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ABSTRACT

The equations of the forecast sensitivity to observations and to the background estimate in a four-
dimensional variational data assimilation system (4D-Var DAS) are derived from the first-order optimality
condition in unconstrained minimization. Estimation of the impact of uncertainties in the specification of
the error statistics is considered by evaluating the sensitivity to the observation and background error
covariance matrices. The information provided by the error covariance sensitivity analysis is used to identify
the input components for which improved estimates of the statistical properties of the errors are of most
benefit to the analysis and forecast. A close relationship is established between the sensitivities within each
input pair data/error covariance such that once the observation and background sensitivities are available
the evaluation of the sensitivity to the specification of the corresponding error statistics requires little
additional computational effort. The relevance of the 4D-Var sensitivity equations to assess the data impact
in practical applications is discussed. Computational issues are addressed and idealized 4D-Var experiments
are set up with a finite-volume shallow-water model to illustrate the theoretical concepts. Time-dependent
observation sensitivity and potential applications to improve the model forecast are presented. Guidance
provided by the sensitivity fields is used to adjust a 4D-Var DAS to achieve forecast error reduction through
assimilation of supplementary data and through an accurate specification of a few of the background error
variances.

1. Introduction

The estimation of the observational data impact on
analysis and subsequent model forecasts and the assess-
ment of the contribution/benefit of each individual ob-
servation to the forecast error reduction are among the
most important and most challenging problems in data
assimilation and numerical weather prediction (NWP).
Adjoint-based observation sensitivity techniques may
be used to identify datasets that are most valuable to
the assimilation procedure, to conduct optimal data
thinning, and to design cost-effective field experiments
for collecting targeted observations (Langland 2005a).
A theoretical framework to sensitivity analysis in varia-
tional data assimilation is presented by Le Dimet et al.
(1997) in the context of optimal control. Baker and
Daley (2000) derived the equations of the forecast sen-
sitivity to observations and to the background estimate

using the adjoint of a three-dimensional variational
(3D-Var) analysis scheme and explained the need to
account for the characteristics of the data assimilation
system (DAS) in the design of adaptive observation
strategies. Sensitivity-to-observations techniques have
been used to assess the impact of satellite data (Fourrié
et al. 2002) and of targeted observations and their
interaction with the routine observational network
(Doerenbecher and Bergot 2001; Bergot and Doeren-
becher 2002). An efficient adjoint-based method for
assessing the impact of observations on a scalar mea-
sure of the short-range forecast error using the adjoint
of the Naval Research Laboratory 3D-Var DAS is pre-
sented in the work of Langland and Baker (2004) and
Langland (2005b). Cardinali et al. (2004) used an influ-
ence-matrix diagnostic to assess the information con-
tent and data impact in a four-dimensional variational
(4D-Var) DAS. Recently, Zhu and Gelaro (2008) de-
veloped the adjoint of the Gridpoint Statistical Inter-
polation analysis scheme (Wu et al. 2002) to obtain
observation sensitivities that are fully consistent with
the data assimilation procedure.

Theoretically, the adjoint model methodology may
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be used to provide sensitivity information with respect
to all parameters in the DAS. Previous studies have
been mainly concerned with the forecast sensitivity to
the observational data y and to the background esti-
mate xb to initial conditions and a large amount of ad-
ditional parameters/input is involved in the data assim-
ilation process. In an operational DAS several simpli-
fying assumptions are made on the errors statistics, and
only estimates R and B of the observation and back-
ground error covariances, respectively, may be pro-
vided because the true error covariance matrices Rt and
Bt are unknown. A significant amount of research in
NWP is focused on modeling the error covariance ma-
trices (Janjić and Cohn 2006; Frehlich 2006; Kucuk-
karaca and Fisher 2006; Etherton and Bishop 2004;
Lorenc 2003; Hamill and Snyder 2002). Diagnosis and
tuning of error variances used in variational data assim-
ilation are discussed in the work of Desroziers and
Ivanov (2001) and Chapnik et al. (2006). A better un-
derstanding of how uncertainties in the specification of
the error statistics will impact the analysis and forecast
may be achieved by extending the sensitivity analysis to
the DAS input (y, R, xb, B).

The model fit to each observational dataset is
weighted in the assimilation process by the inverse ob-
servation error covariance matrix R�1 and valuable in-
formation may be lost if the observation errors are mis-
represented. Given the increased amount of data avail-
able from the global observing systems, fine-tuning the
observation error covariances by trial-and-error meth-
ods is not feasible (Rabier 2005) and guidance provided
by the sensitivity analysis to the observation error co-
variance may be used to identify the data subsets where
improvements in the observation error representation
would be of most benefit.

Specification of the statistical properties of the back-
ground errors is a key ingredient in data assimilation
and accurate error estimates are difficult to provide
(Parrish and Derber 1992; Lorenc 2003). Sensitivity ex-
periments of Baker and Daley (2000) indicate that
proper input of the background error covariance in
data assimilation may have a much greater impact on
the forecast than the selection of the prior estimate to
the initial conditions. In this context, information pro-
vided by the forecast sensitivity to the background er-
ror covariance matrix may be used to identify regions
where improved background error estimates are of sig-
nificant benefit to the forecast.

Observation sensitivity techniques have been mainly
implemented in the 3D-Var context and an optimal use
of the time-distributed observational data may be
achieved with a 4D-Var DAS. In this work we provide
an analytic derivation of the sensitivity equations of a

4D-Var DAS from the first-order necessary condition
in unconstrained optimization. In section 2 the equa-
tions of the forecast sensitivity with respect to the time
series of data/error covariance pairs (yi, Ri), i � 0,
1, . . . , N, and to the background input pair (xb, B) are
derived in a general 4D-Var context. A close relation-
ship between the sensitivities within each pair is estab-
lished. A table of sensitivity equations is provided and
their relevance to assess the data impact in practical
applications is discussed. Computational aspects are ad-
dressed in section 3 and idealized numerical experi-
ments are used to illustrate the theoretical concepts.
Potential applications of the sensitivity analysis and ad-
justment of a 4D-Var DAS to improve the model fore-
cast are presented. A summary and concluding remarks
are in section 4.

2. Sensitivity equations of 4D-Var

An in-depth presentation of the data assimilation
techniques used in NWP may be found in the books of
Jazwinski (1970), Daley (1991), Kalnay (2002), and
Lewis et al. (2006). In 4D-Var data assimilation (Le
Dimet and Talagrand 1986), optimal initial conditions
(analysis) xa

0 ∈ �n to a forecast model are obtained by
minimizing a cost functional

J �x0� �
1
2

�x0 � xb�TB�1�x0 � xb�

�
1
2 �

i�0

N

�Hi�xi� � yi�
TRi

�1�Hi�xi� � yi�,

x0
a � arg minJ, �1�

where xb is a prior (background) estimate to the initial
state, yi ∈ �ki, i � 0, 1, . . . , N, is the vector of obser-
vational data at instant ti of the analysis time interval
[t0, tN], and xi � Mt0→ti

(x0) is the model state at ti. The
model M is nonlinear and Hi:�

n → �ki is the observa-
tion operator that maps the state space into the obser-
vation space at time ti. Statistical information on the
errors in the background and data is used to define
appropriate weights: B is the covariance matrix of the
background errors and Ri is the covariance matrix of
the observational errors. By imposing the model equa-
tions xi�1 � Mti→ti�1

(xi) as a strong constraint, the
4D-Var data assimilation is formulated as a large-scale
unconstrained optimization problem with the initial
conditions as control parameters. A weak-constraint
4D-Var data assimilation may be formulated to account
for the model error as part of the 4D-Var control vari-
able (Trémolet 2007). The 3D-Var data assimilation
may be viewed as the particular case of the 4D-Var data
assimilation when only the data available at t0 are as-
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similated. The dimension of the discrete state vector in
numerical weather prediction and climate models is of
order n 	 107 and in practice several simplifications are
required to reduce the computational burden associ-
ated with the minimization problem (1). The incremen-
tal 4D-Var scheme (Courtier et al. 1994) approximates
the nonlinear problem (1) by a sequence (outer loop) of
quadratic minimization problems (inner loop) to obtain
an analysis increment 
xa

0 and it is currently the only
approach proven to be feasible for operational imple-
mentation of the 4D-Var scheme (Rabier 2005). Imple-
mentation of the incremental 4D-Var algorithm and
convergence issues are discussed by Trémolet (2004,
2005) and Lawless et al. (2005).

Mathematical foundations of the adjoint sensitivity
for nonlinear dynamical systems are provided in the
books of Cacuci (2003) and Marchuk et al. (1996). In
this section the sensitivity equations of the 4D-Var
problem (1) with respect to the DAS input (yi, Ri, xb, B)
are derived in the theoretical framework of sensitivity
to parameters in unconstrained optimization.

a. Sensitivity to parameters in unconstrained
optimization

Given a function f : �n → �m, the gradient matrix �f
is the transpose of the Jacobian matrix: �f (x) �
(�fi /�xj)

T ∈ �n�m. If m � 1, �f denotes the vector of
partial derivatives �f/�xj in column format.

In a general framework of unconstrained optimiza-
tion (Bertsekas 1995), consider the problem of finding
the vector x � (x1, x2, . . . , xn)T ∈ �n that minimizes the
cost

min
x∈�n

J�x, u�, �2�

where J : �n�p → � is a twice continuously differen-
tiable function involving a parameter vector (input
data) u ∈ �p. Let x be a local minimum corresponding
to the nominal parameter value u and assume that the
Hessian matrix 2

xxJ (x, u) � �n�n is positive definite.
The implicit function theorem applied to the first-order
optimality condition

�xJ �x, u� � 0 ∈ �n �3�

guarantees the existence of a vicinity of u where the
optimal solution is a function of data x � x(u) and the
gradient matrix

�ux � ��ux1, �ux2, . . . , �uxn� ∈ �p�n

is expressed as

�ux�u� � ��ux
2 J �x�u�, x���xx

2 J �x�u�, x���1. �4�

In (4), 2
uxJ denotes the (p, n) dimensional matrix

�u(�xJ).
The sensitivity (gradient) to parameters of a scalar-

valued function J(x) of the optimal solution x � x(u) is
obtained using chain rule differentiation

�uJ � �ux�xJ � ��ux
2 J ��xx

2 J ��1�xJ ∈ �p. �5�

b. The 4D-Var observation sensitivity equations

Corresponding to the 4D-Var cost (1), the first-order
necessary condition (3) at the analysis state xa

0 is

�x0
J �x0

a� � B�1�x0
a � xb�

� �
i�0

N

M0,i
T Hi

TRi
� 1�Hi�xi� � yi� � 0, �6�

where M0,i(xa
0) is the tangent linear model associated

with the nonlinear model integration xi � Mt0→ti
(xa

0)
and MT

0,i(xa
0) denotes its adjoint (transpose); Hi(xi) ∈

�ki�n is the Jacobian matrix of the observation operator
Hi evaluated at xi and HT

i (xi) denotes its transpose.
The significance of the inverse Hessian matrix

[2
x0x0

J (xa
0)]�1 is well established in the data assimilation

literature since it provides an approximation to the
covariance matrix of the errors in the analysis x a

0.
The relationship is exact if the cost functional is qua-
dratic (e.g., in the incremental 4D-Var framework)
(Fisher and Courtier 1995) and the minimum reached
�x0

J(xa
0) � 0. Henceforth in this work, for notational

convenience only, we denote

Adef
� ��x0x0

2 J �x0
a���1 ∈ �n�n. �7�

Differentiating (6) with respect to yi

�yi x0

2 J � �Ri
�1HiM0,i ∈ �ki�n, �8�

and from (4), (7), and (8) the analysis sensitivity to
observations yi is

�yi
x0

a � Ri
�1HiM0,iA ∈ �ki�n. �9�

In practice it is of interest to assess the observation
impact on a scalar aspect J�(x�) of the forecast x� �
M t0→t�

(xa
0) at a future time t� � tN, such as an appropri-

ate energy norm of the forecast error over a certain
geographical region (verification domain). Using chain
rule differentiation

�yi
J� � �yi

x0
a�x 0

a J� ∈ �ki, �10�

where

�x 0
a J� � M0,�

T �x�
J� ∈ �n �11�

3052 M O N T H L Y W E A T H E R R E V I E W VOLUME 136



is the forecast sensitivity to analysis. Equations (9) and
(10) provide the expression of the forecast sensitivity to
observations

�yi
J� � Ri

�1HiM0,iA�x 0
a J� ∈ �ki. �12�

An equivalent expression may be obtained by denoting

Ai � M0,iAM0,i
T ∈ �n�n �13�

and noticing that the forecast sensitivity to analysis (11)
may be written

�x 0
a J� � M0,i

T Mi,�
T �x�

J� � M0,i
T �xi

J�. �14�

After replacing (14) and (13) into (12)

�yi
J� � Ri

�1HiAi�xi
J� ∈ �ki. �15�

The matrix Ai is an approximation of the covariance
matrix of the errors in xi (see, e.g., Cohn 1997). If
HT

i �yi
J� denotes the analysis space projection of the ob-

servation sensitivity vector (Baker and Daley 2000),
then

Hi
T�yi

J� � Hi
TRi

�1HiAi�xi
J� ∈ �n. �16�

c. Sensitivity to the specification of the observation
error covariance

The observation error includes the instrument error
and the error of representativeness (Daley 1991; Cohn
1997), and we refer to the work of Janjić and Cohn
(2006), Frehlich (2006), and Chapnik et al. (2006) for
recent efforts to properly incorporate the observation
error into the DAS. In this section we provide the
equations of the forecast sensitivity to the specification
of the observation error covariance matrix Ri, i � 0,
1, . . . , N. The derivation involves Kronecker (tensor)
products and we refer to Horn and Johnson (1991),
Neudecker (1969), and Magnus and Neudecker (1999)
for the matrix calculus and the matrix differentiation
rules. It is convenient to introduce the vectorization
notation: for an arbitrary (p, q) dimensional matrix X ∈
�p�q denote X: ∈ �pq the column vector formed by
stacking the columns of the matrix X one underneath
the other (see Magnus and Neudecker 1999, chapter 2).
If X(:, j) denotes the jth column of the matrix X, then

X:def
��

X�:, 1�

X�:, 2�
·
·
·

X�:, q�
� ,

such that componentwise Xk, j � X: [k � ( j � 1)p] for
1 � k � p, 1 � j � q.

Differentiating (6) with respect to (R�1
i :)

�Ri
�1:x0

2
J � �Hi�xi� � yi� � HiM0,i ∈ �ki

2
�n, �17�

where the operator � denotes the Kronecker product
of two matrices. We recall that for two matrices X ∈
�p�q and Y ∈ �m�n, the Kronecker product X � Y is
defined as the (pm, qn) dimensional matrix

X � Y � �
x11Y . . . x1qY

·
·
·

·
·
·

xp1Y . . . xpqY
� ∈ �pm�qn.

Equations (5), (7), and (17) provide the forecast sen-
sitivity to the inverse observation error covariance ma-
trix

�Ri
�1:J

� � ��Hi�xi� � yi� � HiM0,iA�x 0
a J�

� ��Hi�xi� � yi� � Ri�yi
J� ∈ �ki

2
. �18�

The observation sensitivity (12) is used to establish the
last equality in (18). Using the differential of the inverse
formula d(X�1:) � �(X�T � X�1)d(X:) (see Magnus
and Neudecker 1999, chapter 9) and the symmetry of
R�1

i , it follows that

�Ri:
�Ri

�1:� � �Ri
�1 � Ri

�1, �19�

such that the forecast sensitivity to the observation er-
ror covariance is

�Ri:
J� � �Ri:

�Ri
�1:��Ri

�1:J
�

� �Ri
�1 � Ri

�1���Hi�xi� � yi� � Ri�yi
J�� ∈ �ki

2
.

�20�

The mixed-product rule (A � B)(C � D) � (AC) �

(BD) simplifies (20) to

�Ri:
J� � �Ri

�1�Hi�xi� � yi�� � �yi
J� ∈ �ki

2
. �21�

It is noticed that the sensitivities (21) are obtained with
a modest additional computational effort after the
evaluation of the sensitivities to observations. Denoting
�2

i ∈ �ki the vector of observation error variances at
time ti, from (21) it follows that

��i
2 J� � �Ri

�1�Hi�xi� � yi�� � �yi
J� ∈ �ki, �22�

where the operator � represents the Hadamard (el-
ementwise) product of two vectors. The equations of
the forecast sensitivity to the specification of the obser-
vation error statistics and the close relationship to the
observation sensitivity are thus provided. Often in prac-
tice the observation errors are assumed to be uncorre-
lated such that Ri is taken to be a diagonal matrix, Ri �
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diag(�2
i,1, . . . , �2

i,ki
). In this case (22) is written compo-

nentwise:

�J�

��i, j
2 �

1

�i, j
2 �Hi�xi� � yi� j

�J�

��yi�j
, j � 1, 2, . . . , ki. �23�

For each component (yi)j of the observational data vec-
tor yi at time ti, the sensitivity to the observation error
variance �2

i, j is related to the observation sensitivity by
the proportionality coefficient [Hi(xi) � yi]j /�

2
i, j—the

analysis fit to data divided by the observation error
variance. While important, this ratio does not directly
provide sensitivity information.

d. Sensitivity to background and background error
covariance

Differentiating (6) with respect to xb,

�xbx0

2 J � �B�1. �24�

Equations (4), (7), and (24) provide the analysis sensi-
tivity to background,

�xb
x0

a � B�1A ∈ �n�n. �25�

Chain rule differentiation,

�xb
J� � �xb

x0
a�x 0

a J�,

and (25) provide the expression of the forecast sensi-
tivity to background,

�xb
J� � B�1A�x 0

a J� ∈ �n. �26�

Differentiating (6) with respect to (B�1:),

�B�1:x0

2 J � �x0
a � xb� � I ∈ �n2�n, �27�

where I ∈ �n�n is the identity matrix. Equations (5), (7),
and (27) provide the forecast sensitivity to the inverse
background error covariance:

�B�1:J
� � ��x0

a � xb� � A�x 0
a J� ∈ �n2

, �28�

and using chain rule differentiation it follows that

�B:J
� � �B:�B

�1:��B�1:J
�

� �B�1 � B�1���x0
a � xb� � A�x 0

a J��

� �B�1�x0
a � xb�� � �B�1A�x 0

a J�� ∈ �n2
,

�29�

which is the equation of the forecast sensitivity to the
background error covariance. A close relationship to
the sensitivity to background is established from (26)
and (29):

�B:J
� � �B�1�x0

a � xb�� � �xb
J� ∈ �n2

. �30�

The sensitivity with respect to any of the entries of B is
thus easily available once the sensitivity to the back-
ground is computed. In particular, the forecast sensitiv-
ity with respect to the vector of background error vari-
ances �2

b ∈ �n is

��b
2 J� � �B�1�x0

a � xb�� � �xb
J� ∈ �n. �31�

A summary of the forecast sensitivity equations to
various input parameters of a 4D-Var DAS [(12), (21),
(22), (26), (30), and (31)] is provided in Table 1.

e. The 3D-Var sensitivity equations

An extensive amount of research on observation sen-
sitivity has been done in the context of 3D-Var data
assimilation. A comprehensive analysis and applica-
tions to targeted observations may be found in the work
of Baker (2000) and Doerenbecher (2002).

The 3D-Var cost corresponds to N � 0 in (1) and
thus the time index i is omitted. Under the assumption
that the observation operator is linear, the 3D-Var in-
verse Hessian matrix is the state-independent matrix

A � �B�1 � HTR�1H��1. �32�

Equations (12) and (26) of the sensitivity to observa-
tions and background become, respectively,

�yJ� � R�1H�B�1 � HTR�1H��1�x 0
a J� �33�

�xb
J� � B�1�B�1 � HTR�1H��1�x 0

a J�. �34�

Introducing the Kalman gain matrix K,

K � �B�1 � HTR�1H��1HTR�1, �35�

and noticing that

KT � R�1H�B�1 � HTR�1H��1,

B�1�B�1 � HTR�1H��1 � I � HTKT, �36�

TABLE 1. The equations of the forecast sensitivity to 4D-Var
DAS input parameters.

DAS input Forecast sensitivity

Observations �yi
J� � R�1

i HiM0,iA�xa
0
J�

Observation error
variance

��2
i
J� � {R�1

i [Hi(xi) � yi]} � �yi
J�

Observation error
covariance

�Ri:
J� � {R�1

i [Hi(xi) � yi]} � �yi
J�

Background estimate �xb
J� � B�1A�xa

0
J�

Background error
variance

��2
b
J� � [B�1(xa

0 � xb)] � �xb
J�

Background error
covariance

�B:J
� � [B�1(xa

0 � xb)] � �xb
J�
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where I ∈�n�n is the identity matrix, the sensitivity Eqs.
(33) and (34) may be written

�yJ� � KT�x 0
a J� and �37�

�xb
J� � �I � HTKT��x 0

a J�. �38�

Consistency with the sensitivity equations derived in
the original work of Baker and Daley (2000) from the
analysis equation xa � xb � K(y � Hxb) is thus proven.
It is noticed that in this context the sensitivity to the
observation error covariance (21) becomes

�R:J
� � �R�1�Hx0

a � y�� � �KT�x 0
a J�� �39�

and the sensitivity to the observation error variance
(22) becomes

��
2 J� � �R�1�Hx0

a � y�� � �KT�x 0
a J��. �40�

Replacing (38) into (30), the forecast sensitivity to the
background error covariance is

�B:J
� � �B�1�x0

a � xb�� � ��I � HTKT��x 0
a J�� �41�

and the sensitivity to the background error variance is

��b
2 J� � �B�1�x0

a � xb�� � ��I � HTKT��x 0
aJ��. �42�

f. On the relevance of the sensitivity equations

For practical applications, the forecast sensitivity
equations derived in this study should be cautiously
used to assess the observation impact, and systematic
observing system experiments are required to evaluate
the impact of specific sets of observations on analysis
and forecasts (Atlas 1997). Some of the issues that need
to be addressed are discussed here. The actual forecast
impact of a specific measurement depends not only on
the magnitude of the corresponding observation sensi-
tivity but also on the innovation component (Doeren-
becher and Bergot 2001; Langland and Baker 2004;
Zhu and Gelaro 2008). Therefore, as pointed out by an
anonymous reviewer, large sensitivities do not neces-
sarily imply a large forecast impact. The nonlinear re-
lationship between the forecast error and observations
(or other DAS input) must be considered since the
forecast aspect J� at the verification time is a nonlinear
function of the analysis xa

0 and, implicitly, of the obser-
vations. The sensitivities �yi

J� may be used to provide
only a first-order measure of the observation impact
and thus their relevance is determined by the higher-
order terms in the Taylor series. A reliable estimate of

the observation impact requires an analysis beyond first
order, as explained by Errico (2007). The approach of
Langland and Baker (2004) provides a higher-order ac-
curacy in the estimation of the observation impact on
the forecast error by combining adjoint sensitivity gra-
dients from two trajectories (background and analysis).
Another issue is related to the fact that the sensitivity
equations are derived from the optimality condition (6)
whereas in the practical implementation the minimiza-
tion process is terminated when the gradient satisfies a
certain convergence criteria or simply after a prescribed
number of iterations. To obtain an estimate of the ob-
servation sensitivity that is consistent to the data assim-
ilation process, Zhu and Gelaro (2008) implemented
the adjoint of the minimization algorithm in the grid-
point statistical interpolation analysis scheme (Wu et al.
2002). In this way it is acknowledged that data assimi-
lation is the sequence of computational steps performed
to obtain the analysis from the input. The adjoint of the
computation from input to analysis to forecast provides
sensitivity estimates fully consistent with the data as-
similation procedure.

3. Numerical aspects and illustrative experiments

Evaluation of the forecast sensitivity to observations
in a 4D-Var DAS requires a significant computational
effort in addition to the data assimilation, and the main
stages involved are outlined below:

S1—�x�
J�(x�): initialization of the adjoint model,

S2—�xa
0
J�(x�) � MT

0,��x�
J�(x�): adjoint model integra-

tion from t� to t0,
S3—A�1�0 � �xa

0
J�(x�): linear system for �0 with ma-

trix being the 4D-Var Hessian,
S4—�i � M0,i�0: tangent linear model integration

from t0 to ti, and
S5—�yi

J�(x�) � R�1
i Hi�i: mapping on observation

space, weighting.

It is noticed that after stage S3 is completed a single
tangent linear model integration (S4) in the data assim-
ilation window [t0, tN] is required to provide the sensi-
tivities with respect to all available observational data.
Stage S5 is performed at each observational time ti and
its computational demands are modest when the num-
ber of observations is small or the observational errors
are uncorrelated—an assumption often made in prac-
tice. The sensitivity to background is obtained after the
completion of stage S3, �xb

J� � B�1�0. The tangent
linear and adjoint model integrations involved in stages
S4 and S2, respectively, are fairly affordable and the
required software tools are already in place in a
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4D-Var DAS. Stage S3 dominates the computational
load since an iterative procedure such as the conjugate
gradient (CG) method must be used to approximate the
solution �0 of the linear system. The errors in the esti-
mation of �0 are further propagated into the observa-
tion sensitivity computations by the tangent linear
model at stage S4; therefore, an increased accuracy in
the solution is necessary for the sensitivity estimates to
be reliable. An exact evaluation of the required Hes-
sian vector products may be obtained with a second-
order adjoint model (SOA; Le Dimet et al. 2002).
Given that the software development and the compu-
tational demands of an SOA model are significant, gra-
dient differences may be used to approximate A�1v �
[�J(x0 � �v) � �J(x0)]/�. The relationship is exact for
a quadratic 4D-Var cost functional (e.g., in the in-
cremental 4D-Var scheme with only one outer loop).
Preconditioning is required for the iterative method to
be effective and information accumulated while solving
the data assimilation problem (1) may be used to
construct an appropriate preconditioner. The use of
limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) preconditioners in conjunction with the CG
method is particularly effective in problems where ma-
trix–vector products are expensive to compute and
when a low accuracy in the solution is required, as
shown in the work of Morales and Nocedal (2000).
BFGS and L-BFGS approximations to the inverse Hes-
sian matrix have been proven to provide efficient pre-
conditioners in data assimilation (Fisher and Courtier
1995; Veersé et al. 2000).

a. Experimental setup

Numerical experiments are set up with a finite-
volume global shallow-water (SW) model of Lin and
Rood (1997) at a resolution of 2.5° � 2.5° and with a
time step �t � 600 s. The discrete state vector is of
dimension n 	 3 � 104, x � (h, u, �), where h is the
geopotential height and u and � are the zonal and me-
ridional wind velocities, respectively. Given the simplic-
ity of our model, these experiments are merely used to
illustrate the sensitivity concepts presented in this work
and some of the potential applications.

An idealized 4D-Var DAS is considered in the twin
experiments framework: a reference initial state x t

0

(“the truth”) is taken from the 40-yr European Centre
for Medium-Range Weather Forecasts (ECMWF)
reanalysis (ERA-40) 500-hPa data valid for 0600 UTC
15 March 2002; the background estimate xb to x t

0 is
obtained from a 6-h integration of the SW model ini-
tialized at t0 � 6 h with ERA-40 500-hPa data valid for
0000 UTC 15 March 2002. Isopleths of the errors in the

background estimate x t
0 � xb are shown in Fig. 1 using

a total energy norm to obtain gridpoint values (m2 s�2),

||�x||E
2 �

1
2 � |�u|2 � |��|2 �

g

h
|�h|2�, �43�

where g is the gravitational constant and h is the mean
height of the reference data. “Observational data” for
the assimilation procedure are generated from a model
trajectory initialized with x t

0 and corrupted with ran-
dom errors from a normal distribution N(0, �2). The
standard deviation is chosen as �h � 5 m for the height
and �u � �� � 0.5 m s�1 for the velocities, and the
observation errors are assumed uncorrelated (diagonal
Ri). The background errors are assumed uncorrelated
(diagonal B) and are specified at a ratio �2

b/�2 � 4 to
the observations. An inspection of the contours in Fig.
1 reveals that the background errors are in general mis-
represented in the DAS and we will return to this as-
pect later in this section. A data assimilation time in-
terval [t0, t0 � 6h] is considered with data provided at
each time step (N � 36) and uniformly distributed on a
10° � 10° model subgrid. The observation operator H is
thus represented by a matrix with entries 0 and 1 only
and there are 648 observations for each h, u, and � per
time step, ki � 1944, i � 0, 1, . . . , 36. The L-BFGS
algorithm (Liu and Nocedal 1989) was used to solve the
nonlinear 4D-Var minimization problem (1) with a con-
vergence criteria (1/n) ||�x0

J || � 10�3, where || • || de-
notes the Euclidean norm in �n. The evolution of the
cost functional and its gradient during the 4D-Var mini-
mization process are displayed in Fig. 2. At the analysis
x a

0, the norm of the gradient was found to be (1/
n)||�x0

J(xa
0)|| 	 0.88 � 10�3. The errors in the back-

ground estimate x t
0 � xb and the analysis errors x t

0 � xa
0,

averaged over the longitudinal direction, are displayed
in Fig. 3, and it is noticed that a significant reduction in
the initial-condition error was achieved through the as-
similation procedure.

b. Forecast error sensitivity analysis

At the verification time t� � t0 � 30 h we consider as
the reference state x t

� � Mt0→t�
(x t

0) and the forecast x f
� �

Mt0→t�
(x a

0). The region D� � 50°–65°N, 60°–30°W is
taken as the verification domain and the forecast error
||x t

� � x f
�||

2
E over D� is displayed in Fig. 4. The functional

J� is defined as a scalar measure of the forecast error
over D�,

J� � �x �
f � x �

t �TPTEP�x �
f � x �

t �, �44�
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where P is the projection operator on D� and E is a
diagonal matrix of the total energy norm. The sensitivi-
ties of J� with respect to the ensemble DAS input [yi, Ri,
xb, B] were evaluated by performing the computational
stages S1–S5. The first-order adjoint of the finite vol-
ume SW model used in this study was developed in the
work of Akella and Navon (2006). The simplicity of the
SW model allowed us to implement an SOA model
with the aid of automatic differentiation software
(Giering and Kaminski 1998). The verification of the
SOA model included a Taylor series test (Daescu and
Navon 2007) and a Hessian symmetry test using pairs of
random vectors. An approximate solution to the linear
system at stage S3 was computed by imposing the con-
vergence criteria (1/n)||A�1�0 � �x a

0
J�|| � 10�4.

1) OBSERVATION SENSITIVITY

The sensitivity of the forecast error with respect to
time–space-distributed observational data yi and to the
specification of the corresponding observation error
variances �2

i is evaluated in the 4D-Var context accord-
ing to (12) and (23), respectively, for i � 0, 1, . . . , 36.
The time dimension of the sensitivity to data is charac-
teristic of the 4D-Var framework and in Fig. 5a we
display the observation space Euclidean norm of the
forecast error gradients �ho

i
J�, �uo

i
J�, ��o

i
J� correspond-

ing to the observational data components yi � (ho
i , uo

i ,
�o

i ) as a function of the observation time ti � t0. The
Euclidean norm of the forecast error sensitivity to the
specification of the observation error variances ��2

i,h
J�,

��2
i,u

J�, ��2
i,�

J� is also displayed in Fig. 5b. An increased
sensitivity is noticed with respect to data toward the
end of the assimilation window indicating that the time
distribution of the observations plays an essential role

FIG. 2. Relative reduction in the cost function and the gradient
norm during the 4D-Var minimization process.

FIG. 1. Total energy errors (m2 s�2) in the background estimate to the initial conditions. The contour interval is 10 m2 s�2.
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FIG. 3. Zonally averaged total energy errors (m2 s�2) in the prior estimate to the initial
conditions and after the data assimilation process.

FIG. 4. Total energy forecast error (m2 s�2) at the verification time t� � t0 � 30 h and selection of the
verification domain. The contour interval is 1 m2 s�2.
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on the observation impact. For instance, the sensitivity
to the u-velocity data at the end of the assimilation
window is higher by as much as a factor of 5 as com-
pared to the data near the initial time. The sensitivity to
velocity data uo

i , �o
i was found to be an order of mag-

nitude higher than the sensitivity to the height data ho
i ,

whereas the sensitivity to �2
i,h was over two orders of

magnitude lower than the sensitivity to �2
i,u and �2

i,�.
From (12) it is noticed that for uncorrelated observa-
tional errors the observation sensitivity is inversely pro-
portional to the observation error variance such that an
increased error variance may result in a low magnitude
observation sensitivity (in our experiments �2

h � 25 m2

for the height data versus �2
u � �2

� � 0.25 m2 s�2 for the
velocities). This aspect must be taken into account in
practical applications when evaluating the forecast sen-
sitivity with respect to various data components. For
the velocity data the sensitivity to the observation error
variance has a larger magnitude than the observation
sensitivity (by as much as a factor of 3–4), indicating
that proper specification of the observation error sta-
tistics has a significant impact on the forecast error. The
proportionality coefficient in (23) depends not only on
the error variance but also on the analysis fit to data.
The increased variability noticed in the time evolution

of the sensitivity to the error variances, as compared to
the observation sensitivity, indicates a nonuniform fit to
data over the assimilation time interval.

An analysis of the distribution of the observation
sensitivity in the observation space reveals that the
specified forecast aspect J� exhibits a large sensitivity
with respect to only a few of the observations in the
DAS. As a measure of the forecast sensitivity to obser-
vation and error variance at each data location over the
assimilation time interval we consider the time cumu-
lative magnitude of the sensitivities �N

i�0|�yi
J�| and

�N
i�0|��2

i
J�| , respectively. The locations of the observa-

tions and error variances of the largest forecast sensi-
tivity are displayed in Fig. 6 for each of the u, �, and h
data. A distinct configuration is noticed for each data
component, indicating that the location of observations
and error variances that provide a potentially large
forecast impact depends on the data type. In the 4D-
Var context the forecast sensitivities to data are time–
space-varying fields. To illustrate this aspect, in Fig. 7
observation locations with sensitivities of largest mag-
nitude at ti � t0 � 3 h and ti � t0 � 6 h are displayed for
each of the u, �, and h data.

2) BACKGROUND SENSITIVITY

Forecast sensitivity to the background estimate xb

and to the specification of the background error vari-
ance �2

b is evaluated according to (26) and (31), respec-
tively. In our setup, B is a diagonal matrix, B �
diag(�2

b), �2
b � (�2

b,h, �2
b,u, �2

b,�)
T. Forecast sensitivities

to the background velocities �ub
J�, ��b

J� and to the
specification of the corresponding error variances
�� 2

b,u
J�, ��2

b,�
J� are shown in Fig. 8. For comparison, the

sensitivities to the analysis velocities �ua
0
J�, ��a

0
J� are

also displayed in Fig. 8. It is noticed that the analysis
sensitivity is greater in magnitude than the background
sensitivity and therefore supersensitivity (Baker and
Daley 2000) is not observed in these experiments. The
sensitivities �hb

J� and ��2
b,h

J� (not shown) were found to
be a few orders of magnitude lower than the sensitivi-
ties to the background velocities and to the velocities
error variances, respectively.

The sensitivity to the background error variances
identifies the state components (regions) where the
specification of the error statistics has a potentially high
impact on the forecast. In particular, misspecification of
the errors in the background velocities in the southwest
region of the verification domain may contribute sig-
nificantly to the forecast errors. The sensitivity to the
background variances �2

b,u, �2
b,� has a much larger mag-

nitude than the sensitivity to the background ub, �b (by
as much as a factor of 10 for the u velocity), indicating

FIG. 5. (a) Forecast sensitivity to observational data ho
i , uo

i , � o
i as

a function of the observation time ti � t0. For each data compo-
nent the corresponding Euclidean norm of the gradient is evalu-
ated in the observation space: �ho

i
J� (m s�2), �uo

i
J� (m s�1), and

��o
i
J� (m s�1). (b) Forecast sensitivity with respect to the obser-

vation error variances �2
i,h, � 2

i,u, � 2
i,� as a function of the observa-

tion time ti � t0.
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that proper input of the background error statistics may
be of much greater importance than the specification of
the initial guess state.

c. Improving the forecast

The information provided by the forecast sensitivity
to the DAS input (yi, Ri, xb, B) may be used to identify
the input components that have a significant impact on
the forecast aspect J�. We will refer to the previous
4D-Var experimental setup as DAS-1. Additional 4D-
Var experiments are used in this section to illustrate
some of the potential applications of the sensitivity
analysis: forecast error reduction through collection of
additional data (DAS-2) and through an improved rep-
resentation of the background error (DAS-3). A
4D-Var experiment that combines the features of

DAS-2 and DAS-3 (i.e., both supplementary data and
appropriate background weights are prescribed to the
data assimilation procedure) is also considered (DAS-
4). Since a model-generated reference state x t

� is used to
define the forecast error (44), the issue of dealing with
the SW model error to atmospheric dynamics is
avoided; however, overly optimistic results may be ob-
tained [the “identical twin” problem as discussed by
Atlas (1997)].

The DAS-2 setup differs from the DAS-1 setup in
one aspect only: the assimilation procedure includes
supplementary (h, u, �) data collected at all time steps
at a few additional grid points, to be determined. The
DAS-3 setup also differs from the DAS-1 setup in one
aspect only: the error in the background estimate is
prescribed accurately as x t

0 � xb for a few state com-

FIG. 6. Time cumulative magnitude of the forecast sensitivity to each of the data components u, �, and h, and the sensitivity to the
corresponding observation error variances � 2

u, � 2
�, � 2

h.
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ponents, to be determined. Guidance for adjusting
DAS-2, DAS-3, and DAS-4 is provided by the DAS-I
forecast error sensitivity fields to velocity observations
�N

i�0(|�uo
i
J�| � |��o

i
J�| ) and to the specification of the

background error variances |��2
u,b

J�| � |��2
�,b

J�| , respec-
tively. Locations of the largest sensitivity magnitude are
displayed in Fig. 9 and it is noticed that observations
with a potentially high forecast impact are located in
the central and northern region of the verification do-
main, whereas the specification of the background er-
ror variances is particularly important for the state
components in the southwest region of the verification
domain. In DAS-2, five additional observations are in-
serted at locations marked by open circles in Fig. 9. In
DAS-3, the background weights are accurately pre-
scribed in the region 50°–55°N, 60°–50°W and the
DAS-4 setup incorporates both additional data and ac-

curate background weights, as indicated in Fig. 9. For
each 4D-Var experiment the corresponding forecast er-
rors over the verification domain are presented in Fig.
10 using a total energy norm. It is noticed that both
DAS-2 and DAS-3 experiments resulted in a significant
reduction in the forecast error as compared with
DAS-1. The mean forecast error over D� expressed as
the sum of the gridpoint errors divided by the number
of grid points was 1.81 m2 s�2 in DAS-1, 0.88 m2 s�2 in
DAS-2, 1.22 m2 s�2 in DAS-3, and 0.88 m2 s�2 in DAS-
4. The DAS-4 setup proved to be of benefit over DAS-
3, but not over DAS-2, which indicates that strategies to
optimally adjust the DAS to improve the model fore-
cast must carefully consider the interaction between the
DAS input parameters. The forecast sensitivity de-
pends on the nominal values of the data assimilation
input and any changes in various input components re-

FIG. 7. Location of data with largest observation sensitivity magnitude at time t � 3 h and t � 6 h of the assimilation window
[0, 6] h. The units are meters per second in (a)–(d) and meters per second squared in (e) and (f).
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FIG. 9. (left) Time cumulative magnitude of the forecast sensitivity to velocity data |�u o
i
J� | � |�� o

i
J� | (m s�1) and location of

additional observations in DAS-2 and DAS-4. (right) Magnitude of the forecast sensitivity to the specified background error variances
|��2

b,u
J� | � |��2

b,�
J�| (nondimensional) and selection of the high-impact background error variance region in DAS-3 and DAS-4.

FIG. 8. Isopleths of the sensitivity of the forecast error to the analysis velocities (a) �u a
0
J� and (d) �� a

0
J�, background velocities (b)

�ub
J� and (e) ��b

J�, and background error variance specification (c) ��2
b,u

J� and (f) ��2
b,�

J�. The contour interval is 1 m s�1 in (a), (b),
(d), and (e) and 1 (nondimensional) in (c) and (f).
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quire a periodic reevaluation of the sensitivity fields to
account for the updated DAS configuration.

4. Conclusions and further research

Observation sensitivity techniques have been initially
considered for applications to targeted observations
and are currently implemented in NWP to provide an
effective global monitor of the short-range forecast per-
formance of the observations. The adjoint DAS ap-
proach may be used to estimate the observation impact
(or more general other-input parameters) on the analy-
sis and subsequent forecasts. In this study the sensitivity
equations of the nonlinear 4D-Var scheme were de-
rived in the context of sensitivity to parameters in un-
constrained minimization. The theoretical framework
of the implicit function theorem allowed a compact der-
ivation of the sensitivity equations with respect to the
extended set of input parameters (yi, Ri, xb, B). Numeri-
cal experiments were performed to illustrate the ability
of the adjoint DAS approach to provide forecast sen-
sitivity, not only with respect to the background and
time-distributed observational data but also with re-
spect to the specification of the background and obser-
vation error statistics. Modeling the input error covari-
ance matrices R and B is an area of intensive research
in NWP and in practice only few of the error statistics
may be properly estimated. The error covariance sen-
sitivity analysis is particularly useful since information
provided by the sensitivity fields may be used to iden-
tify the input components where improved statistical
information would be of most benefit to the analysis

and forecast. Further applications to adaptive data thin-
ning and targeted observations are envisaged and valu-
able insight may be gained through observing system
simulation experiments. The 4D-Var framework
allows a sensitivity analysis with respect to time–space-
distributed data and it is well suited for applica-
tions that involve multiple observation targeting in-
stants in the assimilation window (e.g., flight path de-
sign).

The 4D-Var sensitivity analysis involves a significant
software development and several simplifying assump-
tions are required in NWP applications to reduce the
computational burden. The simplicity of the SW model
used in this study allowed the implementation of a sec-
ond-order adjoint model associated with the nonlinear
4D-Var formulation and an increased numerical accu-
racy in the sensitivity computations. For practical pur-
poses, inconsistencies between the theoretical formula-
tion (such as the analytic sensitivity equations derived
in this study) and the operational implementation of
the data assimilation (involving several approxima-
tions) must be carefully considered. Consistent sensi-
tivity estimates may be obtained by using the adjoint of
the sequence of computations performed by the data
assimilation procedure. Aside from the initial code de-
velopment effort, a periodic software update is re-
quired as advanced data assimilation schemes and op-
timization algorithms are implemented.
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