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ABSTRACT

A parametric approach to the adjoint estimation of the variation in model functional output due to the

assimilation of data is considered as a tool to analyze and develop observation impact measures. The par-

ametric approach is specialized to a linear analysis scheme and it is used to derive various high-order

approximation equations. This framework includes the Kalman filter and incremental three-and four-

dimensional variational data assimilation schemes implementing a single outer loop iteration. Distinction is

made between Taylor series methods and numerical quadrature methods. The novel quadrature approxi-

mations require minimal additional software development and are suitable for testing and implementation at

operational numerical weather prediction centers where a data assimilation system (DAS) and the associated

adjoint DAS are in place. Their potential use as tools for observation impact estimates needs to be further

investigated. Preliminary numerical experiments are provided using the fifth-generation NASA Goddard

Earth Observing System (GEOS-5) atmospheric DAS.

1. Introduction

An optimal use of the increasing amounts of atmo-

spheric data in numerical weather prediction (NWP)

applications and the design of future observing networks

require the development of efficient data analysis tools

to quantify the value added by observations to a specific

data assimilation system (DAS) and model forecast. A

judicious assessment of the observation value must ac-

count for the data location in the time–space domain,

observation type, instrument type, as well as data in-

teraction in the presence of multiple observing systems.

Estimation of the observation impact on the short-range

model forecast may be performed through observing

system experiments (OSEs; Atlas 1997) where selected

datasets are systematically added or removed from the

assimilation procedure (Kelly et al. 2007). This approach

is suitable when the impact of a few data subsets is in-

vestigated and becomes computationally prohibitive

when the impact of a large number of data subsets or of

all individual measurements is considered.

Adjoint-based observation sensitivity, initially devel-

oped in NWP as an observation-targeting tool (Baker

and Daley 2000; Doerenbecher and Bergot 2001), pro-

vides a feasible (all at once) approach to the observation

impact estimation for a large variety of datasets and in-

dividual observations. Techniques based on observation

sensitivity are currently used to monitor the impact of

observations provided by the routine observing systems

on a selected short-range forecast aspect and to assess

the efficiency of various observation-targeting strategies

(Fourrié et al. 2002; Langland and Baker 2004; Langland

2005; Gelaro et al. 2007; Zhu and Gelaro 2008). Esti-

mation of observation impact in an ensemble Kalman

filter data assimilation scheme is discussed by Liu and

Kalnay (2008).

* Additional affiliation: Science Applications International

Corporation, Beltsville, Maryland.

Corresponding author address: Dr. Dacian N. Daescu, Depart-

ment of Mathematics and Statistics, Portland State University,

P.O. Box 751, Portland, OR 97207.

E-mail: daescu@pdx.edu

MAY 2009 N O T E S A N D C O R R E S P O N D E N C E 1705

DOI: 10.1175/2008MWR2659.1

� 2009 American Meteorological Society



The observation impact estimation relies on the chain

rule relationship: the change in a scalar forecast mea-

sure e (e.g., forecast error) is due to the changes in the

initial conditions as a result of the data assimilation

procedure. The analyzed forecast is implicitly a function

of observations and adjoint modeling is used to provide

an explicit estimate of the variation de in terms of the

innovation vector in the observation space.

The necessity of considering higher-than-first-order

approximations is discussed by Errico (2007, hereafter

E07) and Gelaro et al. (2007, hereafter GZE07) who

derive various-order approximation schemes and ana-

lyze the results using the fifth-generation National Aero-

nautics and Space Administration (NASA) Goddard

Earth Observing System (GEOS-5) forecast model and

DAS. The approach developed by Langland and Baker

(2004, hereafter LB04) and first implemented in the

Naval Research Laboratory DAS provides an obser-

vation impact estimate based on a higher-order ap-

proximation to the variation de in the forecast error

(with a third-order error, as shown in E07) by combin-

ing adjoint sensitivity gradients from two trajectories:

background and analysis. The potential of the nonlinear

approximations to introduce ambiguities in the impact

estimates of individual observations is investigated in

E07 and GZE07. In their studies it is also emphasized

that further research in the design of new observation

impact measures is required and that a judicious theo-

retical framework to high-order observation impact

estimation is yet to be formulated.

In the present work a parametric approach to the

adjoint estimation of the variation in a model functional

output due to assimilation of data is considered as a tool

to analyze and develop observation impact measures.

The parametric approach is specialized to a linear

analysis scheme and it is used to derive various de-

approximation equations. This framework includes the

Kalman filter and incremental three-and four-dimensional

variational data assimilation schemes (3DVAR and

4DVAR, respectively) implementing a single outer loop

iteration (Daley 1991; Courtier et al. 1994). Distinction

is made between the Taylor series methods and nu-

merical quadrature methods. The novel quadrature

approximations derived in this study require a minimal

additional software development and are suitable for

testing and implementation at operational NWP centers

where data assimilation schemes and the associated

adjoint DAS are in place. Their potential use as tools

for observation impact estimates needs to be further

investigated.

Section 2 includes a brief review of current adjoint-

based observation impact measures in data assimilation.

The parametric methodology to adjoint estimation of the

variation in model functional output due to the assimi-

lation of data is described in section 3; a table of ap-

proximation formulas is provided together with an order

analysis and the associated error estimates. Preliminary

numerical results are presented in section 4 using the

NASA GEOS-5 atmospheric DAS. Summary and fur-

ther research directions are presented in section 5.

2. Adjoint-based observation impact measures

Consider a data assimilation scheme that provides an

optimal estimate (analysis) xa to the initial conditions of

an atmospheric model (Daley 1991; Kalnay 2002)

xa 5 xb 1 K[y� h(xb)], (1)

where xb is a background estimate to the initial condi-

tions, y is the vector of observational data, h is the ob-

servation operator, and

K 5 BHT[HBHT 1 R]�1 (2)

is the optimal gain matrix expressed in terms of the

background error covariance matrix B, the observation

error covariance matrix R, and the linearized observa-

tion operator H. Denoting the analysis increment dxa 5

xa 2 xb and the innovation vector dy 5 y 2 h(xb), the

analysis Eq. (1) is written as

dxa 5 Kdy. (3)

The analysis provided by Kalman filter-based methods

as well as incremental 3DVAR and 4DVAR schemes

implementing a single outer loop iteration is formally

expressed as (3).

The observation sensitivity and impact estimation are

specific to a forecast aspect of interest. A typical scalar

measure of the error in a forecast initiated from x0 is

defined as (LB04; GZE07)

e(x0) 5 (xf
0
� xt)TC(xf

0
�xt), (4)

where xf
0 5 M(x0) is the nonlinear model forecast at

time t initiated at t0 , t from x0, xt is the verifying

analysis at time t, the superscript T denotes the trans-

pose operator, and C is a symmetric and positive defi-

nite matrix that defines the metric on the state space

(e.g., an appropriate energy norm).

For the purpose of this work we consider a general

model functional output e(x0), assumed to be a smooth

function of the initial conditions. The change in e due to

assimilation of data is

de 5 e(xa)� e(xb). (5)

In particular, for the forecast error measure (4)
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de 5 (xf
a � xt)TC(xf

a�xt)� (xf
b
� xt)TC(xf

b
� xt) (6)

and the gradient of e evaluated at x0 5 xa and x0 5 xb is

expressed, respectively, as

=x0
e(xa) 5 2MT(xa)C(xf

a�xt) (7)

=x0
e(xb) 5 2MT(xb)C(x

f
b
�xt). (8)

In Eqs. (7) and (8), MT(xa) and MT(xb) denote the ad-

joint of the tangent linear model from t0 to t evaluated

along the analysis trajectory and background trajectory,

respectively. To a first-order approximation, from Eqs.

(3) and (5) the variation de due to assimilation of data y

may be estimated using a linearization around the

background xb:

de ’ (dxa)T
=x0

e(xb) 5 (dy)TKT=x0
e(xb) 5

def
deb

1, (9)

or, alternatively, using a linearization around the anal-

ysis xa:

de ’ (dxa)T
=x0

e(xa) 5 (dy)TKT=x0
e(xa) 5

def
dea

1. (10)

The measure in (10) has been initially considered for

observation impact studies since it relates directly to the

concept of observation sensitivity introduced in Baker

and Daley (2000). From (1) the analysis sensitivity to

observations is expressed as

=yxa 5 KT. (11)

Chain rule differentiation provides the sensitivity of the

forecast initiated from xa to the observations:

=ye(xa) 5 =yxa=x0
e(xa) 5 KT=x0

e(xa) (12)

and from (10) and (12) it follows that

dea
1 5 (dy)T

=ye(xa) (13)

such that dea
1 is the inner product in the observation

space between the innovation vector and the observa-

tion sensitivity vector. The observation impact metho-

dology first introduced in LB04 estimates the variation

de using sensitivity gradients along both background

and analysis trajectories:

de ’ (dy)TKT 1

2
=x0

e(xa) 1
1

2
=x0

e(xb)

� �
5
def

dea,b
2 , (14)

which is a second-order accurate (third-order error)

approximation to de, as shown in E07 and in section 3b

below.

a. Remark 1

In the de-approximation measures derived through-

out this work a subscript is used to specify the order of

accuracy and a superscript is used to specify the tra-

jectories involved in the computation. In LB04 dea, b
2

is

denoted deg
f, whereas E07 and GZE07 use the notation

de3 to specify the same expression.

b. Remark 2

From Eqs. (9), (10), and (14) one notices that dea,b
2

may be obtained by averaging the first-order approxi-

mations dea
1 and deb

1 . This property is also reflected in

the tables of numerical data provided in GZE07.

With an appropriate definition of the response func-

tional e, the measures dea
1 and dea,b

2 have been used by

Fourrié et al. (2002), Zhu and Gelaro (2008), Langland

and Baker (2004), and Langland (2005) to assess the

impact of individual data components in the assimila-

tion scheme by taking the element-wise product be-

tween the innovation vector and the corresponding dy-

amplification factor. The validity and the appropriate

use of these approximations as well as the interpretation

of the observation impact are thus closely determined

by the forecast model M and the specification of the

model functional output e. Various-order observation

impact measures are analyzed in GZE07, including deb
1

and (1/2) deb
1. A relationship between the measures

dea,b
2

and (1/2)deb
1 is further discussed in the appendix.

The experience gained from the above-mentioned stud-

ies is that in practice first-order estimates are not accu-

rate approximations to the variation de in the forecast

aspect induced by the assimilation of data. In the next

section a parametric approach is considered to obtain

high-order de approximations and it is used to derive

various adjoint-based approximation schemes, deter-

mine their order of accuracy, and provide the associated

error estimates.

3. High-order adjoint-based estimation of de

Consider a family of suboptimal analyses defined by a

parameter s, 0 # s # 1:

x(s) 5
def

xb 1 s(xa � xb) 5 xb 1 sKdy (15)

such that x(0) 5 xb and x(1) 5 xa. The midpoint of the

segment from xb to xa is denoted as

x(1/2) 5
1

2
(xb 1 xa) 5

def
x(a1b)/2. (16)

Corresponding to (15) and to the model functional output

e we associate the function defined as
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ê : [0, 1]! R, ê(s) 5
def

e[x(s)]. (17)

As the parameter s describes the segment [0, 1] on the

real axis, x(s) describes the segment from xb to xa in the

state space; accordingly, the function ê evolves from

ê(0) to ê(1) and the model functional output evolves

from e(xb) to e(xa) such that the variation dê is identical

to the variation de:

dê 5 ê(1)� ê(0) 5 e(xa)� e(xb) 5 de. (18)

The process is illustrated in Fig. 1. Taking into account

that x(s) depends linearly on s and has a constant de-

rivative:

x9(s) 5 Kdy, for 0 # s # 1, (19)

from (17) and (19) using chain rule differentiation the

first- and second-order derivatives of ê are expressed,

respectively, as

ê9(s) 5 (dy)TKT=x0
e[x(s)], for 0 # s # 1, and (20)

ê0(s) 5 (dy)TKT=2
x0

e[x(s)]Kdy, for 0 # s # 1, (21)

where =2
x0

e[x(s)] denotes the Hessian matrix of e with

respect to initial conditions, evaluated at x(s). In par-

ticular,

ê9(0) 5 (dy)TKT=x0
e(xb), ê0(0) 5 (dy)TKT=2

x0
e(xb)Kdy,

(22)

and

ê9(1) 5 (dy)TKT=x0
e(xa), ê0(1) 5 (dy)TKT=2

x0
e(xa)Kdy.

(23)

In general, the m-order derivatives of ê are expressed in

terms of the gain matrix K, the innovation vector dy, and

the m-order derivatives of the functional e with respect

to initial conditions, evaluated at x(s):

êm(s) 5 =m
x0

e[x(s)](Kdy)m, for 0 # s # 1, (24)

where the right-hand-side term in (24) is defined re-

cursively as

a. Remark 3

If the forecast model is linear, M 5 M, and a qua-

dratic functional output in (4) is considered then the

Hessian =2
x0

e is a state-independent matrix:

=2
x0

e 5 2MTCM. (25)

b. The de-approximation equations and their error
estimates

The fundamental theorem of calculus:

ê(1)� ê(0) 5

ð1

0

ê9(s)ds (26)

together with the relationship in (18) and Eqs. (20)–(24)

are used next to derive several high-order approxima-

tions to de and to provide the associated error estimates

based on Taylor series and the theory of numerical in-

tegration (Atkinson 1988). The error in the de approx-

imation is expressed in terms of high-order derivatives

of e with respect to the initial conditions evaluated at a

certain point x(t), 0 # t # 1 in the state space, specific to

each measure.

FIG. 1. Illustration of the parametric approach for estimating the

variation in the model’s functional output induced by assimilation

of data.

=x0
e[x(s)](Kdy) 5 (dy)TKT=x0

e[x(s)], and

=m
x0

e[x(s)](Kdy)m
5 (dy)TKT=x0

f=m�1
x0

e[x(s)](Kdy)m�1g, for m $ 2.
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1) Approximations based on Taylor series at xb.

(i) First-order accurate: ê(1)� ê(0) 5 ê9(0)1 1/2ê0(t),

deb
1 5 (dy)TKT=x0

e(xb), and (27)

de� deb
1 5

1

2
(dy)TKT=2

x0
e[x(t)]Kdy. (28)

(ii) Second-order accurate: ê(1)� ê(0) 5 ê9(0) 1

1/2ê0(0) 1 1/6ê09(t),

deb
2 5 (dy)TKT=x0

e(xb)

1
1

2
(dy)TKT=2

x0
e(xb)Kdy, and (29)

de� deb
2 5

1

6
=3

x0
e[x(t)](Kdy)3. (30)

2) Approximations based on Taylor series at xa.

(i) First-order accurate: ê(1)� ê(0) 5 ê9(1)� 1/2ê0(t),

dea
1 5 (dy)TKT=x0

e(xa), and (31)

de� dea
1 5 �1

2
(dy)TKT=2

x0
e[x(t)]Kdy. (32)

(ii) Second-order accurate: ê(1)� ê(0) 5 ê9(1)�
1/2ê0(1) 1 1/6ê09(t),

dea
2 5(dy)TKT=x0

e(xa)

�1

2
(dy)TKT=2

x0
e(xa)Kdy, and (33)

de�dea
2 5

1

6
=3

x0
e[x(t)](Kdy)3. (34)

3) Approximations based on numerical quadrature

schemes.

Numerical quadrature schemes applied to (26) pro-

vide a de approximation:

(i) Second-order accurate:

(a) Trapezoidal rule (LB04):

ð1

0

ê9(s)ds 5
1

2
[ê9(0) 1 ê9(1)]� 1

12
ê09(t),

dea,b
2 5

1

2
[ê9(0) 1 ê9(1)]

5 (dy)TKT 1

2
[=x0

e(xb) 1 =x0
e(xa)], and

(35)

de� ea,b
2 5 � 1

12
ê09(t) 5 � 1

12
=3

x0
e[x(t)](Kdy)3. (36)

(b) Midpoint rule:

ð1

0

ê9(s)ds5ê9(1/2)1
1

24
ê09(t),

de
(a1b)/2
2 5ê9(1/2)5(dy)TKT=x0

e[x(a1b)/2], and (37)

de�de
(a1b)/2
2 5

1

24
ê90(t)5

1

24
=3

x0
e[x(t)](Kdy)3. (38)

(ii) Fourth-order accurate (Simpson’s rule):

ð1

0

ê9(s)ds5
1

6
[ê9(0)14ê9(1/2)1ê9(1)]� 1

2880
ê5(t),

de
a,b,(a1b)/2

4
5

1

6
[ê9(0)14ê9(1/2)1ê9(1)]

5(dy)TKT 1

6
f=x0

e(xb)14=x0
e[x(a1b)/2]

1=x0
e(xa)g, and

(39)

de�de
a,b,(a1b)/2
4 5� 1

2880
ê5(t)

5� 1

2880
=5

x0
e[x(t)](Kdy)5. (40)

A summary of the adjoint-based approximations to

the variation de in the model functional output due to

assimilation of data using a linear analysis scheme is in

Table 1.

c. Computational aspects and discussion

Theoretically, de-approximation formulas of any or-

der may be derived using both Taylor series and nu-

merical quadrature; however, only the quadrature

TABLE 1. Adjoint-based de approximations in a linear data as-

similation scheme. A subscript is used to specify the order of ac-

curacy of the approximation and a superscript is used to specify the

trajectories involved in the computation.

Measure Equation

Taylor series

deb
1 (dy)TKT=x0

e(xb)

dea
1 (dy)TKT=x0

e(xa)

deb
2 (dy)TKT=x0

e(xb) 1 (1/2)(dy)TKT=2
x0

e(xb)Kdy

dea
2 (dy)TKT=x0

e(xa)� (1/2)(dy)TKT=2
x0

e(xa)Kdy

Numerical quadrature

dea,b
2 (dy)TKT(1/2)[=x0

e(xb) 1 =x0
e(xa)]

de(a1b)/2
2 (dy)TKT=x0

e[x(a1b)/2]

de4
a,b,(a1b)/2 (dy)TKT(1/6)f=x0

e(xb) 1 4=x0
e[x(a1b)/2] 1 =x0

e(xa)g
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approach is (currently) feasible for the practical im-

plementation of high-order estimates. Taylor series

approximations to de are expressed explicitly in terms of

the innovation vector and derivatives at one of the

endpoints xb or xa. The equations of the second-order

accurate approximations deb
2 and dea

2 clearly illustrate

the presence of the innovation-component cross prod-

ucts (dy)i(dy)j in the higher-than-first-order estimates.

The quadrature schemes make use of information from

both end nodes xb and xa such that implicitly the dy-

amplification factor associated to these schemes de-

pends on all dy9s components. Whether or not this

trade-off may result in potential ambiguities when high-

order de approximations are used to assess the impact of

individual observation components needs to be further

investigated (GZE07).

The Hessian-vector products involved in the second-

order Taylor series may be evaluated with a second-

order adjoint model (Le Dimet et al. 2002) or approx-

imated by gradient differences, for example,

=2
x0

e(x) dxa ’ [=x0
e(x 1 edxa)� =x0

e(x)]/e. Increasing the

accuracy of quadrature approximations requires only

additional adjoint model integrations along trajectories

properly initiated on the segment from xb to xa. The

midpoint in Eq. (37) provides a second-order accurate

estimation to de using a single gradient that is evaluated

along the model trajectory initiated from x(a1b)/2. This

point defined by (16) is obtained at virtually no addi-

tional computational cost once the analysis xa is avail-

able and, given the error estimates in (36) and (38),

de(a1b)/2
2 may provide a potentially more accurate ap-

proximation to de than the measure dea, b
2 . Associated

with the functional output (4), the measure de(a1b)/2
2 is

de
(a1b)/2
2 5 2(dy)TKTMT[x(a1b)/2]C[xf

(a1b)/2
� xt], (41)

where xf
(a1b)/2 is the forecast initiated from the midpoint

x(a1b)/2 and MT[x(a1b)/2] is the adjoint model evaluated

along the midpoint trajectory. In practice, when fore-

casts are issued for every analysis time, the state tra-

jectories initiated from the background xb and the

analysis xa can easily be made available, whereas ob-

taining the midpoint trajectory requires an additional

run of the nonlinear forecast model. However, calcula-

tion of midpoint observation impact estimate requires

only a single integration with the adjoint model MT,

whereas the trapezoidal estimate requires two such in-

tegrations. The computational cost of implementing

de(a1b)/2
2 is thus roughly equivalent to the cost of im-

plementing dea, b
2 . The midpoint calculation may become

more desirable in certain situations for instance, when

using the impact calculation to tune an Observation

System Simulation Experiment (OSSE; R. M. Errico

2008, personal communication). In this case, forecasts

are only issued with the sole purpose of calculating

observation impact estimates, and therefore one might

as well avoid the extra adjoint model integration re-

quired to calculate the trapezoidal expression.

The Simpson’s rule in Eq. (39) gives a fourth-order

accurate (fifth-order error) estimate to de at the expense

of only one additional forecast and adjoint model inte-

gration, as compared to the second-order accurate es-

timate dea, b
2 . This measure provides a feasible tool for

validating the observation sensitivity computations and

for assessing the impact of the nonlinearities on the

errors in the lower-order approximations.

The error estimates provided in this section show that

the accuracy of the de approximation measures depends

on the innovation vector dy, the DAS K, the functional

aspect e, the adjoint MT, and the high-order derivatives of

the nonlinear forecast model. Theoretically, for linear

dynamics and quadratic functional output all second-and-

higher-order accurate measures derived in this study

provide the exact value of the variation de and identical

results when used for observation impact assessment.

To our knowledge, the measures in (37) and (39) have

not been previously considered for estimating the ob-

servation impact and whether or not these measures

may provide viable tools for practical applications to

observation impact studies needs to be further inves-

tigated. Their implementation requires no additional

software development as compared, for example, to the

observation impact estimates based on the dea,b
2 mea-

sure and testing may be easily performed at operational

NWP centers.

4. Illustrative numerical experiments

Preliminary numerical experiments are provided to

illustrate the parametric approach to the analysis and

design of observation impact measures using GEOS-5

(Rienecker et al. 2008). GEOS-5 assimilates observations

using the incremental analysis update technique of

Bloom et al. (1996). It consists of a global atmospheric

model developed at Goddard and an analysis system

developed jointly by the National Centers for Environ-

mental Prediction (NCEP) and the NASA Global Mod-

eling and Assimilation Office (GMAO). The atmo-

spheric general circulation model (GCM) of GEOS-5

retains an updated version of the finite-volume hydro-

static dynamical core (Lin 2004) from its predecessor

GEOS-4. The GEOS-5 GCM is built under the infra-

structure of the Earth System Modeling Framework

(Collins et al. 2005) used to couple together various

physics packages including a modified version of the

relaxed Arakawa–Schubert convective parameterization
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scheme of Moorthi and Suarez (1992), the catchment-

based hydrological model of Koster et al. (2000), the

multilayer snow model of Stieglitz et al. (2001), and the

radiative transfer model of Chou and Suarez (1999).

Furthermore, the GCM is accompanied by its adjoint

model (ADM), which is essentially the ADM of the

finite-volume dynamical core GEOS-4 (Giering et al.

2003), with added vertical diffusion and polar filter

(Errico et al. 2007).

The GEOS-5 analysis component consists of the grid-

point statistical interpolation (GSI) system. The GSI im-

plements a 3DVAR using the incremental approach of

Courtier et al. (1994) for minimization with the pre-

conditioning strategy of Derber and Rosati (1989). The

background error covariance is implemented as a series of

recursive filters producing nearly Gaussian and isotropic

correlation functions (Wu et al. 2002). Satellite radiances

are processed using the Community Radiative Transfer

Model (CRTM; Kleespies et al. 2004) and bias corrected

online following the algorithm of Derber and Wu (1998).

Furthermore, the GSI used in the experiments here in-

cludes the adjoint capability of Trémolet (2007, 2008).

This adjoint of GSI differs from its previous incarnation

in Zhu and Gelaro (2008) in that it is not a line-by-line

adjoint, but rather it is derived from a swap of operations

used in the forward GSI. Combining the GSI adjoint with

the GCM adjoint, GEOS-5 has all the ingredients to

calculate the approximations discussed earlier.

Two sets of experiments were performed and the re-

sults are discussed in what follows. In the first experi-

mental setup, hereafter referred to as DAS-1, for com-

patibility with the assumptions in the theory presented

in the previous sections, we replace the GEOS-5 two

outer loop GSI-based 3DVAR with a single outer loop.

In this way nonlinearities in the observation operator

and therefore in the K operator are avoided. Accord-

ingly, when the analysis adjoint is used, this first ex-

periment, only executes a single outer loop of the ad-

joint analysis. The second experimental setup, hereafter

referred to as DAS-2, leaves the default settings of the

analysis minimization untouched, therefore using two

outer loops to calculate analysis increments at each

synoptic time. This experiment essentially ignores the

fact that K is indeed nonlinear. In the DAS-1 setup first-

order Taylor series and second-order quadrature mea-

sures in Table 1 are implemented for a single forecast in

early February 2007; experiments in the DAS-2 setup

compare de to the trapezoidal and midpoint approxi-

mations and the observation impact estimations pro-

vided by these measures for a full month of forecasts,

valid at 0000 UTC, in August 2007. All experiments are

performed at a horizontal resolution of 2.58 3 28 with 72

hybrid levels in the vertical. The model functional as-

pect is specified as the 24-h forecast error in (4) with a

diagonal matrix C taken such that e measures the av-

erage global forecast error between the model vertical

grid levels 40 to 72 (from the surface to approximately

128 hPa) in a total (dry) energy norm.

Over the time periods of interest, GEOS-5 DAS as-

similates observations from the conventional network:

radiosondes; wind profilers, pilot balloon (PIBAL) winds,

Aircraft to Satellite Data Relay (ASDAR) and Meteoro-

logical Data Collection and Reporting System (MDCARS)

aircraft wind and temperature reports, Next Generation

Weather Radar (NEXRAD) radar winds, dropsonde

winds, paid observations (PAOB) surface pressure,

Geostationary Meteorological Satellite (GMS), and

Meteorological Satellite (Meteosat) cloud drift infrared

(IR) and visible winds, Moderate Resolution Imaging

Spectroradiometer (MODIS) clear-sky and water vapor

winds, Geostationary Operational Environmental Sat-

ellite (GOES) cloud drift IR and water vapor cloud-top

winds, surface land observations, Special Sensor Micro-

wave Imager (SSM/I) rain rates and wind speeds, Trop-

ical Rainfall Measuring Mission (TRMM) Microwave

Imager (TMI) rain rates, and Quick Scatterometer

(QuikSCAT) wind speeds and directions. Satellite radi-

ances include the following: the Television and Infrared

Observation Satellite (TIROS) Operational Vertical

Sounder (TOVS) level 1b Advanced Microwave

Sounding Unit-A (AMSU-A) from the National Oce-

anic and Atmospheric Administration (NOAA) satel-

lites NOAA-15, NOAA-16, and NOAA-18; AMSU-B

from NOAA-15, NOAA-16, and NOAA-17; High Res-

olution Infrared Radiation Sounder-2 (HIRS-2) from

NOAA-14; HIRS-3 from NOAA-16 and NOAA-17;

Microwave Sounding Unit (MSU) from NOAA-14;

Earth Observing Satellite (EOS) Aqua level 1b radi-

ances Atmospheric Infrared Sounder (AIRS) and

AMSU-A; GOES-10 and GOES-12 sounders bright-

ness temperatures; and Solar Backscatter Ultraviolet-2

(SBUV-2; version 6) layer and total column ozone from

NOA �A-16.

a. Results in the DAS-1 setup

In the DAS-1 setup the analysis state xa is obtained by

assimilation of data valid at 0000 UTC 1 February 2007

and the verifying state xt is provided at 0000 UTC 2

February 2007 by performing 6-h analysis cycles.

The parametric approach may be used to identify

appropriate de-approximation measures and to quantify

the approximation error introduced by the evaluation of

the derivatives in the observation space. Theoretically,

given the relationships (18) and (20), approximations

based on derivatives estimated in the parameter space

are equivalent to approximations based on derivatives

MAY 2009 N O T E S A N D C O R R E S P O N D E N C E 1711



estimated in the observation space. As an alternative to

(20), from (17) the derivatives ê9(s) may be estimated

from nonlinear model forecasts and finite-difference

schemes. The graphs of the function ê(s) and of the

derivative ê9(s) as the parameter s spans the interval [0 1]

are displayed in Fig. 2. This information was obtained

using nonlinear model forecasts initiated from x(s) 5 xb 1

sdxa to evaluate ê(s) 5 e[x(s)] at an s increment of 0.1 (a

total of 11 forecasts were performed) and second-order

accurate finite-difference schemes to estimate ê9(s). At

parameter value s 5 0, ê(0) 5 e(xb), and the average

forecast error was found to be e(xb) 5 9.80 J kg21. At

parameter value s 5 1, ê(1) 5 e(xa) and the average

forecast error was found to be e(xa) 5 6.75 J kg21. The

average forecast error reduction de 5 23.05 J kg21 is

the overall impact of the observations in the data as-

similation scheme, indicative of the effectiveness of as-

similating observations as measured by the (dry) total

energy norm. Insight on the de-approximation measures

is provided by the graph of the derivative ê9(s) in Fig. 2.

The first-order measure deb
1 approximates ê9(s) in (26) by

the constant value ê9(0), whereas dea
1 approximates ê9(s)

by the constant value ê9(1). The derivative ê9(s) exhibits a

linear dependence on the parameter s and indicates that

ê(s) is close to a quadratic function. Second-order mea-

sures are thus appropriate and are expected to provide

accurate de approximations in these experiments.

It must be emphasized that the functionals ê(s) and

ê9(s) provide only information regarding the approxi-

mation properties of the de measures and that obser-

vation impact studies require an observation-space

evaluation of the derivatives. In practice, the accuracy

in the adjoint-based de approximations is impaired by

various simplifications used in the derivation and im-

plementation of the adjoint model MT and/or the adjoint

DAS operator KT. For example, the adjoint model is

often run at a coarse resolution, as compared to the

nonlinear forecast model, and may not properly account

for moist physics or nonlinearities in the dry dynamics

(LB04). Issues in the development of an adjoint DAS

that is fully consistent to the assimilation scheme are

discussed in the work of Zhu and Gelaro (2008).

Table 2 provides the values of various de approxi-

mations based on finite-difference derivative estimates

in the parameter space and adjoint-based derivatives in

the observation space. It is noticed that the second-

order measures based on finite-difference derivative esti-

mation in the parameter space provided accurate approx-

imations, whereas the observation-space computation of

the derivatives introduced an approximation error of

;30%. Relative errors of similar magnitude were re-

ported in LB04 and GZE07. The adjoint relationship

between the operators K and KT was checked and

proved to be valid and evaluating the de measures in the

state space did not improved the estimates. Therefore,

the increased uncertainty in the adjoint-based second-

order de approximations is mainly due to inconsistencies

between the nonlinear forecast model and the im-

plementation of the adjoint model MT.

First- and second-order adjoint-based observation

impact estimates and the corresponding estimates of the

contribution of various observing system components

to the average forecast error reduction are provided in

Fig. 3. The observation impact is largely overestimated

in the measure deb
1 and largely underestimated in the

measure dea
1 . The second-order quadrature measures dea,b

2

and dea1b
2 provided consistent estimates of the impact of

each observing system component. Based on the sec-

ond-order estimates, the largest percentage contribu-

tion to the forecast error reduction is attributed to the

radiance data (45%) and wind data (37%) followed by

the temperature (12%) and surface pressure data (5%).

FIG. 2. Evolution of the average forecast error function (left) ê(s) and (right) its derivative ê9(s)

as the parameter s spans the interval [0 1].
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The impact of other observations in the assimilation

scheme such as humidity and ozone data was estimated

to be less than 0.5%. Estimates based on the fourth-order

measure de
a,b,(a1b)/2
4 (not shown) were in close agreement

to the second-order estimates and it is noticed that

de
a,b,(a1b)/2
4

5 1/3dea,b
2

12/3de
(a1b)/2
2

. The use of the fourth-

order measure may be of interest in assessing the ob-

servation impact on forecasts beyond 24 h when nonlin-

earities in the model forecast may result in a large devi-

ation from quadratic of the forecast error aspect.

b. Results in the DAS-2 setup

Our second illustration involves evaluating the trape-

zoidal and midpoint estimates for the calculation of ob-

servation impact on the 24-h forecasts, valid at 0000

UTC, over the month of August 2007. Aside from reso-

lution, this experiment mimics precisely the normal

mode of execution of GEOS-5 DAS, where in particular,

the analysis uses two outer loops for its minimization.

Figure 4 shows the time series of the actual forecast

error reduction de (thin line) calculated directly from

the differences between the 24-h forecasts with the

corresponding verifications (analyzes), where the fore-

cast errors are evaluated in terms of total (dry) energy.

The actual forecast error reduction shown here is sim-

ilar to that shown in Fig. 1 of GZE07, but now for a

different time period. The 1-day forecast error reduc-

tion due to the assimilation of observations oscillates

between 1 and 3.5 J kg21, with the negative sign indi-

cating that the assimilation of observations improved

the forecasts as a whole. Estimates from the second-

order quadrature measures dea,b
2 (trapezoidal) and

de
(a1b)/2
2 (midpoint) are also displayed in Fig. 4, as in-

dicated by the X- and O-marked lines, respectively.

Both estimates are quite close to each other, and are

reasonable approximations to the actual error reduc-

tion. At times, the trapezoidal calculation tends to get

closer to the actual error reduction than the midpoint; at

other times, this seems to reverse. Both estimates here

are closer to the actual error reduction than what ap-

pears in GZE07. This is attributed mainly to the way the

line-by-line adjoint of Zhu and Gelaro handles the anal-

ysis outer loop versus the adjoint of Trémolet (2007, 2008).

A more detailed examination is shown in Fig. 5 where

the contribution of various observing systems to the

forecast error reduction is displayed. The black bars are

for the trapezoidal estimates; and the clear bars are for

the midpoint estimates. Figure 5a shows the observation

impacts in J kg21, and Figure 5b shows the fractional

observational impacts (i.e., the observation impacts di-

vided by the total estimate and multiplied by 100). Both

estimates are completely consistent. For example, they

both show AMSU-A being the dominant observing sys-

tem when it comes to impacting the 24-h forecasts,

FIG. 3. First- and second-order adjoint-based estimations of the

observation impact on the average forecast error reduction. The

estimated impact of all observations (all) and of observing system

components including radiances (rad), winds (uv), temperatures

(temp), and surface pressures (spr). Units are J kg21.

TABLE 2. Approximations to the average forecast error reduc-

tion de (J kg21) based on finite-difference derivative estimates in

the parameter space and adjoint-based derivative estimates in the

observation space.

de

Derivative

estimation deb
1 dea

1 dea,b
2 de

(a1b)/2
2 de

a,b,(a1b)/2
4

23.05 Finite difference 24.66 21.32 22.99 23.06 23.04

Adjoint based 25.88 22.06 23.97 24.04 24.02

FIG. 4. Time series of forecast error reduction in GEOS-5 due to

assimilation of observations for 0000 UTC 24-h forecasts in August

2007. The thin line shows the actual error reduction, the X-marked

line shows the estimate error reduction calculated using the trap-

ezoidal formula, and the O-marked line shows the case in which

the midpoint formula is used instead. Units are J kg21.
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followed by the radiosonde and dropsonde observations.

The trapezoidal estimate sees AMSU-A contributing

slightly less than the midpoint estimate; and reversely,

the midpoint estimate sees the radiosonde and drop-

sonde network contributing slightly more to the reduc-

tion in forecast error than the trapezoidal estimate.

These small differences between the two estimates be-

come even less noticeable when considering the frac-

tional impact (Fig. 5b). For all practical purposes, the

existing subtle differences between the two estimates are

negligible, particularly when viewed in the context of

approximations such as the nonlinearity of K and the lack

of physics in the adjoint, to cite a few.

5. Conclusions and further work

This study provides insight on the adjoint-based ob-

servation impact measures implemented in NWP and

contributes toward the development of a judicious theo-

retical framework to high-order observation impact esti-

mates. In E07 it was first noticed that the dy-amplification

factor in the LB04 observation impact measure is not

per se a gradient, but a weighted combination of two

gradients and that a proper interpretation of this term

needs to be further investigated. The parametric ap-

proach allows an interpretation and analysis of the

LB04 measure as a quadrature scheme to express the

variation in the model functional output due to the as-

similation of data. Approximation formulas associated

with standard numerical integration schemes were

provided together with their order of accuracy and error

estimates. The parametric approach provides a tool to

assess the approximation properties of the de measures

using nonlinear model forecasts. In practice, the accur-

acy of high-order adjoint-based measures is limited by

the deficiencies in the current adjoint forecast models

(e.g., moist physical processes are not properly incor-

porated in the adjoint model).

An attractive feature of the quadrature methods is

that high-order de approximations may be derived using

gradients evaluated along trajectories properly initiated

on the segment from xb to xa. Their potential drawback

is that information from both ends of the integration

interval is involved in the approximation formulas.

Whether or not ambiguities are introduced when these

schemes are used to estimate the impact of individual

observations in the DAS needs to be further investi-

gated and a judicious validation using OSEs needs to be

performed.

The theoretical framework developed in this work is

specialized to a linear analysis scheme and further re-

search is needed in the design and implementation of

high-order observation impact measures in nonlinear data

assimilation. Computation of observation sensitivity

and observation impact estimation in variational data

assimilation (VDA) schemes with multiple outer loops is

presented in the work of Trémolet (2008). The sensitivity

equations of a 4DVAR DAS are discussed by Daescu

FIG. 5. (a) Estimate observation impact (J kg21) and (b) fractional observation impact (%) for various instruments for all 0000 UTC

24-h forecasts in August 2007. The black bars are for trapezoidal estimates; the clear bars are for midpoint estimates. The abbreviations

along the vertical axis indicate different types of observations: Ships, ships and buoy temperature, wind-specific humidity, and near-

surface pressure; SatWind, cloud-drift winds; SSMIspd, Special Sensor Microwave Imager wind speeds; SBUV2, backscatter ultraviolet

instrument total column ozone; RaobDsnd, radiosonde and dropsonde temperature, winds, specific humidity; Qscat, Scatterometer

winds; MODIS, Moderate-resolution Imaging Spectroradiometer clear-sky and water vapor winds; LandSfc, land observations of

temperature, winds, surface pressure, and specific humidity; HIRS, radiances from the HIRS-3 from NOAA-16 and -17; GOESND,

radiances from the GOES; Aircraft, aircraft temperature and winds; AMSUA, radiances from the AMSU-A on the NOAA-15, -16,

and -18; AMSUB, AMSU-B from NOAA-15, -16, and -17, as well as on Aqua; AIRS, NASA Aqua, AIRS radiances.
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(2008). An extension of the parametric approach to de-

rive high-order de-approximation measures for obser-

vation impact estimates in a nonlinear VDA scheme

may be formulated using continuation theory for solv-

ing nonlinear equations and optimization problems

(Ortega and Rheinboldt 1970; Watson 2000; Dunlavy

and O’Leary 2005) and it will be provided in a subse-

quent study.
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APPENDIX

On the Observation Impact Measure (1/2) deb
1

In the study of GZE07 using the forecast error mea-

sure in (4) it was found that deb
1 largely overestimated

the actual variation de, dea
1 largely underestimated de,

and that a significantly improved approximation was

obtained by taking (1/2) deb
1. While this estimate ap-

pears to have been first considered on an empirical

basis, further insight is provided by Trémolet (2007)

where it is shown that if the response functional e is

quadratic as a function of the initial conditions (thus

linear forecast model) and xa minimizes e (i.e., xf
a 5 xt)

then de 5 (1/2) deb
1.

From Eqs. (9) and (14) one notices that, including the

case of nonlinear dynamics,

if =x0
e(xa) 5 0 then (1/2)deb

1 5 dea,b
2

. (A1)

Thus, if the analysis xa is the initial state that (nearly)

minimizes the model functional aspect, that is,

xa ’ Arg min
x0

e(x0), (A2)

then (1/2) deb
1 is (nearly) equal to dea,b

2 and the estimate

de ’ (1/2) deb
1 is (nearly) second-order accurate. This

situation may be encountered in idealized observation

impact experiments when the functional aspect is de-

fined as the variance of the error in the initial conditions

and the specification of the matrices R and B is statis-

tically consistent to the observation and background

errors, respectively. Most general, (A1) holds for any

response functional e and merely requires xa to be a

stationary point (initial condition) to the functional e;

for linear dynamics and quadratic e, in addition dea,b
2 5

(1/2) deb
1 5 de. Loss of information will result when first-

order observation impact estimates are based on de-

rivatives at (nearly) stationary points. It is also noticed

that

if =x0
e(xb) 5 0 then (1/2)dea

1 5 dea,b
2 , (A3)

which applies to the quadratic functional

e(x0) 5
1

2
(x0 � xb)TC(x0 � xb) (A4)

used in the study of Zhu and Gelaro (2008) and to the

functional

e(x0) 5 (x
f
0 � x

f
b
)TC(x

f
0 � x

f
b
) (A5)

used in the study of Fourrié et al. (2002).
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