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[1] In this paper, the four-dimensional variational (4D-Var) technique is applied to
assimilate aircraft measurements during the Transport and Chemical Evolution over the
Pacific (TRACE-P) field experiment into a chemical transport model, Sulfur Transport
Eulerian Model, version 2K1 (STEM-2K1). Whether data assimilation would
produce better analyzed fields is examined. It is found that assimilating ozone
observations from one of two independent flights improves model prediction of the other
flight ozone measurements, which are withheld as validation data. The adjusted initial
fields after only assimilating the total reactive nitrogen (NOy) observations lead to better
predictions of NO, NO2, and PAN, based on their agreement with the withheld
measurements. One experiment simultaneously assimilating the observations of O3,
NO, NO2, HNO3, PAN, and RNO3 demonstrates that the model is able to match those
measurements well by changing the initial fields. In addition, the model predictions of
NOy improve significantly after assimilating the aforementioned multiple
observation species, which are independent of the withheld NOy measurements. In the
paper, we also show that the key species whose initial mixing ratios would
significantly affect the agreement between model and measurements can be identified
using adjoint sensitivity analysis. Such information can be used to reduce the number
of control variables in the 4D-Var data assimilation. To speed up the optimization
process in the 4D-Var, we enforce the concentration upper bounds through the limited
memory–Broyden-Fletcher-Goldfarb-Shanno-B (L-BFGS-B) algorithm, and this proves
to be effective.
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1. Introduction

[2] Chemical transport models (CTMs) have developed
into a major tool in air quality and atmospheric chemistry
analysis. Regional CTMs play an indispensable role in
assessing, predicting, and interpreting the air-quality-related
hazardous events. On the other hand, large amounts of
atmospheric chemistry observation data have been obtained
through many field campaigns and a wide range of
monitoring networks provide measurements on a regular
basis. While CTMs and observations complement each

other, the optimal analysis by integrating both components
requires advanced data assimilation techniques.
[3] Two methods have been extensively studied in

meteorology and oceanography fields, the Kalman filter
method (including many variations) using a sequential
approach, and the four-dimensional variational assimilation
(4D-Var) with a variational approach. Both methods have
been put into operational forecasting systems to assimilate
the routinely available meteorological measurements. The
4D-Var method has been implemented at the European
Centre for Medium-Range Weather Forecasts (ECMWF)
[Rabier et al., 2000; Mahfouf and Rabier, 2000; Klinker et
al., 2000]. The National Centers for Environmental Pre-
diction (NCEP) have built an operational regional analysis-
forecast system, the Rapid Update Cycle (RUC), using
4D-Var with a hourly assimilation cycle [Benjamin et al.,
2004]. An operational implementation of Ensemble Kal-
man filter (EnKF) has been under development at the
Canadian Meteorological Center (CMC) [Houtekamer et
al., 2005].
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[4] Advanced data assimilation in atmospheric chemistry
was first carried out by Fisher and Lary [1995]. They
applied 4D-Var to O3 and NO2 observations from the Upper
Atmosphere Research Satellite (UARS), assimilating them
into a simple chemistry model, which included 6 species
and 19 reactions. A Lagrangian scheme was adopted for the
transport occurring in the stratosphere. They showed that
data assimilation is capable of getting synoptic analysis
from asynoptic observations. Errera and Fonteyn [2001]
presented a stratospheric chemical assimilation system with
a three-dimensional (3-D) CTM using 4D-Var, and applied
it to the Cryogenic Infrared Spectrometers and Telescopes
for the Atmosphere (CRISTA) measurements. Using the
variational approach, Elbern et al. [1997] developed an
adjoint model of the European Air Pollution model
(EURAD), a regional Eulerian model that focuses on
tropospheric chemistry, and they have used it in various
studies [Elbern and Schmidt, 1999; Elbern et al., 2000;
Elbern and Schmidt, 2001; Hoelzemann et al., 2001]. For
instance, Elbern and Schmidt [2001] applied the 4D-Var
data assimilation to study an enhanced summer ozone
episode over central Europe during August 1997. They
demonstrated a significant improvement in short-term fore-
cast of ozone after a 6-hour data assimilation interval. Other
Eulerian 3-D CTMs that have developed adjoint models
include Sulfur Transport Eulerian Model, version 2K1
(STEM-2K1) [Daescu and Carmichael, 2003; Carmichael
et al., 2003a; Sandu et al., 2005], and the CHIMERE model
[Menut et al., 2000; Schmidt and Martin, 2003; Menut,
2003]. In addition to the variational data assimilation work,
there are a number of atmospheric chemistry data assimila-
tion applications using sequential approaches. These include
various Kalman filter methods [Zhang et al., 1999; Segers
et al., 2000; van Loon et al., 2000; Clerbaux et al., 2001;
Lamarque et al., 2002; Lamarque and Gille, 2003; Lamarque
et al., 2004; Hanea et al., 2004].
[5] Many aircraft field campaigns conducted in the past

several years have utilized CTMs for flight planning, as
well as for the analyses of the observations [Lawrence et
al., 2002; Carmichael et al., 2003b]. It is our premise that
the value derived from large field experiments can be
enhanced by a closer integration of modeled and measured
quantities, with the two merged together to provide a
consistent and best estimate of the chemical state of the
atmosphere. In this paper we apply the 4D-Var technique
to assimilate different chemical measurements from two
TRACE-P flights into STEM-2K1 model. We use these
flights to address issues related to the following: which
species can be assimilated; what is the impact of the
choice of control variables; and what is the impact of
simultaneous assimilation of multiple species. Whether
data assimilation would produce better analyzed fields is
examined using various combinations of assimilated and
withheld measurements.
[6] The paper is organized as follows. The three compo-

nents of the 4D-Var assimilation framework, including the
current CTM model, its adjoint, and the optimization
aspects, are introduced in section 2. In section 3, we
demonstrate and explore various issues related to the
assimilation of ozone, NOy and CO observations. These
results are discussed in terms of how analyzed fields can be
produced using 4D-Var. It is followed by a summary in

section 4. Results for missionwide application will be
presented in a future paper.

2. Four-Dimensional Variational Data
Assimilation Method

2.1. Chemical Transport Model

[7] STEM-2K1 is a regional CTM, which in this study
uses the SAPRC-99 chemical mechanism [Carter, 2000]. In
total 213 gas phase reactions and 93 chemical constituents
are included in this mechanism. In the model, the evolution
of the chemical constituent concentration vector c in time (t)
is described as

@c

@t
¼ �u � rcþ 1

r
r � rK � rcð Þ þ 1

r
f þ E ð1Þ

Here we denote by u the wind field vector, r the air density,
K the turbulent diffusivity tensor, and f the chemical
transformation rate. E is the elevated emission rate which
describes the emission sources above the ground surface.
The boundary conditions are

c t; xð Þ ¼ cIN t; xð Þ for x 2 GIN; ð2Þ

knn
@c

@n
¼ 0 for x 2 GOUT; ð3Þ

knn
@c

@n
¼ V depc� Q for x 2 GGR: ð4Þ

where n is the unit outward normal vector on the domain
surface, and knn = n � K � n. Vdep is the deposition velocity. Q
is the rate of surface emissions. GGR stands for the ground
surface boundary. Lateral boundaries are partitioned into
inflow GIN and outflow GOUT regions. On the domain top,
concentrations are fixed.
[8] In STEM-2K1, the evolution is solved using an oper-

ator splitting approach, in which the transport along each
direction and the chemistry steps are taken successively. A
Rosenbrock method is used as the chemistry solver. The
Kinetic Preprocessor (KPP) tool [Sandu et al., 2003; Daescu
et al., 2003] was used to generate both the forward and the
adjoint chemistry code. Table 1 provides a summary of
STEM-2K1. More details on the CTM model are given by
Carmichael et al. [2003b] and Tang et al. [2003b].

2.2. Cost Functional and Adjoint Model

[9] In 4D-Var, a cost functional is generally defined as

J ¼ 1

2
c0 � cb½ 
TB�1 c0 � cb½ 
 þ 1

2
y� h cð Þ½ 
TO�1 y� h cð Þ½ 
 ð5Þ

where B and O are error covariance matrices for background
and observations in discrete spaces, respectively. The
presence of the background term is meant to guarantee the
uniqueness of the optimal solution. B is defined at the end
of this section, and O will be defined in section 3.1. h is a
projection operator, calculating the observation vector y
from the model space c. In the current study the initial
concentrations c0 are chosen as the control parameters to be
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adjusted. Hereafter, the subscript ‘‘0’’ is used to denote
variables at instant t = 0. Assuming that the operator h is
linear, h(c) can be written as h(c) = H � c. In our application,
H reflects trilinear interpolation in space and linear
interpolation in time when constructing model counterparts
of observations.
[10] The optimal solution of 4D-Var minimizes J in

equation (5), while imposing the model as a strong con-
straint, i.e., assuming a perfect model. To effectively solve
the optimization problem, the gradients of J with respect to
the control parameters are required and they can be effi-
ciently calculated using adjoint method. The adjoint can be
derived using Lagrange multipliers [Daley, 1991; Wang et
al., 2001]. The derivation of STEM-2K1 adjoint is
described in detail by Carmichael et al. [2003a], and
Daescu et al. [2000] show the derivation of the adjoint of
the Rosenbrock scheme. The adjoint of the tangent linear
model of equation (1) defines the evolution of the adjoint
variable vector l, which reads as

@l
@t

þr � ulð Þ ¼ �r � rK � rl
r

� �
� F � lð Þ � f ð6Þ

where the forcing term f in equation (6) appears as

f ¼ HT � O�1 � y� H � c½ 
 ð7Þ

In equation (6), F is a tensor function, obtained by
linearizing the incremental f as df � F � d (rc). As f is
a nonlinear function of (rc), F also varies with (rc),
i.e., F = F(rc). The corresponding boundary conditions
are

l t; xð Þ ¼ 0 for x 2 GIN; ð8Þ

lun þ rknn
@ l=rð Þ
@n

¼ 0 for x 2 GOUT; ð9Þ

rknn
@ l=rð Þ
@n

¼ V depl for x 2 GGR: ð10Þ

To obtain the surface boundary condition we use the
fact that un = u � n = 0 at ground level. l(t, x) = 0
holds on the top boundary. Note that the adjoint initial
conditions hold at the final time T.
[11] The backward integration of equation (6) gives

adjoint variables at any time, which are the sensitivities
of JO (the observation part of the cost functional in

equation (5)) with respect to state variables (concentra-
tions), i.e.,

dJO ¼ lT � dc ð11Þ

Note that the background part of the cost functional (JB) in
equation (5) adds one more term to the gradient of the cost
functional with respect to initial concentrations. From
equation (5), it is easy to obtain

dJ ¼ d JO þ JBð Þ ¼ lT
0 þ c0 � cbð ÞT � B�1

h i
� dc0 ð12Þ

where l0
T + (c0 � cb)

T � B�1 is the gradient information
needed for the minimization. The optimal initial condition
c0 can be found efficiently by applying minimization
routines. Quasi-Newton limited memory–Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm [Byrd et al., 1995] is
used by most 4D-Var applications. In this article, an updated
version, L-BFGS-B [Zhu et al., 1997], is used. We found
that adding bound constraints improve the computation
efficiency. This is discussed further in section 3.3.3.
[12] In minimization, the control variable is chosen as

ln(c0/cr), where cr is a reference concentration. The logarithm
change of control variables acts as a crude preconditioning in
the optimization, and it was implemented by Elbern et al.
[1997]. In the current study the predictions using the same
CTM from the previous analyses [Carmichael et al., 2003b]
were chosen as the background fields. Lacking knowledge
of the background error statistics, we assume B to be a
diagonal matrix and the background field is considerably
more uncertain than the measurements. It is noted that the
introduction of error correlation is beneficial, especially
for the estimation of the emission inventories using
adjoint method. This can be achieved by ‘‘NMC method’’
[Parrish and Derber, 1992; Heald et al., 2004] or covari-
ance modeling [Lamarque et al., 1999; Khattatov et al.,
2000; Clerbaux et al., 2001; Lamarque and Gille, 2003;
Hoelzemann et al., 2001]. We are currently studying error
correlation and this is the subject of a future paper. In the
data assimilation analyses presented here, the optimization
proceeds until the cost functional is reduced to 0.001 of its
initial value, or the number of forward-backward model
integrations exceeds 20.

3. Data Assimilation Analysis

3.1. Observations and Model Setup

[13] As part of the NASA Global Tropospheric Experi-
ment (GTE), the TRACE-P mission was conducted over the
western Pacific in February–April 2001. It used two NASA

Table 1. Description of STEM-2K1

Description

Gas-phase chemistry SAPRC99 chemical mechanism [Carter, 2000],
93 chemical constituents, 213 reactions (including 30 photolysis reactions)

Meteorological data calculated using RAMS [Pielke et al., 1992]
Radiation model NCAR Tropospheric Ultraviolet-Visible (TUV) [Madronich and Flocke, 1999]
Chemistry solver implicit second-order Rosenbrock [Daescu et al., 2000]
Transport scheme finite differences, Crank-Nicholson scheme [Sandu et al., 2005]
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aircraft, the DC-8 (ceiling 12 km) and the P-3B (ceiling
7 km) operating out of Yokota Air Force Base (near Tokyo,
Japan) and Hong Kong. With the chemical composition and
evolution of the Asia outflow as the mission focus, the
aircraft carried various instruments to measure long-lived
greenhouse gases, photochemical oxidants, aerosols, and
their precursors (details of measurements and instrument
descriptions are available at http://www-gte.larc.nasa.gov/
trace/TP_Investigator_Measurements.htm). Measurements
from two flights, flight 7 of the DC-8 and flight 9 of
the P3-B, were chosen to demonstrate on utilization of the
4D-Var technique. An overlap between two flight tracks is
considered helpful for the data assimilation validation, but
otherwise the choice is arbitrary. The coverage of the two
flight routes is given in Figure 1, while Figure 2 displays the
flight heights and the distances between the two aircraft as
three time series. The observations are 5-min averaged, and
run through 0112–1045 UT for the DC-8 and 0220–
1000 UT for the P3-B. Note that the local time is 8 hours
(for Hong Kong) or 9 hours (for Tokyo) earlier than
universal time (UT).
[14] The aircraft measurement errors are assumed to be

uncorrelated, thus the observation error covariance O is a
diagonal matrix. Note that the P3-B measurements of NOy

and its underlying components were independent of each
other (separate measurements). The variances are obtained
by approximating the measurement uncertainty for O3, NOy,
NO, NO2, and CO to be 8%, 18%, 20%, 20%, and 1%,
respectively. The approximations were based on the mea-
surement accuracy and/or precision provided at the instru-
ment description Web site (http://www-gte.larc.nasa.gov/
trace/TP_Investigator_Measurements.htm). Adjustment
factors (between 1 and 2, according to comparable measure-
ments) were applied to obtain the measurement uncertain-
ties. Measurement uncertainties for other species were
assigned 100% when no measurement accuracy or precision
information is available.

[15] STEM-2K1 was run with a 90 � 60 � 18 grid, and a
horizontal resolution of 80 km � 80 km. Sigma-z coordi-
nate system is used in the vertical direction, following the
RAMS dynamic model [Pielke et al., 1992], which provides
the meteorological fields to STEM-2K1. ECMWF 1� � 1�
reanalysis was used to drive the RAMS model. Figures 3
and 4 display the RAMS wind fields at 0000 UT and
0900 UT, at altitudes of 3.5 km and 1.0 km, respectively.
The flow situation on this day was dominated by a low-
pressure system, ranging from central China to northwest
Pacific Ocean. Strong continental outflows associated with
these flows transported pollutants from Southeast Asia
(including pollutants associated with biomass burning in
Thailand and Myanmar) into the western Pacific. This
outflow of pollutants from southeast Asia was maximum
at altitudes between 2 and 4 km. Flows below 2 km were
typical of the winter monsoon, and these southerly flows
transported pollutants from coastal China to the lower
latitudes. The flights on this day were designed to sample
the continental outflow in this frontal system. Further details
of the transport of pollutants in this frontal system are given
by Carmichael et al. [2003b]. The emission inventories
implemented here are presented by Streets et al. [2003] and
Woo et al. [2003].
[16] An assimilation window of 12 hours (0000–

1200 UT, 0800–2000 Hong Kong local time) is used for
all the data assimilation analyses presented here, while the
assimilated observational data vary from case to case. Both
the forward and adjoint models are parallel and implemented
using the Parallelization library for Air Quality Models on
Structured Grids (PAQMSG) [Miehe et al., 2002].

3.2. O3 Assimilation

[17] We start the discussion with results for the assimila-
tion of a single species (ozone). Ozone is a secondary
pollutant in troposphere, but plays a central role in the
photochemical oxidant cycle. As such it depends on and
influences many atmospheric chemical species. So the
ability to better constrain/predict ozone in the atmosphere
is an important goal. In this section, we present the data

Figure 1. Flight routes of the DC-8 and the P3-B on
7 March 2001. The P3-B return trajectory overlaps with and
hides the first part of the trajectory. The computational
domain and grid are also shown.

Figure 2. Time series of flight heights of the DC-8 and the
P3-B on 7 March 2001. The distances between the two
aircraft are also shown.
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assimilation results of two tests, in which O3 measurements
by the DC-8 and the P3-B are assimilated separately. The
ozone measurements were obtained by M. Avery from
NASA Langley. In these two tests, initial O3 concentrations
are chosen to be the only control variables to be adjusted.
3.2.1. Data Assimilation
[18] Figure 5 shows the time series of model predictions

of O3 concentrations from the two tests, as well as the
original observations. Without data assimilation the STEM-
2K1 predictions reproduce the overall trend of the DC-8 O3

measurements, but consistently miss the low values at
0700 UT, 0800 UT, 0900 UT, and 1000 UT. After the
measurements are assimilated, the CTM results agree with
the flight measurements very well. This result demonstrates
that the assimilation procedure works for this case and the
adjustment of ozone initial conditions only can result in a

predicted field that is consistent with the specified concen-
trations of the precursors.
[19] As the P3-B flew slower and covered a smaller

region, its measurements represent some spatial variations
that are difficult for the CTM to reproduce at the current
resolution. The corresponding model results appear to be
too smooth compared to the P3-B measurements. The time
series of P3-B measurements shows O3 concentrations over
100 ppbv at about 0400 UT and 0830 UT. The locations of
these two instances are close to each other, at (121�E,
21�N), and the flight altitudes are 2.7 km for both
instances. This region of high O3 appears to be associated
with the biomass-burning-influenced outflow from South-
east Asia (see Figure 3). The DC-8 failed to pick up the high
concentrations since it only flew past that region once, at
0400 UT, at a much higher altitude (>6 km). The placement

Figure 3. Wind fields at z = 3.5 km: (left) 0000 UT; (right) 0900 UT.

Figure 4. Wind fields at z = 1.0 km: (left) 0000 UT; (right) 0900 UT.
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and timing of this elevated plume-like structure in the warm
sector of this frontal system is difficult to precisely predict.
As discussed by Tang et al. [2003a], the forward model
meteorology had the position of the front displaced in time.
This along with uncertainties in the timing and spatial
distribution of the fires in Southeast Asia at this time,
resulted in the displacement (<100 km, and <10 hours)
of the plume from that observed (wrong place at wrong
time). So the model is blind to the structure unless obser-
vations are actually injected into the model through data
assimilation. It is seen in Figure 5 that a better match
between the model and the P3-B observations is achieved
after the measurements are assimilated, while discrepancies
still remain. The meteorological fields used here were
reanalyzed using observed meteorology observations, but
this alone was not able to put the biomass plumes in the
correct positions. In this case the assimilation of the
chemical data is essential.
3.2.2. Validation
[20] After assimilating observations from the two flights

separately, we applied the updated initial conditions to

predict measurements from the other flight which were
not used in the previous data assimilation tests. Results
are also shown in Figure 5. Only slight improvement of the
model prediction for the P3-B data is achieved. For both
validation tests (for the P3-B data the DC-8 data are
assimilated, and for DC-8 data the P3-B data are assimilated),
the agreement between measurement and model results
becomes better at the beginning and the end of the flights.
This is due to the fact that both flights took off from and
landed at the same base, shown in Figure 1. Note that the
two aircraft were not close to each other at any instance
during the flight, as there was about one hour difference in
both takeoff and landing time between the two aircraft.
Figure 2 shows that the closest distance between theDC-8 and
the P3-B was about 500 km, i.e., about six grid cells, when
the P3-B was about to land. This result points out that the
effect of the 4D-Var assimilated measurements is felt
beyond their neighboring grid points even without spatial
background error covariance introduced. It is speculated
that introducing the spatial background error covariance
matrix would extend the assimilation effect further in

Figure 5. Results of the O3 assimilation tests. The flight measurements and their corresponding model
predictions are shown. (left) Results of the test that assimilated the DC-8 O3 observations. (right) Results
of the test that assimilated the P3-B O3 observation. The top panels show assimilated flight observations.
The bottom panels show withheld observations from the other flight. O3 observation uncertainty is
assigned 8%.
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distance and hence produce larger improvements on the
analyzed field. This has yet to be tested using a background
error covariance matrix with nonzero off-diagonal elements.
[21] Although assimilating the flight measurements does

not change the model predictions of the other flight signif-
icantly, the modifications that the assimilation incurred were
found to improve the agreement between the model and the
withheld observations from the other flight. For example,

model predictions of O3 along the P3-B flight route became
better during the period of 0340–0440 UT after assimilating
the DC-8 O3 measurements. Between 0340 UTand 0440 UT,
the STEM-2K1 model predicted higher O3 concentrations
than the DC-8 measurements before data assimilation. After
assimilating the lower DC-8 O3 measurements to bring down
the corresponding model results, the predicted values for the
P3-B increased during this period, resulting in a better match
between the model and measurements.
[22] To shed more light on the improvement of the model

predictions on the P3-B measurements after the assimilation
of the DC-8 O3 measurements, we built a new cost
functional only using the P3-B O3 measurements between
0340 UT and 0440 UT. An influence function C(x) is
calculated to show the regions that significantly affect
model predictions corresponding to the selected observa-
tions. C(x) is obtained by averaging the magnitudes of
adjoint sensitivities over time, i.e.,

C xð Þ ¼ 1

N

XN�1

n¼0

jl x; tð Þj; ð13Þ

where N is the total number of time steps. This can be
calculated for any species, showing their effects on the
specific predictions corresponding to the selected observa-
tions. The spatial distribution of C(x) shows the ‘‘cones of
influence’’ (see Sandu et al. [2005] for details). Figures 6
and 7 display the projections of the ‘‘cones of influence’’ of
ozone. While the influence region (C(x) > 0) actually
extends to the whole domain, the current ‘‘cones of
influence’’ plot is used to identify those more important
regions. It is seen that the knowledge of ozone concentra-
tion in two regions (marked as A and B in Figures 6 and 7)
is most helpful for the predictions of the selected
observations and they were both covered by the DC-8
flight. As expected, one region (A in Figures 6 and 7) that

Figure 6. A top view of the ‘‘cones of influence’’ of
ozone. Regions A and B are also marked in Figure 7. The
maximum C(x) over 18 vertical levels is chosen at each
geographical location. The values shown are normalized.
The flight track of the DC-8 is also shown, where the
dashed line is after 0440 UT.

Figure 7. (left) A south view and (right) an east view of the ‘‘cones of influence’’ of ozone. Regions A
and B are also marked in Figure 6. The projection is made by choosing the maximum value in the
projection direction. The values shown are normalized. The flight track of the DC-8 before 0440 UT is
also shown. The start of the track is marked by a circle.
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affects the specific predictions is located around the target
region, i.e., where the P3-B O3 measurements were made.
The other part (B in Figures 6 and 7) is located to the north
of the target, with an altitude around 1 km where the wind
direction was mainly due south. In region B, jl(x, t)j at
0000 UT contributes most to the influence function C(x) in
equation (13). However, the DC-8 flew past the region
around 0400 UT. It is speculated that if the DC-8 had flown
the region at an earlier time, the observations would be
more beneficial to the model predictions.
[23] For the previous tests that assimilated O3 measure-

ments, only the initial O3 concentrations were adjusted. As a
complete chemistry mechanism is included in STEM-2K1,
changes of other species at initial time would also affect O3

predictions via the model equations. An almost identical
result was found when we tried to assimilate O3 measure-
ments by adjusting initial concentrations of 55 species. This
is not a general finding as assimilating measurements of
other species often requires adjusting initial concentrations
of more than one species, which will be shown later. The
good O3 assimilation results by only adjusting the initial O3

concentrations is due to the fact that the air masses sampled
by the aircraft for these flights were typically several days
old [Tang et al., 2004]. In regions where photochemical O3

production dominates, the initial concentrations of its pre-
cursors, i.e., NOx (simple combinations of oxygen and
nitrogen atoms) and VOCs (volatile organic compounds),
will have to be adjusted as well. In the following section, we
will present the results from assimilating the P3-B NOy

observations.

3.3. NOy Assimilation

[24] Total reactive nitrogen (NOy) was measured on board
the P3-B and provides another important example of data
assimilation. The measurement of the integrated quantity
NOy represents some very important species in the chem-
istry of the troposphere. It is also an interesting species from
a data assimilation perspective because the species com-
prising NOy represent a spectrum of lifetimes from short to
long lived. For instance, the oxides of nitrogen (NO, NO2)
play a key role in tropospheric ozone formation and have
lifetimes on the order of hours, while some organic nitrates
can have lifetimes on the order of months. Furthermore,
some species have distinct diurnal cycles, while others do
not. Assimilation of NOy provides the possibility of
improving the predictions of its underlying components
via the model equations. Below we present results from
the assimilation of the NOy observations. The NOy measure-
ments were obtained by Y. Kondo’s group at the University
of Tokyo.
3.3.1. Assimilation
[25] For NOy measurements by the NASA P3-B aircraft,

the model counterpart is calculated from the modeled
species as

NOy

� �
¼ NO½ 
 þ NO2½ 
 þ NO3½ 
 þ 2� N2O5½ 
 þ HONO½ 


þ HNO3½ 
 þ HNO4½ 
 þ RNO3½ 
 þ PAN½ 
 þ PAN2½ 

þ PBZN½ 
 þ MA PAN½ 
 ð14Þ

where ‘‘[ ]’’ denotes the concentration, and the species refer
to the SAPRC-99 chemical mechanism (PAN, peroxy acetyl
nitrate; RNO3, lumped organic nitrates; PAN2, peroxypro-
pionyl nitrate and other higher-alkyl PAN analogues;
PBZN, PAN analogues formed from aromatic aldehydes;
MA_PAN, PAN analogue formed from methacrolein), and
full species represented are given by Carter [2000].
[26] An attractive feature of 4D-Var is illustrated by the

assimilation of NOy. In 4D-Var, the chemical and physical
processes (deposition and diurnal variation of sunlight, etc.)
that partition NOy among the various species are directly
taken into account. Below we illustrate how the choice of
control variables influences the assimilation results. As our
first test involving the assimilation of NOy measurements,
we chose initial concentrations of the short-lived species
NO and NO2 to adjust. Model predictions of NOy before
and after the data assimilation are shown in Figure 8, as
well as the observations. The significant discrepancy
between model predictions and measured NOy between
0330 UT and 0400 UT (1130 and 1200 Hong Kong local
time) is corrected after assimilation. The other noticeable
improvement of the NOy predictions happen between
0600 UT and 0700 UT, as well as at the takeoff and
landing times. There are still differences between the
model and observations, especially around 0830 UT, and
during 0430–0600 UT.

Figure 8. Data assimilation results of using different
control variables in assimilating NOy. NOy observation
uncertainty is assigned as 18%.
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[27] Two other cases, each by adjusting one additional
species, are also shown in Figure 8. The addition of PAN to
the control variables helps the model to produce NOy that
better match observations around 0515 UT and during

0600–0700 UT. This is due to the fact that HNO3 and
PAN dominated NOy during the TRACE-P period [Talbot et
al., 2003; Miyazaki et al., 2003]. On the other hand, adding
O3 does not help the data assimilation much. Cases also

Figure 9. Sensitivity of NOy predictions with respect to initial conditions at different levels for
66 prognostic species. Averaged magnitudes of the gradients @J/@ln c0 are shown, where J measures the
difference between the NOy observations and the corresponding model outputs as defined in equation (5)
and c0 is the initial concentration. The key species that affect the NOy predictions are NO, NO2, HNO3,
PAN, and PAN2 for this case. Species 56–66 are tracers in the current model. H2SO4, HCOOH, ETOH,
CCO-OH, and RCO-OH are reaction products in the SAPRC-99 chemical mechanism. Full species
represented and reaction details are given by Carter [2000].

Figure 10. Sensitivity of NOy predictions with respect to initial conditions at different levels for
66 prognostic species. Mean gradients @J/@ln c0 are shown (blue depicts negative values, and red depicts
positive values), where J measures the difference between the NOy observations and the corresponding
model outputs as defined in equation (5) and c0 is the initial concentration. The initial concentrations of
NO, NO2, HNO3, PAN, and PAN2 at the lower levels need to be reduced to better match the
measurements. See Figure 9 for names of the species.
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shown in Figure 8 adjusted more species. One case that
included the initial NO, NO2, HNO3, PAN, and PAN2 as
control variables is able to regenerate the NOy peak value at
0830 UT. Note that the adjustment of different species is
independent of each other; that is, no a priori assumption is
made on the relative contribution of the separate species to
NOy. In another test, the initial concentrations of 50 prog-
nostic species were adjusted (16 other prognostic species in
STEM-2K1 are not involved in the NOy predictions in the
SAPRC-99 mechanism; see caption of Figure 9 for the list).
The results of this case show the best agreement between
the predictions and assimilated observations.
3.3.2. Adjoint Sensitivity Analysis
[28] In theory, we can always choose the concentrations

of all species at the initial time as control variables if an
adequate preconditioning is performed before or during the

minimization. However, the large number of control varia-
bles will make the full background error covariance estimate
B in equation (5) impractical to implement even when
statistics are available. Eliminating the species that have
minimal effect on the model predictions of certain observa-
tions from the control variables improves the conditioning
in the minimization, and makes it feasible for the future
applications of 4D-Var data assimilation that implements the
background error correlation. In the case that the initial
concentrations of 50 species are chosen to be adjusted, the
number of control variables is 90 � 60 � 18 � 50 =
4,860,000. The implementation is made possible by assum-
ing B in equation (5) to be diagonal.
[29] The key species that affect the model predictions of

certain measurements can be effectively determined using
the 4D-Var data assimilation system. To seek those key

Figure 11. Sensitivity of O3 predictions with respect to initial conditions at different levels for
66 prognostic species. (top) Averaged magnitudes and (bottom) means (blue depicts negative values, and
red depicts positive values) of gradients @J/@ ln c0 are shown, where J measures the difference between
the O3 observations and the corresponding model outputs as defined in equation (5) and c0 is the initial
concentration. The model prediction of O3 is more sensitive to its own initial concentrations than those of
the other species. See Figure 9 for names of the species.
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species, we look at the gradients of the cost functional, i.e.,
@J/@lnc0, which is equal to l � c0 and can be easily obtained
through the adjoint model in the current 4D-Var data
assimilation system. Here the cost functional is defined as
equation (5), measuring the difference between the measure-
ments and model outputs in a least square form. For
instance, the 5 species chosen in the previous case to
assimilate NOy measurements are based upon such sensi-
tivity analysis. Figure 9 shows the horizontally averaged
magnitudes of the gradients for each prognostic species at
18 model vertical levels (the vertical grid spacing increases
with height, e.g., the altitude of level 5 is 1.0 km and of
level 10 is 3.5 km). The averaged magnitudes, calculated by
averaging the absolute values of the gradients, indicate
which species and at what levels would changes in initial
values most drastically affect the model predictions of the
measurements that are used to construct the cost functional.
On the basis of Figure 9, NO, NO2, HNO3, PAN, and PAN2
are the key species that affect the NOy predictions for the
conditions simulated.
[30] The mean value of @J/@ln c0 on each level is

displayed in Figure 10. This metric identifies whether the
overall increases (when @J=@ ln c0 < 0 ) or decreases (when
@J=@ ln c0 >0) in the initial concentrations of individual
species on a certain level are needed to reduce the cost
functional, i.e., to improve the model predictions. Figure 10
shows that @ J/@ ln c0 is mostly positive for NO, NO2,
HNO3, PAN, and PAN2 at the lower levels. This implies
that we need to reduce the initial concentrations of these
species to better match the measurements. Around level 10,
which is 3.5 km, the aforementioned components need to
increase their concentrations to best match to the observa-
tions. These results are consistent with the model predic-
tions of NOy before assimilation shown in Figure 8. The
model tends to underestimate NOy at higher altitudes and
overestimate (slightly) at lower altitudes. The underestima-
tion of NOy at higher altitudes is likely due to a misplace-

ment of the biomass burning air masses from Southeast Asia
as discussed earlier.
[31] Figure 11 shows the averaged magnitude and mean

of the sensitivity, with the cost functional representing the
differences between the P3-B O3 measurements and their
model counterparts. We see that the model predictions of O3

along the P3-B flight track are much more sensitive to the
initial O3 field than any other species. This explains why we
were able to assimilate the O3 measurements well by only
adjusting initial O3 concentrations. In general, photochem-
ically active species such as NO2 are tightly connected to
many species. For instance, similar analysis applied to NO2

measurements shows that initial O3, CO, and NO affect
NO2 as much as its own initial condition. It is also important
to note that the model prediction of O3 is very sensitive to
the initial O3 mixing ratios at the top of the model domain
due to the stratospheric O3 source. A positive mean gradient
shown in Figure 11 implies that a reduction of the O3

mixing ratios at the top would bring the model prediction of
O3 closer to the P3-B O3 measurements. With a negative
gradient in the middle vertical layers, where the P3-B flew
most of the time, the initial O3 values are underestimated
(Figure 5 shows the model predictions are generally lower
than the measurements). At lower altitudes when the P3-B
flew around 0700 UT and 0900 UT, the measurements are
lower than predicted. Figure 11 displays positive mean
gradients at lower levels, suggesting the initial O3 values
need to be reduced in order to produce a better match
between the model and measurements.
3.3.3. Minimization Algorithm
[32] In 4D-Var, the L-BFGS algorithm is often chosen to

update the control variables en route to the minimization of
the cost functional. Without the need to save a full Hessian
matrix, it proves to be very effective in optimization
problems that have a large number of control variables.
However, the minimization algorithm is not immune to the
generation of physically or chemically unrealistic points in
its line search procedure. For instance, if the initial mixing
ratio c0 is chosen as the control variable, the line search
cannot guarantee to generate all positive components at
the next point unless such a requirement is explicitly
stated. Negative mixing ratios can be avoided by choosing
ln (c0/cr) as control variable, which ensures positive c0 by
the relation

c0 ¼ cre
ln

c0
cr : ð15Þ

However, the line search (solely a mathematical procedure)
can still end up with some unrealistic values in its pursuit of
the optimal solution, such as choosing 1000 ppbv O3

mixing ratio in the troposphere. Such points are destined to
be thrown away since they differ too much from the
background, and the forward model integration using them
would produce results far away from the real measurements.
Thus a large cost functional would be generated and the line
search has to restart from the previous spot. Normally the
iteration number reported in the optimization does not count
such miscues although it is costly to waste time-consuming
CTM forward integrations and backward adjoint runs. In the
current study, as described before, we set the maximum
forward-backward integrations to be 20.

Figure 12. Data assimilation results show the effect of
enforcing upper bounds through L-BFGS-B in 4D-Var. NOy

observation uncertainty is assigned as 18%.
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Figure 13. Model predictions before (shown in red) and after (shown in blue) assimilation of the P3-B
NOy measurements. The measurements of O3, NO, NO2, HNO3, PAN, and RNO3 (shown as pluses) were
not assimilated, and their assigned uncertainties are 8%, 20%, 20%, 100%, 100%, and 100%,
respectively.
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[33] Additional information about the expected range of
the chemical species mixing ratios can be effectively
included into the minimization using the L-BFGS-B algo-
rithm (the last ‘‘B’’ of L-BFGS-B stands for ‘‘bounds.’’ The
algorithm is able to solve large-scale bound-constrained or
unconstrained optimization). The upper bounds for each
species at every level can be specified. For instance, upper
limits to the NO2 mixing ratio at the bottom and top levels
(z = 0.075 km, 15.179 km) were set to be 30 ppbv and
0.5 ppbv, respectively, while the O3 upper bounds were set
to 200 ppbv throughout the domain (these values were
determined on the basis of the TRACE-P observations).
Figure 12 shows the NOy assimilation results using the 5
aforementioned species as control variables, when the upper

limit of these mixing ratios were enforced through the upper
bounds in the L-BFGS-B algorithm. The previous test using
the same controls, but without the upper bounds, is also
shown for comparison. The benefit of adding the upper
bounds through L-BFGS-B algorithm is clearly shown in
the figure. In fact, the new result is very comparable to the
one using 50 control variables shown in Figure 8. Applying
the upper bound constraint for the case using 50 control
variables shows slight improvement as well. For these
L-BFGS-B implementations, about 0.3% of the total
upper bounds were enforced during the Cauchy search
in the optimization [Zhu et al., 1997]. It should be
noted that to minimize with L-BFGS and then apply
the upper limit constraint by replacing those large

Figure 14. Relative changes in initial O3 after assimilating the P3-B NOy measurements. (left) At z =
3.5 km; (right) vertical cross section. The lines in the plots indicate the location of the other cross section.

Figure 15. Relative changes in initial NO2 after assimilating the P3-B NOy measurements. (left) At z =
2.2 km; (right) vertical cross section. The lines in the plots indicate the location of the other cross section.
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Figure 16. Model predictions before (red) and after (blue) assimilating the P3-B measurements (pluses)
of O3, NO, NO2, HNO3, PAN, and RNO3. Observation uncertainties assigned for O3, NO, NO2, HNO3,
PAN, and RNO3 are 8%, 20%, 20%, 100%, 100%, and 100%, respectively.
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values is not equivalent to enforcing the upper bound
inside the L-BFGS-B algorithm.
3.3.4. Model Response to NOy Assimilation
[34] In section 3.2 we showed that improvement of the

model predictions by assimilating O3 measurements extends
hundreds of kilometers away from the measurements. In
fact, assimilating measurements of one kind can have
positive effects on many other closely related species.
Figure 13 shows the model predictions of NO, NO2,
HNO3, PAN, PAN2, and RNO3, before and after assimilat-
ing the P3-B NOy measurements. The measurements of
these species by the P3-B are also plotted to evaluate the
assimilation effect, but they were kept from the data
assimilation test. The data assimilation presented here uses
50 control species and applies the L-BFGS-B algorithm.
[35] The model predictions of NO, NO2, and PAN sig-

nificantly improve around 0400 UT after assimilating the
NOy observations. This is consistent with the fact that the
large discrepancy between model predicted and measured
NOy between 0330 UT and 0400 UT is reduced in the data
assimilation, as displayed in Figure 8 and Figure 12. The
model results of NOy also change greatly at around 0830 UT
after assimilation, as shown in Figure 12. The 4D-Var
determines what form of NOy need to be adjusted by
enforcing all the physical and chemical processes through
the model. For instance, the diurnal cycles of NO and NO2

play an important role in the adjustment. In this case the
assimilation of NOy resulted in the close agreement between
model predictions of NO after assimilation and the actual
NO measurements by the P3-B which were not assimilated.
Another significant improvement made by assimilating NOy

is on the PAN prediction during 0500–0700 UT. Under
these conditions the model determined the NOy to be in the
form of PAN. The model results do not change much at the
other times. For species that do not contribute to NOy

directly under these conditions, such as O3, locally (along

the P3-B flight track) the model has little response. There is
almost no change of RNO3 predictions after assimilating
NOy measurements for this case.
[36] After assimilating the P3-B NOy measurements, the

adjustments on the initial conditions of the chosen 50
control species are quite different. The most significant
relative changes over the original initial values are on O3,
NO2, HNO3, and PAN. For each species,

R xð Þ ¼ c0 xð Þ � cb xð Þ
cb xð Þ

ð16Þ

is calculated, where cb xð Þ is the average of the background
mixing ratios. Figures 14 and 15 show R(x) of O3 and NO2,
respectively. While the largest relative changes are located
around the flight region, the adjustment of the initial
conditions reaches much further. The changes are not simple
increases or decreases, and show various patterns for
different species. While the patterns share more similarity
between NO2, HNO3, and PAN, that of O3 is distinctive in
that it reaches more eastward and further in height, due in
part to the long lifetime of ozone in the upper troposphere
and the contributions of stratospheric/tropospheric exchange
processes. As Figure 3 shows westerly winds at z = 3.5 km
in the P3-B flight region, the adjustments on the initial
conditions of NO2, HNO3, and PAN shift to the west of the
P3-B flight route, reflecting the transport effect.

3.4 Other Assimilation Tests

[37] In the previous tests we focused on the effect of
assimilating measurements of a single parameter in the
CTM analysis. However, it is important to note that differ-
ent combinations of the components can lead to the same
NOy value. Thus no unique solution is guaranteed only on
the basis of the assimilation of NOy measurements. The
chemistry and physical processes of the model provide the
guidance for the partitioning of NOy among the various
species. The simultaneous assimilation of multiple species
should provide additional constraints. In this section, we
present results from simultaneously assimilating O3, NO,
NO2, HNO3, PAN, and RNO3 measurements on board the
P-3B (see Eisele et al. [2003] for more measurement
information). The initial concentrations of the same
50 prognostic species, as in the NOy assimilation, were
used as control variables. Upper bounds were enforced in
the L-BFGS-B algorithm.
[38] Figure 16 shows measurements and the predictions

of the 6 assimilated species. The overall prediction
improved when adding additional assimilated species. In
the first half of the assimilation time window the improve-
ments over model predictions are visible for all species
except for RNO3. In the second half, the improvement is not
as strong, but still shows the positive effect of assimilation.
Since the O3 measurements are the most accurate, with an
estimated uncertainty of 8%, it is the major component in
the cost functional defined in equation (5). The minimiza-
tion of the cost functional then drives the model predictions
to match O3 measurements as the primary task. The uncer-
tainties for NO and NO2 are 20%, much smaller than the
uncertainties assumed for HNO3, PAN, and RNO3, which
are 100%. This leads to slightly better agreement between

Figure 17. Model predictions of NOy before and after
assimilating O3, NO, NO2, HNO3, PAN, and RNO3

measurements. The NOy measurements were not used in
the assimilation test. NOy observation uncertainty is
assigned as 18%.
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Figure 18. Comparison of model predictions between three assimilation tests. The measurements that
were assimilated: case 1, NOy; case 2, O3, NO, NO2, HNO3, PAN, and RNO3 (also shown in Figure 16);
case 3, NOy, NO, NO2, HNO3, PAN, and RNO3. All measurements are from the P3-B. Observation
uncertainties assigned for O3, NO, NO2, NOy, HNO3, PAN, and RNO3 are 8%, 20%, 20%, 18%, 100%,
100%, and 100%, respectively.
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model and observations for NO and NO2 than for HNO3,
PAN, and RNO3 after assimilation.
[39] Figure 17 shows the NOy calculated by the model

after the simultaneous assimilation of observed O3, NO,
NO2, HNO3, PAN, and RNO3, compared to the observed
values of NOy. Since the NOy measurements were not used
in the assimilation and are independent of the observations
that were assimilated, it also serves as a validation test. The
results demonstrate that the assimilation of various obser-
vations on species comprising NOy significantly improves
the model predictions of NOy (as one would hope). Unlike
the early validation test using measurements from two
different flights, here the withheld NOy observations and
the assimilated measurements from the same flight share the
same spatial and temporal sampling patterns.
[40] An additional simulation was performed where we

simultaneously assimilated measured NOy and NO, NO2,
HNO3, PAN, and RNO3. This assimilation also produced
slightly different results. A comparison of the effect of
assimilation of NOy only, assimilation of O3, NO, NO2,
HNO3, PAN, and RNO3 together (also shown in Figure 16),
and the assimilation of NOy along with NO, NO2,
HNO3, PAN, and RNO3 is shown in Figure 18. As dis-
cussed above assimilation of NOy by itself does not provide
a unique solution to the adjustment of the various species
contributing to NOy. Adding additional species in theory
adds determinism. Adding some of the individual compo-
nents and the integral quantity NOy can supply conflicted
pieces of information. For example, contributions of PAN to
NOy just before 0400 UT and at 0500 UT are significantly
different for the three cases. The fact that the results are not
consistently improved with more information may reflect a
systematic error in the forward model (e.g., in regard to
a deficiency in the chemical mechanism), correlations
between measurement errors (not accounted for in these
results), and/or errors in other parameters not adjusted in
these initial-condition-only adjustments (e.g., emissions).
Further studies are ongoing into these aspects and will be
the subject of future papers.

4. Summary

[41] We presented variational data assimilation analyses
using TRACE-P flight measurements and STEM-2K1
chemical transport model. By adjusting certain initial chem-
ical fields, the CTM can generate results that closely match
the observations. Using the adjusted initial field after
assimilating O3 measurements, the agreement between
model predictions and measurements by the other indepen-
dent flight improves. It is also found that the model
predictions of NO, NO2, and PAN better match the mea-
surements when only NOy observations are assimilated.
The case that assimilates measurements of different
species shows the effect of different observations used in
the assimilation highly depends on their measurement
uncertainties.
[42] In this study we also showed the benefit of adjoint

sensitivity analysis in identifying the key control param-
eters to improve the model-observation agreement. To
apply the 4D-Var technique using CTMs, it is helpful
to include additional information into the minimization
procedure. The upper bounds of mixing ratios provided to

the L-BFGS-B algorithm lead to a speedup of the 4D-Var
optimization.
[43] The error statistics of the initial field used in our

STEM-2K1 is absent. The knowledge of such information is
crucial to provide the optimal analysis in the future studies.
Other than the initial field, the emission inventories and
boundary conditions are far from accurate as well. In
addition, the meteorological fields, physical parameters
such as diffusion, and chemical reaction rates are also
uncertain. Complete calibration of these uncertainties is a
daunting task that can only be pursued step by step.
Nevertheless, a great promise of data assimilation is shown
in its ability to blend the real measurements with our
accumulated knowledge of atmospheric chemistry through
CTMs.
[44] In this paper we have demonstrated how the 4D-Var

method can be used to assimilate aircraft data. The tech-
nique can be easily extended to assimilate observations
from a variety of data sources (e.g., we are now assimilating
ozone data from aircraft, surface networks, lidar, and
ozonesondes). The integration of modeled and measured
quantities is critical in the interpretation of observational
data such as those obtained during intensive field cam-
paigns, and to more completely utilize the increasing
amount of operational atmospheric chemical and aerosol
data provided by satellite and monitoring networks. In
addition this information can be used to help identify model
deficiencies, and thus lead to better models, and ultimately
an improvement in our capability to predict air quality.
Further efforts focused on improving the forward model are
planned and needed.
[45] Finally, results from such analysis studies should also

provide important insights into experimental design. The
4D-Var framework allows us to assess the impact on the
assimilation results of adding additional observations of
different species, and different combinations, as well as
exploring issues related to time resolution (e.g., using 10-s
versus 3-min average values in the assimilation), and spatial
sampling.
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