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The development of the adjoint of the forecast model and of the adjoint of the
data assimilation system (adjoint-DAS) makes feasible the evaluation of the local
sensitivity of a model forecast aspect with respect to a large number of parameters
in the DAS. In this study it is shown that, by exploiting sensitivity properties that
are intrinsic to the analyses derived from a minimization principle, the adjoint-DAS
software tools developed at numerical weather prediction centres for observation
and background sensitivity may be used to estimate the forecast sensitivity to
observation- and background-error covariance parameters and for forecast impact
assessment. All-at-once sensitivity to error covariance weighting coefficients and
first-order impact estimates are derived as a particular case of the error covariance
perturbation analysis. The use of the sensitivity information as a DAS diagnostic
tool and for implementing gradient-based error covariance tuning algorithms is
illustrated in idealized data assimilation experiments with the Lorenz 40-variable
model. Preliminary results of forecast sensitivity to observation- and background-
error covariance weight parameters are presented using the fifth-generation NASA
Goddard Earth Observing System (GEOS-5) atmospheric DAS and its adjoint
developed at the Global Modeling and Assimilation Office. Copyright c© 2010 Royal
Meteorological Society
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1. Introduction

Atmospheric data assimilation techniques combine infor-
mation from a model of the atmospheric dynamics,
observational data, and error statistics to produce an
analysis of the state of the atmosphere (Jazwinski, 1970;
Daley, 1991; Kalnay, 2002). In practice, several simplifying
assumptions are necessary to achieve a feasible implemen-
tation, and an increased amount of research in numerical
weather prediction (NWP) is dedicated to observation- and
background-error covariance modelling (Gaspari and Cohn,

1999; Hamill and Snyder, 2002; Lorenc, 2003; Buehner et al.,
2005; Frehlich, 2006; Janjić and Cohn, 2006; Bannister,
2008a,b) and to the development of effective techniques for
diagnosis, estimation, and tuning of unknown error covari-
ance parameters in both variational and Kalman filter-based
assimilation systems (Dee, 1995; Dee and Da Silva, 1999;
Desroziers and Ivanov, 2001; Desroziers et al., 2005; Chapnik
et al., 2006; Desroziers et al., 2009; Li et al., 2009).

Valuable insight on the relative importance and
contribution of the data assimilation system (DAS)
components to reduce the forecast uncertainties may be
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obtained by performing sensitivity studies to provide an
assessment of the forecast impact as a result of variations
in the DAS input. The development of the adjoint of the
forecast model and of the adjoint of the data assimilation
system (adjoint-DAS) makes feasible the evaluation of
the derivative-based, local sensitivity (Cacuci, 2003) of a
scalar forecast aspect with respect to a large number of
DAS input components. Adjoint-DAS estimation of the
observation sensitivity was considered in the work of
Baker and Daley (2000) and Doerenbecher and Bergot
(2001) as a tool to design observation targeting strategies.
Subsequently, Langland and Baker (2004) have shown that
the combined information derived from the adjoint of
the forecast model and the adjoint-DAS may be used to
provide a detailed (all-at-once) assessment of the observation
impact on reducing the forecast errors in variational data
assimilation (VDA). Adjoint-DAS tools have been developed
at major NWP centres and are currently used to monitor
the impact of data provided by the global observing network
in reducing short-range forecasts errors, to provide data
quality diagnostics and guidance for optimal satellite channel
selection, and to design observation targeting strategies
(Bergot and Doerenbecher, 2002; Fourrié et al., 2002;
Langland, 2005; Zhu and Gelaro, 2008; Baker and Langland,
2009; Cardinali, 2009; Gelaro and Zhu, 2009). A significant
software development effort is required to implement the
adjoint-DAS methodology, however this approach provides
a detailed assessment of the contribution of each observing
system component to the forecast error reduction that
would be difficult to obtain by other means in VDA.
Techniques for evaluating sensitivity to observations and
observation impact assessment in an ensemble Kalman filter
are discussed by Liu and Kalnay (2008) and Torn and Hakim
(2008).

Proper weighting between the information content of
the prior state estimate and of the observational data
is necessary to optimize the DAS performance. To date,
studies on the forecast impact as a result of variations
in the observation-error variances have been performed
only through additional assimilation experiments (Joiner
et al., 2007) and, given the multitude of data types, the
increased computational cost prevents a comprehensive
observing system analysis. The identification of those DAS
components whose improvement in the estimates of the
error statistics would be of most benefit to the analyses and
forecasts is necessary for implementing efficient iterative
procedures for tuning error covariance parameters. The
study of Desroziers et al. (2009) shows that the impact
of tuning observation- and background-error covariances
using a posteriori diagnostics is closely determined by the
specification of the short-range forecast score. Guidance
to error covariance tuning algorithms and assessment of
their potential impact on a specific forecast aspect may be
obtained by evaluating the forecast sensitivity to the tuning
parameters.

Le Dimet et al. (1997) provided the theoretical framework
to sensitivity analysis in VDA. The derivation of the
sensitivity equations and applications of the adjoint-
DAS approach to error covariance sensitivity analysis in
VDA are presented by Daescu (2008). The current work
investigates novel adjoint-DAS applications to parametric
error covariance sensitivity and forecast impact assessment
and as a tool to provide DAS diagnostics. Section 2 includes
a review of the forecast sensitivity to DAS input for analyses

derived from a minimization principle. The rank-one matrix
structure of the forecast sensitivity to the error covariances is
emphasized and various sensitivity identities are established.
In section 3, it is shown that error covariance sensitivity
properties and the adjoint-DAS software tools developed at
operational NWP centres for observation and background
sensitivity may be used to estimate the forecast sensitivity
to error covariance parameters and to provide a first-
order impact assessment. The forecast sensitivity to error
covariance weighting coefficients is derived as a particular
case of the error covariance perturbation analysis. DAS
optimality and sensitivity-based diagnostics are discussed
in the context of linear estimation theory and a feasible
approach to parameter tuning is presented. In section 4,
idealized experiments are performed with the Lorenz 40-
variable model to illustrate the potential use of the sensitivity
information as a DAS diagnostic tool and to perform iterative
error covariance tuning. Preliminary results of forecast
sensitivity to observation- and background-error covariance
weighting are presented using the fifth-generation NASA
Goddard Earth Observing System (GEOS-5) atmospheric
DAS and its adjoint. A summary and further research
directions are in section 5.

2. Sensitivity analysis in VDA

Variational data assimilation (VDA) provides an analysis
xa ∈ R

n to the true state xt of the atmosphere by minimizing
the cost functional

J(x) = Jb + Jo

= 1

2
(x − xb)TB−1(x − xb)

+ 1

2

[
h(x) − y

]T
R−1

[
h(x) − y

]
, (1)

xa = Arg min J, (2)

where xb ∈ R
n is a prior (background) state estimate,

y ∈ R
p is the vector of observational data, and h is the

observation operator that maps the state into observations.
In practice, statistical information on the background error
εb = xb − xt and observational error εo = y − h(xt) is used
to specify the weighting matrices B ∈ R

n×n and R ∈ R
p×p

that are representations in the DAS of the background-

and observation-error covariances Bt = E(εbεbT
) and Rt =

E(εoεoT) respectively, where E(·) denotes the statistical
expectation operator. If the observation operator is assumed
to be linear, h(x) = Hx, the analysis (2) is expressed as

xa = xb + K[y − Hxb], (3)

where the gain matrix K is defined as

K = [
B−1 + HTR−1H

]−1
HTR−1

= BHT
[
HBHT + R

]−1
. (4)

In four-dimensional variational data assimilation (4D-
Var) the operator h incorporates the nonlinear model to
properly account for time-distributed data and an outer-
loop iteration (Courtier et al., 1994; Rosmond and Xu, 2006;
Trémolet, 2007a) is used to approximate the solution to the
nonlinear problem (1)–(2).
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2.1. Observation and background sensitivity

Baker and Daley (2000) derived the equations of the
sensitivity (gradient) of a scalar forecast aspect e(xa) to
observations and background for a linear analysis scheme
(3)–(4):

∇ye(xa) = KT∇xe(xa), (5)

∇xb e(xa) = [I − HTKT]∇xe(xa). (6)

Typically, the forecast score is defined as a short-range
forecast error measure

e(xa) = (xa
f − xv

f )TC(xa
f − xv

f ), (7)

where xa
f = Mt0→tf (xa) is the nonlinear model forecast at

verification time tf , xv
f is the verifying analysis at tf and

serves as a proxy to the true state xt
f , and C is an appropriate

symmetric and positive semidefinite matrix that defines the
metric in the state space, e.g. the total energy norm, and may
incorporate a regional projection operator. Evaluation of the
sensitivities (5) and (6) is performed by applying the adjoint-
DAS operator KT to the vector ∇xe(xa) of forecast sensitivity
to analysis. The latter is obtained by integrating the adjoint
MT of the tangent linear model along the trajectory initiated
from xa:

∇xe(xa) = 2[Mt0→tf (xa)]TC(xa
f − xv

f ). (8)

Additional simplifying assumptions are necessary to alleviate
the need for higher-order derivative information in
the sensitivity computations when multiple outer-loop
iterations are used to obtain an approximation to the
solution to (1), as discussed by Trémolet (2008).

2.2. Adjoint-DAS observation impact estimation

The adjoint-DAS approach to observation impact (OBSI)
estimation relies on the observation-space evaluation of the
change in the forecast due to assimilation of all data in the
DAS,

δe = e(xa) − e(xb) ≈ (δy)Tg, (9)

in terms of the innovation vector δy = y − h(xb) and
a properly defined weight vector g that is expressed in
terms of the adjoint-DAS operator KT and the forecast
sensitivity to initial conditions (Gelaro et al., 2007). A
measure of the contribution of individual data components
to forecast-error reduction, per observation type, instrument
type, and data location, is obtained by taking the inner
product between the innovation vector component and the
corresponding δy-amplification factor in (9):

I(yi) = (δyi)
Tgi , (10)

where yi is the data subset whose impact is being
evaluated. Data components with I(yi) < 0 contribute to
the forecast-error reduction (improve the forecast), whereas
data components with I(yi) > 0 will increase the forecast
error (degrade the forecast). The second-order accurate
δe-approximation measure,

δe ≈ (δy)TKT

[
1

2
∇xe(xb) + 1

2
∇xe(xa)

]
, (11)

has been first considered in the work of Langland and Baker
(2004) and in recent adjoint-based OBSI studies (Cardinali,
2009; Gelaro and Zhu, 2009). Efficient alternatives to (11),
such as a midpoint rule, are discussed by Daescu and Todling
(2009).

2.3. Error covariance sensitivity

Implicit differentiation applied to the first-order optimality
condition ∇xJ(xa) = 0 to (1)

B−1(xa − xb) + HTR−1[h(xa) − y] = 0, (12)

where H = ∂h/∂x ∈ R
p×n is the Jacobian matrix of the

observation operator at xa, allows close relationships
to be established between the forecast sensitivities to
observations/background and to the associated error
covariances (Daescu, 2008):

∇ye(xa) = R−1HA∇xe(xa), (13)

∂e(xa)

∂R
= ∇ye(xa)

[
h(xa) − y

]T
R−1, (14)

∇xb e(xa) = B−1A∇xe(xa), (15)

∂e(xa)

∂B
= ∇xb e(xa)

[
xa − xb

]T
B−1, (16)

where

A = [∇2
xxJ(xa)

]−1
(17)

denotes the inverse of the Hessian matrix of the cost (1)
at xa and it is assumed to be a positive definite matrix. In
particular, for a linear observational operator the inverse
Hessian is the state independent matrix

A = [
B−1 + HTR−1H

]−1
. (18)

If the observational errors are assumed to be uncorrelated,
the error covariance matrix R is diagonal, R = diag(σ 2

o),
where σ 2

o denotes the p-dimensional vector of observational-
error variances. In this context, the forecast gradient to σ 2

o
may be expressed from (14) as

∇σ 2
o
e(xa) = [

R−1(h(xa) − y)
] ◦ ∇ye(xa) ∈ R

p, (19)

where ◦ denotes the Hadamard (componentwise) product.
Equations (13) to (16) are derived directly from the

optimality condition (12) and for a quadratic cost they are
valid both in an observation space and in a state space
DAS (4). In Daescu (2008), the error covariance sensitivity
equations (14) and (16) were expressed in column vector
format. The matrix format adopted here emphasizes the
rank-one property of the B- and R-forecast sensitivity
matrices, and it is more suitable for the purpose of this
study. The equivalence between the two formulations is
shown in the appendix.

By expressing the optimality condition (12) as

B−1(xa − xb) = HTR−1[y − h(xa)] (20)

and, after replacing (20) in (16), the forecast B-sensitivity
may be equivalently expressed as

∂e(xa)

∂B
= ∇xb e(xa)[y − h(xa)]TR−1H. (21)
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The following relationship between the observation
sensitivity and the backgound sensitivity is an intrinsic
property of the nonlinear VDA problem (1)–(2) and may
be established from (12), (13), and (15):

[
h(xa)− y

]T ∇ye(xa)+(xa− xb)T∇xb e(xa) = 0. (22)

The identity (22) is valid for any forecast aspect and its
significance is further discussed in section 3.

3. Forecast impact and parametric error covariance
sensitivity

While the explicit evaluation and storage of the error
covariance sensitivity matrices is not feasible in an
operational system, in particular for the B-sensitivity,
from (14) and (16)/(21) it is noticed that evaluation and
storage of only a few vectors are necessary to capture the
information content of the error covariance sensitivities.
Their use in an operator format may be considered, and
of significant importance is the practical ability to provide
directional derivatives associated with perturbations (δB, δR)
and sensitivities to key parameters used to model the error
covariances. The mathematical formalism to exploit these
adjoint-DAS capabilities and sensitivity applications are
discussed in this section.

The forecast aspect e(xa) is implicitly a function of
the specification of the error covariances in the DAS,
e(B, R) = e[xa(B, R)], and a first-order approximation to
the forecast impact as a result of variations δB and δR in
the specification of the error covariances may be expressed
using the error covariance gradients

δe = e(B + δB, R + δR) − e(B, R)

≈
〈
∂e

∂B
, δB

〉
n×n

+
〈

∂e

∂R
, δR

〉
p×p

,
(23)

where

〈X, Y〉 = Tr
(

XYT
)

(24)

denotes the Frobenius inner product on the vector space
of matrices of the same order and is expressed in
terms of the matrix trace operator Tr. The right side of
(23) is the (δB, δR)-directional derivative of e(B, R). The
observation-error covariance matrix has a block diagonal
structure associated with data subsets yi ∈ R

pi , i ∈ I, with
uncorrelated observational errors

R = diag(Ri), Ri ∈ R
pi×pi , i ∈ I. (25)

For practical purposes, each of the perturbations δB and δRi

are assumed to be symmetric matrices

δB = (δB)T, δRi = (δRi)
T, (26)

and are additionally constrained to preserve the positive
definite property of B + δB, R + δR as well as physical
properties such as balance constraints (Bannister, 2008b).
For example, such perturbations may arise in practice in the
context of multiplicative/additive error covariance inflation
techniques and as a result of variations in parameters used
to model the error decorrelation length-scales.

The linear approximation (23) is the sum of the first-order
impacts of individual error covariance perturbations δB and
δRi:

δe ≈ Tr

(
∂e

∂B
δB

)
+

∑
i∈I

Tr

(
∂e

∂Ri
δRi

)
. (27)

Evaluation of the right-side terms in (27) is computationally
feasible by properly exploiting the outer vector product
structure of the error covariance sensitivities (16) and
(14) and properties of the matrix trace operator. For
example, evaluation of the first-order approximation to the
impact δei associated with the observation-error covariance
perturbation δRi proceeds as follows:

δei ≈ Tr

(
∂e

∂Ri
δRi

)
(28)

= Tr
(
∇yi e(xa)

[
hi(xa) − yi

]T
R−1

i δRi

)
= Tr

(
δRi∇yi e(xa)

[
hi(xa) − yi

]T
R−1

i

)
= Tr

{[
δRi∇yi e(xa)

] [
R−1

i {hi(xa) − yi}
]T

}
.

The trace operator property Tr(abT) = bTa is valid for any
column vectors of the same order and may be used to express
(28) as

δei ≈ [
R−1

i (hi(xa) − yi)
]T [

δRi∇yi e(xa)
]

, (29)

which is the equation of the first-order approximation
to the impact δei associated with the observation-error
covariance perturbation δRi. In a similar fashion, the first-
order approximation to the impact δeb associated with the
background-error covariance perturbation δB is expressed
as

δeb ≈
[

B−1(xa − xb)
]T [

δB∇xb e(xa)
]
. (30)

From (29) and (30), it is noticed that, using the adjoint-
DAS tools developed for observation and background
sensitivity analysis, the evaluation of the linear approxi-
mation to the forecast impact δei and δeb requires only the
additional ability to provide the product between the error
covariance perturbation matrix and the associated vector
of forecast sensitivity to observations and to background,
respectively.

Remark. It is noticed that, for any square matrices X and
Y of the same order, if Y = YT then

Tr (XY) = Tr

[
1

2

(
X + XT

)
Y

]
, (31)

such that for any practical purposes the error covariance
sensitivity matrices may be identified with their symmetric
part

(
∂e

∂B

)
s

def= 1

2

[(
∂e

∂B

)
+

(
∂e

∂B

)T
]

, (32)

(
∂e

∂R

)
s

def= 1

2

[(
∂e

∂R

)
+

(
∂e

∂R

)T
]

. (33)
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3.1. Sensitivity to error covariance parameters

Forecast sensitivity to a scalar parameter so
i in the

observation-error covariance representation Ri(so
i ) is

obtained by relating to a first order the error covariance
variation δRi to the parameter variation δso

i :

δRi ≈ ∂Ri(so
i )

∂so
i

δso
i . (34)

From (29) and (34), the first-order approximation to the
forecast impact is expressed as

δei ≈
[
R−1

i (so
i )(hi(xa)− yi)

]T
[
∂Ri(so

i )

∂so
i

∇yi e(xa)

]
δso

i , (35)

and the forecast sensitivity to the observation-error
covariance parameter so

i is

∂e(xa)

∂so
i

=[
R−1

i (so
i ){hi(xa)− yi}

]T
[

∂Ri(so
i )

∂so
i

∇yi e(xa)

]
. (36)

In a similar fashion, the forecast sensitivity to a
scalar parameter sb in the background-error covariance
representation B(sb) is expressed as

∂e(xa)

∂sb
=

[
B−1(sb)(xa − xb)

]T
[

∂B(sb)

∂sb
∇xb e(xa)

]
. (37)

For a practical implementation, the right-side terms of (36)
and (37) may be computed without explicit evaluation of
the derivative matrices ∂Ri/∂so

i and ∂B/∂sb respectively, and
the necessary matrix-vector products may be generated with
the aid of automatic differentiation tools.

3.1.1. Sensitivity to multiplicative error covariance parame-
ters

A particular case of practical significance is given by the
parametric specification

B(sb) = sbB, Ri(so
i ) = so

i Ri, i ∈ I, (38)

which is a common representation used to perform
error covariance tuning (Desroziers and Ivanov, 2001;
Chapnik et al., 2006; Desroziers et al., 2009). Each
of the error covariance parameters is a positive scalar,
sb > 0, so

i > 0, i ∈ I, and it is used to adjust the weight given
in the analysis scheme to the background information and
to the observation information, respectively. The parametric
VDA cost functional associated with (38) is

J(s) = 1

sb
Jb +

∑
i∈I

1

so
i

Jo
i , (39)

where s denotes the (I + 1)-dimensional parameter vector of
error covariance weights, s = [sb, so

1, so
2, . . . , so

I ]. The vector
denoted s = 1 is obtained by setting all parameter values
to 1 and corresponds to the error covariance specification
(B, R) in the DAS; the analysis associated with this DAS
configuration is denoted xa = xa(s). Variations δsb and δso

i
in the weighting coefficients are identified with variations in
the specification of the error covariances:

δB = δsbB, (40)

δRi = δso
i Ri, i ∈ I. (41)

Using a linearization in the parameter space at s = s, the
first-order estimate to the forecast impact δe as a result of
weight variations δs is expressed as

δe = e[xa(s + δs)] − e[xa(s)]

≈ ∂e(xa)

∂sb
δsb +

∑
i∈I

∂e(xa)

∂so
i

δso
i . (42)

From (36), (37) and (38), the forecast sensitivity to the
background and observation weights at s = 1 is expressed
respectively as

∂e(xa)

∂sb
=

[
xa − xb

]T ∇xb e(xa), (43)

∂e(xa)

∂so
i

= [
hi(xa) − yi

]T ∇yi e(xa), i ∈ I, (44)

and

δe ≈ δsb
[

xa − xb
]T ∇xb e(xa)

+
∑
i∈I

δso
i

[
hi(xa) − yi

]T ∇yi e(xa)
(45)

is the first-order approximation, in the parameter space,
to the forecast impact of perturbations δs in the error
covariance weights from the nominal value s = 1.

From (43) and (44), it is noticed that the identity (22) is
equivalent to

∑
i∈I

∂e(xa)

∂so
i

+ ∂e(xa)

∂sb
= 0 (46)

and reflects an intrinsic property of the VDA optimization
problem: multiplication of all error covariances in the DAS
by the same (positive) constant has no impact on the analysis.
For analysis impact purposes, the number of degrees of
freedom in the parametric representation (39) is equal to I.

An observation space equation to the sb-sensitivity is
derived from (43) and (22)

∂e(xa)

∂sb
= [

y − h(xa)
]T ∇ye(xa), (47)

such that the information extracted from the analysis-
minus-observed residuals and observation sensitivity pro-
vides all-at-once the sensitivities (44) and (47) to multi-
plicative error covariance weighting coefficients in the DAS
configuration (B, R), with negative s-derivative values indi-
cating that, locally, the forecast error aspect is a decreasing
function of the corresponding weight parameter. For exam-
ple, a negative sensitivity (47) indicates that locally the
forecast error aspect is a decreasing function of the sb par-
ameter and provides an indication that background-error
covariance inflation is of potential benefit to the forecasts.

The sensitivity information may be used to provide a priori
guidance to the forecast impact as a result of specified
variations in individual weighting coefficients

δeb ≈ ∂e(xa)

∂sb
δsb, (48)

δei ≈ ∂e(xa)

∂so
i

δso
i . (49)

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 2000–2012 (2010)



Adjoint-DAS Sensitivity to Error Covariance Parameters 2005

A posteriori, the validity of the approximation (45) may be
investigated for perturbations δs generated as the result of a
tuning process, and (48) and (49) may be used to provide
an assessment of the DAS components where tuning was of
benefit (δeb < 0; δei < 0) or detrimental (δeb > 0; δei > 0)
to the forecasts.

In VDA, the OBSI estimation using measures such as
(11) and the evaluation of the sensitivities (44), (47)
share the same adjoint-DAS tools and may be performed
simultaneously using information from innovations y −
h(xb) and residuals y − h(xa), respectively.

3.2. DAS optimality and sensitivity diagnostics

In the context of statistical linear estimation, information
extracted from the innovations y − Hxb and residuals
y − Hxa is used to derive consistency diagnostics of
observation- and background-error statistics in the DAS
(Talagrand, 1999; Daley and Barker, 2001; Desroziers et al.,
2005). Properties of the Best Linear Unbiased Estimator
(BLUE) allow us to investigate the DAS optimality in
terms of error covariance sensitivities in a linear analysis
scheme (3)–(4). The analysis error εa = xa − xt is implicitly
a function of the error covariance specification (B, R) in the
DAS. Given a quadratic loss function

L(εa) = εaTSεa, (50)

where S ∈ R
n×n is a symmetric and positive semidefinite

matrix, an optimal error covariance specification minimizes
the expected loss (Jazwinski, 1970; Cohn, 1997) and a
characteristic property of the BLUE is that the information-
minus-analysis difference and the estimation error are
statistically uncorrelated (Talagrand, 1999):

E[εa(Hxa − y)T] = 0 ∈ R
n×p, (51)

E[εa(xa − xb)T] = 0 ∈ R
n×n. (52)

By replacing

∇xa L = 2S εa (53)

in the sensitivity equations (5), (6), (14) and (21), from
(51) and (52) it is noticed that, in an optimal DAS, the
expected value of the sensitivity to any of the entries in the
background- and observation-error covariances is zero:

E

(
∂L

∂B

)
= 0 ∈ R

n×n, E

(
∂L

∂R

)
= 0 ∈ R

p×p. (54)

Simplifying assumptions are necessary to implement the
error covariance sensitivity diagnostic (54) for parameter
tuning and a major difficulty to overcome in practical
applications is that analysis error estimates are not directly
available in VDA. Valuable information may be obtained by
collecting statistics of time series of data assimilation/forecast
cycles (7) and analysis of the time-mean forecast sensitivity
to error covariance parameters. The use of an ensemble
of forecasts to define the functional aspect (7) provides
a feasible approach for practical applications (Torn and
Hakim, 2008).

The Kalman smoother theory to estimate the 4D-Var
error statistics is discussed in the work of Ménard and Daley
(1996). Iterative gradient-based algorithms for tuning a

vector s of error covariance parameters may be implemented
by solving the minimization problem

min
s

e[xa(s)]. (55)

At each iteration

sk+1 = sk + αkdk, k = 0, 1, . . . , (56)

the analysis xa(s) is obtained as a solution to the VDA
problem (1)–(2) and the adjoint-DAS approach provides
the gradient information necessary to identify a descent
direction dk in the parameter space. The steepest descent
direction

dk = −∇se[xa(sk)] (57)

identifies the direction of small variations δs, from
the current DAS configuration, that will be of largest
forecast benefit and provides a first-order error covariance
diagnostic. In addition to the simplifying assumptions that
are necessary to implement an iterative tuning algorithm,
identifiability issues must be addressed in the estimation of
error covariance parameters, as discussed by Dee and Da
Silva (1999) and Chapnik et al. (2004).

4. Numerical experiments

The adjoint-DAS sensitivity approach as a DAS diagnostic
tool and to perform error covariance parameter tuning
is illustrated in idealized numerical experiments with the
Lorenz-40 variable model (Lorenz and Emanuel, 1998)

dxj

dt
= (xj+1− xj−2) xj−1− xj +F, j = 1, 2, . . . , n , (58)

where n = 40, xn+k = xk, and F = 8. The system (58) is
integrated with a fourth-order Runge–Kutta method and a
constant time step �t = 0.05 that in the data assimilation
experiments is identified to a 6 h time period. The time
evolution of the model state is expressed as

x(ti+1) = Mti→ti+1 [x(ti)] , (59)

and the time evolution of the true state xt is obtained by
adding at each time step a random state independent model
error εq(ti),

xt(ti+1) = Mti→ti+1 [xt(ti)] + εq(ti) (60)

which is taken from a normal distribution N(0, σ 2
q ) and with

the standard deviation specified as σq = 0.05.
An initial state xt

0 is obtained from a 90-day (360
time step) integration started from xj = 8 for j 	= n/2 and
xn/2 = 8.008; a background estimate xb to xt

0 is prescribed
by introducing random perturbations in xt

0 taken from the
standard normal distribution N(0, 1). Observational data
are generated from the true state xt at each time step and
each grid point and it is assumed that the DAS incorporates
two data types y(1) and y(2), each being a 20-dimensional
vector, with uncorrelated observational errors. Data of type
y(1) are generated at odd locations 2j + 1, j = 0, 1, . . . , 19
with observation errors normally distributed, unbiased,

and the standard deviation σ
(1)
o,t = 0.25. Data of type y(2)
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are generated at even locations 2j, j = 1, 2, . . . , 20 with
observation errors normally distributed, unbiased, and the

standard deviation σ
(2)
o,t = 0.75. Data of type y(1) are thus

of increased accuracy compared with data of type y(2).
In a first set of experiments (DAS-1), a specification of
σ (1)

o = σ (2)
o = 0.5 is used in the DAS to investigate the

ability of the adjoint-DAS approach to provide diagnosis
and tuning of observation-error variances when deficiencies
in the DAS are mainly due to mis-specified observational-
error statistics. In DAS-1, at each observing site the errors
in data y(1) are overestimated, whereas the errors in data
y(2) are underestimated. DAS-1 implements a linear analysis
scheme ((3)–(4)) and the background estimate at time
ti+1 and the associated background-error covariance matrix
are propagated using the Extended Kalman filter (EKF)
equations

xb(ti+1) = Mti→ti+1 (xa(ti)), (61)

B(ti+1) = M(ti)A(ti)MT(ti) + Q(ti), (62)

where xa(ti) is the analysis (3) at time ti,

A(ti) = [
B−1(ti) + HT(ti)R−1H(ti)

]−1

= [I − K(ti)H(ti)]B(ti) (63)

is the inverse Hessian matrix associated to a quadratic
cost (1), and M(ti) is the state-dependent Jacobian matrix
of the numerical model Mti→ti+1 from ti to ti+1. The model
error covariance is prescribed as a time-invariant diagonal
matrix Q = diag(σ 2

q).
DAS-1 is run for 3240 analysis cycles and a 24 h forecast

error measure is collected over the last N = 2880 analysis
cycles (a 2-year time period)

e[xa(ti)]=[
xa

f (ti+4)− xv(ti+4)
]T[

xa
f (ti+4)− xv(ti+4)

]
,
(64)

where xa
f (ti+4) = Mti→ti+4 [xa(ti)] is the 24 h forecast state

and xv(ti+4) is the verification state at ti+4.

4.1. Observation impact estimation

Adjoint-DAS OBSI estimation is performed in DAS-1
using the approximation measure (11). Time-averaged
OBSI estimates at each observing site are displayed in
Figure 1(a) for a verification state specified as the true state,
xv(ti+4) = xt(ti+4), and for a verification state produced by
the DAS-1, xv(ti+4) = xa(ti+4), the latter being a typical
choice in practical applications. The adjoint-DAS OBSI
estimation properly identifies data of type y(1) as data
of increased forecast benefit compared with data of type
y(2). (Negative values indicate that assimilation of data
contributes to the forecast error reduction.) It is noticed
that the OBSI values based on a verification state produced
by the DAS are overestimating the data impact on the
actual forecast-error reduction and that underestimation
of the observation-error variance in the DAS may result
in a detrimental forecast impact, as seen for data of type
y(2) at observing site j = 34. The assessment of the state-
to-observation space uncertainty propagation as a result of
the errors in the verification state in deterministic OBSI
estimation is an unresolved issue in NWP (Daescu, 2009).

4.2. Diagnosis of observation-error variances

The OBSI estimation provides valuable information on
the contribution of individual datasets to the forecast-error
reduction for a given specification of the error covariances in
the DAS. Additional information is necessary to optimize the
use of the observational data through proper specification
of the error statistics and may be obtained from the
observation-error covariance sensitivity analysis.

The time-averaged forecast sensitivity to the observation-
error variance (19) at each observing site is displayed
in Figure 1(b). It is noticed that at each observing
site the first-order observation-error variance sensitivity
diagnostic properly identifies data of type y(1) as data
where decreasing the error variance input in the DAS will
reduce the forecast error (positive derivative values indicate
that locally the functional aspect is an increasing function
of the corresponding parameter). Data of type y(2) are
identified as data where increasing the error-variance input
in the DAS will reduce the analysis/forecast error (negative
derivative values indicate that locally the functional aspect
is a decreasing function of the corresponding parameter).
By analogy to the OBSI results, the sensitivity values are
closely determined by the selection of the verification
state and the specification xv(ti+4) = xa(ti+4) provided
observation-error variance sensitivities of larger magnitude
than xv(ti+4) = xt(ti+4).

4.3. Tuning of observation-error variances

The adjoint-DAS approach provides grounds for tuning
the DAS observation-error variance input using a gradient-
based iterative algorithm. The minimization functional is
defined as a two-year time-averaged forecast-error measure
(64)

e = 1

N

N∑
i=1

e[xa(ti)], (65)

and tuning is performed by solving the optimization
problem

min
σ 2

o

e . (66)

This formulation involves a simplifying assumption in
the evaluation of the gradient ∇σ 2

o
e, namely it neglects

the time propagation of the δσ 2
o perturbation impact

through various data assimilation cycles. Bound constraints
σ 2

o,min ≤ σ 2
o ≤ σ 2

o,max are associated with (66) based on
a priori estimates to min/max observation-error variances,
and in the numerical experiments the observation-error
standard deviation bounds are prescribed as σ o,min =
0.1 and σ o,max = 1. In particular, specification of an
upper bound is necessary to avoid data denial (variances
approaching infinity) in the tuning process when the
verification state is produced by the DAS. The ability of
the adjoint approach to accommodate an increased number
of parameters is illustrated by performing tuning with
the observation-error variance at each observing site as
a free parameter (40-dimensional space). The evolution
of the cost (65) during the minimization process is
displayed in Figure 2(a) for a verification state produced
by the DAS, xv(ti+4) = xa(ti+4), and for a verification
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Figure 1. (a) Time-averaged observation impact estimation and (b) time-averaged sensitivity to observation-error variance in DAS-1. Results are from a
verification state specified as the true state (squares) and with a verification state produced by the DAS-1 (circles). The solid and dashed lines correspond
to observing sites of odd index and even index, respectively, and distinguish the two data types used in the DAS-1.
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Figure 2. (a) Evolution of the forecast error aspect during the iterative tuning of observation-error variances, and (b) estimated observation-error
standard deviation. The horizontal line in (b) indicates the initial specification of the observation-error standard deviation. Results are with a verification
state specified as the true state (plus signs) and with a verification state produced by the DAS-1 (circles).

state prescribed as the true state, xv(ti+4) = xt(ti+4). The
estimated observation-error standard deviation as a result
of the tuning process is displayed in Figure 2(b). In both
experiments, improved estimates were obtained within a
few iterations, and it is noticed that the tuning process was
able to properly distinguish between the underestimated
and the overestimated observation-error variances. The
results indicate an increased uncertainty propagation in
the estimation of error variances associated with data of low
forecast impact y(2), compared with the estimation of error
variances associated with data of high forecast impact y(1).

4.4. Diagnosis of mis-specified background-error correlations

An additional set of experiments, DAS-2 and DAS-3,
is used to illustrate the ability of the error covariance
sensitivity information to provide diagnosis of mis-specified
background-error correlations in the DAS. In both DAS-2
and DAS-3, the observation-error variances are set to be
statistically consistent with the observational errors, σ (1)

o =
σ

(1)
o,t , σ (2)

o = σ
(2)
o,t , and deficiencies are introduced in the

DAS-3 through mis-specified background-error statistics.

The DAS-2 is used as a reference system and provides
an optimal analysis by evolving in time the background-
error covariance according to the EKF equations. The
time-averaged background-error covariance matrix over the
2-year analysis period in DAS-2 is displayed in Figure 3(a).
The DAS-3 is a suboptimal system where the background-
error covariance is prescribed as a diagonal matrix, frozen
in time, with the diagonal entries fixed to their values at
the beginning of the 2-year analysis period, as displayed
in Figure 3(b). Background-error covariance sensitivity
statistics are collected in DAS-3 for the 24-h forecast error
measure (64) and in Figure 3(c) is shown the time-averaged
forecast error B-sensitivity for a verification state prescribed
as the true state. To extract the information relevant to
symmetric perturbations, the results are displayed using the
symmetric part (32). The B-sensitivity matrix in Figure 3(c)
identifies the steepest descent direction in the background-
error covariance space and, to a first order, provides guidance
on the δB perturbation that is necessary to correct the
background-error covariance in DAS-3 (Figure 3(b)) toward
the optimal correlation structure in DAS-2 (Figure 3(a)).
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Figure 3. (a) Time-averaged background-error covariance matrix in DAS-2. (b) The background-error covariance in DAS-3 is specified as a time-invariant
and diagonal matrix. (c) Time-averaged forecast-error sensitivity to the background-error covariance in DAS-3. The sensitivity matrix provides guidance
on the perturbation structure that is necessary to correct (b) towards (a).
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Figure 4. (a) Daily sensitivity of the 24 h forecast error to the 0000 UTC background-error covariance weighting coefficient sb during August 2007. (b)
shows the sensitivity normalized by the forecast error measure (%/%).

The explicit evaluation and the analysis of the full B-
sensitivity matrix are not feasible in practical applications,
however valuable information regarding the background-
error correlations may be obtained by monitoring
sensitivities to a specified error decorrelation length-
scale. Additional practical difficulties in providing error
covariance diagnostics are due to the fact that deficiencies in
the representation of both background-error correlations
and observational-error correlations may be present in
operational data assimilation systems.

4.5. Preliminary results with NASA GEOS-5 DAS

Preliminary numerical experiments performed with the
NASA GEOS-5 DAS (Rienecker et al., 2008) are used to
illustrate the practical ability of the adjoint-DAS approach
to provide error covariance sensitivity information. GEOS-
5 DAS consists of the GEOS-5 general circulation model
comprising: finite-volume dynamics (Lin, 2004) and
Goddard-developed physics; the adjoint of the finite-volume
dynamics (Giering et al., 2005) which accounts for simple
vertical diffusion; the Grid-point Statistical Interpolation
(GSI) analysis system (Wu et al., 2002); and the adjoint of
the GSI (Trémolet, 2007b). The computational overhead
of calculating the sensitivities of interest consists of the
integration of the adjoint of the GEOS-5 general circulation
model to obtain the forecast sensitivity to initial conditions
(8), evaluation of the observation sensitivity (5) by applying
the adjoint-DAS operator, followed by the observation-
space product with the vector of observed-minus-analysis.
The necessary software tools have been developed at

NASA Global Modeling and Assimilation Office (GMAO)
and other major NWP centres for observation sensitivity
and impact assessment and the additional capability of
performing sensitivity to the specification of the error
covariance weights is illustrated here.

Data assimilation and sensitivity experiments are
performed at a horizontal resolution of 2.5◦ × 2◦ with
72 hybrid levels in the vertical. To keep close to the
theory discussed in previous sections, a single outer
loop is used when running the forward GSI in GEOS-
5 DAS; and consistently, the same applies when running
the backward (adjoint) GSI. The model functional aspect
(7) is specified as the 24 h average global forecast error
between the model vertical grid levels 40 and 72 (from
approximately 128 hPa down to the surface) in a total (dry)
energy norm, with the verification state xv

f provided by
the DAS by performing 6 h analysis cycles. Statistics of
the forecast sensitivity to multiplicative error covariance
weighting coefficients (44) and (47) are collected for data
valid at 0000 UTC during August 2007. For this period
of experimentation, Daescu and Todling (2009) provided
an adjoint-DAS assessment of the observation impact to
the forecast-error reduction. Our new experiments illustrate
the additional capability of performing sensitivity to the
specification of the error covariance weights. GEOS-5 DAS
assimilates observations from the conventional network:
radiosondes, wind profilers, pilot balloon (PIBAL) winds,
Aircraft to Satellite Data Relay (ASDAR) and Meteorological
Data Collection and Reporting System (MDCARS) aircraft
wind and temperature reports, NEXRAD radar winds,
dropsonde winds, PAOB surface pressure, GMS and
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Figure 5. (a) Time-mean sensitivity of the 24 h forecast-error measure
to the 0000 UTC observation-error covariance weighting coefficient so

i
for various observing system components in August 2007. (b) shows
the standard deviation of the time series of estimated sensitivities. The
abbreviations for observation type along the vertical axis denote: Ships,
ship and buoy temperatures, winds, specific humidities, and near-surface
pressures; SatWind, cloud-drift winds; SSMIspd, Special Sensor Microwave
Imager wind speeds; RaobDsnd, radiosonde and dropsonde temperatures,
winds, specific humidities; Qscat, scatterometer winds; MODIS, Moderate-
resolution Imaging Spectroradiometer clear-sky and water vapour winds;
LandSfc, land observations of temperatures, winds, surface pressures, and
specific humidities; HIRS, radiances from the High-resolution Infrared
Radiation Sounder 3 from NOAA-16 and -17 satellites; GOESND, radiances
from the Geostationary Operational Environmental Satellites; Aircraft,
aircraft temperatures and winds; AMSU-A, radiances from the Advanced
Microwave Sounding Unit-A on the NOAA-15, -16 and -18; AMSU-B,
radiances from NOAA-15, -16 and -17, as well as NASA Aqua; AIRS,
radiances from the Atmospheric Infrared Sounder on Aqua.

METEOSAT cloud-drift infrared (IR) and visible winds,
MODIS clear-sky and water vapour winds, (GOES cloud-
drift IR and water vapour cloud-top winds, surface land
observations, SSM/I rain rates and wind speeds, Tropical
Rainfall Measuring Mission Microwave Imager (TMI) rain
rates, and QuickSCAT wind speeds and directions. Satellite
radiances include: TIROS Operational Vertical Sounder
(TOVS) level 1b AMSU-A from NOAA-15, -16 and -
18, AMSU-B from NOAA-15, -16 and -17, HIRS-2 from
NOAA-14, HIRS-3 from NOAA-16 and -17, Microwave
Sounding Unit (MSU) from NOAA-14; Earth Observing
System (EOS)/Aqua level 1b radiances AIRS and AMSU-A;
GOES-10 and -12 sounder brightness temperatures; and
Solar Backscattered Ultra-Violet (SBUV-2) (version 6) layer
and total column ozone from NOAA-16. (Acronyms not
explained here are given in the caption to Figure 5 below.)

Figure 4 displays the daily sb-sensitivity (47) together with
the associated relative sensitivities

∂e(xa)

∂sb

1

e(xa)
. (67)

sb

s ( 1, 1, 1)sb=1

so(1, 1)

1

Steepest descent
direction

s–sensitivity
vector

s

1

s1
o

s2
o

Figure 6. Illustration of the guidance provided by the forecast-error
sensitivity to the DAS error covariance weight parameters. The sensitivity
vector allows the identification of descent directions in the parameter
space that may be used to achieve forecast-error reduction. Increasing the
parameter values corresponds to the error covariance inflation in the DAS.

The sb-sensitivity provides guidance on the proper weighting
in the DAS between the information content of the
background state and of the whole observing system and, in
these experiments, the time-mean sb-sensitivity was found
to be –0.2 J kg−1. Systematic negative values provide an
indication that the background information is slightly over-
weighted and that background-error covariance inflation is
of potential benefit to the forecasts. The relative sensitivities
(67) provide guidance on the percentage forecast impact as
the result of variations in the sb parameter from the nominal
value of sb = 1 and the time-mean relative sensitivity was
estimated to be −0.037.

Figure 5 displays the time-mean sensitivities to
observation-error covariance weights (44) and the standard
deviation of the time series of sensitivity estimates for major
observing system components. The sensitivity information
describes the local behaviour of the forecast error aspect as
a function of the error covariance parameters and provides
valuable guidance to the parametric representation that is
necessary to optimize the performance of error covariance
tuning procedures. In Figure 5, the presence of positive sen-
sitivity values for certain observing system components and
of negative sensitivity values for other observing system com-
ponents provides an indication that tuning of the observing
system through a single scalar weight coefficient so (I = 1)
is suboptimal and that improved results may be obtained by
considering a multi-dimensional (I > 1) parametric repre-
sentation (39). Figure 6 provides a geometrical illustration of
the sensitivity guidance in a 3-dimensional parameter space
s = (sb, so

1, so
2) for a DAS configuration where at s = (1, 1, 1)

the derivatives values are such that ∂e/∂sb < 0, ∂e/∂so
1 < 0,

and ∂e/∂so
2 > 0: forecast error reduction may be achieved by

individually varying a selected error covariance parameter
while freezing all other parameters in the DAS or by simul-
taneously varying all error covariance parameters along a
descent direction. For practical applications, the sensitivity
information allows the identification of the steepest descent
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Figure 7. Time-mean sensitivity of the 24 h forecast-error measure to the 0000 UTC observation-error covariance weighting coefficient so
i per instrument

channel for (a) NOAA-15 AMSU-A and (b) Aqua AIRS radiance data in August 2007.

direction (57) in the parameter space, and an additional
iterative procedure is necessary to determine an optimal
step length along this direction and to perform parameter
tuning.

The observation-error covariance sensitivity analysis is
particularly valuable for satellite data where accurate esti-
mations of the observational errors (including measurement
and representation errors) are difficult to provide. In these
experiments, increased positive values were noticed for
AMSU-A data, whereas increased negative values were
noticed for SSM/I wind speeds. The preliminary aspect
of the numerical results is emphasized and a systematic
monitoring of sensitivities over an increased number of
assimilation cycles is necessary to achieve statistical signif-
icance. The relevance of the adjoint sensitivity is closely
determined by the specification of the forecast aspect, and
objective measures are necessary to provide DAS diagnostics
(Talagrand, 2003).

The forecast impact of tuning a satellite instrument may be
improved if guidance is provided to distinguish between the
instrument channels where increasing/decreasing the error
covariance weight is of potential benefit to the forecasts. This
adjoint-DAS ability is illustrated in Figure 7, where the time-
mean forecast sensitivity to the observation-error covariance
weighting coefficient so

i is displayed per instrument channel
for data provided by the NOAA-15 AMSU-A and by the
AIRS on NASA’s Aqua satellite. Notice that not all channels
from these instruments are used in the GEOS-5 DAS. For
example, out of the set of 281 AIRS channels typically
available for operations (Le Marshall et al., 2006) only the
cloud-cleared ones are actually used in the in GEOS-5 DAS
and the sensitivity is shown for the 152 channels used
in the assimilation cycles performed in these experiments.
The large negative sensitivity of channel 15 of AMSU-A
suggests that error covariance inflation for this channel
could prove beneficial to the forecasts. However, one must
keep in mind that this is a channel largely sensitive to
the surface emissivity and cloud liquid water; in this case,
the observation-error variance is intentionally set to be
relatively large in comparison to the mid-troposphere and
low-stratospheric channels 5 to 13. Similarly, at first glance,
applying inflation to a number of AIRS channels could
also result in improved 24 h forecasts. This is particularly

so for some of the mostly water-vapour channels 162–214.
Care must be exercised when evaluating the results for the
window channels 117–130, where again observation errors
are set intentionally large so they participate with little
weight in the assimilation itself, and thus in determining the
analysis and the verification state.

5. Conclusions

To date, the adjoint-DAS approach has been mainly
considered in NWP as an effective tool to assess the value
of observations in reducing the forecast errors and the
forecast impact as a result of changes in the observing
system. This study brings forward additional adjoint-
DAS capabilities and applications based on the forecast
sensitivity to the specification of error covariance parameters
in the DAS. New theoretical aspects of error covariance
sensitivity and forecast impact assessment are presented
together with first illustrations of the adjoint-DAS ability
to provide sensitivity information for DAS diagnostics and
guidance to error-covariance parameter tuning procedures.
Emphasis is placed on the intrinsic properties of the
analyses derived from a minimization principle that are
used to closely relate the error covariance sensitivity to
the observation and background sensitivity. It is explained
that the adjoint-DAS software tools developed at NWP
centres for observation impact studies make feasible the
evaluation of the forecast sensitivity to a large number of
error covariance parameters. The adjoint-DAS observation
impact assessment relies on information extracted from the
innovations and observation sensitivity. In conjunction with
the observation sensitivity, the observed-minus-analysis
information provides an assessment of the weighting
between the information content of various DAS input
components, and allows the identification of the input
components where improved estimates of the error statistics
have a potentially large impact on the forecast error
reduction. A proof-of-concept of gradient-based error-
covariance parameter tuning was presented and the practical
implementation and validation in a realistic DAS need to
be further investigated. In practical applications, several
simplifications are necessary to account for nonlinearities
in the DAS, and the mathematical identities established
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throughout this work should be regarded as approximate
sensitivity relationships among various DAS components.

Modelling of the observation-, background-, and model-
error correlations is an area of active research in NWP,
and valuable information on the proper specification of the
error correlation structure may be obtained by monitoring
the forecast sensitivities to the error correlation parameters.
The weak constraint 4D-Var allows the incorporation of
the model error in the assimilation scheme and novel
analysis tools are necessary to investigate the proper
weighting of a time-distributed model error covariance.
An extension of the adjoint-DAS sensitivity to account for
model error parameters may be formulated and further
research developments are needed in both theoretical and
implementation aspects of this problem.
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Appendix

In Daescu (2008), the forecast sensitivity to the specification
of the error covariances in the DAS is expressed in column
vector format using the vectorization operator vec and the
Kronecker product (Magnus and Neudecker, 1999):

∇vec(R)e(xa) ={R−1
[
h(xa) − y

]} ⊗ ∇ye(xa) , (A1)

∇vec(B)e(xa) =
[

B−1(xa − xb)
]

⊗ ∇xb e(xa) . (A2)

The matrix format (14) and (16) to the error covariance
sensitivity may be derived from (A1) and (A2) respectively,
by noticing that, for any two column vectors a and b,

a ⊗ b = vec(baT) , (A3)

and that for a scalar function e of matrix argument X,

∇vec(X)e = vec

(
∂e

∂X

)
. (A4)
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