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ABSTRACT

An optimal use of the atmospheric data in numerical weather prediction requires an objective assessment of

the value added by observations to improve the analyses and forecasts of a specific data assimilation system

(DAS). This research brings forward the issue of uncertainties in the assessment of observation values based

on deterministic observation impact (OBSI) estimations using observing system experiments (OSEs) and the

adjoint-DAS framework. The state-to-observation space uncertainty propagation as a result of the errors in

the verification state is investigated. For a quadratic forecast error measure, a geometrical perspective is used

to provide insight and to convey some of the key aspects of this research. The study is specialized to a DAS

implementing a linear analysis scheme and numerical experiments are presented using the Lorenz 40-variable

model.

1. Introduction

Development of efficient methodologies to quantify

the observation impact (OBSI) on the analyses and

forecasts of a specific data assimilation system (DAS) is

the focus of research at numerical weather prediction

centers worldwide. An objective assessment of the ob-

servation value is required to achieve an optimal use of

the data from in situ platforms and satellites and to de-

sign intelligent data-thinning procedures, cost-effective

field experiments for targeted observations, and future

observing system networks.

Traditionally (Atlas 1997), the OBSI estimation is per-

formed through observing system experiments (OSEs)

where selected datasets are systematically added to or

removed from the control DAS to obtain the experiment

state. The OBSI on a forecast aspect of interest is then

quantified by comparison to the forecast issued from the

control DAS. The OSEs’ methodology requires a modest

software development, once the DAS is in place, and has

been used to assess the impact of various observing sys-

tem components and the value of targeted observations

(Andersson et al. 1991; Bouttier and Kelly 2001; Kelly

et al. 2007). Since an additional assimilation experiment is

required for each new dataset being evaluated, in practice

only a few observing system components may be evalu-

ated through OSEs.

Observation sensitivity techniques were initially in-

troduced in numerical weather prediction for applica-

tions to targeted observations (Baker and Daley 2000;

Doerenbecher and Bergot 2001) and adjoint-DAS tech-

niques are currently implemented as an effective approach

(all at once) to estimate the impact of any data subset in

the DAS on a specified forecast aspect and to monitor

the observation performance on short-range forecasts

(Fourrié et al. 2002; Cardinali et al. 2004; Langland and

Baker 2004; Langland 2005; Errico 2007; Gelaro et al.

2007; Zhu and Gelaro 2008; Trémolet 2007, 2008;

Daescu and Todling 2009). These studies revealed sev-

eral practical issues in the adjoint-based OBSI estimates

such as the difficulty to obtain an adjoint DAS fully

consistent to the analysis scheme and the need for high-

order approximation measures. A particular source of

uncertainty in the OBSI estimates is due to inconsis-

tencies between the adjoint model implementation and

the nonlinear model forecast (e.g., moist physical pro-

cesses are not properly incorporated in the adjoint

model; Ancell and Mass 2008). Nonlinearities in the

DAS analysis scheme and/or in the forecast aspect

Corresponding author address: Dr. Dacian N. Daescu, Depart-

ment of Mathematics and Statistics, Portland State University,

P.O. Box 751, Portland, OR 97207.

E-mail: daescu@pdx.edu

OCTOBER 2009 N O T E S A N D C O R R E S P O N D E N C E 3567

DOI: 10.1175/2009MWR2954.1

� 2009 American Meteorological Society



measure and approximation errors may contribute to

further ambiguities in the OBSI interpretations. A sig-

nificant software development effort is required to im-

plement the adjoint DAS; however, this approach

provides detailed OBSI information that would be dif-

ficult to be obtained by other means in a variational

DAS. Comparative studies of observation impacts de-

rived from OSEs and adjoint-DAS techniques are pro-

vided in the work of Gelaro and Zhu (2009) and Cardinali

(2009). The consensus is that adjoint-based techniques

are effective in measuring the response in a functional

aspect of a short-range forecast due to any perturbation

in the observing system, whereas OSEs are effective in

measuring the impact of a single data component on any

forecast aspect. Forecasts sensitivity to observations and

OBSI estimation in an ensemble Kalman filter is discussed

by Liu and Kalnay (2008) and Torn and Hakim (2008).

This research note brings forward an issue that has not

been properly addressed in previous studies; namely, the

uncertainty in the OBSI guidance derived from de-

terministic forecast error measures using OSEs and

adjoint-DAS techniques. The OSEs’ framework and the

adjoint-DAS approach to observation impact estima-

tion in a DAS implementing a linear analysis scheme are

briefly reviewed in section 2. The state-to-observation

space uncertainty propagation in the OBSI assessment

as a result of the errors in the verification state is dis-

cussed in section 3. For a quadratic forecast error mea-

sure, a geometrical perspective is used to provide insight

and to convey some of the key aspects of this research.

Illustrative numerical experiments are presented in sec-

tion 4 using the Lorenz 40-variable model (Lorenz and

Emanuel 1998). Concluding remarks are in section 5.

2. Deterministic OBSI estimation

The deterministic approach to observation impact

estimation using OSEs and the adjoint-DAS metho-

dology is briefly reviewed in this section. For simplicity,

consider a linear analysis scheme such as a Kalman filter

and variational methods implementing a single outer

loop iteration (Daley 1991; Kalnay 2002):

x
a

5 x
b

1 K[y� h(x
b
)], (1)

where xb is a background estimate to the initial condi-

tions, y is the vector of observational data, h is the ob-

servation operator, and

K 5 BHT(HBHT 1 R)�1 (2)

is the optimal gain matrix expressed in terms of the

background error covariance matrix B, the observation

error covariance matrix R, and the linearized observa-

tion operator H.

In the deterministic framework the OBSI calculations

are performed for a specific forecast aspect and a typical

scalar measure of the error in a forecast initiated from x

is defined as

e
y
(x) 5 (xf � xy)TC(xf � xy) 5 xf � xy

�
�

�
�

2

C
, (3)

where xf 5M(x) is the nonlinear model forecast at time

t initiated at t0 , t from x, xy is the verifying analysis at

time t, the superscript T denotes the transpose operator,

and C is a symmetric and positive definite matrix that

defines the metric on the state space (e.g., an appropri-

ate energy norm). The subscript ey is used to emphasize

the dependence of the measure in (3) on the verification

state xy. It is noticed that the right side of (3) is quadratic

in terms of xf, however, the nonlinearity of ey(x) as a

function of the initial conditions is of a more general

type because of the nonlinearities in the model forecast.

a. OSE’s framework

Let y denote the set of all observations assimilated in

the control DAS in (1)–(2), yi� y denote the data subset

whose impact is being evaluated, and yi 5 ynyi denote

the complement set of yi with respect to y (i.e., the set of

observations in the DAS after removing the data com-

ponent yi). In the OSEs’ data denial framework an ad-

ditional assimilation is performed using only data y
i

to

obtain the experiment analysis state x
a,i

:

x
a,i

5 x
b,i

1 K
i
[y

i
� h

i
(x

b,i
)]. (4)

Equation (4) accounts for the change in the observation-

related input from (y, R, h) in the control DAS to

(yi, Ri, hi) in the OSEs, as well as for the modified

background-related input from (xb, B) in the control

DAS to (x
b,i

, B
i
) in the OSEs. The latter must be con-

sidered when several data assimilation cycles are per-

formed to assess the impact of data removal. Once x
a,i

is

available, the impact of the selected data subset yi within

the control DAS on any forecast aspect of interest ey

may be easily evaluated by

Iose
y (y

i
) 5

def
e

y
(x

a
)� e

y
(x

a,i
), (5)

such that Iose
y (y

i
) measures the value added by the data yi

to the observing system y
i
.

b. Adjoint-DAS framework

Current adjoint-based OBSI techniques are based on

an observation-space estimation of the forecast impact

due to assimilation of all data in the DAS:
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de
y
5 e

y
(x

a
)� e

y
(x

b
) ’ (dx

a
)Tg

y
5 (dy)TKTg

y
, (6)

where dy 5 y 2 h(xb) is the innovation vector, dxa 5 Kdy

is the analysis increment in (1), and gy is a properly de-

fined vector measuring the forecast sensitivity to initial

conditions (Gelaro et al. 2007). Associated to the measure

in (3), the gradient to initial conditions is expressed as

$
x
e

y
(x) 5 2MT(x)C(xf � xy), (7)

where MT(x) is the adjoint of the tangent linear model

from t0 to t evaluated along the model trajectory ini-

tialized from x. For example, the observation impact

methodology introduced by Langland and Baker (2004)

estimates the variation dey using sensitivity gradients

along both background and analysis trajectories:

g
y
5

1

2
$xe

y
(x

a
) 1

1

2
$xe

y
(x

b
), (8)

which provides a second-order accurate dey approxi-

mation (Errico 2007; Daescu and Todling 2009). In

practical applications the approximation in (6)–(8) was

found to provide improved results as compared with

first-order approximations (Gelaro et al. 2007; Gelaro

and Zhu 2009; Cardinali 2009). A measure of the con-

tribution of any data subset yi in the DAS to the forecast

error reduction is obtained by taking the inner product

between the innovation vector component dyi and the

corresponding amplification factor in (6):

Iadj
y (y

i
) 5

def
(dy

i
)T(KTg

y
)

i
. (9)

Data components for which Iadj
y (yi) , 0 contribute to

the forecast error reduction (improve the forecast),

whereas data components with Iadj
y (yi) . 0 will increase

the forecast error (degrade the forecast).

3. Uncertainty analysis

In practice, the verification state xy used to define the

forecast error measure in (3) is obtained after several

assimilation cycles to the verification time are per-

formed and represents only an estimation of the true

atmospheric state xt at t. As such, the assessment of

the impact of various data types in the DAS to reduce

the actual forecast error must account for the state-to-

observation space uncertainty propagation based on the

forecast error measure that involves the unknown true

atmospheric state xt:

e
t
(x) 5 (xf � xt)TC(xf � xt) 5 xf � xt

�
�

�
�

2

C
. (10)

To account for the errors in the verification state, let n

denote the dimension of the state vector and

�5 xy � xtk k (11)

denote a measure of the precision (accuracy) of xy. The

(n 2 1) sphere of center xt and radius �

S(xt, �) 5 fxy 2 R
n : kxy � xtk 5 �g (12)

is the set of verification states of � precision.

a. OBSI uncertainty propagation in OSEs

In the deterministic OSEs’ framework, the uncer-

tainty in the OBSI estimates is expressed as

dIose
t,y (y

i
) 5 [e

t
(x

a
)� e

t
(x

a,i
)]� [e

y
(x

a
)� e

y
(x

a,i
)]. (13)

From (3) and (10) it follows that

e
y
(x

a
)� e

y
(x

a,i
) 5kxf

a � xyk2
C � kxf

a,i � xyk2
C

5hxf
a � x

f
a,i, xf

a 1 x
f
a,i � 2xyi

C
(14)

and

e
t
(x

a
)� e

t
(x

a,i
) 5kxf

a � xt k2
C � kxf

a,i � xtk2
C

5hxf
a � xf

a,i, xf
a 1 xf

a,i � 2xti
C

, (15)

respectively, where h�, �iC denotes the inner product in

the state space, hu, viC 5 uTCv. After replacing (15) and

(14) in (13):

dIose
t,y (y

i
) 5 2(xf

a � xf
a,i)

TC(xy � xt)

5 2kxf
a � xf

a,ikC
kxy � xtk

C
cosu

i
, (16)

where ui is the angle between the vectors xf
a � xf

a,i and

xy 2 xt. Equation (16) shows that in the OSEs’ frame-

work the uncertainty in the OBSI estimation is deter-

mined by the magnitude of the difference between the

control forecast and the experiment forecast and by the

verification state error component along the direction

xf
a � xf

a,i. The uncertainty propagation is thus specific

to the dataset being evaluated. The hyperplane of R
n

passing through xt and normal to the vector xf
a � xf

a,i:

H
i
5 fxy : hxf

a � x
f
a,i, xy � xti

C
5 0g (17)

identifies the set of verification states that are objec-

tive in estimating the OBSI of the data component

y
i
, dIose

t,y (y
i
) 5 0. A geometrical illustration is provided

in Fig. 1. It is also noticed that in a deterministic ap-

proach verification states of equal precision may result

in an ambiguous OBSI guidance; for example, Fig. 1

shows a configuration of equal-precision states xy, xw 2
S(xt, �) such that Iose

y (yi) , 0 and Iose
w (yi) . 0.
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In a probabilistic framework, by expressing xf
a � xf

a,i 5

(xf
a � xt)� (xf

a,i � xt) in (17), it is noticed that an objec-

tive OBSI assessment should be based on verification

states whose errors are unbiased and are statistically in-

dependent from the errors in the forecasts produced by

the DAS.

b. OBSI uncertainty propagation in adjoint DAS

In the deterministic adjoint-DAS framework the un-

certainty in the verification state is propagated into the

OBSI estimates of all the data subsets being evaluated.

The uncertainty in the OBSI estimation (9) of a data

subset yi is expressed in a general form as

dI
adj
t,y (y

i
) 5 I

adj
t (y

i
)� Iadj

y (y
i
) 5 (dy

i
)T[KT(g

t
� g

y
)]

i
. (18)

For example, associated with the measure in (7)–(8):

dI
adj
t,y (y

i
) 5 (dy

i
)T[KT(MT

a 1 MT
b )C(xy � xt)]

i
, (19)

which shows that, accounting for the errors in xy only,

the uncertainty in the OBSI guidance is a result of the

backward propagation of the errors in the verification

state through the adjoint model, the adjoint-DAS oper-

ator, and amplified by the innovation vector components.

To provide a geometrical perspective, it is noticed that

by analogy to the derivation in (13)–(17) in the adjoint-

DAS approach:

de
t
� de

y
5 2(xf

a � xf
b)TC(xy � xt) (20)

such that the hyperplane:

H
de

t
5 fxy : hxf

a � xf
b, xy � xti

C
5 0g (21)

identifies the set of verification states of equal-overall

data impact:

de
y
5 de

t
. (22)

In the deterministic adjoint-DAS approach verification

states of equal-precision (�) and equal-overall data im-

pact (det) located on the (n 2 2) sphere of Rn:

S
�,de

t
5S(xt, �) \ H

de
t

5fxy 2 R
n :kxy � xtk5 �, hxf

a � xf
b, xy � xti

C
5 0g
(23)

will lead to OBSI estimates that will vary in magnitude

and that for certain data subsets may also vary in sign. In

general, as illustrated in Fig. 2, S�,det
consists of two points

for n 5 2, is a circle for n 5 3, and so on. For simplicity,

consider the case of linear dynamics xf 5 Mx where M

is a state-independent matrix operator. In this frame-

work, the measure in (3) is a quadratic function of the

initial conditions and the approximation in (6)–(8) is thus

FIG. 1. Illustration of the uncertainty in the observation impact

estimation using deterministic OSEs. The verification state error

component along the direction xf
a � xf

a,i contributes to the uncer-

tainty propagation. Verification states of equal-precision xy and xw

may provide an ambiguous observation impact guidance.

FIG. 2. Illustration of the uncertainty in the observation impact

estimation in the deterministic adjoint-DAS framework. Verifica-

tion states of equal-precision and equal-overall data impact may

provide an ambiguous observation impact guidance through the

vector xm
f 2 xy.
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exact. Theoretically, for quadratic measures all second-

order adjoint-based OBSI estimates are equivalent

(Daescu and Todling 2009). The vector gy defined by

(7)–(8) is expressed as

g
y
5 MTC(Mx

a
1 Mx

b
� 2xy) 5 2MTC(xf

m � xy), (24)

where

xf
m 5

1

2
(Mx

a
1 Mx

b
) 5

1

2
(xf

a 1 xf
b) (25)

denotes the midpoint of the segment from xb
f to xa

f . For

each verification state xy 2 S
�,det

the vector xm
f 2 xy in

(24) will vary in magnitude and orientation for example,

Fig. 2 illustrates a configuration where verification states of

equal-precision and equal-overall data impact may pro-

vide an ambiguous OBSI guidance in (9) since in this case

(x
f
m,2 � xy

2)(x
f
m,2 � xw

2 ) , 0.

4. Numerical experiments

The Lorenz 40-variable model (Lorenz and Emanuel

1998)

dx
j

dt
5 (x

j11
� x

j�2
)x

j�1
� x

j
1 F, where j 5 1, 2, . . . , n,

(26)

n 5 40, x21 5 xn21, x0 5 xn, and xn11 5 x1, is used in

OSEs and the adjoint-DAS approach to investigate the

uncertainty in the OBSI estimation as a result of the

errors in the verification state. For this model, Liu and

Kalnay (2008) provided a comparative analysis of the

OBSI derived from the adjoint-DAS method in (6)–(8)

and an ensemble sensitivity method. The system in (26)

is integrated with a fourth-order Runge–Kutta method

and a constant time step Dt 5 0.05 that in the data as-

similation experiments is identified to a 6-h time period.

The time evolution of the true state xt is obtained by

taking the external forcing to be F 5 8 and a model error

is considered in the forecast model by taking F 5 7.6. An

initial state x0
t is obtained by a 90-day (360 time step)

integration started from xj 5 8 for j 6¼ n/2 and xn/2 5

8.008; a background estimate xb to x0
t is prescribed by

introducing random perturbations in x0
t taken from the

standard normal distribution N (0, 1). Observational

data is generated for each state component (at each grid

point) and at each time step, such that the observation

operator is the identity. To investigate the uncertainty in

the OBSI estimation when various data types are in-

cluded in the DAS, it is assumed that the observing

system provides four data types y(1), y(2), y(3), and y(4),

each being a 10-dimensional vector, and that data type y(i)

is taken at locations 4k 1 i, k 5 0, 1, . . . , 9. Compo-

nentwise, the structure of the observation vector is

thus y 5 [y
(1)
1 y

(2)
1 y

(3)
1 y

(4)
1 y

(1)
2 y

(2)
2 y

(3)
2 y

(4)
2 ... y

(1)
10 y

(2)
10 y

(3)
10 y

(4)
10 ]T.

The observation errors are normally distributed N [0, s(i)]

with the standard deviation prescribed as s(1) 5 0.1, s(2)

5 0.2, s(3) 5 0.4, and s(4) 5 0.8. The DAS implements an

extended Kalman filter algorithm that provides the

background estimate at time ti11 and the associated

background error covariance matrix according to

x
b
(t

i11
) 5M

t
i
!t

i11
[x

a
(t

i
)] and (27)

B(t
i11

) 5 M(t
i
)A(t

i
)MT(t

i
) 1 Q(t

i
), (28)

where xa(ti) is the analysis (1) at time ti,

A(t
i
) 5 [I� K(t

i
)H(t

i
)]B(t

i
) (29)

is the analysis error covariance matrix, and M(ti) is

the state-dependent Jacobian matrix of the numerical

model from ti to ti11. The model error covariance matrix

Q is taken to be time invariant, diagonal and with con-

stant entries, and by trial and error the specification of

the diagonal entries Qjj 5 0.01 was found to provide

improved analyses as compared to other selections.

Numerical experiments are set with two data assimila-

tion systems that differ only in the specification of the

observation error covariance R: in a first set of experi-

ments, hereinafter referred to as DAS-I, R is taken to be

diagonal and with entries Rjj that are statistically con-

sistent with the observation errors in each data type, as

described above; in a second set of experiments, here-

after referred to as DAS-II, all the diagonal entries are

taken Rjj 5 0.04, which corresponds to an observation

error standard deviation of 0.2. The DAS-I attempts to

simulate an optimal DAS, whereas in the DAS-II the

errors in data type y(1) are overestimated and the errors

in data types y(3) and y(4) are underestimated. Each DAS

configuration is run for 7560 analysis cycles and time-

averaged estimates of the OBSI on the 24-h forecast

error are collected using OSEs and the adjoint-DAS

approach over the last N 5 7200 analysis cycles (a 5-yr

time period). The time-averaged relative error in the

analyses over this period was found to be of ;2.6% in

the DAS-I and of ;5.1% in the DAS-II. Therefore, the

relative error in the verification states xy produced by

the DAS is about 2 times larger in the DAS-II as com-

pared to the DAS-I. OSEs are set by removing a single

data point from the observing system, for each data lo-

cation, for a total of n additional data assimilation exper-

iments. The adjoint-DAS approach to OBSI estimation
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implements the second-order measure in (6)–(9) and the

time-averaged relative error in the dey approximation in

(6) was found to be of ;3%. This additional source of

uncertainty is characteristic to the current formulation

of the adjoint-DAS approach and in operational systems

was found to range from 15% to 25% as a result of the

difficulties of the practical implementation (Langland

2005; Gelaro et al. 2007). For both OSEs and the adjoint-

DAS approach the uncertainty in the OBSI estimation

due to the errors in the verification state is monitored by

comparing the results from a forecast error measure ey

based on a verification state xy produced by the corre-

sponding DAS to the OBSI estimates from a forecast

error measure et based on the true state xt.

The results obtained in the DAS-I setup are displayed

in Fig. 3. It is noticed that in this idealized DAS both the

OSEs and the adjoint-DAS properly identify each data-

type impact on the forecast error reduction, at all data

locations. Negative OBSI values indicate that each data

is of benefit to the forecasts, with data type y(1) having the

largest contribution (grid point locations 1, 5, . . . , 37),

followed in decreasing order of magnitude by data types

y(2), y(3), and y(4). For both OSEs and the adjoint-DAS

approach the relative error in the ey-based OBSI as

compared to the et-based OBSI remains in general

within a small factor from the relative error in the ver-

ification state; however, it is noticed that data type y(4)

(grid point locations 4, 8, . . . , 40) may be subject to a

larger OBSI uncertainty. The complementary nature of

the OBSI information extracted from OSEs and the

adjoint-DAS approach is discussed in detail in the work

of Gelaro and Zhu (2009) and Cardinali (2009) and it is

not further addressed here. Since the adjoint-DAS OBSI

operator in (9) is linear in the observation space, the

OBSI information from the adjoint DAS in Fig. 3 allows a

quantification of the impact of any data subset whereas

additional experiments are required in the OSEs to an-

alyze the OBSI of other data subsets.

The results obtained in the DAS-II setup are dis-

played in Fig. 4. Both OSEs and the adjoint-DAS OBSI

estimates reveal an increased uncertainty at all locations

of data type y(4) whose observation error is largely un-

derestimated in the DAS-II. It is also noticed that in

these experiments the adjoint-DAS OBSI based on the

ey measure attributes a benefic forecast impact from the

assimilation of any subset of data type y(4), whereas both

FIG. 3. Time-averaged adjoint-DAS and OSEs’ observation impact estimates on the 24-h forecast error in the

DAS-I setup. Results with a verification state provided by the DAS (ey measure, open circles) and with a verification

state taken to be the true state (et measure, crosses). For each approach, the figure on the right displays the relative

error in the OBSI estimation as a result of the errors in the verification state.
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in the adjoint-DAS approach and OSEs the observation

impacts derived from the measure et identify the as-

similation of this data type as detrimental to the fore-

casts. The compounded propagation of errors in the

verification state and in the dey adjoint-based approxi-

mation measure in the OBSI estimation needs to be

further investigated.

5. Conclusions

This research brings forward the issue of objective

assessment of observations value based on the obser-

vation impact calculations from deterministic OSEs and

the adjoint-DAS approach. A geometrical perspective is

provided to the uncertainty in the OBSI estimation in

the presence of errors in the verification state. Numeri-

cal experiments with a simple model are used to illus-

trate that the practical difficulty of providing an accurate

representation of the true atmospheric state in the

forecast error measure may lead to an increased un-

certainty in the OBSI estimation derived from deter-

ministic forecast error measures, in particular when

suboptimal input error statistics are specified in the

DAS. To increase the confidence in the OBSI guidance,

a probabilistic framework may be considered using an

ensemble of verification states and/or an ensemble of

data assimilation systems (Tan et al. 2007; Ancell and

Hakim 2007). An objective OBSI assessment relies on

the ability to provide verification states whose errors are

unbiased and are statistically independent from the er-

rors in the forecasts produced by the DAS.
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