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ABSTRACT

Strategies to achieve order reduction in four-dimensional variational data assimilation (4DVAR) search
for an optimal low-rank state subspace for the analysis update. A common feature of the reduction methods
proposed in atmospheric and oceanographic studies is that the identification of the basis functions relies on
the model dynamics only, without properly accounting for the specific details of the data assimilation system
(DAS). In this study a general framework of the proper orthogonal decomposition (POD) method is
considered and a cost-effective approach is proposed to incorporate DAS information into the order-
reduction procedure. The sensitivities of the cost functional in 4DVAR data assimilation with respect to the
time-varying model state are obtained from a backward integration of the adjoint model. This information
is further used to define appropriate weights and to implement a dual-weighted proper orthogonal decom-
position (DWPOD) method for order reduction. The use of a weighted ensemble data mean and weighted
snapshots using the adjoint DAS is a novel element in reduced-order 4DVAR data assimilation. Numerical
results are presented with a global shallow-water model based on the Lin–Rood flux-form semi-Lagrangian
scheme. A simplified 4DVAR DAS is considered in the twin-experiment framework with initial conditions
specified from the 40-yr ECMWF Re-Analysis (ERA-40) datasets. A comparative analysis with the stan-
dard POD method shows that the reduced DWPOD basis may provide an increased efficiency in repre-
senting an a priori specified forecast aspect and as a tool to perform reduced-order optimal control. This
approach represents a first step toward the development of an order-reduction methodology that combines
in an optimal fashion the model dynamics and the characteristics of the 4DVAR DAS.

1. Introduction

Implementation of modern data assimilation tech-
niques as formulated in the context of estimation
theory (Jazwinski 1970; Lorenc 1986; Daley 1991; Ben-
nett 1992; Cohn 1997; Kalnay 2003) is often hampered
by the high computational cost to obtain the analysis
state and to dynamically evolve the error statistics. A
characteristic feature of the global ocean and atmo-
spheric circulation models is the large dimensionality of
the discrete state vector, typically in the range 106–107.
This dimension is likely to increase in the near future
when climate models are envisaged to run at a horizon-
tal resolution as high as 1⁄4 degree in forecast and data-

assimilation modes. To accommodate these require-
ments, computationally efficient techniques for assimi-
lating an ever-increasing amount of observational data
into models must be developed.

Significant efforts have been dedicated to ease the
computational burden of Kalman-filter-based algo-
rithms through various simplifying assumptions. State
reduction techniques and low-rank approximations of
the error covariance matrix are described in the work of
Dee (1991), Todling and Cohn (1994), Cane et al.
(1996), Pham et al. (1998), and Hoteit and Pham (2003).
Ensemble Kalman filter (EnKF) methods build on the
original work of Evensen (1994) to provide the analysis
state and error covariance using an ensemble of model
forecasts (Molteni et al. 1996; Burgers et al. 1998;
Anderson 2001). A review of the EnKF and low-rank
filters can be found in the work of Evensen (2003) and
Nerger et al. (2005) who emphasize that a common
feature of these methods is that their analysis step op-
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erates in a low-dimensional subspace of the true error
space.

In four-dimensional variational data assimilation
(4DVAR) the analysis state is obtained by solving a
large-scale optimization problem (Le Dimet and Tala-
grand 1986) with the initial conditions of the discrete
model as control parameters. The incremental ap-
proach (Courtier et al. 1994) is currently used at nu-
merical weather prediction centers implementing
4DVAR (Rabier et al. 2000). Computational savings
are further achieved by running coarse-resolution tan-
gent linear and adjoint models in the inner loop of the
minimization. Implementation issues and a study on the
convergence of the incremental 4DVAR method are
provided by Trémolet (2004, 2005).

Although running a coarse-resolution model pro-
vides a certain state reduction, the issue of finding an
optimal low-dimensional state subspace for the
4DVAR minimization problem is an open question
where the current state of research is at an incipient
stage. Mathematical foundations of approximation
theory for large-scale dynamical systems and flow con-
trol are presented by Antoulas (2005) and Gunzburger
(2003). A substantial amount of work was done in the
climate research community to build reduced models of
the atmospheric dynamics with a minimal number of
degrees of freedom. The proper orthogonal decompo-
sition (POD) method [also known as the method of
empirical orthogonal functions (EOFs), Karhunen–
Loève decomposition] has been widely used in fluid
dynamics (Holmes et al. 1998; Sirovich 1987) and at-
mospheric flow modeling (Selten 1995, 1997; Achatz
and Opsteegh 2003) to obtain basis functions for re-
duced-order dynamics. Shortcomings of the POD/
EOFs reduced models are discussed by Aubry et al.
(1993), and in practice other choices should be also
considered. In particular, principal interaction patterns
(Hasselmann 1988) have shown the potential for
achieving improved results when compared with EOFs
(Achatz and Schmitz 1997; Kwasniok 2004; Crommelin
and Majda 2004). While these studies were only con-
cerned with the construction and analysis of reduced
models to the atmospheric flow, the development and
implementation of optimal order-reduction strategies
in the context of 4DVAR atmospheric data assimilation
is a far more difficult task.

For oceanic models, initial efforts on reduced-order
4DVAR were put forward by Blayo et al. (1998) and
Durbiano (2001). The use of EOFs to identify a low-
rank control space has shown promising results in the
studies of Robert et al. (2005), Hoteit and Köhl (2006),
and Cao et al. (2007). The potential use of the reduced-

order 4DVAR as a preconditioner to 4DVAR data as-
similation was considered by Robert et al. (2006). A
common feature of the reduction methods used in these
studies is that the computation of the basis functions
relies on the model dynamics only, without properly
accounting for the specific details of the data assimila-
tion system (DAS). As such, the efficiency of the re-
duced basis may be impaired by the lack of information
on the optimization problem at hand.

Meyer and Matthies (2003) used adjoint modeling to
improve the efficiency of the POD approach to model
reduction when targeting a scalar aspect of the model
dynamics. A method for achieving balanced model re-
duction of linear systems using POD and potential ex-
tensions to nonlinear dynamics are discussed by
Willcox and Peraire (2002). A goal-oriented, model-
constrained optimization framework for reduction of
large-scale models is presented in the work of Bui-
Thanh et al. (2007).

In this work we consider a novel method for incor-
porating DAS information into the order-reduction
procedure by implementing a dual-weighted proper
orthogonal decomposition (DWPOD) method. The
DWPOD method searches to provide an enriched set
of basis functions that combine information from both
model dynamics and DAS. The use of a weighted en-
semble data mean and weighted snapshots using the
adjoint DAS is a novel element in reduced-order
4DVAR data assimilation. The traditional POD basis
consists of the modes that capture most of the “energy”
of the dynamical system, whereas the DWPOD basis
may include lower energy modes that are more signif-
icant to the representation of the 4DVAR cost func-
tional. The DWPOD procedure is shown to be cost-
effective since it provides a substantial qualitative im-
provement compared with the standard POD approach
at the additional computational expense of a single ad-
joint model integration.

Henceforth, the paper is organized as follows: in sec-
tion 2 the 4DVAR data assimilation problem is briefly
revisited. A general POD framework for reduced-order
4DVAR and the dual-weighted POD approach are de-
scribed in section 3. Numerical experiments with a fi-
nite-volume global shallow-water model are provided
in section 4. Concluding remarks and further research
directions are presented in section 5.

2. The 4DVAR data assimilation problem

The 4DVAR data assimilation searches for an opti-
mal estimate (analysis) xa

0 of the m-dimensional vector
of the discrete model initial conditions by solving a
large-scale optimization problem
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min
x 0∈Rm

J�x0� for x0
a � arg minJ . �1�

The cost functional

J �
1
2

�x0 � xb�TB�1�x0 � xb�

�
1
2 �

k�0

N

�Hkxk � yk�TRk
�1�Hkxk � yk� �2�

includes the distance to a prior (background) esti-
mate to initial conditions xb and the distance of the
model forecast xk � M (x 0) to observations yk, for
k � 0, 1, . . . , N, time distributed over the analysis
interval [t0, tN]. The model M is nonlinear and for sim-
plicity, we assume a linear representation of the obser-
vational operator Hk that maps the state space onto the
observation space at time tk. Statistical information on
the errors in the background and data is used to define
appropriate weights: B is the covariance matrix of the
background errors and Rk is the covariance matrix of
the observational errors. An accurate estimation of the
matrix B is difficult to provide and, given its huge di-
mensionality, simplifying approximations are required
for its practical implementation (Lorenc et al. 2000).
Information on the error statistics may be obtained us-
ing differences between forecasts with different initial-
ization times as in the National Meteorological Center
(NMC) method (Parrish and Derber 1992) or ensemble
methods based on a perturbed forecast-analysis system.
Recent advances in modeling flow-dependent back-
ground error variances are discussed by Kucukkaraca
and Fisher (2006).

3. A general POD framework to reduced-order
4DVAR data assimilation

The specification of the basis functions lies at the
core of the reduced-order 4DVAR procedure. The
POD method provides an optimal low-rank represen-
tation of an ensemble dataset {x (1), x (2), . . . , x (n)},
where x (i) ∈ Rm that may be collected from observa-
tional data and/or the state evolution at various instants
in time, t1, t2, . . . , tn (method of snapshots; Sirovich
1987). The use of data weighting as a tool to improve
the performance of the POD method was previously
considered in model reduction for dynamical systems.
Graham and Kevrekidis (1996) proposed an ensemble
average based on the arc length in the phase space and
emphasized that the choice of the ensemble average
(weights) for the POD method can have a significant
impact on the selection of the dominant modes. A
weighted POD (w-POD) approach is discussed by

Christensen et al. (2000) who consider including mul-
tiple copies of an “important” snapshot in the ensemble
dataset. Kunisch and Volkwein (2002) use the time dis-
tribution of the snapshots �ti � ti�1 � ti to specify
weights and provide a detailed theoretical framework
and error estimates with applications to Navier–Stokes
equations.

We define the weighted ensemble average of the
data as

x � �
i�1

n

�ix
�i�, �3�

where the snapshot weights �i are such that 0 	 �i 	 1
and �n

i�1 �i � 1, and they are used to assign a degree of
importance to each member of the ensemble. Time
weighting is usually considered, and in the standard
approach �i � 1/n. A modified m 
 n dimensional
matrix is obtained by subtracting the mean from each
snapshot

X � �x �1� � x, x �2� � x, . . . , x �n� � x � �4�

and the weighted covariance matrix C ∈ Rm
m is de-
fined as

C � XWXT, �5�

where W � diag{�1, . . . , �n} is the diagonal matrix of
weights. Since the metric on the state space is often
related to the physical properties of the system, we con-
sider a general norm ||x || 2

A � x, x�A � xTAx, where
A ∈ Rm
m is a symmetric positive definite matrix. For
the standard Euclidean norm A is the identity matrix,
and for the total energy metric A is a diagonal matrix.

The POD basis of order k � n provides an optimal
representation of the ensemble data in a k-dimensional
state subspace by minimizing the averaged projection
error

min
��1,�2, . . . ,�k� �i�1

n

�i || �x
�i� � x � � P�,k�x �i� � x � ||A

2 �6�

subject to the A-orthonormality constraint �i, �j�A �
�i, j, for 1 � i, j � k, where P�,k is the projec-
tion operator onto the k-dimensional space Span{�1,
�2, . . . , �k}

P�,k�x� � �
i�1

k

x, �i�A�i .

The POD modes �i ∈ Rm are eigenvectors to the
m-dimensional eigenvalue problem

CA�i � � i
2�i , �7�

and since in practice the number of snapshots is much
smaller than the state dimension, n K m, an efficient
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way to compute the reduced basis is to solve the n-
dimensional eigenvalue problem

W1�2XTAXW1�2�i � � i
2�i �8�

to obtain the eigenvectors �i ∈ Rn, orthonormal with
respect to the Euclidean norm, then to compute the
POD modes as

�i �
1
�i

XW1�2�i . �9�

From (8) and (9) the close relationship with the singular
value decomposition (Golub and Van Loan 1996)

A1�2XW1�2 � U�VT �10�

is established: �1 � �2 � . . . �n � 0 are the singular
values, �i the right singular vectors and A1/2�i the left
singular vectors. The fraction of total information (en-
ergy) captured by the dominant k modes is I(k) �
(�k

i�1�
2
i )/(�n

i�1�
2
i ), and in practice, given a tolerance 0

	 � � 1 in the vicinity of unity, k is selected such that
I(k) � �.

a. The reduced-order 4DVAR

The k-dimensional reduced-order control problem is
obtained by projecting x0 � x onto the POD space

P�,k�x0 � x� � �� � �
i�1

k

�i�i , �11�

where the matrix � � [�1, . . . , �k] ∈ Rm
k has the
POD basis vectors as columns, and � � (�1, . . . �k)T ∈
Rk is the coordinate vector in the reduced space

� i � �i
TA�x0 � x�, and � � �TA�x0 � x�. �12�

The large-scale 4DVAR optimization (1) is thus re-
placed by the reduced-order 4DVAR problem of find-
ing the optimal coefficients � such that

Ĵ��� :� J�x � ��� and min
�∈Rk

Ĵ���. �13�

If �a denotes the solution to (13), an approximation to
the analysis (1) is obtained as

x0
a � x � ��a. �14�

It should be noticed that in the reduced-order
4DVAR as formulated in (13) only the initial condi-
tions are projected into the POD state subspace and the
cost functional is computed using the full model dynam-
ics. The gradient of the cost (13) is expressed as

�� Ĵ��� � �T��x0
J � |x 0�x��� , �15�

and its evaluation requires integration of the full ad-
joint model. Second-order derivatives in the reduced
space may be computed if a full second-order adjoint
model is available (Daescu and Navon 2007). Conse-
quently, computational savings may be achieved only
by a drastic reduction in the number of iterations be-
cause of the low dimension of the optimization problem
(13).

Once the reduced basis is selected, a reduced-model
approach to order reduction may be also considered by
projecting the full model dynamics into the reduced
space. If the full model dynamics is described by the
time-continuous differential system x�(t) � M(x, t),
where x�(t) denotes the time derivative, the approxima-
tion x̂(t) � x � ��(t) to x(t) evolves in time according
to the differential equations system (Antoulas 2005;
Rathinam and Petzold 2003)

x̂��t� � ��TAM�x̂, t� and �16�

x̂�0� � ��TA�x�0� � x� � x, �17�

and the coefficients �(t) ∈ Rk may be obtained by in-
tegrating the reduced-model equations

���t� � �TAM �x � ���t�, t� and �18�

��0� � �TA�x�0� � x�. �19�

Such an approach may result in significant computa-
tional savings when Galerkin-type numerical schemes
are implemented (Ravindran 2002; Kunisch and Volk-
wein 1999) or an implicit time integration scheme to
finite-difference/finite-volume semidiscretization is
considered (van Doren et al. 2006). However, for finite-
difference and finite-volume numerical methods with
explicit time schemes, integration of the reduced-model
Eqs. (18) and (19) will require in general an increased
CPU time because of the cost of repeated projection
operations (unless analytic simplifications can be
made). An additional issue in the reduced-model ap-
proach is that the projections (16) and (17) introduce a
model error that is difficult to quantify (Rathinam and
Petzold 2003) and thus difficult to account for in the
reduced 4DVAR data assimilation.

b. The dual-weighted POD basis

The specification of the weights �i to the snapshots
may have a significant impact on which modes are se-
lected as dominant and thus inserted into the POD ba-
sis. The dual-weighted approach we propose makes use
of the time-varying sensitivities of the 4DVAR cost
functional with respect to perturbations in the state at
the time instants ti, i � 1, . . . , n when the snapshots are
taken. For simplicity of the presentation, we first as-
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sume a cost functional J [x(t)] defined explicitly in terms
of the state at only one time instant t. Using the model
equations as constraints, for any fixed time instant � 	
t, x(t) � M�,t[x(�)] such that implicitly J is a function of
x(�). To first-order approximation, the impact of small
errors/perturbations �xi in the state vector at a snapshot
time ti � t on J may be estimated using the tangent
linear model M(ti, t) and its adjoint model M*(t, ti):

�J � �x�t�J �x�t��, �x�t�� � �x�t�J �x�t��, M�ti, t��x�ti��

� M*�t, ti��x�t�J �x�t��, �x�ti�� � ��ti�, �x�ti�� �20�

where �(ti) ∈ Rm, �(ti) � M*(t, ti)�x(t)J [x(t)] are the
adjoint state variables at time ti.

From (20) it follows that

|�J | � |��ti�, �x�ti�� | � |A�1��ti�, �x�ti��A |

� ||A�1��ti� ||A ||�x�ti� ||A. �21�

The dual weights �i to the snapshots are defined as
normalized values

�i � ||A�1��ti� ||A and �i �
�i

�
j�1

n

�j

for i � 1, 2, . . . , n

�22�

and provide a measure of the relative impact of the
state errors ||�x(ti) ||A on the cost functional. A large
value of �i indicates that state errors at ti play an im-
portant role in the representation of the cost functional,
and an increased weight is assigned to the fit to snap-
shot data x (i) in the reduced-basis optimization problem
(6). The weights (22) are determined by the 4DVAR
data assimilation cost functional (2) such that informa-
tion from the DAS is incorporated directly into the op-
timality criteria that identifies the reduced-space basis
functions. The DWPOD basis is thus adjusted to the
4DVAR optimization problem at hand.

The use of adjoint modeling to identify “target” re-
gions where observational data is of most benefit to a
forecast aspect J [x(t)] is well established in the context
of targeted observations for high-impact weather
events (Langland et al. 1999). In observation targeting,
a time instant � 	 t is specified and the adjoint sensi-
tivity field �(�) is used to assign a degree of importance
to each grid point for data collection. The dual-
weighted approach may be thought of as a targeting-
in-time procedure (rather than targeting the state space
at a given time) that assigns weights to time-distributed
snapshot data using a time-varying adjoint sensitivity
field.

From the implementation point of view, the evalua-
tion of all dual weights requires only one adjoint model

integration. Corresponding to the cost (2), the integra-
tion of the adjoint equations

��tN�1� � 0, �23�

��tk� � M*�tk�1, tk���tk�1� � Hk
TRk

�1�Hkxk � yk� for

k � N, N � 1, . . . , 0, and �24�

��t0� � ��t0� � B�1�x0 � xb� �25�

provides the values of the adjoint variables at each in-
tegration time step �(ti), tN � ti � t0 (Giering and Ka-
minski 1998). Evaluation of the coefficients �i in (22)
thus proceeds backward in time during the adjoint
model integration. Since in the 4DVAR data assimila-
tion context the adjoint model is already available, little
additional software development is required and the
increased computational cost of implementing DW-
POD over the standard POD method is modest. In the
numerical experiments section we compare the perfor-
mance of these two methods first as tools to provide a
reduced-order representation of a forecast output, then
as tools to perform reduced-order 4DVAR data assimi-
lation. The impact of the snapshot data specification on
the efficiency of the POD and DWPOD methods is also
investigated.

4. Numerical experiments

The numerical experiments are performed with a
two-dimensional global shallow-water (SW) model us-
ing the explicit flux-form semi-Lagrangian (FFSL)
scheme of Lin and Rood (1997). The finite-volume
FFSL scheme is of particular importance since it pro-
vides the horizontal discretization to the finite-volume
dynamical core of the National Center for Atmospheric
Research (NCAR) Community Atmosphere Model
(CAM) and the National Aeronautics and Space Ad-
ministration (NASA) Goddard Earth Observing Sys-
tem-5 (GEOS-5) data assimilation and forecasting sys-
tem (Lin 2004). The adjoint model to the SW-FFSL
scheme used in this study was developed in the work of
Akella and Navon (2006) with the aid of automatic
differentiation software (Giering and Kaminski 1998).

Input data obtained from the 40-yr European Centre
for Medium-Range Weather Forecasts (ECMWF) Re-
Analysis (ERA-40) atmospheric datasets are used to
specify the SW model state variables at the initial time:
geopotential height h and the zonal and meridional
wind velocities (u, �). We consider a 2.5° 
 2.5° reso-
lution (144 
 72 grid cells) such that the dimension of
the discrete state vector x � (h, u, �) is �3 
 104. The
time integration is performed with a constant time step
�t � 450 s using a staggered “CD-grid” system with the

1030 M O N T H L Y W E A T H E R R E V I E W VOLUME 136



prognostic variables updated on the D-grid (Lin and
Rood 1997). Point values of the model output are ob-
tained by converting the winds from the D-grid to an
unstaggered A-grid.

As a reference initial state x ref
0 , we consider the 500-

mb ECMWF ERA-40 data valid for 0600 UTC 15
March 2002. The configuration of the geopotential
height at the initial time and a 24-h SW model forecast
is displayed in Fig. 1. On the discrete state space we
consider a total energy norm

FIG. 1. Isopleths of the geopotential height (m) for the reference run: (top) configuration at the initial time specified from ERA-40
datasets; (bottom) the 24-h forecast of the shallow-water model.

MARCH 2008 D A E S C U A N D N A V O N 1031



||x ||A
2 �

1
2 � ||u ||2 � ||	 ||2 �

g

h
||h ||2� �26�

where || · || denotes the Euclidean norm, g is the gravi-
tational constant, and h is the mean height of the ref-
erence data at the initial time, such that A is a diagonal
matrix with block constant entries g/2h, 1/2, 1/2.

To generate the set of snapshots, small random per-
turbations �x0 were introduced in the reference initial
conditions and a full model integration was initiated
with x ref

0 � �x0. The state evolution x(ti) � M t0,ti
(x ref

0 �
�x0) was stored at each time step and used to define the
ensemble dataset x (i) � x(ti) for i � 1, 2, . . . , n. This
dataset is then used by the POD and DWPOD methods
to identify an appropriate reduced-order state sub-
space. In the standard POD approach, all the weights
are set � i � 1/n and the POD basis of order
k 	 n is determined by the data only. In the DWPOD
approach the weights are determined according to (22)
such that the DWPOD reduced basis of order k 	 n
depends on the problem at hand.

a. Reduced-order representation of a forecast aspect

In the first set of experiments we consider the POD
and DWPOD methods as tools to provide a reduced-
order representation to an a priori specified scalar as-
pect of the model forecast. The target functional is
taken as a measure of the time-integrated energy of the
system for a 24-h forecast initiated from x ref

0 , J(x) �
�n

i�1 ||x i ||
2
A. For the 24-h period, the ensemble dataset

includes 193 snapshots. The variance (energy) I(k) cap-
tured by the leading POD and DWPOD modes from
the ensemble data as a function of the dimension k of

the reduced space is displayed in Fig. 2, and selected
numerical values are provided in Table 1. It is noticed
that for the same dimension k of the reduced space a
similar amount of variance is captured by the POD and
DWPOD from the dataset and weighted dataset, re-
spectively. In each case the dominant mode provides
�78% of the information, first 10 modes �99%, and up
to a small fraction, most of the information is contained
in the leading 25 modes. However, the k-dimensional
bases �POD and �DWPOD identified by the POD and
DWPOD, respectively, are distinct and in particular,
higher modes of same rank may differ significantly
from the POD basis to the DWPOD basis. In Fig. 3,
isopleths of the POD and DWPOD modes are dis-
played using the energy norm to provide point values.
A close resemblance is noticed between the dominant
POD and DWPOD modes that capture most of the
variability around the corresponding mean state of the
system, whereas higher POD and DWPOD modes of
the same rank have a completely different structure.
The spatial patterns described by the leading modes
reveal that a high variability in the snapshot data is
found in the middle-latitude regions.

In the POD approach the reduced-order representa-
tion of the initial state is

x̂0 � x � �POD�POD
T A�x0

ref � x�,

with x � (1/n)�n
i�1x (i), and in the DWPOD approach

the initial state is represented as

x̂0 � x� � �DWPOD�DWPOD
T A�x0

ref � x��,

with the weighted mean x� computed according to (3)
and (22). Since in practice the dimension k of the re-
duced space is determined by specifying a threshold
value 0 	 � 	 1 such that I(k) � �, it is of interest to
analyze the error in the reduced-order representation
of the target functional |J(x) � J(x̂) | � |�n

i�1( ||x i ||
2
A �

|| x̂i ||
2
A) | as the dimension of the reduced space varies.

The numerical results from using POD and DWPOD
bases of dimension k � 5, 10, 15, 20, and 25 are dis-
played in Fig. 4, and it is noticed that the DWPOD basis
provided a significantly improved accuracy compared
with the POD basis. For example, projection of the
initial conditions in the 10-dimensional DWPOD space
provided qualitative results similar to the 15-dimen-

FIG. 2. The fraction of the variance captured by the POD and
DWPOD modes from the snapshot data as a function of the di-
mension of the reduced space.

TABLE 1. Fraction of the variance captured by the leading POD
and DWPOD vectors.

Basis
dimension 1 5 10 15 20 25

POD 0.7827 0.9736 0.9924 0.9987 0.9998 0.9999
DWPOD 0.7897 0.9612 0.9918 0.9990 0.9999 0.9999
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sional POD space, whereas the representation in the
15-dimensional DWPOD space provided one order of
magnitude gain in accuracy over the 15-dimensional
POD space.

The reduced DWPOD space provided not only an
improved representation of J(x̂) but also a more accu-
rate state forecast representation. The error ||x ref

i �
x̂i ||

2
A in the forecast initialized in the reduced space was

computed at each time step ti, for i � 0, 1, . . . , 192, of
the 24-h integration period and the time-averaged error
is also displayed in Fig. 4 for the POD and DWPOD
spaces of dimension k � 5, 10, 15, 20, and 25. One
notices the increased efficiency of the DWPOD basis
that provided qualitative results similar to the POD
basis while requiring fewer basis vectors. In particular,
the errors in the 5-dimensional DWPOD space are
close to the errors in the 10-dimensional POD space,
the 10-dimensional DWPOD space provided forecast

errors close to the errors in the 15-dimensional POD
space, and the 15-dimensional DWPOD provided two
orders of magnitude gain in forecast accuracy over the
15-dimensional POD space.

As the dimension of the reduced space increases,
each basis captures practically all of the information
from the ensemble data. Little improvement in forecast
accuracy may be achieved by increasing the DWPOD
dimension from 20 to 25, and the state forecast error
using a 25-dimensional DWPOD versus a 25-
dimensional POD basis provided nearly identical val-
ues (overlapping graph marks) in Fig. 4.

While for both POD and DWPOD methods the state
reduction from �3 
 104 to �20 is remarkable, in prac-
tical applications it is important to obtain accurate re-
duced-order representations using a small (the small-
est) number of basis vectors. The potential use of the
dual-weighted approach as a tool to enhance the effi-

FIG. 3. Isopleths of the POD and DWPOD modes of rank 1, 5, and 10. Contours shown for magnitudes of [0.01, 0.02, 0.025, 0.03,
0.04] using a total energy norm to provide point values.
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ciency of the standard POD for small dimensional bases
may become increasingly significant as the dimension
of the full model state increases. The dimension of the
reduced space is also crucial in the efficiency of the
reduced-order 4DVAR data assimilation that aims to
perform a minimal number of iterations to achieve a
certain accuracy gain in the analysis.

b. Data assimilation experiments

To analyze the potential computational savings of the
reduced-order procedure, 4DVAR data assimilation
experiments are set up in a twin-experiment frame-
work. As a background estimate xb to the initial con-
ditions we consider 500-mb ECMWF ERA-40 data
valid for 0000 UTC 15 March 2002, 6 h prior to the

reference state x ref
0 . A data assimilation time interval

[t0, t0 � 24 h] is considered with the cost functional (2)
incorporating four “observational” datasets at 6, 12, 18,
and 24 h that were provided by a model integration
initiated from x ref

0 . Two data assimilation experiments
are set up: the first experiment, hereafter referred to as
DAS-I, is a model inversion problem where data is pro-
vided for all discrete state components and no back-
ground term is included in the cost functional (2); in the
second experiment, hereafter referred to as DAS-II,
the background term is included in the cost and data is
provided at every fourth grid point on the longitudinal
and latitudinal directions (�6% of the state is observed
every 6 h). The distance to the background and obser-
vations is measured in the A-norm that corresponds to
diagonal matrices B and R. To emphasize the fit to
data, a weight factor of 0.01 is assigned to the distance
to background in DAS-II.

Data assimilation experiments performed in the full
model space resulted in a slow convergence for the
large-scale optimization problem (1). The minimization
process using a high-performance limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algo-
rithm (Liu and Nocedal 1989) is displayed in Fig. 5, and
it is noticed that a large number of iterations is required
to approach the optimal point. A slower convergence
rate is observed for DAS-I versus DAS-II due to the
increased number of data constraints and the absence
of the regularization provided by the background term.

c. Reduced-order 4DVAR data assimilation

Twin reduced-order 4DVAR data assimilation ex-
periments were implemented using the POD and
DWPOD bases, respectively. It should be noticed that
while the POD basis vectors remain unchanged for
both DAS-I and DAS-II experiments, in the dual-
weighted approach the reduced basis is adjusted to the
optimization problem at hand. As shown in Fig. 6, the
dual weights on the snapshot data are distinct from
DAS-I to DAS-II and, as an illustrative example, in Fig.
7 isopleths of the DWPOD mode of rank 10 reveal a
different configuration in DAS-I than in DAS-II. In
Fig. 6 the sharp transients in the dual weights corre-
spond to the time instants when observations are in-
serted into the cost functional and thus are forcing the
backward integration of the adjoint model.

The low dimensionality of the reduced space allowed
the implementation of a full quasi-Newton BFGS algo-
rithm to solve the optimization problem (13). A con-
vergence criteria ||�� Ĵ (�) || 2 � k(10�2), where k de-
notes the dimension of the reduced space, was set for
the BFGS iteration in all experiments. The iterative
process to minimize the cost functional is displayed in

FIG. 4. Comparative results for the reduced-order POD and
DWPOD forecasts as the dimension of the reduced space varies
for k � 5, 10, 15, 20, and 25. (top) Error (log 10) in the reduced-
order representation of the time-integrated total energy of the
system. (bottom) Time-averaged state forecast error (log 10).
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Fig. 8, showing that only few iterations were required to
approach the optimal point in each of the DAS-I and
DAS-II experiments. For example, in DAS-II experi-
ments three to four iterations are practically sufficient
to reach a close vicinity of the optimal point, and the
computational savings of the reduced-order 4DVAR
are thus significant.

Gridpoint errors in the retrieved initial conditions
||x ref

0 � x̂a
0 || 2

A, averaged over the longitudinal direction,
are displayed in Figs. 9 and 10 for DAS-I and DAS-II,
respectively. To facilitate the qualitative analysis, the
gridpoint errors in the background estimate ||x ref

0 �
xb || 2

A, averaged over the longitudinal direction, are also
displayed in Fig. 9 and it is noticed that the reduced
4DVAR data assimilation is able to provide analysis
errors that are lower by as much as two orders of mag-
nitude compared with the errors in the background es-
timate. For the 5- and 10-dimensional spaces, the analy-
sis errors corresponding to the DWPOD space have
much smaller values compared with the analysis errors
for the POD space, showing that the dual-weighted ap-
proach to order reduction is of significant benefit. In
particular, for the 10-dimensional spaces, in the DAS-I
experiments the grid-averaged analysis error was lower
by an order of magnitude in the DWPOD space (0.054
m2 s�2) compared with the POD space (0.52 m2 s�2),
whereas in the DAS-II experiments, the mean analysis
error was 0.15 m2 s�2 in the DWPOD space versus 0.54
m2 s�2 in the POD space, thus resulting in a relative
reduction by more than a factor of 3. The benefit gained
from the dual-weighted procedure diminishes as the di-
mension of the reduced space increases from 10 to 15,
indicating that most of the information provided by the
snapshot data is captured by the reduced basis.

d. The impact of the snapshot data

The practical applicability of the reduced-order
4DVAR procedure described in this paper relies on the
identification of snapshot data to closely capture the
dynamical behavior of the “true” state of the system.
Since both POD and DWPOD methods operate in a
subspace of the space spanned by the snapshot data, the
amount of information that may be extracted from the
snapshots is essential for the reduced-order optimiza-
tion to be effective. For practical applications, the use
of data generated from a previous assimilation run per-
formed, for example, with a simplified/coarse-resolu-
tion model may provide a feasible approach to obtain
the reduced-space basis functions. The use of the re-

FIG. 6. The dual weights for the snapshot data determined by
the adjoint model in DAS-I and in DAS-II.

FIG. 5. The iterative minimization process in the full state space for (left) DAS-I and (right) DAS-II.
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duced 4DVAR as a preconditioner for the full state
4DVAR optimization, interlacing iterations between
the reduced and full state space during the minimiza-
tion and adaptive recomputation of the basis functions
may be considered (Robert et al. 2006; Hoteit and Köhl
2006). In the numerical results reported in the previous
section, the snapshot data were generated by sampling
a state trajectory in a close vicinity of the reference run,
and thus the reduced-order 4DVAR was able to pro-
vide an accurate approximation of the reference initial
conditions. In this section the impact of the snap-
shot data on the POD and DWPOD methods is inves-
tigated by setting up a series of data assimilation ex-
periments as follows: a model run initiated from the

reference initial state is used to compute a reference
state trajectory x ref(ti) � M t0,ti

(x ref
0 ) at each time step

ti, i � 1, 2, . . . , n in the 24-h data assimilation interval;
a second run initiated from the background estimate to
initial conditions provides a background trajectory
x(ti) � M t0,ti

(xb). The dataset used to identify the re-
duced space is then defined as

x��ti� � x�ti� � ��x ref�ti� � x�ti��,

where the coefficient �, 0 � � � 1, is used to control the
“quality” of the snapshots: � � 0 corresponds to snap-
shots taken from the background state trajectory,
whereas � � 1 corresponds to snapshots taken from the
reference state trajectory. In the DAS-II setup, with the
background term included in the 4DVAR cost func-

FIG. 7. Isopleths of the 10th mode in the DWPOD basis for
(top) DAS-I and (bottom) DAS-II. Contours shown for magni-
tudes of [0.01, 0.02, 0.025, 0.03, 0.04] using a total energy norm to
provide point values. A distinct configuration is noticed since the
DWPOD basis is adjusted to the optimization problem at hand.

FIG. 8. The iterative minimization process in the reduced space
for the POD and DWPOD spaces of dimension 5, 10, and 15.
(top) Optimization without background term and dense observa-
tions, corresponding to DAS-I. (bottom) Optimization with back-
ground term and sparse observations, corresponding to DAS-II.
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tional, reduced-order data assimilation experiments
were performed for each of the POD and DWPOD
bases of dimension k � 5, 10, and 15 with the value
of the coefficient � increasing from zero to one with
an increment of 0.05. Grid-averaged analysis errors
||x ref

0 � x̂a
0 || 2

A for each experiment are presented in Fig.
11 on a log10 scale. To emphasize the impact of the
snapshot data, a distinction is made between the coef-
ficient values in the ranges 0 � � � 0.5 and 0.5 	 � �

1. For a fixed � in the range 0 � � � 0.5, little improve-
ment may be achieved by increasing the reduced space
dimension from 5 to 15. Also, the use of the DWPOD
basis shows little or no benefit over the POD basis. For
a fixed � in the range 0.5 	 � � 1, increasing the di-
mension of the reduced space from 5 to 15 resulted in a
significant reduction of the analysis errors. As � ap-
proaches one, the quality of the snapshot data improves
and the DWPOD basis proved to be increasingly effec-

tive for the reduced spaces of dimension 5 and 10. No
significant differences were noticed in the results ob-
tained in the POD and DWPOD spaces of dimension
15. It should be emphasized that the use of the adjoint
variables to specify weights to snapshot data is not
guaranteed per se to provide improved results, and sev-
eral factors may contribute to the overall impact of the
dual-weighted approach. These include the impact of
the background term, the specification of the snapshot
data, and the relevance of the adjoint variables that
were computed from a background state trajectory to
provide appropriate weights during the optimization
process. The analysis presented in this section indicates
that for practical applications, the dual-weighted pro-
cedure may be of particular benefit for use with small
dimensional bases in the context of adaptive order re-
duction as the minimization approaches the optimal so-
lution.

FIG. 9. Zonally averaged errors (m2 s�2) in the background estimate and in the analysis provided by the reduced-order 4DVAR
data assimilation. Results for the DAS-I experiments with POD and DWPOD spaces of dimension 5, 10, and 15.
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5. Conclusions and further research

The computational burden of the large-scale
4DVAR optimization problem may be significantly re-
duced by performing the optimization in a low-order

control space. An optimal order-reduction approach to
4DVAR data assimilation must capture accurately the
properties of the full dynamical model that are most
relevant to a specific data assimilation system. To date,

FIG. 10. Zonally averaged errors (m2 s�2) in the analysis provided by the reduced-order 4DVAR data assimilation. Results for the
DAS-II experiments with POD and DWPOD spaces of dimension (a) 5, (b) 10, and (c) 15.

FIG. 11. Grid-averaged analysis errors (m2 s�2) in DAS-II experiments with POD and DWPOD spaces of
dimension 5, 10, and 15 as the coefficient � spanned the interval [0, 1] with an increment of 0.05.
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studies on reduced-order 4DVAR have considered
low-order state subspaces based on the properties of
the flow only, without properly taking into account the
characteristics of the DAS. In this work an adjoint-
model approach is proposed to directly incorporate in-
formation from the DAS into the optimality criteria
that defines the reduced-space basis. The dual-
weighted POD method is novel in reduced-order
4DVAR data assimilation and relies on a weighted en-
semble data mean and weighted snapshots with weights
determined by the adjoint DAS. The numerical experi-
ments presented with a finite-volume global shallow-
water model indicate that if the snapshot data are prop-
erly specified, the DWPOD approach may significantly
improve the efficiency of the reduced basis compared
with the standard POD method. The DWPOD space
was found to increase the accuracy in the representa-
tion of a forecast aspect by as much as an order of
magnitude versus the POD space representation. In
4DVAR data assimilation twin experiments, optimiza-
tion in the DWPOD space provided a reduction in the
analysis errors by as much as a factor of 3 when com-
pared with the POD-based optimization. The dual-
weighted approach is thus cost effective since the addi-
tional computational requirements to identify the
DWPOD basis consist of a single adjoint model integra-
tion to evaluate the dual weights to the snapshot data.

This work represents a first step toward the develop-
ment of an order-reduction methodology that combines
in an optimal fashion the model dynamics and the char-
acteristics of the 4DVAR DAS. The mathematical for-
mulation of the dual-weighted POD approach to model
reduction is sound; however, taking into account the
simplicity of the shallow-water model used in this study,
the enhanced efficiency of the DWPOD method re-
mains to be validated for numerical weather prediction
and general circulation models in an operational data
assimilation environment.

Strategies to implement an adaptive update of the
reduced basis functions as the minimization algorithm
advances toward the optimal point are at an incipient
stage and this is an area where future research is much
needed. Evaluation of the Hessian matrix of the
4DVAR cost functional in the reduced space is feasible
using a second-order adjoint model (Daescu and Navon
2007) and may be used to provide statistical informa-
tion on the analysis errors. The reduced-order 4DVAR
approach was shown to be highly dependent on the
quality of the snapshot data and the issue of generating
a “good” set of snapshots is crucial for the reduced-
order procedure to be effective. The twin-experiment
setup used in this study facilitated the selection of the
snapshot data in close vicinity of the reference state

trajectory. For practical applications, the use of data
generated from a previous assimilation run performed,
for example, with a simplified/coarse-resolution model
may provide a feasible approach to obtain the reduced-
space basis functions. The use of the reduced 4DVAR
as a preconditioner for the full state 4DVAR optimi-
zation, interlacing iterations between the reduced and
full state space, and adaptive recomputation of the ba-
sis functions and the dual-weights may be considered.

An ensemble of model forecasts initialized at t0 � �
with perturbations that capture the main directions of
variability of the model, such as the bred vectors and
singular vectors of the tangent linear model (Kalnay
2003), may be used to generate snapshots taken from
multiple state calculations. If an ensemble forecast
dataset is available at t0 and is used to define the re-
duced-order control space for the initial conditions, the
potential use of the adjoint sensitivities to specify the
metric A, and thus to define weights in the state space,
needs to be investigated. In this context the reduced-
order procedure will result in a hybrid approach that
combines in an optimal fashion features of the en-
semble and variational methods in data assimilation.
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