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Abstract

The analysis of comprehensive chemical reactions mechanisms, parameter estimation techniques, and variational

chemical data assimilation applications require the development of efficient sensitivity methods for chemical kinetics

systems. The new release (KPP-1.2) of the kinetic preprocessor (KPP) contains software tools that facilitate direct and

adjoint sensitivity analysis. The direct-decoupled method, built using BDF formulas, has been the method of choice for

direct sensitivity studies. In this work, we extend the direct-decoupled approach to Rosenbrock stiff integration

methods. The need for Jacobian derivatives prevented Rosenbrock methods to be used extensively in direct sensitivity

calculations; however, the new automatic and symbolic differentiation technologies make the computation of these

derivatives feasible. The direct-decoupled method is known to be efficient for computing the sensitivities of a large

number of output parameters with respect to a small number of input parameters. The adjoint modeling is presented as

an efficient tool to evaluate the sensitivity of a scalar response function with respect to the initial conditions and model

parameters. In addition, sensitivity with respect to time-dependent model parameters may be obtained through a single

backward integration of the adjoint model. KPP software may be used to completely generate the continuous and

discrete adjoint models taking full advantage of the sparsity of the chemical mechanism. Flexible direct-decoupled and

adjoint sensitivity code implementations are achieved with minimal user intervention. In a companion paper, we present

an extensive set of numerical experiments that validate the KPP software tools for several direct/adjoint sensitivity

applications, and demonstrate the efficiency of KPP-generated sensitivity code implementations.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The mathematical formulation of chemical reaction

mechanisms is given by a coupled system of stiff
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nonlinear differential equations

dy

dt
¼ f ðt; y; pÞ; yðt0Þ ¼ y0; t0ptptF: ð1Þ

The solution yðtÞARn represents the time evolution of

the concentrations of the species considered in the

chemical mechanism starting from the initial configura-

tion y0: Throughout this work vectors will be repre-

sented in column format and an upper script ð�ÞT will

denote the transposition operator. The rate of change in

the concentrations y is determined by the nonlinear
d.



ARTICLE IN PRESS
A. Sandu et al. / Atmospheric Environment 37 (2003) 5083–50965084
production/loss function f ¼ ðf1;y; fnÞ
T; which depends

on a vector of parameters pARm: In practice, the vector

p may represent reaction rate coefficients, the initial state

of the model ðp ¼ y0Þ; additional source/sink terms (e.g.

emission rates), etc. We assume that problem (1) has a

unique solution y ¼ yðt; pÞ once the model parameters

are specified. Comprehensive atmospheric reaction

mechanisms take into consideration as many as 100

chemical species involved in hundreds of chemical

reactions (see e.g. Carter, 2000), such that to efficiently

integrate system (1) fast and reliable numerical methods

must be implemented (Byrne and Dean, 1993; Jacobson

and Turco, 1994; Sandu et al., 1997a, b). In addition, the

model parameters are often obtained from experimental

data and their accuracy is hard to estimate. The

development and validation of chemical reactions

mechanisms require a systematic sensitivity analysis to

evaluate the effects of parameter variations on the model

solution.

The sensitivities ScðtÞARn are defined as the deriva-

tives of the solution with respect to the parameters

ScðtÞ ¼
@yðtÞ
@pc

; 1pcpm: ð2Þ

A large sensitivity value ScðtÞ shows that the para-

meter pc plays an essential role in determining the model

forecast yðtÞ; therefore one problem of interest is to

evaluate the sensitivities SðtÞARn�m for t0ptptF: Some

practical applications (e.g. data assimilation) require the

sensitivity of a scalar response function

g ¼
Z tF

t0
#gðt; yðt; pÞÞ dt ð3Þ

with respect to the model parameters

@g

@p
¼
Z tF

t0
STðtÞ

@ #g

@y
ðt; yðt; pÞÞ dt: ð4Þ

Depending on the problem at hand, an appropriate

method for sensitivity evaluation must be selected. The

most popular and efficient techniques for sensitivity

studies are the direct-decoupled and the adjoint sensi-

tivity methods. These approaches are complementary;

for example, a single direct sensitivity calculation could

provide @½y1ðtÞ;y; ynðtÞ�=@yjðt0Þ for all t0ptptF;
while a single adjoint calculation provides @yjðtFÞ=
@½y1ðtÞ;y; ynðtÞ� for all t0ptptF: The sensitivity infor-

mation provided by the direct method may be used to

asses how parametric uncertainties propagate in the

system; the adjoint method is more suitable for inverse

modeling and may be used to identify the origin of

uncertainty in a given model output. In this paper,

special emphasis is given to the adjoint technique which

has not been used as extensively as the direct method in

the context of chemical systems.

Given the multitude of applications, the continuous

development of new reaction mechanisms and the
frequent modifications of the existing ones, there is a

need for software tools that facilitate the sensitivity

analysis of general chemical kinetic mechanisms. The

kinetic preprocessor (KPP) (Damian-Iordache et al.,

1995) has been successfully used in the forward

integration of the chemical kinetics systems (Sandu

et al., 1997a, b; Verwer et al., 1999). The new release

(KPP-1.2) presented in this paper implements a com-

prehensive set of software tools for direct and adjoint

sensitivity analysis. Given a chemical mechanism de-

scribed by a list of chemical reactions, KPP generates a

flexible code for the model, its forward integration and

the direct-decoupled/adjoint sensitivity analysis.

The paper is organized as follows: a review of the

direct-decoupled sensitivity analysis and extensions to

Runge–Kutta and Rosenbrock stiff integration methods

are presented in Section 2. In Section 3, we review the

continuous and discrete adjoint sensitivity methods and

discuss practical issues of the adjoint code implementa-

tion for chemical kinetics systems. The KPP tools that

facilitate the implementation of the sensitivity methods

are presented in Section 4. Tutorial examples for

building the direct-decoupled code and the adjoint code

with KPP are presented in Sections 5 and 6, respectively.

In Section 7, we outline the new numerical methods for

sensitivity calculations available in the KPP numerical

library. A summary of the results and concluding

remarks are presented in Section 8.
2. Direct sensitivity analysis

For the direct analysis we consider the parameters p to

be constant, i.e. they do not change in time. By

differentiating (1) with respect to the parameters one

obtains the sensitivity equations (variational equations)

dSc

dt
¼ Jðt; y; pÞSc þ fpc ðt; y; pÞ;

Scðt0Þ ¼
@y0

@pc
; 1pcpm; ð5Þ

where J is the Jacobian matrix of the derivative function

and fpc are its partial derivatives with respect to the

parameters

Jðt; y; pÞ ¼
@½f1;y; fn�
@½y1;y; yn�

;

fpc ðt; y; pÞ ¼
@½f1;y; fn�

@pc
; 1pcpm: ð6Þ

If the parameter pc represents the initial concentration

of the cth species, pc ¼ y0
c; then fpc ¼ 0 and Scðt0Þ ¼

ð0;y; 0; 1; 0;y; 0ÞT; the cth vector of the canonical

basis in Rn; otherwise, Scðt0Þ ¼ 0:
The variational equations (5) are linear. The direct

method solves simultaneously the model equation (1)

together with the variational equations (5) to obtain
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both concentrations and sensitivities. The combined

system (1)–(5) has the Jacobian

@½f ; JS1 þ fp1
;y; JSm þ fpm

�
@½y;S1;y;Sm�

¼

J 0 ? 0

ðJS1Þy þ Jp1
J ? 0

^ & ^

ðJSmÞy þ Jpm
0 ? J

0
BBBB@

1
CCCCA; ð7Þ

where the subscripts in the component sub-matrices

denote partial differentiation. The eigenvalues of the

combined Jacobian (7) are the eigenvalues of J (the

Jacobian of the model equations), with different multi-

plicities; therefore, if model (1) is stiff the sensitivity

equations (5) are also stiff. To maintain stability, an

implicit time-stepping method is needed. Implicit meth-

ods solve linear systems with the ‘‘prediction’’ matrix

ðI 	 hgJÞ; where h is the stepsize and g a parameter

determined by the method. In the naive approach one

would have to solve linear algebraic systems of

dimension nðm þ 1Þ � nðm þ 1Þ corresponding to

Eq. (7). The direct-decoupled method (Dunker, 1984)

exploits the special structure of the combined Jacobian

(7); specifically, one only computes the LU factorization

of the n � n model prediction matrix I 	 hgJ ¼ PT � L �
U : Then the nðm þ 1Þ � nðm þ 1Þ prediction matrix for

Jacobian (7) has the LU factorization

PT � L 0 ? 0

	hg½ðJS1Þy þ Jp1
� U	1 PT � L ? 0

^ & ^

	hg½ðJSmÞy þ Jpm
� U	1 0 ? PT � L

0
BBBB@

1
CCCCA

�

U 0 ? 0

0 U ? 0

^ & ^

0 0 ? U

0
BBB@

1
CCCA: ð8Þ

The direct-decoupled method was developed and is

traditionally presented in the context of BDF time-

stepping schemes (Dunker, 1984; Caracotsios and

Stewart, 1985; Leis and Kramer, 1986). In what follows

we review this approach, then we extend the direct-

decoupled philosophy to Runge–Kutta and Rosenbrock

integrators.

2.1. Direct-decoupled backward differentiation formulas

Model (5) is approximated by the k-step, order k

linear multistep formula

yiþ1 ¼
Xk	1

j¼0

ajy
i	j þ hbf ðtiþ1; yiþ1; pÞ; h ¼ tiþ1 	 ti: ð9Þ

The formula coefficients aj ; b are determined such that

the method has order k of consistency. Relation (9) is a
nonlinear system of equations which implicitly defines

yiþ1; and which must be solved by a Newton-type

iterative scheme. Typically, the solution yiþ1
fqþ1g at

iteration q þ 1 is computed as

½I 	 hbJðti; yi; pÞ�ðyiþ1
fqþ1g 	 yiþ1

fqg Þ

¼
Xk	1

j¼0

ajy
i	j þ hbf ðtiþ1; yiþ1

fqg ; pÞ 	 yiþ1
fqg ; ð10Þ

which requires one factorization of I 	 hbJ and one

backsubstitution per iteration.

Discretization of the continuous sensitivity equation: In

this approach (Dunker, 1984; Caracotsios and Stewart,

1985; Leis and Kramer, 1986) one discretizes the

continuous sensitivity equation (5) with the same BDF

method used for discretizing model (9)

Siþ1
c ¼

Xk	1

j¼0

ajS
i	j
c þ hbJðtiþ1; yiþ1; pÞSiþ1

c

þ hbfpc ðt
iþ1; yiþ1; pÞ; 1pcpm: ð11Þ

Note that system (11) is linear, therefore it admits a

noniterative solution

½I 	 hbJðtiþ1; yiþ1; pÞ�Siþ1
c

¼
Xk	1

j¼0

ajS
i	j
c þ hbfpc ðt

iþ1; yiþ1; pÞ; 1pcpm: ð12Þ

The direct-decoupled method solves Eq. (10) first for the

new-time solution yiþ1: The matrix I 	 hbJðtiþ1; yiþ1; pÞ
is computed and factorized; and systems Eq. (12) are

solved for c ¼ 1 through m: Note that all systems (12)

use the same matrix factorization, and this factorization

is also reused in Eq. (10) for computing yiþ2 during the

next time step. Therefore, the solution together with m

sensitivities are obtained at the cost of a single matrix

factorization per time step.

Discrete sensitivity equation: In this approach one

considers directly the sensitivities of the numerical

solution. A discrete equation involving these entities is

obtained by taking the derivative of Eq. (9) with respect

to pc ; it is easy to see that the process leads again to

Eq. (11). Therefore, the numerical solutions of the

variational equations Si
c are also the sensitivities of the

numerical solution dyi=dpc:

2.2. Direct-decoupled Runge–Kutta methods

A general s-stage Runge–Kutta method is defined as

(Hairer and Wanner, 1991, Section IV.3)

yiþ1 ¼ yi þ h
Xs

j¼1

bjk
0
j ; Tj ¼ ti þ cjh;

Y j ¼ yi þ h
Xs

q¼1

ajqk0
q; k0

j ¼ f ðTj ;Y j ; pÞ; ð13Þ
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where the coefficients ajq; bj and cj are prescribed for the

desired accuracy and stability properties. The stage

derivative values k0
j are defined implicitly, and require

solving a (set of) nonlinear system(s). Newton-type

methods solve coupled linear systems of dimension (at

most) n � s:
Discretization of the continuous sensitivity equation:

Application of this method to the sensitivity equation (5)

gives

Siþ1
c ¼ Si

c þ h
Xs

j¼1

bjk
c
j for 1pcpm;

kc
j ¼ JðTj ;Y j ; pÞ Si

c þ h
Xs

q¼1

ajqkc
q

 !

þ fpc ðT
j ;Y j ; pÞ: ð14Þ

System (14) is linear and does not require an iterative

procedure.

Discrete sensitivity equation: Clearly, Eq. (14) can be

obtained by differentiating Eq. (13) with respect to pc
and setting kc

j ¼ dk0
j =dpc; therefore the Runge–Kutta

numerical solutions of the sensitivity equations are equal

to the sensitivities of the Runge–Kutta numerical

solution of the model equation.

Computational considerations: One first solves Eq. (13)

for concentrations, which gives all stage derivative

vectors k0
1 ;y; k0

s : Next one solves Eq. (14) for sensitiv-

ities; each set kc
1;y; kc

s is the solution of an ðnsÞ � ðnsÞ
linear system. The matrix of this system is the same for

all 1pcpm; but is different than the matrix used in the

Newton iteration that solves Eq. (13). One can reuse the

matrix factorization of Eq. (13) if the linear systems (14)

are solved by an iterative method. However, due to the

repeated LU factorizations or the repeated Jacobian

evaluations involved the standard Runge–Kutta

methods do not seem suitable for direct sensitivity

calculations.

2.3. Direct-decoupled Rosenbrock methods

An s-stage Rosenbrock method (Hairer and Wanner,

1991, Section IV.7) computes the next-step solution by

the formulas

yiþ1 ¼ yi þ
Xs

j¼1

bjk
0
j ; Tj ¼ ti þ ajh;

Y j ¼ yi þ
Xj	1

q¼1

ajqk0
q;

1

hgjj

I 	 Jðti; yi; pÞ

" #
k0

j ¼ f ðTj ;Y j ; pÞ

þ
Xj	1

q¼1

cjq

h
k0

q þ hgj

@f

@t
ðti; yi; pÞ; ð15Þ
where s is the number of stages. The formula coefficients

(bj ; ajq; cjq; aj ; gjj ; and gj) give the order of consistency

and the stability properties. At each stage of the method,

a linear system of equations with unknowns k0
j and

matrix 1=ðhgjjÞI 	 J must be solved. Methods for which

g11 ¼ ? ¼ gss are of particular interest since in this case

only one LU matrix decomposition is required per

integration step (Sandu et al., 1997b, Verwer et al., 1999,

Djouad et al., 2002). Form (15) is advantageous for

implementation purposes and is equivalent with

the standard formulation (Hairer and Wanner, 1991,

Section IV.7).

Discretization of the continuous sensitivity equation: To

apply method (15) to the combined sensitivity equations

(1)–(5), we need to make explicit use of the combined

Jacobian (7). One step of the method updates the

solution with Eq. (15) and the sensitivities using

Siþ1
c ¼ Si

c þ
Xs

j¼1

bjk
c
j for 1pcpm; ð16Þ

1

hgjj

I 	 Jðti; yi; pÞ

" #
kc

j

¼ JðTj ;Y j ; pÞ Si
c þ

Xj	1

q¼1

ajqkc
q

 !
þ fpc ðT

j ;Y j ; pÞ

þ
Xj	1

q¼1

cjq

h
kc

q

þ
@J

@pc
ðti; yi; pÞ


 �
k0

j þ
@J

@y
ðti; yi; pÞ � Si

c


 �
k0

j

þ hgjJtðti; yi; pÞSi
c þ hgj fpc ;tðt

i; yi; pÞ;

where Jt ¼ @J=@t; fpc ;t ¼ @fpc=@t: If g11 ¼ ? ¼ gss; a

single n � n matrix LU decomposition is required per

step to obtain both the concentrations and the

sensitivities.

Discrete sensitivity equation: We note that the

derivative of method (15) with respect to pc leads also

to Eq. (16). Consequently, the sensitivities of the

numerical solution coincide with the numerical solutions

of the sensitivity equations.

Computational considerations: Formula (16) requires

the evaluation of the Hessian, i.e. the derivatives of the

Jacobian with respect to y; as well as the Jacobian

derivatives with respect to the parameters; these entities

are 3-tensors. In addition, an extra Jacobian evaluation

and one Jacobian-vector multiplication is needed at each

stage. The need for Jacobian derivatives prevented

Rosenbrock methods to be used extensively in direct

sensitivity calculations. However, the new automatic

differentiation and symbolic differentiation technologies

make the computation of these derivatives feasible.

To avoid computing the derivatives of the Jacobian

one can approximate Jacobian (7) by diagðJ;y; JÞ and

use a Rosenbrock-W integration formula (Hairer and
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Wanner, 1991, Section IV.7). The resulting method gives

consistent approximations of the sensitivities of the

continuous solution, but these are now different than the

sensitivities of the numerical solution.

Remark 1. Seefeld and Stockwell (1999) present an

extension of the direct-decoupled method to systems

with time-varying parameters. In their approach, a time-

dependent parameter is expressed as the product of a

time-varying profile and a time-independent multiplier:

pjðtÞ ¼ p�j ðtÞ � qj with the nominal value of the multi-

plier chosen to be unity. The direct-decoupled method is

then used to compute the derivatives of the concentra-

tions with respect to the time-independent multiplier.
3. Adjoint sensitivity analysis

The direct-decoupled method is known to be very

effective when the sensitivities of a large number of

output variables are computed with respect to a small

number of input parameters. The adjoint method

provides an efficient alternative to the direct-decoupled

method for evaluating the sensitivity of a scalar response

function with respect to the initial conditions and model

parameters. Mathematical foundations of the adjoint

sensitivity for nonlinear dynamical systems and various

classes of response functionals are presented by Cacuci

(1981a, b). The construction of the adjoint operators

associated with linear and nonlinear dynamics and

applications to atmospheric modeling are described in

detail by Marchuk (1995) and Marchuk et al. (1996).

Menut et al. (2000) and Vautard et al. (2000) use the

adjoint modeling for sensitivity studies in atmospheric

chemistry. A review of the adjoint method applied to

four-dimensional variational atmospheric chemistry

data assimilation is presented in the work of Wang

et al. (2001).

We will refer to the dynamical model (1) as a forward

(direct) model. Given a scalar response function

g ¼ gðyðtF; pÞÞ ð17Þ

we are interested to evaluate the sensitivities

@g

@pc
¼
Xn

j¼1

@g

@yj

@yj

@pc


 �
ðt¼tFÞ

¼
@g

@y
;Sc

� �
nðt¼tFÞ

for 1pcpm; ð18Þ

where /�; �Sn denotes the inner product in Rn;
/u; vSn ¼ vTu:

In the typical case where the cost functional is given

by a time integral (3), the sensitivity problem (3)–(4) may

be reduced to problem (17)–(18) by augmenting the state

vector y with a new component ynþ1 whose time
evolution is governed by the equations

dynþ1

dt
¼ #gðyðt; pÞÞ; ynþ1ðt0Þ ¼ 0: ð19Þ

Then

ynþ1ðtF; pÞ ¼
Z tF

t0
#gðyðt; pÞÞ dt ð20Þ

and the adjoint sensitivity is applied to the augmented

system (1)–(19), with the state vector Y ¼ ðyT; ynþ1Þ
T

and the response functional g ¼ ynþ1ðtF; pÞ:
In the adjoint sensitivity one must distinguish between

the continuous and the discrete adjoint modeling (Sirkes

and Tziperman, 1997). While in general the derivation of

the continuous adjoint model is presented, often in

practice it is a discrete adjoint model that is implemen-

ted. This distinction is of particular importance in the

context of stiff chemical reactions systems that require

sophisticated numerical integrators.

3.1. Continuous adjoint sensitivity

Traditionally, the adjoint model equations are derived

using the Hilbert spaces theory and variational techni-

ques (Wang et al., 2001). The continuous adjoint model

is obtained from the continuous forward model using

the linearization technique. To first-order approxima-

tion, a perturbation dp in the input parameters leads to a

perturbation in the response functional

dg ¼ gðyðtF; p þ dpÞÞ 	 gðyðtF; pÞÞ

¼
@g

@y
; dy

� �
nðt¼tFÞ

; ð21Þ

where the state perturbation dyðtFÞ is obtained by

solving the tangent linear model problem

ddy

dt
¼ Jðt; y; pÞdy þ fpðt; y; pÞdp; t0ptptF; ð22Þ

dyðt0Þ ¼ dy0: ð23Þ

In the direct sensitivity approach, for each parameter

variation dpl ; 1plpm; a new system (22)–(23) must be

solved to compute dyðtFÞ: The adjoint model is used to

express explicitly the perturbation dg in terms of

parameter variations dp as follows: we introduce the

adjoint variable lðtÞARn (to be precisely defined later),

take the scalar product of Eq. (22) with l and integrate

on ½t0; tF� to obtain:Z tF

t0
l;

ddy

dt

� �
n

dt ¼
Z tF

t0
/l; Jðt; y; pÞdy

þ fpðt; y; pÞdpSn dt: ð24Þ

Integrating by parts the left-hand side of Eq. (24), using

matrix transposition on the right-hand side, and
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rearranging the terms give the equivalent formulation

/l; dySnj
tF

t0 ¼
Z tF

t0

dl
dt

þ JTðt; y; pÞl; dy

� �
n

þ / f T
p ðt; y; pÞl; dpSm dt: ð25Þ

Therefore, if l is defined as the solution of the adjoint

problem

dl
dt

¼ 	JTðt; y; pÞl; ð26Þ

lðtFÞ ¼
@g

@y
ðtFÞ; ð27Þ

the perturbation in the response functional can be

expressed from Eqs. (21), (23), and (25) as

dg ¼ /lðt0Þ; dy0Sn þ
Z tF

t0
/ f T

p ðt; y; pÞl; dpSm dt: ð28Þ

Evaluation of lðtÞ; t0ptptF requires only one forward

integration from t0 to tF of model (1) to compute

yðtÞ; t0otptF; followed by a single backward integration

from tF to t0 of the n-dimensional adjoint model

(26)–(27). lðt0ÞARn represent the sensitivities of the

response g with respect to the initial conditions y0:
Having available lðtÞ; sensitivities with respect to

additional model parameters pl are

@g

@pl

¼
Z tF

t0
/lðtÞ; fpl

ðt; y; pÞSn dt

¼
Z tF

t0
f T
pl
ðt; y; pÞlðtÞ dt ð29Þ

and may be computed using an appropriate numerical

quadrature scheme.

Remark 2. Modeling chemical kinetic systems requires

the specification of time-dependent model parameters.

For example, photolytic reaction rates are determined

by the solar radiation and thermal reactions rates

depend on the temperature, therefore the reaction rates

are implicitly a function of time. The adjoint modeling

may be used to evaluate the sensitivity of the response

functional with respect to time-dependent model para-

meters. The adjoint functions lðtÞ are also called

influence functions and represent the sensitivity of the

response functional with respect to the variations in the

model state at time t; if the parameters are time

dependent, p ¼ pðtÞ; the impulse response functions

f T
pc
ðt; y; pðtÞÞlðtÞ represent the variation in g due to a

unit impulse (Dirac function) in the parameter pc at time

t (Bryson and Ho, 1975).

Remark 3. In practice, it is often of interest to evaluate

the sensitivity of multiple response functionals (e.g.

concentrations of various pollutants at a given time)

with respect to the model parameters. One should notice

that in the direct approach a new set of Eqs. (5) must be
solved for each additional parameter, whereas in the

adjoint approach a new set of adjoint equations

(26)–(27) must be solved for each additional response.

The sensitivities of a vector-valued function

GðyðtFÞÞARk may be obtained by a backward integra-

tion of the adjoint model

dL
dt

¼ 	JTðt; y; pÞL; ð30Þ

LðtFÞ ¼
@G

@y


 �T

ðtFÞ; ð31Þ

where LðtÞARn�k are the adjoint variables. The matrix

approach to the adjoint sensitivity analysis of atmo-

spheric models with multiple responses is discussed by

Ustinov (2001).

3.2. The relationship with the Green’s function method

The adjoint method presented above can be related to

the Green’s function. The Green’s function method of

sensitivity analysis in chemical kinetics is discussed in

detail by Hwang et al. (1978), Dougherty et al. (1979),

and Vuilleumier et al. (1997). The Green’s function

matrix Kðt; tÞARn�n associated to Eq. (5) satisfies

d

dt
Kðt; tÞ 	 Jðt; y; pÞKðt; tÞ ¼ 0; t > t; ð32Þ

Kðt; tÞ ¼ I : ð33Þ

The sensitivities ScðtÞ may be expressed in terms of the

Green’s function (Hwang et al., 1978)

ScðtÞ ¼ Kðt; t0ÞScðt0Þ þ
Z t

t0
Kðt; tÞfpc ðtÞ dt;

1pcpm: ð34Þ

To obtain ScðtFÞ; the differential equations for the

adjoint Green’s function

d

dt
K�ðt; tFÞ þ K�ðt; tFÞJðt; y; pÞ ¼ 0; totF; ð35Þ

K�ðtF; tFÞ ¼ I ð36Þ

are solved backwards in time from tF to t0 and using the

identity

K�ðt; tÞ ¼ Kðt; tÞ; ð37Þ

the right-hand side integrals in Eq. (34) are computed

with an appropriate numerical quadrature scheme

(Hwang et al., 1978; Dougherty et al. 1979). In this

way, all ScðtFÞ; 1plpm may be evaluated by solving

n þ 1 sets (Eqs. (1) and(35)–(36)) of stiff ODE’s of

dimension n:
A fundamental observation is that to evaluate

sensitivities (18) explicit knowledge of ScðtFÞ; 1p
lpm is not needed; only the inner product
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/@g=@yðtFÞ;ScðtFÞSn is required. From Eqs. (18) and

(34), we obtain

@g

@pc
¼

@g

@y
ðtFÞ;ScðtFÞ

� �
n

¼
@g

@y
ðtFÞ;KðtF; t0ÞScðt0Þ

� �
n

þ
Z tF

t0

@g

@y
ðtFÞ;KðtF; tÞ fpc ðt; y; pÞ

� �
n

dt; ð38Þ

which may be written using Eq. (37) and matrix

transposition in the equivalent form

@g

@pc
¼ K�Tðt0; tFÞ

@g

@y
ðtFÞ;Scðt0Þ

� �
n

þ
Z tF

t0
K�Tðt; tFÞ

@g

@y
ðtFÞ; fpc ðt; y; pÞ

� �
n

dt: ð39Þ

If we define the adjoint variables lðtÞARn as

lðtÞ ¼ K�Tðt; tFÞ
@g

@y
ðtFÞ; ð40Þ

then Eq. (39) is written in a form that reveals the

similarities with Eq. (28)

@g

@pc
¼ /lðt0Þ;Scðt0ÞSn þ

Z tF

t0
/lðtÞ; fpc ðt; y; pÞSn dt;

1plpm: ð41Þ

From Eqs. (35)–(36) and definition (40) it follows

that lðtÞ is the solution of the adjoint model problem

(26)–(27).

3.3. Discrete adjoint sensitivity

The discretization of system (1) with a selected

numerical method provides a numerical approximation

yNEyðtFÞ through a sequence of N intermediate states

yiþ1 ¼ Fiðyi; pÞ; i ¼ 0;y;N 	 1; ð42Þ

where Fi represents a one-step numerical integration

formula which advances the solution from ti to tiþ1: This

establishes an explicit relationship between the evaluated

response functional gðyN Þ and the model parameters.

Using interpolation techniques, we may assume that the

parameters p are discrete (time independent) and are

determined by their values at the interpolation nodes.

The discrete adjoint model equations are obtained

directly from the discrete forward model equations (42)

as we now explain. To present a compact, yet explicit

derivation of the discrete adjoint sensitivity formulae, we

consider an augmented state vector Y ðtÞ ¼
ðyTðtÞ; pTðtÞÞT; where pðtÞ 
 p: We rewrite the discrete

equations (42) as

yiþ1 ¼ FiðY iÞ; i ¼ 0;y;N 	 1; ð43Þ
and attach the parameters equations

p0 ¼ p; piþ1 ¼ pi; i ¼ 0;y;N 	 1: ð44Þ

The sensitivity with respect to the initial conditions

Y 0 ¼ ððy0ÞT; ðp0ÞTÞT is given by

@gðyN Þ
@y0

@gðyN Þ
@p

0
BBB@

1
CCCA ¼

@gðyN Þ
@Y 0

¼
@Y N

@Y 0


 �T @g

@y
ðyN Þ

0m

0
@

1
A: ð45Þ

A successive application of the chain rule followed by

transposition gives

@Y N

@Y 0


 �T

¼
@Y 1

@Y 0


 �T
@Y 2

@Y 1


 �T

?
@Y N	1

@Y N	2


 �T

�
@Y N

@Y N	1


 �T

; ð46Þ

and by differentiating equations (43)–(44) we obtain

@Y iþ1

@Y i


 �
¼

Fi
yðy

i; piÞ Fi
pðy

i; piÞ

0ðm; nÞ Iðm; mÞ

 !
;

i ¼ 0;y;N 	 1: ð47Þ

Therefore, if we define the adjoint variables at tN ¼ tF

lN ¼
@g

@y
ðyN Þ; nN ¼ 0m ð48Þ

and evaluate the adjoint variables at ti; i ¼ N 	
1;y; 1; 0 using the recursive relations

li

ni

 !
¼

@Y iþ1

@Y i


 �T liþ1

niþ1

 !

¼
Fi

yðy
i; piÞTliþ1

Fi
pðy

i; piÞTliþ1 þ niþ1

 !
; ð49Þ

we obtain from Eqs. (45) to (49) the sensitivities

@gðyN Þ
@y0

¼ l0;
@gðyN Þ
@p

¼ n0: ð50Þ

3.4. Practical issues of the adjoint code implementation

The adjoint method relies on the linearization of the

forward model and the nonlinearity introduced by the

chemistry may have a direct impact on the time interval

length and the qualitative aspects of the adjoint

sensitivity analysis. Since for nonlinear problems the

adjoint equations depend on the forward model state, in

order to perform the adjoint computations the forward

model state must be available in reverse order. There-

fore, a large amount of memory must be allocated for

storing the state during the forward run.

As noticed in the previous sections in practice two

strategies may be used to implement the adjoint code.
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In the continuous approach, the continuous adjoint

model is first derived from the linearized continuous

forward model equations; then a numerical method of

choice is used to integrate the adjoint model. In this

approach, the complexity of the numerical method used

during the forward integration does not interfere with

the adjoint computations. While during the forward

integration one has to solve a stiff nonlinear ODE

system, during the adjoint integration a stiff linear

system of ODE’s must be solved. Therefore, highly

stable implicit methods may be efficiently implemented

as no iterations are needed for solving the adjoint.

The second method is the discrete adjoint approach,

where the explicit dependence of the state vector

evolution on the input parameters is obtained by the

numerical integration of the forward model. The discrete

adjoint model is then derived directly from the linearized

discrete forward model equations. In this way, the

discrete adjoint model provides an exact gradient

(sensitivity) relative to the numerical computation of

the response functional. This approach appears to be

more suitable for the variational data assimilation where

a minimization process must be performed since the

minimization routine will receive the exact gradient of

the evaluated cost function. However, implementing an

efficient discrete adjoint code may be a difficult task if

sophisticated numerical methods are used. Additional

issues related with the consistency of a numerical scheme

and the consistency of its adjoint are discussed by Sei

and Symes (1995).

Hand-generated adjoint codes are tedious to write and

often subject to errors. Automatic differentiation tools

(Giering and Kaminski, 1998; Rostaing et al., 1993) may

facilitate the adjoint code generation, but they must be

used with caution and the correctness of the automatic-

generated adjoint code must be carefully verified. The

state of the art stiff ODE solvers are usually written in a

form which is not optimal for the adjoint code

generation and often one has to rewrite them in a form

that is suitable for the adjoint compilers.

There is no general rule to decide which approach

(discrete vs. continuous) should be used to implement

the adjoint model. The performance of the adjoint code

is problem dependent and a selection can be made only

after an extensive analysis and testing for the particular

problem to be solved have been performed.

For atmospheric chemistry data assimilation and

sensitivity studies, a discrete adjoint model was used

by Fisher and Lary (1995) for a Burlich–Stoer integra-

tion scheme (Stoer and Burlich, 1980) and by Elbern

et al. (1997) for a quasi-steady-state approximation

(QSSA) method. A continuous adjoint chemistry model

with a fourth-order Rosenbrock solver (Hairer and

Wanner, 1991) for the forward/backward integration

was successfully applied to 4D-Var chemical data

assimilation by Errera and Fonteyn (2001) in a hybrid
adjoint approach (discrete adjoint for the transport

integration, continuous adjoint for the chemistry inte-

gration).
4. The KPP tools

In this section, we present the KPP software tools that

are useful in derivative computations. A detailed

discussion of the basic KPP capabilities can be found

in our previous work (Damian-Iordache et al., 1995;

2002). Here, we focus on the new features introduced in

the release 1.2 that allow an efficient sensitivity analysis

of chemical kinetic systems.

KPP builds simulation code for chemical systems

driven by the law of mass action kinetics

d

dt
y ¼S � diag½k1ðtÞ;y; kRðtÞ� � pðyÞ

¼S � oðt; yÞ ¼ f ðt; yÞ; ð51Þ

where S is the stoichiometric matrix, kiðtÞ the ith

reaction rate coefficient, p ¼ ½p1;y; pR�T the vector of

reactant products and o ¼ ½o1;y;oR�T the vector of

reaction velocities.

4.1. The derivative function

KPP orders the variable species such that the sparsity

pattern of the Jacobian is maintained after an LU

decomposition and generates the following function to

compute the vector A VAR of component time deriva-

tives from the concentrations of variable V, radical R and

fixed F species, and the vector of rate coefficients RCT.

SUBROUTINE FunVar ð V; R; F; RCT; A VAR Þ:

4.2. The Jacobian

The Jacobian of the derivative function is also

constructed by KPP via the command

#JACOBIAN ½ OFF j ON j SPARSE �:

The option OFF inhibits the generation of the Jacobian

subroutine; the option ON generates the Jacobian in full

matrix format, while the option SPARSE generates the

following routine for the Jacobian in sparse row-

compressed format

SUBROUTINE JacVar SPð V; R; F; RCT; JS Þ:

Implicit numerical integrators solve systems of the

form ðI 	 hgJÞx ¼ b; where h is the step size, g a method-

dependent parameter, J the Jacobian, and I 	 hgJ the

‘‘prediction’’ matrix. KPP generates the following sparse

linear algebra subroutines:

SUBROUTINE KppDecompðN; P; IERÞ
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performs an in-place, nonpivoting, sparse LU decom-

position of the prediction matrix P (IER returns a

nonzero value if singularity is detected). Using this

factorization the sparse backward and forward substitu-

tions are performed by

SUBROUTINE KppSolveðP; XÞ:

Similarly, a new subroutine required for the adjoint

computations

SUBROUTINE KppSolveTR ð P; b; X Þ

solves the linear system PTX ¼ b with the transposed

coefficient matrix, and uses the same LU factorization as

KppSolve. The sparse subroutines KppDecomp and

KppSolve are extremely efficient (Sandu et al., 1996).

Two other KPP-generated subroutines are useful for

direct and adjoint sensitivity analysis

SUBROUTINE JacVar SP Vec ð JVS; U; V Þ

computes the sparse Jacobian times vector product

ðV’JVS � UÞ; and the subroutine

SUBROUTINE JacVarTR SP Vec ð JVS; U; V Þ

computes the sparse Jacobian transposed times vector

product ðV’JV ST � UÞ:

4.3. The stoichiometric formulation

KPP can generate the elements of the derivative

function and the Jacobian in the stoichiometric for-

mulation (51); this means that the product between the

stoichiometric matrix, rate coefficients, and reactant

products is not explicitly performed. The option that

controls the code generation is

#STOICMAT ½ OFF j ON �:

The ON value of the switch instructs KPP to generate

code for the stoichiometric matrix, the vector of reactant

products in each reaction, and the partial derivative of

the time derivative function with respect to rate

coefficients. These elements are discussed below.

The stoichiometric matrix is usually very sparse; the

total number of nonzero entries in the stoichiometric

matrix is the constant NSTOICM in KPP-generated code.

KPP produces the stoichiometric matrix in sparse,

column-compressed format. Elements are stored in

columnwise order in the one-dimensional vector

of values STOICM(1:NSTOICM); their row indices

are stored in IROW STOICM(1:NSTOICM); the

vector CCOL STOICM(1:NVAR+1) contains pointers to

the start of each column; for example, column j starts

in the sparse vector at position CCOL STOICM(j) and

ends at CCOL STOICMðj þ 1Þ 	 1: The last value

CCOL STOICMðNVARþ 1Þ ¼ NSTOICMþ 1 is not necessary
but simplifies the future handling of sparse data

structures.

The following subroutine computes the reactant

products for each reaction, i.e. A RPROD is the vector

pðyÞ in formulation (51).

SUBROUTINE ReactantProd ð V; R; F; A RPROD Þ:

In the stoichiometric formulation (51) the Jacobian is

Jðt; yÞ ¼
@f ðt; yÞ
@y

¼ S � diag½k1ðtÞ;y; kRðtÞ�

�
@pðyÞ
@y

¼ S � diag½k1ðtÞ;y; kRðtÞ� � JRPðyÞ: ð52Þ

The following subroutine computes the Jacobian of

reactant products vector; i.e. JV RPROD is the matrix

JRP ¼ @pðyÞ=@y above

SUBROUTINE JacVarReactantProd

ð V; R; F; JV RPROD Þ:

The matrix JV RPROD is of course sparse and is

computed and stored in row-compressed sparse format.

The number of nonzeros is stored in the parameter

NJVRP, the column indices in the vector ICOL JVRP and

the beginning of each row in CROW JVRP.

4.4. The derivatives with respect to reaction coefficients

The stoichiometric formulation allows a direct com-

putation of the derivatives with respect to rate coeffi-

cients. From Eq. (51) one sees that the partial derivative

of the time derivative function with respect to a reaction

coefficient is given by the corresponding column in the

stoichiometric matrix times the corresponding entry in

the vector of reactant products

f ðt; yÞ ¼S � diag½k1ðtÞ;y; kRðtÞ� � pðyÞ

)
@f1:NVAR

@kj

¼ S1:NVAR; j � pjðyÞ:

The following subroutine computes the partial deriva-

tive of the time derivative function with respect to a set

of reaction coefficients; this is more efficient than

computing each derivative separately.

SUBROUTINE dFunVar dRcoeff

ð V; R; F; NCOEFF; JCOEFF; DFDR Þ:

A total of NCOEFF derivatives are taken with respect to

reaction coefficients JCOEFF(1)–JCOEFF(NCOEFF).

JCOEFF, therefore, is a vector of integers containing

the indices of reaction coefficients with respect to which

we differentiate. The subroutine returns the NVAR�
NCOEFF matrix DFDR; each column of this matrix

contains the derivative of the function with respect to

one rate coefficient. Specifically,

DFDR1:NVAR; j ¼
@f1:NVAR

@kJCOEFFðjÞ
; 1pjpNCOEFF:



ARTICLE IN PRESS
A. Sandu et al. / Atmospheric Environment 37 (2003) 5083–50965092
The partial derivative of the Jacobian with respect to

the rate coefficient kj can be obtained from Eq. (52) as

the external product of column j of the stoichiometric

matrix with row j of JRP

@J1:NVAR;1:NVAR

@kj

¼ S1:NVAR; j � JRP
j;1:NVAR:

In practice, one needs the product of this Jacobian

partial derivative with a user vector, i.e.

@J1:NVAR;1:NVAR

@kj

� U1:NVAR

¼ S1:NVAR; j � ðJRP
j;1:NVAR � U1:NVARÞ:

This is computed by the KPP-generated subroutine

SUBROUTINE dJacVar dRcoeff

ð V; R; F; U; NCOEFF; JCOEFF; DJDR Þ:

U is the user-supplied vector. A total of NCOEFF

derivatives are taken with respect to reaction coefficients

JCOEFF(1)–JCOEFF(NCOEFF). The subroutine returns

the NVAR�NCOEFF matrix DJDR; each column of this

matrix contains the derivative of the Jacobian with

respect to one rate coefficient times the user vector.

Specifically,

DJDR1:NVAR; j ¼
@J1:NVAR;1:NVAR

@kJCOEFFðjÞ
� U1:NVAR;

1pjpNCOEFF:

4.5. The Hessian

The Hessian contains second-order derivatives of the

time derivative functions. More exactly, the Hessian is a

3-tensor such that

Hi; j; kðt; y; pÞ ¼
@2fiðt; y1;y; yn; p1;y; pmÞ

@yj@yk

;

1pi; j; kpn: ð53Þ

For each component i there is a Hessian matrix Hi;:;:;
since the time derivative function is smooth these

Hessian matrices are symmetric

Hi; j; kðt; y; pÞ ¼
@2fiðt; y; pÞ
@yj@yk

¼
@2fiðt; y; pÞ
@yk@yj

¼Hi;k;jðt; y; pÞ: ð54Þ

An alternative way to look at the Hessian is to

consider the 3-tensor as the derivative of the Jacobian

(6) with respect to individual species concentrations

Hi; j;k ¼
@Ji; jðt; y1;y; yn; pÞ

@yk

; Ji; j ¼
dfiðt; y; pÞ

dyj

;

1pi; j; kpn: ð55Þ

Clearly, the Hessian is a very sparse tensor (consider-

ably sparser than the Jacobian). KPP computes the

number of nonzero Hessian entries (and saves this in the
variable NHESS). The Hessian itself is represented in

coordinate sparse format; the real vector HESS holds

the values, and the integer vectors IHESS fI ; J;Kg the

indices of nonzero entries

HESS¼½ 1; 2; :::; NHESS � IHESS fI; J; Kg

¼ ½ 1; 2; :::; NHESS �

such that the nonzero Hessian entries are stored as

Hi; j; k ¼ HESSðmÞ; fi; j; kg ¼ IHESS fI ; J;KgðmÞ

for Hi; j; ka0 and 1pmpNHESS:

The sparsity coordinate vectors IHESS fI ; J ;Kg are

computed by KPP and initialized statically; these vectors

are constant as the sparsity pattern of the Hessian does

not change during the computation.

Note that due to the symmetry relation (54) it is

enough to store only the upper part of each component’s

Hessian matrix; the sparse structures for the Hessian

store only those entries Hi; j; k for which jpk:
The subroutine

SUBROUTINE HessVar ð V; R; F; HESS Þ

computes the Hessian (in coordinate sparse format)

given the concentrations of the variable species V : Note

that only the entries Hi; j; k with jpk are computed and

stored.

The subroutine

SUBROUTINE HessVar Vec ð HESS; U1; U2; HU Þ

computes the Hessian times user vectors product, which

is a vector and can be regarded as the derivative of

Jacobian-vector product times vector

HU’ðHESS � U2Þ � U1 ¼
@ðJðyÞ � U1Þ

@y
� U2:

Similarly, the subroutine

SUBROUTINE HessVarTR Vec ð HESS; U1; U2; HTU Þ:

computes the Hessian transposed times user vectors

product (which equals the derivative of Jacobian

transposed-vector product times vector)

HTU’ðHESS � U2ÞT � U1 ¼
@ðJTðyÞ � U1Þ

@y
� U2:

5. Building direct-decoupled code with KPP

In this section, we present a tutorial example for the

direct-decoupled code implementation in the KPP

framework. For simplicity, we consider the problem of

evaluating the sensitivities ScðtÞARn of the model state

(concentrations) at time moments t; t0ptotF; with

respect to the concentration of a species c at a previous
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time instance t0

ScðtÞ ¼
@½y1ðtÞ;y; ynðtÞ�

@ycðt0Þ
; c ¼ 1;y; n: ð56Þ

The forward numerical integration, yi-yiþ1; is per-

formed using the first-order linearly implicit Euler

method (Hairer and Wanner, 1991, Section IV.9)

Jðti; yiÞ 	
1

h
I


 �
ðyi 	 yiþ1Þ ¼ f ðti; yiÞ;

i ¼ 0;y;N 	 1; ð57Þ

with a constant step size h; the final time is reached for

tN ¼ t0 þ Nh ¼ tF: The implementation of one forward

integration step requires the solution of a system with

the sparse Jacobian, and is readily implemented using

KPP-generated routines.

To calculate sensitivities with respect to initial values

we follow formulas (16) in the one-stage, autonomous

form. The Hessian is denoted by H ¼ @J=@y:

yiþ1 ¼ yi 	 k0; Siþ1
c ¼ Si

c 	 kc for 1pcpm;

Jðti; yiÞ 	
1

h
I


 �
k0 ¼ f ðti; yiÞ;

Jðti; yiÞ 	
1

h
I


 �
kc ¼ Jðti; yiÞSi

c þ ðHðti; yiÞ � Si
cÞk

0

for 1pcpm:

For the implementation one needs the following KPP-

generated routines: sparse Jacobian decomposition and

substitution, sparse Jacobian times vector multiplica-

tion, and sparse Hessian times vectors multiplication.

Note that an implementation of the direct-decoupled

code for computing sensitivities with respect to rate

coefficients can be easily obtained following the same

pattern and using the KPP-generated subroutines for the

function and Jacobian derivatives with respect to the

rate coefficients.
6. Building adjoint code with KPP

First applications of the KPP software tools to the

adjoint code generation for chemical kinetics systems

were presented by Daescu et al. (2000), who reported a

superior performance over the adjoint code generated

with the general purpose adjoint compiler TAMC

(Giering and Kaminski, 1998) for a two-stage Rosen-

brock method. In this section, we present a tutorial

example for the continuous and discrete adjoint code

implementation in the KPP framework. For simplicity,

we consider the problem of evaluating the sensitivities of

a response functional gðyðtFÞÞ with respect to the model
state at previous instants in time, t0ptotF

SðtÞ ¼
@gðtFÞ
@y1ðtÞ

;y;
@gðtFÞ
@ynðtÞ


 �T

; ð58Þ

using the numerical scheme (57). The adjoint variables

are initialized with lN ¼ lðtFÞ ¼ @gðyðtFÞÞ=@y:

6.1. Continuous adjoint implementation

One step of the backward integration, liþ1-li; of the

continuous adjoint model (26) using the linearly implicit

Euler method is written (use Eq. (57) for Eq. (26) with

h’	 hÞ

JTðtiþ1; yiþ1Þ 	
1

h
I


 �
ðliþ1 	 liÞ

¼ JTðtiþ1; yiþ1Þliþ1 ð59Þ

and after rearranging we obtain

Jðtiþ1; yiþ1Þ 	
1

h
I


 �T

li ¼ 	
1

h
liþ1: ð60Þ

Since the adjoint equations are linear, fully implicit

methods may be implemented at the same computa-

tional cost as linearly implicit methods. If the backward

integration is performed with the implicit Euler method

then

Jðti ; yiÞ 	
1

h
I


 �T

li ¼ 	
1

h
liþ1 ð61Þ

with the only difference from Eq. (59) being that the

Jacobian matrix in Eq. (61) is now evaluated at ðti; yiÞ:
Note that Eqs. (59) and (61) need only a sparse LU

decomposition and a backsubstitution with the trans-

posed Jacobian, both operations being implemented by

KPP.

6.2. Discrete adjoint implementation

The discrete adjoint code is implemented according to

formulae (43) and (49). Differentiating Eq. (57) with

respect to yi we obtain

Hi � ðyi 	 yiþ1Þ þ Ji 	
1

h
I


 �
I 	

@yiþ1

@yi


 �
¼ Ji; ð62Þ

where Ji ¼ Jðti; yiÞ and Hi ¼ @Ji=@yi: From Eq. (62) we

obtain explicitly

@yiþ1

@yi
¼ I 	 Ji 	

1

h
I


 �	1

Ji þ Hi � ðyiþ1 	 yiÞ
� �

¼ 	 Ji 	
1

h
I


 �	1
1

h
I þ Hi � ðyiþ1 	 yiÞ


 �
ð63Þ
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(where � stands for 3-tensor times vector product).

From Eqs. (49) and (63) it results

li ¼
@yiþ1

@yi


 �T

liþ1

¼ 	
1

h
I þ Hi � ðyiþ1 	 yiÞ


 �T

Ji 	
1

h
I


 �	T

liþ1:

ð64Þ

Eq. (64) represents the discrete adjoint integration step

associated with the linearly implicit Euler forward

integration. Following Daescu et al. (2000), we intro-

duce two new variables k and z

k ¼ yiþ1 	 yi; Ji 	
1

h
I


 �T

z ¼ liþ1; ð65Þ

with which Eq. (64) becomes

li ¼ 	
1

h
z 	 ðHi � kÞTz: ð66Þ

The linear system in Eq. (65) is solved for z efficiently

through calls to the KPP-generated sparse linear algebra

routines KppDecomp and KppSolve TR. The right-

hand side term in Eq. (66) is evaluated by Hess-

VarTR Vec taking full advantage of the Hessian

sparsity.

Remark 4. By comparison of Eqs. (65) and (66) with

(60) and (61) it can be seen that discrete adjoint model is

a more demanding computational process and its

efficient implementation is not a trivial task. For this

reason, the use of discrete adjoints in atmospheric

chemistry applications has been limited to explicit or

low-order linearly implicit numerical methods (Fisher

and Lary, 1995; Elbern et al., 1997; Daescu et al., 2000).

Remark 5. For linear dynamics J ¼ JðtÞ the second-

order derivatives in Eq. (66) are identically zero. There-

fore, the discrete adjoint model (66) is equivalent with

the continuous adjoint model (61).
7. The KPP numerical library

The KPP numerical library is extended with a set of

numerical integrators and drivers for direct-decoupled

and for adjoint sensitivity computations.

Several Rosenbrock methods are implemented for

direct-decoupled sensitivity analysis, namely Ros1,

Ros2, Ros3, Rodas3, and Ros4. The implementations

distinguish between sensitivities with respect to initial

values and sensitivities with respect to parameters for

efficiency. In addition, the BDF direct-decoupled
integrator Odessa (Leis and Kramer, 1986) is available

with the KPP sparse linear algebra routines.

Drivers are present for the general computation of

sensitivities with respect to all initial values (general-

ddm ic) and with respect to several (user-defined) rate

coefficients (general ddm rc). Note that KPP produces

the building blocks for the simulation and also for the

sensitivity calculations; it also provides application

programming templates. Some minimal programming

may be required from the users in order to construct

their own application from the KPP building blocks.

The continuous adjoint model can be easily con-

structed using KPP-generated routines and is integrated

with any user selected numerical method. The discrete

adjoint models associated with the Ros1, Ros2, and

Rodas3 integrators are provided for variable step size

integration. Drivers for adjoint sensitivity and data

assimilation applications are also included.
8. Conclusions and future work

The analysis of comprehensive chemical reactions

mechanisms, parameter estimation techniques, and

variational chemical data assimilation applications

require the development of efficient sensitivity methods

for chemical kinetics systems. Popular methods for

chemical sensitivity analysis include the direct-decoupled

method and automatic differentiation.

In this paper, we review the theory of the direct and

the adjoint methods for sensitivity analysis in the

context of chemical kinetic simulations. The direct

method integrates the model and its sensitivity equations

simultaneously and can efficiently evaluate the sensitiv-

ities of all concentrations with respect to few model

parameters. An efficient numerical implementation is the

direct-decoupled method, traditionally formulated using

BDF formulas. We extended the direct-decoupled

approach to Runge–Kutta and Rosenbrock stiff inte-

gration methods. The adjoint method integrates the

adjoint of the tangent linear model backwards in time

and can efficiently evaluate the sensitivities of a scalar

response function with respect to a large number of

model parameters. Sensitivities with respect to time-

dependent model parameters may be obtained through a

single backward integration of the adjoint model.

The kinetic preprocessor (KPP) developed by the

authors is a symbolic engine that translates a given

chemical mechanism into Fortran or C kinetic simula-

tion code. Efficiency is obtained by carefully exploiting

the sparsity structure of the Jacobian. A comprehensive

suite of stiff numerical integrators is also provided.

The second part of this paper presents the compre-

hensive set of software tools for sensitivity analysis that

were developed and implemented in the new release of

the KPP-1.2. KPP was extended to symbolically
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generate code for the stoichiometric formulation of

kinetic systems; for a direct sparse multiplication of

Jacobian transposed times vector; for the solution of

linear systems involving the transposed Jacobian; for the

derivatives of rate function and its Jacobian with respect

to reaction coefficients; for the Hessian, i.e. the deriva-

tives of the Jacobian with respect to the concentrations;

and for the sparse tensor product of Hessian with user

defined vectors. The Hessian and the derivatives with

respect to rate coefficients are sparse entities; KPP

analyzes their sparsity and produces simulation code

together with efficient sparse data structures.

The use of these software tools to build sensitivity

simulation code is outlined, following the theoretical

overview of direct and adjoint sensitivity analysis.

Direct-decoupled code is constructed in a straightfor-

ward way; BDF and Runge–Kutta direct-decoupled

integrators, as well as specific drivers are included in the

KPP numerical library. The need for Jacobian deriva-

tives prevented Rosenbrock methods to be used

extensively in direct sensitivity calculations; however,

the proposed symbolic differentiation technology makes

the computation of these derivatives feasible. The

continuous and discrete adjoint models are completely

generated by the KPP software taking full advantage of

the sparsity of the chemical mechanism. Flexible direct-

decoupled and adjoint sensitivity code implementations

are achieved, and various numerical integration methods

can be employed with minimal user intervention.

In the companion paper (Daescu et al., 2003), we

present an extensive set of numerical experiments and

demonstrate the efficiency of the KPP software as a tool

for direct/adjoint sensitivity applications. These applica-

tions include direct-decoupled and adjoint sensitivity

calculations with respect to initial conditions, emissions,

and reaction rate coefficients; time-dependent sensitivity

analysis; variational data assimilation and parameters

estimation.
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