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SUMMARY

An observation sensitivity (OS) method to identify targeted observations is implemented in the context
of four-dimensional variational (4D-Var) data assimilation. This methodology is compared with the well-
established adjoint sensitivity (AS) method using a nonlinear Burgers equation as a test model. Automatic
differentiation software is used to implement the first-order adjoint model (ADM) to calculate the gradient
of the cost function required in the 4D -Var minimization algorithm and in the AS computations and the
second-order ADM to obtain information on the Hessian matrix of the 4D-Var cost that is necessary in
the OS computations. Numerical results indicate that the observation-targeting is particularly successful
in reducing the forecast error for moderate Reynolds numbers. The potential benefits of the OS targeting
approach over the AS are investigated. The effect of random perturbations on the performance of these
adaptive observation techniques is also analyzed. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Variational data assimilation (VDA) methods combine the information provided by the forecast
model equations and physical information given by the observations in a window of assimilation
in order to retrieve an accurate flow. It is well established that initial condition errors have a major
impact on the forecasts and sensitivity analysis techniques are used to provide an assessment of
the relative importance and contribution of various model parameters and data assimilation system
(DAS) components in reducing the forecast errors. A theoretical framework to sensitivity analysis
in VDA was first presented by Le Dimet et al. [1] in the context of optimal control theory.

Recently, the four-dimensional VDA (4D-Var) method was implemented at various numerical
weather prediction centers to improve the model forecast skill. The advantage of this method is
that it can use time-distributed observations to define a cost function reconciling the forecast with
observations. Besides the existing observational network, some additional observations placed at
critical time and space locations can improve the model forecast. Adaptive (targeted) observation
methods aim to identify optimal locations where a small number of additional observational
resources must be deployed to improve a specific forecast aspect, see Langland [2].

∗Correspondence to: I. M. Navon, Department of Scientific Computing, Florida State University, Tallahassee, FL
32306-4120, U.S.A.

†E-mail: inavon@fsu.edu

Copyright � 2011 John Wiley & Sons, Ltd.

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids
Published online 2 March 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/fld.2545

2012; 69:110–123



The design of cost-effective observation-targeting strategies relies on the ability to a priori
identify optimal sites for collecting data of large impact on reducing forecast errors. Several
techniques for adaptive observations have already been proposed and tested in practical applications,
for instance, the adjoint sensitivity (AS) method of Langland et al. [3], singular vector methods
including the total energy metric and the Hessian metric as discussed by Palmer et al. [4], Gelaro
et al. [5], Daescu and Navon [6], and the sensitivity to observations method by Baker and Daley [7]
and Daescu [8]. In the AS approach, the adjoint model (ADM) is used to evaluate the gradient with
respect to the initial conditions of a scalar measure Jv of the forecast of interest that is defined
over a subregion (verification domain) of the global domain. The singular vector method is used to
identify the error structure in the analysis field of the largest forecast impact. The singular vectors
of the forward tangent linear propagator of a nonlinear dynamical system provide a mathematically
rigorous and tractable approach to quantifying the perturbation growth over a finite time interval.
The dominant singular vectors describe the most rapidly growing structures with respect to a given
metric (norm) over this interval in the tangent linear model (TLM) space.

Baker and Daley [7] have shown that the adjoint of a DAS provides an efficient way to estimate
the forecast sensitivity with respect to observations. The sensitivities may be computed with respect
to any or all of the observations simultaneously based on a single execution of the adjoint DAS.
The observation sensitivity (OS) method has also been used to assess the effectiveness of targeted
observations by Doerenbecher and Bergot [9] and the impact of satellite data by Fourrié et al. [10].
OS estimation was initially considered in the 3D-Var context by Baker and Daley [7], Langland
and Baker [11], Zhu and Gelaro [12] and extended to the 4D-Var context by Daescu [8] and
Trémolet [13].

The key to the OS method is the ability to compute the transpose of the gain matrix that
determines the weights given to the observation-minus-background residuals either explicitly or
through a sequence of available operators. Daescu [8] shows that even without knowing the full
gain matrix, it is possible to compute the OS vector if the Hessian matrix of the cost function with
respect to the control variable is available in the operator format (matrix–vector products). This
information may be provided by implementing a second-order ADM, as explained by Le Dimet
et al. [14].

The plan of this paper is as follows.
In Section 2, we provide a brief description of the theory related to the AS and OS methods.

Section 3 details the model used (Burgers’equation) and the experimental setup and provides details
of the algorithm used for calculating the OS vector. Numerical tests are carried out in Section 4 and
their outcomes are assessed and discussed. Section 5 provides an analysis of the impact of random
perturbations (used to generate the background vector and observations) on the performance of
the AS method and of the OS method. Summary and conclusions are in Section 6.

2. ADJOINT-BASED OBSERVATION-TARGETING METHODS

In 4D-Var data assimilation, an initial condition is sought so that the forecast best fits the obser-
vations within an assimilation time interval. 4D-Var provides an optimal estimate xa0 ∈Rn to the
initial condition of a nonlinear forecast model by minimizing the cost function defined as

J(x0)= 1

2
(x0−xb)

TB−1(x0−xb)︸ ︷︷ ︸
Jb

+ 1

2

N∑
i=0

(yi −Hi (xi ))
TR−1

i (yi −Hi (xi ))︸ ︷︷ ︸
Jo

(1)

where x0= x(t0) denotes the initial state at the initial time t0, xb is a prior (background) estimate
to the initial state, yi ∈Rki , i =0,1,2, . . . ,N , is the set of observations available at time ti , xi =
M(t0, ti )(x0) is the nonlinear model forecast state at ti , and Hi :Rn →Rki is the observation operator
that maps the state space into the observation space at ti . B is the background error covariance
matrix and Ri is the observational error covariance matrix at time ti . In practice, the dimensionality
of the state vector is in the range of n∼107–108 and simplifying assumptions are necessary to
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reduce the computational burden associated with the minimization problem. The model M is
assumed to be perfect and by imposing the model equations as the strong constraint, the control
variable in the minimization of the cost functional (1) is the initial state of the model x0.

The adjoint method provides an efficient approach to evaluate the gradient of the cost functional
with respect to the control variables, ∇x0J, that is necessary in the minimization process. The
gradient is expressed as

∇x0J= B−1(x0−xb)−
N∑
i=0

MT(t0, ti )HT
i R

−1
i (yi −Hi [xi ])

= B−1(x0−xb)−
N∑
i=0

MT
0,iH

T
i R

−1
i (yi −Hi [xi ]) (2)

where Hi is the linearized observational operator, M0,i =M(t0, ti ) is the TLM and its transpose
MT

0,i is the ADM. ADM is computationally obtained by transposing the TLM, integrated backward
in time.

Each iteration of the 4D-Var minimization requires the evaluation of the gradient (2) i.e.
computing the increment yi −Hi [xi ] at each observation time ti during a forward integration,
multiplying it by HT

i R
−1
i and integrating the weighted increments back to the initial time using

the ADM. Therefore, the implementation of the 4D-Var algorithm involves a sequence of calls
to an unconstrained minimization algorithm that uses the functional and gradient information to
provide an optimal initial condition (analysis) xa0. In practice, the implementation of the first- and
second-order ADMs associated with nonlinear dynamics is non-trivial and automatic differenti-
ation software packages that provide forward and reverse sweeps are used to facilitate the code
development see e.g. Giering and Kaminski [15].

2.1. The AS approach

A first approach to identify the adaptive observations is the AS method. In practice, it is of interest
to assess the observation impact on a forecast aspect Jv(xv) defined on the verification domain
Dv at the verification time tv. The functional Jv is typically defined as a scalar measure of the
forecast error over Dv

Jv= 1
2 (x

f
v−x tv)

T PTE P(x fv−x tv) (3)

where x fv is the model forecast at the verification time initialized from the analysis xa0 and x tv is a
verification state at tv that serves as a proxy to the true atmospheric state. P is the state projection
operator on Dv satisfying P∗P= P2= P and the metric E is typically prescribed as a diagonal
matrix associated with the total energy norm.

2.1.1. Location of adaptive observations by AS. The AS approach identifies targeted observations
based on the information extracted from the gradient of the functional (3). The sensitivity of the
forecast aspect with respect to the model state at each targeting instant ti is

∇Jv(xi )=MT
i,vP

TE P(x fv−x tv) (4)

where xi = x(ti ). A sensitivity value of large magnitude indicates that small variations in the model
state xi will have a significant impact on the forecast at the verification time. The AS field at each
targeting instant ti is defined as

Fv(ti )=‖grad Jv(x(ti ))‖E ∈Rn (5)

The E-norm is defined as

‖x‖2E = xTEx (6)
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and in the numerical experiments, E is taken as the Euclidean norm. We prescribe five targeting
instants �k and at each �k , a number of nk =5 adaptive observations are selected at the locations
where the sensitivity field Fv(�k) attains its largest values.

2.2. The OS approach

The theory presented in Daescu [8] shows that if the cost function J(x,u) is a twice continuously
differentiable function involving parameter vector (input data) u∈Rp , then the optimal solution
x̄ corresponding to the parameter ū that minimizes J is obtained by satisfying the condition
∇xJ(x̄ , ū)=0. Assuming that the Hessian matrix ∇2

xxJ(x̄, ū) is positive definite, the implicit
function theorem applied to the first-order optimality condition

∇xJ(x̄, ū)=0∈Rn

guarantees the existence of a neighborhood of ū where the optimal solution is a function of data
x = x(u) and the gradient matrix

∇ux= (∇ux1,∇ux2, . . . ,∇uxn)∈Rp×n (7)

is expressed as

∇ux(u)=−∇2
uxJ[x(u),u]{∇2

xxJ[x(u),u]}−1 (8)

Rabier and Courtier [16] show that the inverse of the Hessian matrix ∇2
x0x0J is an approximation of

the error covariance matrix A associated with the optimal analysis xa0. For notational convenience,
we denote

A= [∇2
x0x0J(xa0)]

−1∈Rn×n (9)

By differentiating (2) with respect to yi , we obtain

∇2
yi x0J(xa0)=−R−1

i HiM0,i (10)

and from Equations (8), (9), and (10) the analysis sensitivity to observations is expressed as

∇yi x
a
0 = −[∇2

yi x0J(xa0)]A

=R−1
i HiM0,iA∈Rki×n (11)

The gradient of Jv defined in (3) with respect to the forecast at verification time tv is

∇xvJ
v= PTE P(x fv−x tv) (12)

and using the chain rule we obtain

∇yiJ
v(xa0)=∇yi x

a
0∇x0J

v(xa0)∈Rki (13)

where the gradient ∇x0J
v(xa0) is the forecast sensitivity to the analysis at the initial time and it is

obtained by integrating the ADM along the forecast model trajectory initialized from xa0

∇x0J
v(xa0)=MT

0,v∇xvJ
v∈Rn (14)

By using (11), Equation (13) can be written as

∇yiJ
v(xa0)=R−1

i HiM0,iA∇x0J
v(xa0)∈Rki (15)

which provides the forecast sensitivity to the observations.
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2.2.1. Location of adaptive observations by OS. The 4D-Var method allows an optimal use of
time–space-distributed observational data. In the context of adaptive observations, we need to
consider additional observations alongwith routine observations. To identify the location of adaptive
observations that have a large impact on the forecast, we evaluate the OS with respect to adaptive
observations by using Equation (15), but we use the analysis error covariance matrix A associated
with routine observations only. For details, see Doerenbecher and Bergot [9]. The OS vectors are
used to determine the location of targeted observations. By analogy to the AS setup, we specify
five targeting instants �k and at each �k , a number of nk =5 adaptive observations are selected at the
locations where the sensitivity field |∇yaJ

v(�k)| attains its maximum values, where the subscript
a stands for adaptive observations.

3. THE DESIGN OF THE NUMERICAL EXPERIMENTS

The 4D-Var method requires a significant computational effort to evaluate the forecast sensitivity
to observations when a large-scale model is used. Simple prototype models allow to provide a
proof-of-concept and are used as a first step in testing new methodologies, see e.g. Xu et al. [17].
A nonlinear Burgers equation model is described below. The algorithm to compute the OS consists
of:

• A model integration of a reference (‘true’) initial condition state x t0 to obtain the verification
state x tv at tv

x tv=M0,v(x
t
0) (16)

• Obtain optimal initial condition xa0 by minimizing the cost functional J defined in (1).
Calculate model forecast

x fv=M0,v(x
a
0) (17)

• Compute ∇xvJ
v= PTE P(x fv−x tv) and use it to initialize the ADM.

• Integration of the ADM backward from tv to t0: ∇x0J
v(xa0)=MT

0,v∇xvJ
v.

• Solve the linear system for z0:A−1z0=∇x0J
v(xa0) using an iterative procedure with the

Hessian matrix–vector products provided by the second-order ADM.
• Integrate the TLM from t0 to ta (observation-targeting time): za=M0,az0.
• Mapping on observation space, weighting: ∇yaJ

v=R−1
a Haza.

3.1. Experimental setup

Illustrative numerical experiments are set up with the one-dimensional nonlinear Burgers equation

�x
�t

+x
�x
��

= 1

Re

�2x

��2
(18)

where Re denotes the Reynolds number. The initial condition is taken as

x(�,0)=
{
1.0, −2���0

0.0, 0<��2

and boundary conditions are specified as

x(−2.0, t)=1.0 and x(2.0, t)=0.0

To discretize Equation (18), we use the forward in time and centered in space (FTCS) finite
difference method with a time step �t=0.01. The numerical grid comprises 101 grid points in
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Figure 1. Burgers model solutions for Reynolds number Re=50 at different time steps.

space and 300 steps in time, such that tv=3, and a Reynolds number Re=50 is used in all
experiments. The equations of the discrete model are

xk+1
j = xkj −

�t

4��
{(xkj+1)

2−(xkj−1)
2}+ 1

Re

�t

��2
{xkj+1−2xkj +xkj−1} (19)

where �� is the space grid increment. Figure 1 displays the model state at various time instants.
In Equation (1), we see that the cost function requires background information as well as observa-
tions. A background state xb and the observation vector y are generated from the model solution
initialized with x t0 by introducing random perturbations taken from normal distributions N (0,�2

b)
and N (0,�2

o), respectively, and the standard deviations specified as �b=0.05 and �o=0.04. The
observational errors are assumed to be uncorrelated, such that the observation error covariance
matrices Ri are diagonal and time invariant with the values of the diagonal entries is set to �2

o.
The routine observational data is assumed to be available at every five grid points in the space
dimension and scattered in time at an increment of 20 time steps between t0=1 and tN =100,
which is our 4D-Var data assimilation window. For simplicity, we assume that the background
errors are uncorrelated and as a result the background error covariance is also a diagonal matrix
with the diagonal entries set to �2b.

The L-BFGS (limited memory Quasi-Newton) minimization algorithm [18] is used to solve the
nonlinear 4D-Var minimization problem with a convergence criterion ‖∇x0J‖�10−5, where ‖·‖
denotes the Euclidean norm in Rn . The reference solution x tv at tv and the model forecast x fv from
an optimal initial condition obtained by the assimilation of only routine observations are presented
in Figure 2.

4. NUMERICAL RESULTS

Numerical experiments are performed to provide a comparative analysis between the AS and the
OS methods to observation-targeting and to assess their impact on the forecast error reduction on
the verification domain Dv at verification time tv. In our experiments, we select the verification
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Figure 2. The reference state x tv=M0,v(x t0) and the model forecast state x fv=M0,v(xa0)
at the verification time tv, where xa0 denotes the optimal initial condition obtained from

data assimilation of routine observations only.

domain as the spatial region [−1.52,0.20] where an increased forecast error was noticed. The
adjoint method requires only the evaluation of the gradient of the functional Jv that is defined
in (4). On the other hand, the evaluation of the OS is computationally expensive. It requires the
availability of the Hessian matrix of the 4D-Var cost function (1) in operator format and thus
the development of the second-order ADM. The correctness of the first-order adjoint (FOA) and
second-order adjoint (SOA) model implementation may be validated using standard procedures
such as a gradient test, see Navon et al. [19]. A Taylor expansion in the direction of ∇J leads to

J(x+�∇J)=J(x)+�∇JT∇J+ 1
2�

2∇JT[∇2J]∇J+O(�3) (20)

and allows to verify the FOA and SOA implementation according to the criteria

�(�)= J(x+�∇J)−J(x)

�∇JT∇J
=1+O(�)

and respectively,

�(�)= J(x+�∇J)−J(x)−�∇JT∇J
1
2�

2∇JT[∇2J]∇J
=1+O(�)

The graphs of the FOA and SOA verification procedures are displayed in Figure 3. The results show
that �(�)≈1 as well as �(�)≈1 with the increasing accuracy until the round-off error becomes
dominant at the level of machine accuracy.

4.1. Observation-targeting using the AS

To evaluate the adjoint field (4), the verification state x tv is calculated at tv using the initial condition
x t0, x

t
v=M0,v(x t0), and the forecast state x fv is taken as x fv=M0,v(xa0) with an optimal initial

condition xa0 obtained by minimizing the cost function (1) where only routine observations are
assimilated. The vector x fv−x tv is then used to initialize the backward integration of the ADM
that provides the gradient (4) at every ti ∈ [t0, tf]. We obtain the AS vector and the optimal space
locations for adaptive observations according to the method discussed in Section 2.1.1. The AS
vector at various time instants is displayed in Figure 4. We choose five adaptive observations at
each targeting instant �k and the locations of adaptive observations are shown in Figure 5.
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Figure 4. The spatial profile of the adjoint sensitivity vector at various time instants.

4.2. Observation-targeting using the OS

The OS vectors are evaluated using the algorithm presented in Section 3. At the first stage, we
evaluate ∇xvJ

v according to (12) and use it to initialize the ADM. The FOA model is integrated
backward to obtain the gradient ∇x0J

v(xa0) evaluated at the analysis x
a
0. The linear system A−1z0=

∇x0J
v(xa0) is then solved where A−1 is the Hessian matrix of the cost function. The simplicity of

our model and the use of a second-order ADM allowed us to obtain the full Hessian matrix, see
Wang et al. [20], Le Dimet et al. [14]. We verified that this matrix is symmetric and we found that
all its eigenvalues are positive. Therefore, the Hessian matrix is positive definite and a Cholesky
decomposition method was used to solve the linear system. In our experimental setup, all the
observational operators are linear and the observation error covariance matrices Ri are diagonal
such that each of R−1

i is also a diagonal matrix with diagonal entries �−2
o . OS vectors are displayed

in Figure 6 and the adaptive observations are selected as discussed in Section 2.2.1. The locations
of the adaptive observations are displayed in Figure 7.
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Figure 6. Observation sensitivity vector at different time steps for R=50.

Numerical experiments are performed to assimilate both routine and adaptive observations by
using the 4D-Var method. First, we minimize the cost functional with routine observations. The
initial guess provided to the minimization routine is produced by perturbing the given initial
condition x t0 with the Gaussian random errors of 3%. At each iteration of the minimization
process, we monitor the current analysis estimate xa0, the corresponding value of the cost func-
tion J(xa0), as well as the gradient ∇J(xa0). The evolution of the forecast error functional Jv

at tv is also monitored through additional model forecasts at tv. We then use adaptive obser-
vations along with routine observations to perform the 4D-Var data assimilation and monitor
the same DAS output aspects as described above. The only difference from the assimilation of
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Figure 8. The normalized value of the cost function J in (a) and gradient of cost function (b) when both
routine and adaptive observations are assimilated. The gradients are shown on a semi-logarithmic scale.

routine observations only is that we incorporate one additional term for adaptive observations
into the cost function in (1), Jo=Jr

o+Ja
o, where the cost component Jr

o incorporates the
routine observations and the cost component Ja

o incorporates the additional adaptive observa-
tions. For each assimilation experiment, the evolution of the 4D-Var cost function and its gradient
are displayed in Figures 8(a) and (b), respectively. The evolution of the forecast error Jv(xa0)
during the assimilation process is displayed in Figure 9 and it is noticed that although only a few
additional adaptive observations were assimilated, their impact on the forecast error reduction is
significant.

5. EFFECT OF RANDOM PERTURBATIONS ON THE FORECAST

An improved forecast can be obtained by using a few adaptive observations at locations that are
dynamically identified based on the information provided by the AS or the OS fields. In our
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the iterative data assimilation process.
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Figure 10. The normalized forecast errors at tv over the verification domain for various sets
of random perturbations in the data assimilation system input: (a) �b=0.08, �o=0.06 and
�i=0.05; (b) �b=0.05, �o=0.09 and �i=0.03; (c) �b=0.08, �o=0.04 and �i=0.05; and

(d) �b=0.09, �o=0.04 and �i=0.05.
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Figure 11. The normalized forecast errors at tv over the verification domain with various sets
of random perturbations in the data assimilation system input: (a) �b=0.08, �o=0.03 and
�i=0.05; (b) �b=0.09, �o=0.03 and �i=0.05; (c) �b=0.15, �o=0.05 and �i=0.10; and

(d) �b=0.12, �o=0.04 and �i=0.05.

experiments, random perturbations taken from a normal distribution N (0,�2) are used to generate
the background vector, observations, and the initial condition for data assimilation. Let �b, �o, and
�i denote the standard deviation of the errors in background, observations, and the initial condition,
respectively. In order to assess the effect of random perturbations on the performance of the AS
and of the OS methods, we use several sets of standard deviations. We monitor the distribution
of the forecast error defined in (3) over the verification domain at the verification time after the
data assimilation has taken place with routine plus adaptive observations. The results for forecast
errors are presented in Figures 10 and 11. These figures show that the forecast errors improve if
adaptive observations are used together with routine observations. In our experiments, we have
found that the impact of targeted observations on the forecast error reduction is closely determined
by the ratios ro=�b/�o and ri=�b/�i. Both AS and OS targeting methods work well if ri�2, but
their performance still depends on the specification of ro. Experiments performed with different
sets of random perturbations reveal that the OS targeting outperforms the AS targeting if ro�2.5,
as shown in Figures 10(a)–(d). The performance of the OS is almost the same as the performance
of AS if ro>2.5, as shown in Figures 11(a)–(c). Furthermore, if ri>2 then the 4D-Var method
fails to provide an improved forecast when only routine observations are used, see Figure 11(d),
whereas the AS and OS observation targeting techniques will still provide improved forecasts and
their performance is similar.
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6. SUMMARY AND CONCLUSIONS

In this work, the implementation and a comparative performance analysis are presented for two
observation-targeting methods—the AS and the OS to identify optimal sites of the additional
observational data of large impact on the forecast error reduction. We have found that the forecast
error may be significantly reduced by adding only a few properly selected adaptive observations
to the routine observations. The performance of the adaptive observations techniques was tested
in a twin experiments’ framework and it was found to closely depend on the relative magni-
tude of the random perturbations used to generate the background vector and the observations.
In our experiments, we noticed that if the ratio ro between the standard deviation of the errors
in the background vector and the standard deviation of the errors in observations is less than 2.5,
then the OS method outperforms the AS method, whereas if the above ratio is greater than 2.5
then both targeting methods perform almost the same. The AS method can be used for a large
perturbed background vector and small perturbed observational data to reduce the forecast errors.
The increased computational cost of implementing the OS method is justified in the presence of
increased observational errors where our preliminary numerical experiments indicate that the OS
approach may significantly outperform the AS approach to observation-targeting. The availability
of the Hessian matrix information is a key ingredient in the implementation of the OS approach
and providing this information for large-scale modeling is a particularly difficult task due to the
present day limitations on computer memory and the complexity of the necessary SOA code devel-
opment. Given the simplicity of our experimental setup, the numerical results in this work should
be merely regarded as a presentation of a proof-of-concept. A necessary next step in this research
is to implement and further test the OS method using a more realistic model and DAS. In this
context, additional simplifications are necessary to facilitate the implementation and techniques of
reduced-order modeling may be used to alleviate the computational cost of obtaining second-order
derivative information.

Issues of threshold processes and nondifferentiability while outside the scope of the present
paper could be addressed in further research.
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