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ABSTRACT

The spatiotemporal distribution of observations plays an essential role in the data assimilation process. An
adjoint sensitivity method is applied to the problem of adaptive location of the observational system for a
nonlinear transport-chemistry model in the context of 4D variational data assimilation. The method is presented
in a general framework and it is shown that in addition to the initial state of the model, sensitivity with respect
to emission and deposition rates and certain types of boundary values may be obtained at a minimal additional
cost. The adjoint modeling is used to evaluate the influence function and to identify the domain of influence
associated with the observations. These essential tools are further used to develop a novel algorithm for targeting
observations that takes into account the interaction among observations at different instants in time and spatial
locations. Issues related to the case of multiple observations are addressed and it is shown that by using the
adjoint modeling an efficient implementation may be achieved. Computational and practical aspects are discussed
and this analysis indicates that it is feasible to implement the proposed method for comprehensive air quality
models. Numerical experiments performed with a two-dimensional test model show promising results.

1. Introduction

As our understanding of the complex processes in the
atmosphere has evolved, comprehensive atmospheric
chemistry models have been developed. At the same
time, our ability to measure the concentration of various
chemical species in the atmosphere has significantly im-
proved over the past decades. A forecast model and
observational data are combined in the data assimilation
process in order to provide an optimal estimate of the
true atmospheric state. Since available observations are
usually distributed unevenly and sparsely, the spatio-
temporal distribution of the observations plays an es-
sential role in the data assimilation process. While the
location of many observations is a priori fixed (such as
ground stations and satellite observations), it is often
possible to include in an analysis a few additional ob-
servations whose locations may be selected in a flexible
manner. For example, if additional observations are to
be taken using dropsondes from an aircraft mission, a
strategy to select the times and locations of these ob-
servations must be specified. Adaptive methods search
for spatiotemporal locations of the observations that
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minimize the error in the analysis and subsequent fore-
casts. In practice the design of adaptive strategies is
constrained by the limited number of resources available
and physical considerations (e.g., only a limited area
may be covered in a given interval of time).

Significant research has been dedicated to the prob-
lem of adaptive location of the observations in numer-
ical weather prediction. The experiments performed in
the data assimilation context show that the success of
the adaptive strategies relies on the identification of the
areas where the errors in the initial conditions are large
and/or are rapidly growing (usually referred to as target
areas). Berliner et al. (1999) provide a rigorous statis-
tical formulation and mathematical framework for the
adaptive design problem. The Fronts and Atlantic Storm
Tracks Experiment (FASTEX; Joly et al. 1997) and the
North Pacific Experiment (NORPEX-1998) provided
real-life applications where several methods for target-
ing observations were tested. A targeting technique
based on adjoint sensitivity was formulated by Langland
and Rohaly (1996). Palmer et al. (1998) and Buizza and
Montani (1999) describe adaptive techniques using the
dominant singular vectors of the integral tangent prop-
agator associated with a nonlinear dynamical system.
Implementation of the gradient and singular vector
methods relies on adjoint modeling. Bishop and Toth
(1999) use an ensemble transform technique based on
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nonlinear ensemble forecasts to approximate the pre-
diction error covariance matrices. Recently, an ensemble
transform Kalman filter method was proposed by Bishop
et al. (2001) for the adaptive observations problem.
Bishop (2000, manuscript submitted to Quart. J. Roy.
Meteor. Soc., hereafter BIS) introduced an extended ob-
servation gradient targeting technique and provided a
comparative analysis of several adaptive observing
methods in the context of estimation theory. Baker and
Daley (2000) consider an adjoint-based technique to de-
termine the sensitivity of the forecast to the observations
and the background field and apply this method to the
adaptive targeting problem.

In the past few years variational methods have been
successfully used in data assimilation for comprehensive
3D atmospheric chemistry models (Elbern and Schmidt
1999; Errera and Fonteyn 2001). Satellite observations
of the chemical species are beginning to provide global
datasets that facilitate an improved understanding of the
natural and human influence on the changes in the at-
mosphere. In addition, valuable measurements are per-
formed during extensive field experiments using aircraft
missions, ships, and balloons. The Aerosol Character-
ization Experiment (ACE-Asia, spring 2001) and Na-
tional Aeronautics and Space Administration (NASA)
Transport and Chemical Evolution over the Pacific Ex-
periment (TRACE-P, spring 2001) have recently pro-
duced datasets of the trace gases and aerosol distribution
over East Asia and the western Pacific. At the same
time, these experiments revealed the necessity of de-
veloping computationally feasible methods for targeting
observations in air quality modeling. The adjoint sen-
sitivity technique we consider in this paper in the context
of the 4D variational data assimilation was inspired by
the work of Fisher and Lary (1995) for atmospheric
chemistry models. Associated with a single observation,
they introduced an ‘‘influence function’’ and used it to
provide information about the sensitivity of the cost
functional with respect to intermediate states of the
model. Their study of a stratospheric photochemical box
model with trajectories showed that observations of
some chemical species may provide useful information
about unobserved species. Similar experiments were
performed later by Elbern et al. (1997) using a tropo-
spheric chemistry box model. We extend this technique
by taking into account the spatial dimension and a gen-
eral set of parameters, and we use the influence functions
to develop an algorithm for the adaptive location of the
observational system. An adjoint-based gradient method
for a transport-chemistry model is implemented and it
is shown that the set parameters can be naturally ex-
tended to include emissions and certain types of bound-
ary values with minimal additional cost.

The paper is organized as follows. In section 2 we
briefly review the four-dimensional variational data as-
similation (4DVAR) for transport-chemistry models.
The adjoint sensitivity method is presented in section
3. The problem of the adaptive location of the obser-

vations is formulated in section 4 in the 4DVAR context.
In section 5 we describe an adjoint sensitivity approach
and propose an algorithm for targeting observations.
Computational and implementation issues are ad-
dressed. Preliminary numerical experiments performed
with an Eulerian two-dimensional atmospheric chem-
istry model are presented in section 6. An outline of
the results and further research directions are given in
section 7.

2. 4DVAR data assimilation for air quality models

The time evolution of the chemical composition of
the atmosphere is determined by various processes such
as transport, diffusion, chemical transformations, emis-
sions, and depositions. Using the mass balance equa-
tions, the dynamical model is expressed as the coupled
system of nonlinear partial differential equations

] cic 5 2= · (uc ) 1 = · rK · = 1 f (c)i i i1 2[ ]]t r

1 E 2 D , i 5 1, s (1)i i

We consider the spatial domain {x 5 (x, y, z)} 5 V ,
R3 and the analysis time interval [t0, T]. The solution
c(t, x) ∈ R s of problem (1) represents the concentration
vector of the chemical species in the model, = 5 (]/]x,
]/]y, ]/]z) is the gradient operator, u is the wind field,
K is a second-order, diagonal, eddy diffusivity tensor,
and the air density is denoted by r. We will use the
notation ck to specify c(tk, x) and ci(tk, x) for the com-
ponent of the vector ck corresponding to species i in the
chemical model. The chemical reactions are modeled
by the nonlinear terms f i(c) 5 Pi(c) 2 Li(c)ci of poly-
nomial form, with Pi(c), Li(c) the chemical production
and loss terms; Ei and Di represent source and deposition
processes, respectively. Since chemical reactions have
characteristic timescales that differ by orders of mag-
nitude, the chemistry component introduces stiffness in
the system (1). This is an additional difficulty that arises
during the numerical integration of (1) as explained by
McRae et al. (1982). Space and time dependence is
assumed for all terms, but for simplicity the explicit
notation is omitted. The initial condition associated with
(1) is

c(t , x) 5 c (x)0 0 (2)

Let dV l be the lateral boundary of V, dV0 the bottom
boundary, dVh the top boundary, and ]V 5 dVl < dV0

< dVh. One possible specification of the boundary val-
ues is
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← ←c 5 c ∀(t, x) ∈ [t , T ] 3 dV (3)0 l

]c
→5 0 ∀(t, x) ∈ [t , T ] 3 dV (4)0 l]n

2n · (K · =c ) 5 Q 2 n c0 i i i i

∀(t, x) ∈ [t , T ] 3 dV ,0 0

i 5 1, s (5)

]c
5 0 ∀(t, x) ∈ [t , T ] 3 dV , (6)0 h]z

where d and d are the outflow and the inflow→ ←V Vl l

regions, respectively, of the lateral boundary,
→ ←dV 5 dV < dV ,l l l

→dV 5 {x ∈ dV , u · n $ 0},l l

←dV 5 {x ∈ dV , u · n , 0}, (7)l l

where n denotes the outward unit vector normal to the
lateral boundary surface, n0 is the inward vector normal
to the earth’s surface, Qi and ni are the surface emission
rate and deposition velocity of species i, respectively.

The numerical solution of the problem (1)–(6) is a
reliable representation of the evolution of the true at-
mospheric state provided that accurate values for the
various model input parameters are specified. In air
quality modeling, uncertainties in the initial state (c0),
emission (Ei), and deposition (Di) rates, and boundary
values (c←, Qi, ni), to name only a few, must be con-
sidered. In the variational data assimilation, information
provided by the observations is used to find an optimal
set of model parameters through a minimization process.
For a complete description of the various assumptions
used by the data assimilation techniques, including the
continuum formulation and a probabilistic interpreta-
tion, we will refer to Jazwinski (1970), Tarantola (1987),
Daley (1991), Cohn (1997), and to the recent work of
Wang et al. (2001) for applications of 4D variational
data assimilation to atmospheric chemistry. A rigorous
mathematical framework of the adjoint parameter esti-
mation, identifiability issues and regularization tech-
niques are presented by Navon (1998). Since for most
practical purposes a discrete model must be considered,
we formulate a discrete 4DVAR data assimilation prob-
lem that takes into account a general set of model pa-
rameters. After semidiscretization on a spatial grid nx

3 ny 3 nz, the problem (1)–(6) is written

dc
5 F(c, v) (8)

dt

c(t , x) 5 c (x), (9)0 0

where v is a time-dependent vector of discrete model
parameters uncorrelated with the initial state c0. The
dimension of the discrete state vector c(t, x) is N 5 s
3 nx 3 ny 3 nz. Using interpolation techniques, the
parameters v are determined by the values at discrete

nodes in the time–space domain. We denote by p 5
( , vT)T the complete set of model parameters and as-Tc0

sume that the solution c(t, x) is uniquely determined
once the parameter vector p is specified. The time in-
tegration of the problem (8)–(9) provides the evolution
of the state vector

c 5 F (c , v), k 5 0, 1, . . . ,k11 k k (10)

where k is determined by F and the numerical inte-F
gration method.

Consider the set of observations
o nkO 5 {c ∈ R , k 5 0, m}, (11)k

which are taken at discrete moments in time tk, k 5
over the analysis interval and assume that obser-0, m

vations are linearly related with the state
oc 5 H c 1 e ,k k k k (12)

where the observational operator Hk is assumed to be
state independent and the total observation error ek is
determined by the measurement error and the error of
representativeness (Cohn 1997; Lorenc 1986). The co-
variance matrix of the total observation error Rk 5
^ek & is assumed to be known. Additional informationTek

on the model parameters may be taken into account as
a ‘‘background’’ estimate pb of the true parameter val-
ues. In practice the covariance matrix B 5 ^ebe & ofTb

the errors in the background estimate is not known and
suboptimal approximations are used to provide it. The
4D variational data assimilation seeks to minimize the
discrepancy between the model forecast and observa-
tions expressed by the cost function

b oJ 5 J 1 J

1
b T b215 (p 2 p ) B (p 2 p )

2
m1

o T o211 (H c 2 c ) R (H c 2 c ), (13)O kk k k k k k2 k50

If the solution of the problem (8)–(9) is expressed as a
function of the parameters ck 5 c(tk, x, p) the 4DVAR
data assimilation problem is formulated

min J (p). (14)
p

3. Adjoint sensitivity analysis

Mathematical foundations of the adjoint sensitivity
for nonlinear dynamical systems and various classes of
response functionals are presented by Cacuci (1981a,b).
Marchuk (1995) and Marchuk et al. (1996) describe in
detail the adjoint modeling and the construction of the
adjoint operators for linear and nonlinear atmospheric
dynamics. Pudykiewicz (1998) shows the derivation of
the continuous adjoint operator for a tracer transport
model and an application to source parameters esti-
mation. Further applications of the adjoint sensitivity
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analysis to variational data assimilation are presented
by Le Dimet et al. (1997).

Associated with the dynamical model (8)–(9) we con-
sider a response functional of the form

F 5 ^w, c(t )&,n (15)

where ^·, ·& denotes the scalar product in RN, t0 # tn #
T, and w is a specified state independent vector of
weights. Then

= F 5 = ^w, c(t )&p p n (16)

is the sensitivity of the scalar expression ^w, c&at a given
moment in time tn with respect to the parameters p. To
a perturbation in the input parameters p9 5 ( , v9T)TTc90

corresponds a perturbation in the response functional

F 9 5 ^w, c9(t )&n (17)

and to first-order approximation the time evolution of
the perturbation c9 is obtained by solving the tangent
linear model problem

dc9
5 F (c, v)c9 1 F (c, v)v9 (18)9 9c vdt

c9(t ) 5 c9, (19)0 0

where (c, v) and (c, v) are the partial derivativesF F9 9c v

(Jacobian matrices) of F with respect to the model state
and the model parameters v at time t, respectively. We
introduce an adjoint variable l(t) ∈ RN, to be defined
later for convenience, and multiply (18) in (RN, ^·, ·&)
by l, then integrate on [t0, tn] to obtain

tn dc9
l, dtE 7 8dtt0

tn

5 ^l, F (c, v)c9 1 F (c, v)v9& dt, (20)9 9c vE
t0

which may be written using matrix transposition
t tn ndc9

Tl, dt 5 ^F (c, v)l, c9&9cE E7 8dtt t0 0

T1 ^F (c, v)l, v9& dt. (21)9v

After integrating by parts in the left side of (21) and
arranging the terms

tn dl
t Tn^l, c9&| 5 1 F (c, v)l, c99ct E0 7 8dtt0

T1 ^F (c, v)l, v9& dt. (22)9v

Therefore, if l is defined as the solution of the adjoint
problem

dl
T5 2F (c, v)l (23)9cdt

l(t ) 5 w (24)n

we obtain from (17), (19), and (22)

tn

TF 9 5 ^l(t ), c9& 1 ^F (c, v)l, v9& dt (25)9v0 0 E
t0

such that the sensitivities of the response functional are

= F 5 l(t ) (26)c 00

T= F 5 F (c, v)l. (27)9vv

The adjoint problem (23)–(24) must be integrated back-
ward in time to obtain the sensitivity with respect to the
initial state as l(t0). It is essential to notice that during
this process all the values l(t), t0 # t # tn are computed,
and using (27) the sensitivities with respect to the time-
dependent parameters v are obtained.

For the purpose of this paper, we will assume that
the model (8) takes the particular form

dc
5 F(c) 1 Gv, (28)

dt

where G 5 G(t) is a state independent matrix operator.
In this formulation, emission and deposition rates and
certain boundary values, such as c← and Q, may be
considered in the vector of parameters v. For example,
when emission rates are considered, G is a diagonal
matrix with nonzero entries corresponding to the index
of the emitted chemical species and their spatial loca-
tions. Corresponding to (28), Eq. (27) is written

T= F 5 G lv (29)

such that the sensitivities with respect to the time-de-
pendent parameters v are obtained at a minimal addi-
tional cost.

4. The adaptive observations problem

The adaptive observation problem is presented next
in the 4DVAR context. For the remaining part of this
paper, unless otherwise specified, by ‘‘location’’ of an
observation we will understand the 4D coordinate (t, x)
of the observation. An observation will be considered
as ‘‘located’’ if both the time and the spatial coordinate
of this observation are determined. To formulate the
adaptive location of the observations problem, let

f m fO 5 < Ok51 k (30)

represent the set of observations whose location over
the analysis interval [t0, T] is fixed and a priori known
at the initial moment t0. We consider a ‘‘verification’’
domain Dy # V and the verification time ty . T. We
assume that at discrete instants in time t0 # ti # T, i
5 1, I it is possible to take ni additional observations,
which must be selected from the set of all possible lo-
cations where additional observational resources may
be deployed at moment ti. If the set of all feasible spatial
locations is Li, then a subset of ni locations , Li

oLi

must be selected. An adaptive observational strategy
searches for a selection of an observational path Op 5
{ , , . . . , } such that the solution of the corre-o o oL L L1 2 I



438 VOLUME 60J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

sponding 4DVAR will minimize the error of some as-
pect of the forecast at the verification time ty over the
verification domain Dy . The problem can be generalized
to fully take into account the time coordinate by allow-
ing the time instant ti, i 5 1, I to be selected from a
feasible time set T.

Several practical aspects must be taken into account
while designing the adaptive strategy and we outline a
few of them. Since the actual values of the observations
that will be taken at fixed and adaptive locations are
not known at the moment when the decision must be
made they cannot be included in the adaptive strategy.
The adaptive strategy must take into account the influ-
ence of the observations that will be taken from the
fixed locations. The relationship between the selection
of the locations at different moments in time must be
considered. In particular, regarded independently, andoLi

, i ± j may be feasible selections, but { , } is not.o o oL L Lj i j

The notion of a feasible set of locations must then take
into account the temporal interdependence, and the or-
der in which the adaptive observations are selected be-
comes important. An attempt to globally search for an
optimal solution from the set of all feasible paths may
easily lead to a problem that is computationally im-
practical. BIS discusses computational and practical as-
pects related to several adaptive strategies and shows
with a simple example that for moderately complex
practical applications a serial observation processing
must be considered. In the adaptive strategy method and
the algorithm we describe in the next section, infor-
mation provided by the observations at fixed locations
is globally taken into account, while the adaptive ob-
servations are selected sequentially. If the adaptive se-
lected observational path is denoted by O a, the forecast
at the verification time ty is obtained by integrating (8)–
(9) on [t0, ty ] with the parameter values p* the solution
of the problem

b of oamin (J 1 J 1 J )(p). (31)
p

5. An adjoint method for adaptive observations

In the adjoint sensitivity approach a cost functional
is defined as the measure of the forecast error at the
verification time ty over the verification domain Dy

1
y ref refJ 5 ^P(c 2 c ), P(c 2 c )&, (32)y y y y2

where cy and represent, respectively, the model fore-refcy

cast and the verifying analysis at ty , and P is a self-
adjoint projection operator on the verification domain.
In practice the inner product ^·, ·& defines an appropriate
energy norm (Rabier et al. 1996; Palmer et al. 1998).
For simplicity, we will consider P to be a diagonal ma-
trix with entries corresponding to the grid points inside
the verification domain being equal to one while the
other entries are set to zero.

Sensitivity fields

T
]cyy ref= J 5 P(c 2 c ) (33)c y yl 1 2]cl

provided by the adjoint model may be used to identify
the areas where errors in the model state at tl have the
most significant impact on the forecast error at ty over
the verification domain. By providing additional obser-
vational data in the areas where the sensitivity field has
a large magnitude is expected to obtain maximum ben-
efit in reducing the forecast error over Dy . However,
evaluation of the gradient (33) requires explicit knowl-
edge of the verifying analysis , which is not knownrefcy

at the initial time t0. For practical purposes, the sensi-
tivity field used to select targeted observations must be
based on the forecast alone such that information pro-
vided by the gradient fields (33) may be used only for
a posteriori analysis and adaptive observations design
(Rabier et al. 1996).

Baker and Daley (2000) noticed that traditional adap-
tive strategies are based on the a priori evaluation of
the sensitivity of some aspect of the forecast at the ver-
ification time to intermediate states and are completely
ignorant of any existing observations. Since 4DVAR
data assimilation takes into consideration all observa-
tions available in the assimilation window, targeted ob-
servations strategies must account for uncertainty mag-
nitude, uncertainty growth, and the details of the data
assimilation scheme (Bergot 2001).

The adjoint targeting strategy we propose is based on
the evaluation of two sensitivity fields: the first sensi-
tivity field, Gy , is associated to the verification cost func-
tional J y and information provided by Gy does not ac-
count for any existing observations; the second sensi-
tivity field, GO, is associated with the cost functional
used in the data assimilation process. Here GO is dy-
namically updated and takes into consideration infor-
mation from all routine (fixed location) and adaptive
observations whose locations are already determined.
Next, we present a rigorous definition and the interaction
mechanism between these two sensitivity fields that are
used to develop a new adaptive observations algorithm.

a. The influence function at the verification time

The sensitivity field we associate to the verification
cost functional (32) is intimately related to the evalu-
ation of the sensitivity of forecast errors to initial con-
ditions as described by Rabier et al. (1996). To eliminate
the explicit dependence on , we define an ‘‘influencerefcy

function’’ as a measure of the sensitivity of forecast
errors to relative changes in the model state at inter-
mediate instants in time.

We consider the model forecast cy as a function of
the model state cl at tl , ty and J y 5 J y (c l). If we
consider an infinitesimal variation dci(tl, x) in species
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i at instant tl and location x, then the induced variation
in the cost functional (32) may be expressed

y ydJ 5 (= J ) dc (t , x)c (i,x) i ll

dc (t , x)i ly5 {(= J ) c (t , x)} (34)c (i,x) i ll c (t , x)i l

such that

y(= J ) c (t , x)c (i,x) i ll

s ]c (t , x*)j y
5 O O

]c (t , x)j51 x*∈D i ly

ref3 [c (t , x*) 2 c (t , x*)]c (t , x) (35)j y j y i l

represents the sensitivity of the cost functional to rel-
ative changes in the parameter ci(tl, x). For each x* ∈
Dy , the sensitivity of the cost functional with respect to
relative changes in the forecast component cj(ty , x*) is

y(= J ) c (t , x*)c ( j,x*) j yy

ref5 [c (t , x*) 2 c (t , x*)]c (t , x*). (36)j y j y j y

Assuming that the verification domain is reduced to one
grid point, Dy 5 {x*}, and the verifying analysis has
only one component (ty , x*), we define the influencerefcj

function as the normalized quantity

y(= J ) c (t , x)c (i,x) i llG (i, t , x) 5j,t ,x* ly y(= J ) c (t , x*)c ( j,x*) j yy

]c (t , x*) c (t , x)j y i l5 , (37)
]c (t , x) c (t , x*)i l j y

which is independent of the verifying analysis (ty ,refci

x*). We will interpret the value of the influence function
as a measure of the sensitivity of the forecast error of
cj(ty , x*) to relative changes in the parameter ci(tl, x).
From this definition it follows that

G (i, t , x) 5 d d ,j,t ,x* y ij xx*y
(38)

where d represents the Kronecker delta function dij 5
1 if i 5 j and dij 5 0 if i ± j. A straightforward extension
to the case when the verification domain includes mul-
tiple grid points and the verifying analysis has various
components is presented in section 5d.

b. The influence function of a single observation

The second sensitivity field we define is associated
with the cost functional (13) to be minimized in the data
assimilation process.

If we consider the truncated cost function (13) at
moment tl as a function of cl only

m1
o T o21J (c ) 5 (H c 2 c ) R (H c 2 c ) (39)O kl l k k k k k k2 k5l

then

(= J ) c (t , x)c l (i,x) i ll

m ]ckT o215 H R (H c 2 c ), c (t , x) (40)O kk k k k i l7 1 28]c (t , x)k5l i l

represents the sensitivity of the cost functional to rel-
ative changes in the parameter ci(tl, x). Assuming that
there is only a single observation

0 Tc (t , x*) 5 ^H (j, x*), c & 1 e (j,x*)j n n n n (41)

of species j at moment tn $ tl and point x*, the influence
function is defined, by analogy with (37), as the nor-
malized quantity

(= J ) c (t , x)c l (i,x) i llG (i, t , x) 5 , (42)j,t ,x* ln (= J ) c (t , x*)c l ( j,x*) j nn

which can be written explicitly

]cnTH ( j, x*), c (t , x)n i l7 8]c (t , x)i l
G (i, t , x) 5 . (43)j,t ,x* ln

]cnTH ( j, x*), c (t , x*)n j n7 8]c (t , x*)j n

From this definition it follows that the influence function
is independent of the observation value and the obser-
vation error, and is determined only by the forecast state
and the observational operator Hn which is known. The
relation (38) holds also for G (i, tn, x). We will in-j,t ,x*n

terpret the value of the influence function (43) as the
sensitivity of the model fit to the observation of species
cj at (tn, x*) with respect to relative changes in the
species ci at (tl, x). A large absolute value of the influ-
ence function for species i due to an observation of
species j indicates that observations of species j play an
important part in determining the analyzed values for
species i (Fisher and Lary 1995).

To simplify the presentation, we will assume for the
remaining part of this paper that the concentrations of
the chemical species are directly observed at the model
grid points such that the observational operator Hn(j,
x*) has only a nonzero entry on the (j, x*) coordinate

H (j, x*) 5 (0, . . . , 0, 1, 0, . . . , 0).n (44)

The explicit expression (43) of the influence function
is then written

]c (t , x*) c (t , x)j n i lG (i, t , x) 5 . (45)j,t ,x* ln ]c (t , x) c (t , x*)i l j n

The definition of the influence function is naturally ex-
tended with respect to the model parameters vl. Cor-
responding to the (i, x) component of vl(tk), tl # tk #
tn, we define

]c (t , x*) y (t , x)j n i kG (i, t , x) 5 . (46)j,t ,x* kn ]y (t , x) c (t , x*)i k j n

The influence function with respect to vl has then a time-



440 VOLUME 60J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

distributed value (46) for tl # tk # tn and the analog of
the relation (38) is in this case

G (i, t , x) 5 0.j,t ,x* nn
(47)

c. Adjoint computation of the influence function

The complexity of evaluating the influence function
is dominated by the computation of the sensitivity val-
ues = cj(tn, x*) and = cj(tn, x*). The adjoint methodc vl l

provides an efficient way to compute at once the influ-
ence function G (i, tl, x) with respect to all chemicalj,t ,x*n

species i in the model and all spatial points x. With a
single backward integration of the adjoint model (23)
the vector value G (tl) (still refered to as influencej,t ,x*n

function) may be computed.
Using relation (29), while computing the influence

function with respect to the model state, we obtain the
influence function G (tk), tl # tk # tn of the time-j,t x,*n

dependent model parameters with a minimal additional
cost. Therefore, it is sufficient to focus our analysis on
the influence function with respect to the model state.

In practice, a discrete adjoint model is often imple-
mented directly from the numerical method used in the
integration of the forward model. In this approach re-
verse automatic differentiation tools, for example, Tan-
gent Linear and Adjoint Model Compiler (TAMC)
(Giering 1997), may be used to facilitate the adjoint
code generation. If x* has the grid coordinates x*(ix,
iy, iz), let e be the (j, ix, iy, iz) vector of the canonical
base of Rs 3 R 3 R 3 R : e(j, ix, iy, iz) 5 1 andn n nx y z

all other components of e are zero. Assume that the
forecast state at tn is obtained from the state at tl through
a sequence of q intermediate time steps tl 5 , ,0 1t tl l

· · · 5 tn. The adjoint method to evaluate the gradientqt l

= cj(tn, x*) is implemented as the backward loop:cl

Initialize = cj(tn, x*) 5 e; for k 5 q, 1, 21cl

T
]c kl= c (t , x*) 5 = c (t , x*). (48)c j n c j nl l1 2]c k21l

Once the gradient = cj(tn, x*) is computed, the valuecl

of the influence function is easily evaluated using (45).
Observe that the computation of = cj(tn, x*) providescl

also the values of the intermediate gradients with respect
to c , k 5 1, q. In particular, while computing the valuekl

of the influence function with respect to the initial state,
G (t0), spatial and temporal sensitivity informationj,t ,x*n

is provided with respect to all chemical species in the
model.

d. Domain of influence and multiple observations

The influence function was defined in the case when
a single observation was taken into account and its com-
putation required only one integration of the adjoint
model. However, in practice it is often the case that
multiple observations are available at a moment tn. In

this section we extend the definition of the influence
function (42) to include a set of observations. By a
simple analogy, the extension applies also to the defi-
nition (37).

Consider a set On of observations at moment tn, and
assume that On has at least two elements. The previous
definition (42) of the influence function can not be ap-
plied in this case since it will involve the observation
values. We define the influence function associated with
the set On as

G (i, t , x) 5 v G (i, t , x) (49)OO l j,t ,x* j,t ,x* ln n n
( j,t ,x*)∈On n

with the positive weights v to be specified as con-j,t ,x*n

venient. From the computational point of view, the eval-
uation of G has the same complexity as the evaluationOn

of G and its computation requires only one backward
integration [same trajectory as in (48)]

vj,t ,x*nInitialize G 5 e( j, x*)OOn c (t , x*)( j,t ,x*)∈O j nn n

for k 5 q, 1, 21
T

]c klG 5 GO On n1 2]c k21l

G (i, t , x) 5 G (i, t , x)c (t , x). (50)O l O l i ln n

The extension to the case when multiple observations
are considered at different moments in time is straight-
forward and may be obtained by periodically adding an
initialization term during the backward loop. Therefore,
if tl # tm # tn, evaluating G (tl) has roughly theO <On m

same complexity as evaluating G (tl).On

We define the ‘‘domain of influence’’ associated with
G, and respectively G, as

D (i, t ) 5 {x ∈ V | G (i, t , x) ± 0} (51)j,t ,x* l j,t ,x* ln n

D̃ (t ) 5 {x ∈ V | G (t , x) ± 0}. (52)j,t ,x* l j,t ,x* ln n

From this definition it follows that

D̃ (t ) 5 < D (i, t )j,t ,x* l i j,t x* ln n
(53)

and we can rewrite (49) as

G (t ) 5 x v G (t ), (54)˜O (t )O l D j,t ,x* j,t ,x* lj,t ,x* ln n nn
( j,t ,x*)∈On n

where xD̃ is the characteristic function of the set D̃. We
will consider that two observations (j1, tn, ) and, re-x*1
spectively, (j2, tn, ) have an independent influence atx*2
moment tl if

˜ ˜D (t ) ù D (t ) 5 ø.* *j ,t ,x l j ,t ,x l1 n 1 2 n 2
(55)

A useful relationship between G and G can be shownOn

in the case of sparse observations. Assume that any two
observations in the set On have an independent influ-
ence. It follows then that the sum in the right-hand side
of (54) has at most one nonzero term and, therefore, all
information provided by any of G can be obtained from
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G . This may be particularly useful for the adaptiveOn

observations problem since in general we are interested
in areas where only sparse observations are available.

It must be noted that in the case when multiple ob-
servations have a common domain of influence it is
possible that when additional observations are consid-
ered the magnitude of G will decrease. A possibleOn

solution is to replace the definition (49) by

G (i, t , x) 5 v |G (i, t , x)|. (56)OO l j,t ,x* j,t ,x* ln n n
( j,t ,x*)∈On n

However, in this case, in order to compute G eachOn

function G must be evaluated individually, andj,t ,x*n

this results in significant computational expense. The
matrix approach to the adjoint sensitivity analysis as
described by Ustinov (2001) offers a promising tech-
nique to efficiently evaluate the influence function
(56).

e. An algorithm for adaptive observations

The 4D variational data assimilation takes into ac-
count all observations available in the analysis time in-
terval. Therefore, as pointed out in section 4, the in-

teraction between observations must be considered in
the observations selection algorithm. We assume that
the data assimilation analysis interval is [t0, T] and at
instant ti ∈ [t0, T], i 5 1, I a set Oi of ni observations
must be selected from the set of all possible observations
at time ti. The target area A i 5 A | is located insidet5ti

the domain of influence D̃i 5 (ti) of the influenceD̃ty

function Gy (ti) associated with the verification cost func-
tional J y . The algorithm for adaptive location of the
observations that we propose in this section searches
for locations where the magnitude of the influence func-
tion Gy is maximal, conditioned by the information ac-
cumulated from all observations whose locations were
already determined. The selection of the observations
is sequential in time and proceeds backward during the
adjoint integration. If O f denotes the set of observations
at fixed locations, Oa denotes the adaptive observational
path to be selected, and O 5 O f < Oa, then the algorithm
may be outlined as follows:

ALGORITHM FOR ADAPTIVE SELECTION OF THE

OBSERVATIONS

aO 5 ø

fO 5 O

˜Evaluate G (t ) ! provides also D and G (t ), i 5 I, 1, 21y 0 i y i

Evaluate G (t ) ! provides also G (t ), i 5 I, 1, 21O 0 O i

FOR i 5 I, 1, 21

|G |y ˜G 5 G ! pointwise in D at ty y i i|G | 1 |G |y O

iCALL findmax(n , G (t ), O )i y i

a a iO 5 O < O

Evaluate G (t ) ! further explained belowaO i21

G (t ) 5 G (t ) 1 G (t )aO i21 O i21 O i21

f aO 5 O < O

The subroutine findmax( ) defines the adaptive obser-
vations set O i as the locations corresponding to the first
ni maximal absolute values of the updated influence
function Gy (ti). The evaluation of G (ti21) requires anaO

update of the adjoint variables at ti to include Oi followed
by a backward integration from ti to ti21. By periodically
updating the influence functions Gy and GO, the algo-

rithm takes into account the cumulative influence of all
observations that are already located. The updated in-
fluence function Gy is inversely proportional to the value
of GO such that the new observations are located in
regions where the sensitivity of the forecast to param-
eters is large and little additional information may be
obtained from previously located observations. The
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FIG. 1. (a) The reference initial state of ozone, t 5 0430 LST; (b) the reference state of ozone at ty 5 1100 LST;
(c),(d) isopleths of the relative errors (absolute values) in the initial guess ozone state and in the corresponding forecast
at ty .

computational cost is dominated by the evaluation of
the influence functions such that the CPU time required
for implementation is roughly

CPU ; CPU([t , t ]) 1 2 3 CPU([T, t ]),y 0 0 (57)

where CPU([t, t0]) is the CPU time of the adjoint model
integration from t to t0. In practice CPU ([t, t0]) is a
small factor (2–5) of the CPU time of the forward in-
tegration from t0 to t (Griewank 2000) such that for
most applications (57) is an acceptable complexity.
Moreover, parallel processing may be used to reduce
the computational cost; for example, the initial evalu-
ation of Gy (t0) and GO(t0) may be done in parallel, shar-
ing the same forward trajectory storage. Additional
memory resources must be allocated during the evalu-
ation of the functions Gy (t0) and GO(t0) to store all the
intermediate values Gy (ti), GO(ti), i 5 I, 1, 2 1. No

claim is made here that the selected path is optimal
among all the possible paths. However, we provided in
an efficient way a good candidate. In the next section
we implement this algorithm and present numerical ex-
periments for a two-dimensional transport-chemistry
model.

6. Numerical experiments

a. The test model

The numerical experiments were performed with a
two-dimensional test model based on the Carbon Bond
Mechanism IV (Gery et al. 1989) with 32 variable chem-
ical species involved in 70 thermal and 11 photolytic
reactions. The spatial domain is [0 250] km 3 [0 250]
km and a uniform grid Dx 5 Dy 5 5 km is considered,
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FIG. 2. The Q statistics test for increasing longer forecast time. A random field is used to generate the initial
perturbation and examples are shown for a magnitude of the intial perturbation dc0 up to 50% of the control initial
state.

such that there are 49 3 49 interior grid points and the
dimension of the discrete state vector is N 5 76 832.
The wind field u(ux, uy) and the diffusion coefficient
K(Kxx, Kyy) are taken constant ux 5 uy 5 10 km h21,
Kxx 5 Kyy 5 1023 km2 s21. The initial state distribution
and emissions values are obtained using the box model
urban and rural scenarios described by Sandu et al.
(1997). An urban region is considered in the domain
[50 150] km 3 [50 150] km. At the center of the urban
area, (100, 100) km, we consider the initial state and
emissions as in the urban scenario. Outside the urban
area rural initial conditions and emissions are specified.
Interpolation is done between the center of the urban
area and the urban boundaries to obtain the initial state
and emissions inside the urban region. Emission rates
are constant in time and no deposition terms are con-
sidered. Boundary conditions are prescribed according
to (3) and (4) with the inflow boundary values c← ob-
tained from a box model integration with rural initial
conditions. The advection operator is discretized using
a limited k 5 1/3 upwind flux interpolation as presented
by Koren (1993) and the diffusion operator using central
differences formula. The time integration of the semi-
discrete model is performed using dimensional Strang
operator splitting (Strang 1968) with a splitting time
step 2Dt 5 30 min. The advection–diffusion terms are
integrated using a second-order explicit Runge–Kutta
method and the chemistry-source terms using a variable
step size second-order L-stable Rosenbrock method
ROS-2 (Verwer et al. 1999). The reference state of

ozone at the initial time t0 5 0430 local standard time
(LST) and at the verification time ty 5 1100 LST are
shown in Figs. 1a and 1b, respectively. An initial guess
state for the model was obtained by shifting SW two
grid points from the initial reference state. After shifting,
random errors up to 20% are introduced in the ozone
state. Isopleths of the relative errors (absolute values)
in the initial guess ozone state and the corresponding
forecast state at ty are shown in Figs. 1c and 1d, re-
spectively. We notice that large errors in the forecast
state at ty are located around the area [100 200] km 3
[100 200] km with maximal errors at the locations x*1
5 (135, 135) km and 5 (190,185) km.x*2

A discrete adjoint model was generated using the ad-
joint model compiler TAMC (Giering 1997) for the ad-
vection–diffusion numerical integration and symbolic
processing for the chemistry integration as described by
Daescu et al. (2000). In the numerical experiments we
present, the restriction of the verification time to ty 5
1100 LST was determined by the high storage require-
ments of the adjoint model implementation and by the
limited computational resources available. For the two-
dimensional example we consider, the discrete model
state is a three-dimensional vector, ck(s, nx, ny), and the
adjoint code requires manipulation of four-dimensional
vectors as the complete forward trajectory is required
and the sensitivity fields are time dependent. To over-
come this difficulty, we used a two-level checkpointing
scheme (Daescu et al. 2000) to store the forward tra-
jectory such that there are two forward integrations per
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FIG. 3. Examples of influence functions for an O3 observation located at (ty , !): (a),(c) with respect to O3 and NO2

state at T, respectively; (b),(d) with respect to O3 and NO2 state at t0, respectively. Isopleths of the magnitude are
shown and notice that a different scaling factor is used for each plot.

backward integration. During the first forward run we
store the trajectory after each operator splitting step (30
min). During the second forward run, we store the tra-
jectory inside each operator splitting step (the chemistry
integration takes on average 8–10 steps for a 30-min
interval). In double precision, our computational re-
sources (HP-UX A 9000/778) allow only manipulations
of vectors with dimension up to ;106 and only 14 states
may be stored in fast memory. With a 30-min operator
splitting step, this limits our analysis interval to 6 h, 30
min, from 0430 to 1100 LST.

b. Validity of the model linearization

The variational data assimilation and the adjoint sen-
sitivity analysis rely on the linearization of the forward
model. Therefore, it is essential to establish the validity
of the linear approximation before these methods can

be used. Hansen and Smith (2000) show that the validity
of the linear approximation is crucial for adaptive strat-
egies based on the linear propagator to be productive.
In this section we follow the approach of Hansen and
Smith (2000) and consider a Q statistic test that is de-
fined by examining the evolution of twin perturbations
about a control trajectory. Using the notation (10), if
c(t) 5 t(c0), t0 , t represents the control trajectoryF
initiated from c0 5 c(t0), we consider two additional
trajectories: c1(t) 5 t( ) initiated from 5 c0 11 1F c c0 0

dc0 and c2t 5 t( ) initiated from 5 c0 2 dc0.2 2F c c0 0

The degree to which the linear approximation of holdsF
at time t can be quantified as

1 2\dc (t) 1 dc (t)\
Q(t , dc , t) 5 , (58)0 0 1

1 2(\dc (t)\ 1 \dc (t)\)
2
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FIG. 4. Cumulative value of the influence function for an O3 observation located at (ty , !) with respect to NO2

emissions in the time interval [t0, ty]. Isopleths of the magnitude are shown.

where dc1(t) 5 c1(t) 2 c(t) and dc2(t) 5 c2(t) 2 c(t).
When the linear approximation is exact ( is linear), QF
5 0, ∀t, dc0, while when Q 5 1 the errors associated
with the linear approximation are equal in magnitude
to the evolved perturbations themselves [see Hansen and
Smith (2000) for details]. The evolution of Q as a func-
tion of the verification time and the magnitude of the
initial uncertanity dc0 is shown in Fig. 2 and indicates
that the linear approximation is valid out to ty 5 24 h.
For a stratospheric photochemical box model, Khattatov
et al. (1999) performed a rigorous analysis of the va-
lidity of the model linearization using the tangent linear
propagator and showed that the linear approximation
remains valid for several days.

c. Examples of influence functions for ozone

To illustrate the influence functions and their domain
of influence, first we consider a fixed location in the

spatiotemporal domain at ty 5 1100 LST and 5 (135,x*1
135) km. The sensitivities of ozone (O3) at (ty , ) withx*1
respect to relative changes in the model state and NO2

emissions in the time interval [t0, T], T 5 1030 LST
are obtained by evaluating the influence function
G (tl), t0 # tl # T. As shown in section 5, these*O ,t ,x3 y 1

values are obtained with a single backward integration
of the adjoint model. Isopleths of the magnitude of the
influence function G (T) for O3 and NO2 are dis-*O ,t ,x3 y 1

played in Figs. 3a and 3c, respectively, and it can be
seen that the domain of influence is located near the
observational point . On the other hand, as shown inx*1
Figs. 3b and 3d, the influence function with respect to
the initial state G (t0) has the domain of influence*O ,t ,x3 y 1

located in a region far away from the observational
point. An analysis of the influence function values
shows that the ozone forecast state is highly sensitive
to changes in the ozone state at intermediate instants in
time, whereas the sensitivity with respect to NO2 has a
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FIG. 5. The location and the influence function G (O3, t0) of the set of fixed observations Of (marked *) at t1 5fO ,t1

0500 LST with respect to the initial O3 state. The verifying analysis at ty 5 1100 LST is located at (135,135) km
(marked !). Dashed lines show the influence function Gy(O3, t0). Isopleths of the magnitude are displayed.

much smaller magnitude. The information provided by
the adjoint integration allows a similar analysis with
respect to all chemical species in the model. The sen-
sitivity with respect to NO2 emissions is given by the
time evolution of the influence function G (E , tl),*O ,t ,x NO3 y 1 2

t0 # tl # T. If we are interested in identifying the regions
where changes in NO2 emissions over the time interval
[t0, T] will influence the ozone forecast state, we may
consider the cumulative value

T

G (E , [t , T ]) 5 |G (E , t)|. (59)* O *O , t ,x NO 0 O , t ,x NO3 y 1 2 3 y 1 2
t5t0

The isopleths of the expression (59) are plotted in Fig.
4 and show a sensitive region located inside the square
[90 110] km 3 [90 110] km.

d. Adaptive observations and 4DVar

The data assimilation experiment is set using model-
generated data (twin experiments) over a 6-h interval
[t0, T] 5 [0430 1030] LST with ‘‘observations’’ pro-
vided for ozone only. The error covariance matrices Rk

are taken to be the identity matrix. The set of control
parameters is considered to be the initial state of the
model, p 5 c0, and no background term is included in
the cost functional. The initial guess state is obtained
as explained in section 6a and the reference run rep-
resents the ‘‘true’’ atmospheric state c t. Fixed obser-
vations O f for ozone are considered at t1 5 0500 LST
only at locations marked by ‘‘*’’ in Fig. 5. Isopleths of
the magnitude of the influence function G (O3, t0) as-fO

sociated with the fixed observations are also displayed
in Fig. 5. We assume that from t0 to T every half-hour
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FIG. 6. The adaptive location of the observational path. Observations selected by method M1 (marked 1) and the
observations selected by the adaptive method M2 (marked •). The time is updated each half-hour and moves backward
on the rows from the upper-left corner (t 5 1030 LST) to the lower-left corner (t 5 0430 LST).

TABLE 1. The CPU time (s) of the forward and adjoint integration and the CPU time (s) required to implement the methods M1 and
M2. An additional forward integration time is included in the CPU time of the backward integration.

CPU ([t0, ty ]) CPU ([ty , t0]) CPU (G )fO CPU (G )aO CPU (M1) CPU (M2)

10.1 30.6 2.6 30.7 40.8 74.3

five additional observations may be provided and their
optimal location must be determined. Since twin ex-
periments are performed, the evolution of the true state
(c t) is known. The goal of the experiment is to select
an observational path such that the solution provided
by the 4DVAR data assimilation will minimize the fore-
cast error for ozone at ty 5 1100 LST defined by the
functional

y f t 2J 5 [O (t , x*) 2 O (t , x*)] ,3 y 1 3 y 1 (60)

where 5 (135, 135) km is the location where thex*1

forecast error at ty was determined to be maximal. In
Fig. 5 this location is marked with ‘‘!’’ and the iso-
pleths of the influence function Gy (O3, t0) are also
shown with dotted line.

Two methods are tested for the adaptive observa-
tions: the first method (M1) is based only on the a
priori evaluation of the sensitivity field Gy and fits in
the traditional adjoint sensitivity framework. The in-
fluence function Gy is evaluated once, with no update,
and the observations at t i are always located at the
points where the magnitude of Gy (t i) is maximal. These
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FIG. 7. The optimization process. (a) Evolution of the cost functional. (b) Evolution of the ozone forecast error at ty 5
1100 LST. Normalized values are shown on a log10 scale with dashed line for method M1 and with solid line for the
proposed adaptive method M2. While both methods provide the same relative reduction in J, the adaptive method M2
provides a much smaller forecast error at ty.

locations are marked in Fig. 6 with ‘‘1’’ as time goes
backward moving on the rows from the upper left cor-
ner (t 5 T ) to the lower left corner (t 5 t 0). The second
method (M2) implements the algorithm presented in
section 5d with a periodic update of the values of Gy .
The selected locations are marked in Fig. 6 with a solid
dot (locations marked in Fig. 6 by ‘‘1’’ and ‘‘·’’ were
selected by both M1 and M2 methods). The compu-
tational cost (as CPU time) of the forward and adjoint
model integration and to implement each of the meth-
ods M1 and M2 is presented in Table 1. The CPU time
required to implement method M1 is dominated by the
expense of evaluating Gy , which is roughly given by
the cost of a forward–backward integration. The CPU
time to implement method M2 requires in addition the
evaluation of the influence function of the fixed ob-

servations G , CPU ; CPU([t1 , t 0]), and a succesivefO

evaluation/update of the influence function of the adap-
tive observations G . For each selected path the lim-fO

ited memory L-BFGS method (Liu and Nocedal 1989)
is used to minimize the corresponding functional (31)
until a reduction Jopt /Jinit 5 1023 is achieved. The evo-
lution of the cost functional (31) during the minimi-
zation process in shown in Fig. 7a with dashed line
for method M1 and with solid line for method M2. At
the same time we monitor the forecast error at ty by
evaluating the functional (60) at each iteration. The
evolution of the forecast error is shown in Fig. 7b with
dashed line for method M1 and with solid line for
method M2. It can be seen that the adaptive strategy
method M2 consistently provides a much more accu-
rate forecast at ty than the method M1.
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7. Conclusions and further research

Strategies for targeting observations have been con-
sidered mostly in numerical weather prediction and ap-
plications to atmospheric chemistry are at a very incip-
ient stage. The problem of the adaptive location of the
observations in atmospheric chemistry research be-
comes increasingly important as transport-chemistry
models begin to be used in forecast mode to enhance
flight planning during large-scale field experiments. Ex-
pensive field-deployed resources can be utilized more
effectively and the science success can be maximized
by selecting an optimal observational path.

Strategies for targeting observations must take into
account the properties of the data assimilation algo-
rithm. With the current computing resources, variational
methods based on adjoint modeling may be used to
perform data assimilation for comprehensive atmo-
spheric chemistry models. We described an adjoint sen-
sitivity method and applied it to the problem of adaptive
selection of the observations for a transport-chemistry
model. Our results show that using the adjoint approach,
sensivities with respect to various model parameters
such as emission and deposition rates or boundary val-
ues may be obtained at a reduced computational cost.
The influence functions associated with the observations
and their domain of influence were shown to be essential
tools in developing a strategy for adaptive observations
in the 4D variational data assimilation context. At the
same time, our results indicate that by using a periodical
update of the sensitivity values to include the influence
from all previously located observations, an observa-
tional path with significant benefits for the model fore-
cast may be determined. The novel algorithm for adap-
tive observations we presented may be efficiently im-
plemented at a computational cost equivalent with the
cost of a few forward model integrations and our pre-
liminary numerical experiments show promising results.
Further research is needed to implement this algorithm
for a comprehensive 3D Sulfate Transport Eulerian
Model (STEM) model (Carmichael et al. 1986); test the
algorithm performance on real observational datasets;
and apply the new adaptive technique to future field
experiments. Future work will also include a compar-
ative study with targeting methods using the dominant
singular vectors and an analysis of the interaction be-
tween the information provided by the ‘‘background’’
parameter estimation and adaptive observations.
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