐scale air pollution models
Gregory R. Carmichael, Adrian Sandu, Chul H. Song, Shan He, Mahesh J. Phadnis, Dacian Daescu, Valeriu Damian‐Iordache, Florian A. Potra
Environmental Management and Health Vol. 10 Issue: 4, pp.224-235, 1999
Conference Proceedings Articles
Innovation-weight parametrization in data assimilation:
formulation & analysis with NAVDAS-AR/NAVGEM
Daescu DN, Langland RH
IFAC-PapersOnLine, Vol 49, Issue 18, 176--181, 2016.
Proceedings to the 10th IFAC
Symposium on Nonlinear Control Systems , Monterey, CA, August 23-25,
2016.
An Ensemble Approach to Weak-Constraint Four-Dimensional
Variational Data Assimilation
Shaw JA, Daescu DN
Procedia
Computer Science, Volume 80, 496--506.
Proceedings to the 2016 International Conference on Computational Science.
Forecast sensitivity to the observation error covariance in
variational data assimilation
D.N. Daescu
Procedia
Computer Science, Volume 1, Issue 1, May 2010, 1271-1279.
Proceedings to the 10th International Conference on Computational Science
Amsterdam, The Netherlands, May 31 - June 2, 2010.
Sensitivity analysis in variational data assimilation and
applications
D.N. Daescu
ECMWF
Workshop on diagnostics of data assimilation system performance, 15-17 June
2009, 107-116.
ECMWF, Reading, U.K.
A second order adjoint method to targeted observations
Godinez H, Daescu DN
Lecture Notes in Computer Science, Volume 5545, 322-331, ScienceSpringer
Berlin/Heidelberg.
Proceedings to the 9th International Conference on Computational Science,
Baton Rouge, LA, USA, May 25-27, 2009.
Predicting
Air Quality: Current Status and Future Directions
Carmichael GR, Sandu A, Chai T, Daescu DN, Constantinescu EM, Tang Y
Air Pollution Modeling and Its Application XIX
NATO Science for Peace and Security Series C: Environmental Security,
481-495, Springer 2008.
The impact of background error on incomplete observations for
4D-Var data assimilation with the FSU GSM
Navon IM, Daescu DN, Liu Z. Lecture Notes in Computer Science, vol
3515/2005, 837-844.
5th International Conference on Computational Science, Atlanta, GA, May 22-25,
2005 Proceedings, Part II.
Computational aspects of chemical data assimilation into
atmospheric models
Carmichael GR, Daescu DN, Sandu A, Chai TF
Lecture Notes in Computer Science 2660: 269-278, 2003. Proceedings
Computational Science - ICCS 2003, PT IV.
Adjoint sensitivity analysis applied to the adaptive location of
the observations
D.N. Daescu and G.R. Carmichael
Air Pollution Modeling and Simulation, Proceedings 2nd Conference on
Air Pollution Modeling and Simulation, April 9-12, 2001 Paris, France.
Bruno Sportisse (Ed.), p. 476-488, Springer 2002.
Adjoint data assimilation for aerosol dynamic equations
A. Sandu, D.N. Daescu and G.R. Carmichael
Air Pollution Modeling and Simulation, Proceedings 2nd Conference on
Air Pollution Modeling and Simulation, April 9-12, 2001 Paris, France.
Bruno Sportisse (Ed.), p. 319-331, Springer 2002.
Coupled Transport-Chemistry Computations in 4D-Var Data
Assimilation for Air Pollution Models
D. Daescu and G.R. Carmichael
IMA Workshop, Atmospheric Modeling, March 15-19, 2000 Minneapolis. IMA
Volume 130, Atmospheric Modeling, p. 153-164, Springer-Verlag 2002.
Adjoint Implementation of Rosenbrock Methods Applied to
Variational Data Assimilation
D. Daescu, G.R. Carmichael and A. Sandu
Millennium NATO/CCMS International Technical Meeting on Air Pollution and
Its Applications, May 15-19, 2000 Colorado, p. 346-354.
Computational challenges of modeling interactions between
aerosol and gas phase processes in large scale air pollution models
G.R. Carmichael and Coauthors
Large-Scale Computations in Air Pollution Modeling, p. 99-136, Kluwer
Publishers, 1999.