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In the past decade the variational method has been successfully applied in data as-
similation problems for atmospheric chemistry models. In 4D-var data assimilation,
a minimization algorithm is used to find the set of control variables which minimizes
the weighted least squares distance between model predictions and observations over
the assimilation window. Using the adjoint method, the gradient of the cost function
can be computed fast, at the expense of few function evaluations, making the opti-
mization process very efficient. For large-scale models, the high storage requirements
and the difficulty of implementing the adjoint code when sophisticated integrators
are used to solve the stiff chemistry make the assimilation a very intensive computa-
tional process. If the sparse structure of the chemical models is carefully exploited,
Rosenbrock methods have been proved to be reliable chemistry solvers because of
their outstanding stability properties and conservation of the linear invariants of the
system. In this paper we present an efficient implementation of the adjoint code for
the Rosenbrock type methods, which can reduce the storage requirements of the
forward model and is suitable for automatization. The adjoint code is completely
generated using symbolic preprocessing and automatic differentiation tools which
allow flexibility and require minimal user interventiong) 2000 Academic Press

Key Wordsadjoint model; stiff equations; automatic differentiation; optimization.

1. INTRODUCTION

Consider a 3D atmospheric transport—chemistry model given by the system of differen
equations

a
ot

G=-V-(ug)+V-(K-Ve)+ fio+E, i=1S (1.1)
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The initial condition is €tp) = ¢ and appropriate boundary values are prescribed. The sol
tion c(t, X, y, 2) € RS of problem (1.1) represents the concentration vector of the chemic
species in the modal,is the wind field, and is the eddy diffusivity tensor; the chemical re-
actions are modeled by the nonlinear stiff terfn€) = P, (c) — D; (¢)c;, with P, (c), Dj (c)
the chemical production and destruction terfsrepresents the source term, and deposi
tions are modeled as a boundary condition at earth’s surface,

—np - (K- VG) = Qi —viGi,

with n;, the inward vector normal to the earth’s surfa@g,andv; the surface emission rate
and deposition velocity of speciegespectively. Space and time dependence is assumed
all terms, but for simplicity the explicit notation is omitted. A complete model descriptio
is given in [6]. We will refer to problem (1.1) as the forward model aiig.d € [to, T]
will represent the “forward trajectory.” The forward trajectory is determined by the valu
of the parameters in (1.1), and typical choices for the set of control variables in d
assimilation are the boundary values, initial concentrations, emissions, and deposition r
When the identifying parameters are distributed in the space—time domain, instabilities
nonuniqueness problems may appear for the inverse modeling techniques (in additic
those given by the nonlinear structure of the model). A general framework for adjo
parameter estimation and a discussion of the parameter identifiability problem is prese
in [23]. For the purpose of this paper, we consider the 4D variational data assimilat
problem associated to (1.1) with the set of control variables given by the initial state of
model,cy. Under suitable assumptions, problem (1.1) has a unique solution, and we |
view this solution as a function of the initial conditions=cc(t, X, Y, z, Cp).

If space discretization is applied to problem (1.1) on a gNg, Ny, N), the resulting
ODE system of dimensioN = Sx Ny x Ny x N;is

d
d—f — FA(©) + Fo(C) + Fr(0)
(1.2)
C(tg) = Co,

where F4 represents the advection and horizontal diffusiep,is the vertical diffusion,
which may introduce additional stiffness, and the reaction terms are giviég.ffyhe source
and sink terms may be includedHip [6] or in the chemistry operatdtg [3, 33]. We assume
that a previous analysis provides a “background estingtef ¢, with the error covariance
matrix B, and measurement8,& = 1, m of the concentrations at momentsre scattered
over the intervaltp, T]. The errors in measurements and model representativeness are g
by the covariance matric&, k = 1, m. The covariance matricé&andRy are symmetric
and positive definite (if they do not contain null or infinite variances, or perfect correlatior
[32]) such thatB—?, lel are well defined. In practiceB, R¢ are often taken diagonal,
which corresponds to the assumption that there is no spatial and chemical correlation ir
background errors, and measurement and model errors are uncorrelated in space and
The 4D-var data assimilation finds an initial stagehat minimizes the distance between
the model predictions and observations expressed by the cost function:

m

1 - 1 ) - )
Floo) = 50— c)'B 1(00—cb)+Eg(ck—ck)TRkl(ck—ck). (1.3)
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The quality of the assimilation results depends on several factors such as availability
spatial-temporal distribution of measurements, accuracy of the background estimate, le
of the assimilation window, errors in measurements, and model representativeness.
existence of multiple local minima of the function&lmay lead to ambiguous assimilation
results. This analysis is beyond the goal of this paper, and details can be found in [10,
18] and the references therein.

Most of the powerful optimization techniques require the evaluation of the gradight
of the cost function. In a comprehensive atmospheric chemistry model, the dimensior
the vector g can easily be of order £0which makes the optimization a very expensive
computational process.

In the variational approach, one computes the gradient of the functinading the
“adjoint method.” Since for nonlinear problems (such as 1.1, 1.2) the corresponding adjc
equations depend on the forward trajectory, the computational cost and the complexity of
adjointimplementation are significantly increased compared with those of linear problel
The general theory of adjoint equations is described in [20, 21] and the derivation of
adjoint model for the continuous and discrete case is given in [12, 31]. Below we outli
the basic ideas. The gradient of the cost function is

9
Ve, F(Co) = B (co — b)+2( Ck) (ce— ). (1.4)

Using the chain rule in its transpose fo(@%)T = (aCk 1T (2% )T we can deduce the

algorithm to compute the necessary gradient:

(s

Stepl. Initializegradient= 0

Step2. fork=m,1, —1do

0Ck

;
gradient= (8 ) [Ri* (e — cf) + gradient

Ck-1

Step3. gradient= B~(cy — c”) + gradient

The main advantage of the adjoint method is that explicit computation of the Jacob
matricesacf is avoided and the matrix—vector products can be computed directly at Stef
For the theory and actual implementation of the adjoint computations the reader shc
consult [14, 15, 22]. Because the algorithm described above requires the valyes of ¢
reverse order, these values need to be stored from a previous run or recomputed. More
in practice the measurements are usually sparse and the valyésdadttained from ¢ ;
with a sequence of steps g — ¢t — --- — C§ — C«. The computational trade-off is then
between allocating a huge amount of memory to store the states of the system during
forward run, or frequent recomputations which increase the running time of the code. If
explicit numerical method is used to solve the stiff chemistry part of problem (1.2), the
the “trajectory” from ¢_; to gc may become very long, increasing the cost of the adjoin
code. On the other hand, if an implicit method is used, then the adjoint computations n
become complicated. Ideally one would like a method capable of taking large stepsize
an efficient adjoint implementation.
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2. OPERATOR SPLITTING

A popular way to solve problem (1.2) is to use operator splitting, which has the advant:
that processes such as advection, vertical diffusion, and chemical reactions can be tre
with different numerical methods. In a second order accurate Strang splitting [30] appro
with the time stefh = t,,1 — t, the solution g, is obtained from gas

_ h\ — h\ — _/ h\-/ h
Cni1 = FA<tn+1/27 2) Fo <tn+1/2, 2) Fr(t,, h)Fp (tn, 2) I:A(tn, Z)Cn’ 2

where the operatoﬂé_are defined by the numerical method used to solve the correspondi
processes. 1§ denotes theN x N Jacobian matrix associated Fq the adjoint algorithm
to compute the gradient (1.4) of the cost function requires products of theFoumwith

u an arbitrary seed vector. Because constructing the adjoint code for large systems by |
can be a frustrating process, automatic tools have been developed [14, 24]. Autorn
implementation allows also for flexibility, such that if the model is modified, minimal use
intervention is required.

Usually F A is defined by an explicit method and may be nonlinear (e.g., if a flux-limite
is applied for positivity [17, 35])F_D is linear, defined by a (semi-) implicit method. The
products]_Lu andJ_,T3 u can be then efficiently computed using an automatic adjoint compile
Colemanet al.[8] present an “extended Jacobian” framework to exploit the sparsity of
finite difference scheme, which leads to efficient computations of the adjoint products wi
automatic differentiation is applied on the finite difference stencils.

The operatoF_R is highly nonlinear, given by a stiff numerical method, and the compute
tion of J_Eu needs special consideration. A key element for the efficient implementation
the forward code is to exploit the sparse structure of the chemical model. Sparse comy
tions must be then performed as well during the backward integration. Because the ad|
method requires several integrations of the direct model, the storage of (part of) the forw
trajectory and the computation of thg¢obian™ - vectorproducts, the performance of the
adjoint model is dominated by the implementation of the direct and adjoint method u:
in the chemistry integration, which takes in practice as much as 90% of the CPU tir
Fisher and Lary [12] show the adjoint computations for the adaptive-timestep Bulirsc
Stoer method, and Elbern and Schmidt [10] use the adjoint model for a quasi-steady-
approximation (QSSA) scheme. In the next section, we present the adjoint formulas f
general 2-stage Rosenbrock method and an efficient implementation which is suitable
automatization. The L-stable methBDS we obtain as a particular case was applied fo
the chemistry integration in the forward 3D model LOTOS [3] in the context of variou
types of operator splitting and using approximate Jacobians (as a W-method). Extensic
a generab-stage method [16] is straightforward.

3. ADJOINT COMPUTATIONS AND IMPLEMENTATION FOR A 2-STAGE
ROSENBROCK METHOD

3.1. Derivation of the Adjoint Formulas

We consider now the problem

dc
at = f(0)
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C(to) = Co (3.1)

with c(t), o e RPandf : R" — R", f = (fq, fo, ... f)7.
One step fromg to t; with h = t; — ty of a 2-stage Rosenbrock method as presented i
[16] reads

<1| _ Jo)k — f(c) (3.2)
y11h
1 B
<| _ Jo)k = f(Co+ ki) + LKy (3.3)
y22h h
C1 = Cg + MKy + mpky, (3.4)

whereJy is the Jacobian matrix of evaluated atg Jo = (%)ij lc=c,» and the coefficients
yi1, V22, @, B, Mg, My are chosen to obtain a desired order of consistency and numeri
stability. Because the methods that require only bhkedecomposition of}ﬁl — Jo per
step are of special interest, we consider the case wheg y», = y.

For the adjoint computations from (3.2), (3.3) we have

() = (3 () )G )
() = (oot ) (o) (o))

where J; is the Jacobian evaluated af-£ aky, and the terms{aJo x ki),i =1,2, are

n x n matrices whosg column |s(“°)k., i =1, 2. We want to stress here the fact that

these matrices are not symmetric; We will return to the computation of these terms la
Using (3.4, 3.5), for an arbitrary seed vectos IR" we have

() e (28 ) (1))
(28] )82
(o)) (2] )

To avoid frequent recomputations and to exploit the particular properties of the meth
the order of the operations in the formula above become important. Below we presen
efficient algorithm.

Sterpl. Solve for v the linear syste(ry%lhl —Jo)"v =u. Then,

ac\ " NN T T
— | u=u+mg| J — x k V+meld, v
(80()) + 1<°+<8cox 1 + myJ;

T T
+m2<22) <aag+ﬁ|)v+mz<gjzxkz) v.  (36)
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STEP2. Computeo = J (MyV); w1 = aw + "‘TZ’SV. Using (3.5) we get next:

STEP3. Solve ford the linear systen(}y—lhl — 370 = ;.
After replacing in (3.6), there results

acy\ T 1, (3% T
- = J — xk
(5 a4+ (2 k)
8J0 T 8\]0 T
+<JOT+<BCOXK1> >9+m2(aco><k2 \Y (3.7)

and after arranging the terms we obtain:

Step4. Compute

0Cs Tu U+ w-+ JT (mv+0) + 9% T(m V+6O)+m 0% Tv (3.8)
— ] u=u+ow — — .
30 h (Mg ac, < 1 1 2\ 3¢, < 2

Informula (3.7) itappears that a routine to compute the prodiis(s a seed vector) must
be called twice: first with the seed vectogv, second with the seed vectér From (3.8)
it is enough to call the routine once, with the seed ventpr + 6. The same observation
is made for the producl(é(% x k) Tmyv, (g—gg x k1)T6. We now focus on the terms of the
form (% x k)Tv whose evaluation dominate the computational cost of the algorithm give

by Steps 1-4. Here lkk € R" are arbitrary constant vectors. For theomponent we have

(22 0)'V) = (2 o (B - (0 o

Consider now the functiog: R" — R", g(¢cg) = JOTV. Observe that the Jacobian matrix
of g is symmetric. We have

n n T
9(Co) = <Z VYRR Y JO.(I.n)VI> :
I=1 =1

which gives for the (i, j) entry in the Jacobian matrix

a0 : 9> f - i
g(CO)=Z< '4)v|=ZHf(I,J)V|,

ac) = \9cpdcy =1

whereHy, is the Hessian matrix of the functiofp: R" — R.
Thus29& = 371 Hyvi, 502 is symmetric. Using (3.9) results in

(224 ) = () s10

The symmetry of the Jacobian matrix of the functigrused in relation (3.10) plays a
significant role in the implementation of the adjoint code which we present next.
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3.2. Implementation of the Adjoint Code

The forward integration of problem (3.1) using implicit methods together with the pe
formance analysis is given in [27, 28, 34], proving that when the sparsity of the syst
is efficiently exploited Rosenbrock methods outperform traditional explicit methods |il
QSSA and CHEMEQ. Implementation is done in the symbolic kinetic preprocessor Ki
environment [9], which generates the sparse matrix factorizatidmequired in (3.2, 3.3)
with a minimal fill-in [26] and the routine to forward—backward solve the linear systen
without indirect adressing. One step of the adjoint code (friaimty) requires a forward run
from ty to t; given by the formulas (3.2)—(3.4) followed by the pure adjoint computation
given by Steps 1-4. It is important to notice that tHé decomposition accounts for most
of the CPU time of the code, and there is no need to repeat it during the pure backw
integration.

With theLU decomposition o{y—lhl — Jo) available from (3.2) Step 1reads LTv = u.

A new loop-free routine is generated by KPP for forward—backward solution of this syst
in sparse format, avoiding indirect addressing. The computational cost of Steps 1 and 3
be then compared with the corresponding part from (3.2) and (3.3).

Step 2 requires evaluation of the produgtv, which is automatically computed by KPP
using sparse multiplications. This introduces some extra wdiris evaluated atg+ akj),
but its cost is relatively cheap. The efficiency of the adjoint code is then dominated by
implementation of Step 4, given by the formula (3.8). The computation of the terms of t
form (% x k)Tvin formula (3.8) appears to require the following order: forward automati
mode to computelpk, and reverse mode to compt{t% x k)Tv. Relation (3.10) can be
used to rewrite (3.8) as

aci\ " 9 9
(a;) u=u+w+gl(Co)+< g;éoc")>kl+mz< g;éoc"))kz, (3.11)

with g1, g2: R" — R", g1(Co) = JJ (MyV + 6), G2(Co) = I V.

The functionsg;, g, are generated via KPP, taking full advantage of the sparsity ¢
the Jacobian matri¥y. In (3.11) we have then to compute thacobian vectorproducts
for the functionsg, g,, which can be done bforward automatic differentiation [2, 14].
The cost is 2—3 times the cost of evaluatigcy), g2(Co) and remains low because of the
sparse structure ak. This leads to a considerable saving in CPU time. By default, durin
the computation ofacobian vectorproducts, forward automatic differentiation computes
the value of the function. Automatic differentiation fgr then provides the valug; (co),
and there is no need to compute it separately. Last but not least, the computations rel
to g; andg, are independent, allowing parallel implementation.

4. PERFORMANCE AND VALIDATION OF THE ADJOINT ALGORITHM

The algorithm and implementation presented in Section 3 have the benefit that the ad]
part of the chemistry integration is generated completely automatically, taking full advantz
of the sparsity of the system. This allows the user to move easily from one model to anot
and makes it very attractive compared with the handwritten codes whose construction
large models can be a difficult process. Moreover, because symbolic computations are
rounding errors are avoided and the accuracy of the results goes up to the machine preci
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Implementation in the KPP context also has the advantage of avoiding the introductior
auxiliary adjoint variables, which has direct impact on the performance of the code bott
terms of memory usage and CPU time.

In particular, we consider the 2nd order 2-stage Rosenbrock mé&s& which is
obtained from (3.2)—(3.4) by taking = % B = —%, m; = % m, = % Choosingy =
1+ 1/+/2, the method is L-stable and the numerical experiments presented in this sec
were performed withy = 1+ 1/4/2. The superior stability, positivity, and conservation
properties of this scheme are analyzed by Vereteal. [34], who report good results in
the context of various types of operator splitting, even when large fixed step sizes (1(
20 min.) are used.

4.1. The Box Model

To test the performance of the implementation we consider first a box model for 1
problem (1.1). The chemistry part is based on the Carbon Bond Mechanism IV (CBM-
[13]) with 32 chemical species involved in 70 thermal and 11 photolytic reactions. T
data assimilation problem is set using the “twin experiments method,” with the backgrot
term dropped and the logarithmic form of (1.3). Taking the logarithm of the concentratic
has the advantage that the positivity constraint is eliminated and scales the system.
minimization routine used is the Quasi-Newton limited memory L-BFGS algorithm [4, 5
anticipating extension to large-scale models. The initial concentrations follow the urt
scenario as described in [27], with an initial concentration of 70 ppb for O3. Assimilatic
starts at the beginning of the third day (6:00 LT) over a period of 6 h, with measureme
provided every 15 min. As the initial guess for the concentrations we chose the value
the beginning of the second day. The one-day period is introduced to allow the sys
to equilibrate. The integration is restarted every 15 min with a minimum stepsize of 1
simulating an operator-splitting environment. With the absolute and relative toleran
Atol =1 molecules, Rtok 0.01, the number of intermediate steps within a 15-min interva
ranges from 5 to 12, providing a relatively short forward trajectory. Two experiments we
performed: in Run 1 measurements were provided for ozone only, and in Run 2 for o0z
and NQ. The results of the assimilation forsONO,, and NO are shown in Fig. 1. It can
be seen that model predictions are highly improved even after the end of the assimila
window (12:00 LT), and introducing NOmeasurements is of benefit not only for the NO
and NO analysis, but also for thes@nalysis. However, because additional constraints ai
introduced, the number of iterations in the optimization is increased (Table I).

Alternatively, to compute the gradients we use the second-order central difference forn
[1] with € = (2.22 x 10716)1/3, Figure 2 (left Run 1, right Run 2) shows the relative anc
absolute differences between the computed gradients with respect to some important sp
in the model. Because in the context of stiff computations and a long trajectory, the rounc
errors can highly affect the accuracy of the difference schemes, we also show in Fig. 3
corresponding results for assimilation with only one measurement=a8.15 LT, together
with the computed gradients. On average, 8 to 10 significant digits of the gradients
matched (wherv F is nearly zero, the relative error size in the gradient approximation fc
difference schemes may become very large [1]).

For consistency with the implementation for large-scale models, where the storag
the entire trajectory is not a realistic option, a checkpointing scheme is applied for
gradient computations. First, a full forward run is used to store the states of the sys
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03 [ex]
140 140

5 10 15 20 5 10 15 20
local time local time

FIG. 1. Assimilation takes place from 6 to 12 LT. Measurements are provided every 15 min fomlpin
Run 1 (left), and for @and NQ in Run 2 (right). Solid line with dots- reference run; solid line- assimilation
result; dotted line=first guess.

at the measurement moments. Second, during the backward integration, a full forw
run stores the trajectory between measurements (see Section 1) and information abot
stepsize used. Third, the computations given by Steps 1-4 in Section 3 are performed (
backward integration). Observe that the numerical valués,d are still required. These
recomputations may be avoided by storingkalluring the second forward run, but this will
double its storage requirements. We prefer to repeat (3.2) to corkyptiten avoid (3.3) by
settingmpk, = €1 — co — Myk; in (3.11). The technical report of the optimization process
is outlined in Table | (Run 1, 2). We denote by KPP-AD the implementation of the adjoi
code using the KPP generated adjoint routines and forward automatic differentiation. It

TABLE |
Performance of the Optimization Process and the Adjoint Cod#&

~CPU(F + VF)/
~cpuliter cpufF)

Run Iter. (F,VF)-eval. ~cpuF) KPP-AD TAMC KPP-AD TAMCP  Fit/Fend

1. 27 32 0.017 0.35 0.42 3.66 7.71 l.e5
2. 32 38 0.017 0.36 0.44 3.71 7.75 2.8e3
3° 34 34 2.05 8.32 16.6 3.65 7.69 l.e2

@ All the computations were done on a HP-UX B.10.20 A 9000/778 machine with level 2 optimization.
The CPU time is in seconds.

b The time to read—write data to files is not considered for these ratios.

¢ Simplified recomputations for the advection—diffusion part are taken during the backward integration
(see Fig. 5).
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0 10 20 30 0 10 20 30 40
function evaluation number function evaluation number

FIG. 2. Absolute (solid line) and relative (dotted line) differences between the computed gradients using
central difference formula and automatic adjoint computations during the optimization process. Left—Rur
right—Run 2.

function evaluation number function evaluation number

FIG. 3. Absolute (dashed line) and relative (dotted line) differences between the computed gradients (s
line) using the central difference formula and automatic adjoint computations. Left—Run 1, right—Run 2.
reduce the roundoff errors a short assimilation interval (15 min) is considered.
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be seen that the average ratio between the CPU time required to compute the gradient
cost function value) and the CPU time of a forward run is about 3.7, which gives an aver:
ratio cpu(pure backward integratiof (3.2))/cpu(forward integration) 1.7. This makes
our implementation very efficient.

As an alternative way for automatic adjoint code generation, we applied the adjoint mo
compiler TAMC [14, 15] to (3.2)—(3.4) using the same checkpointing scheme. In particul
we noticed that the adjoint compiler fails to generate an efficient adjoint code for the spe
chemistry computations. The timing results included in Table | (TAMC) were obtained wi
significant user intervention to reduce the frequent recomputations generated by the ad
compiler.

4.2. Application to a 1-D Problem

We consider now a one-dimensional horizontal test problem corresponding to (1.1). "
wind field and the diffusion coefficient are taken constant 10 km/h (left-to-right),
K = 103 km?/sec. Second-order Strang splitting is applied,

— h\ — — h
C(thr1) = I:A(tn+1/2» 2> Fr(tn, h)FA(tn, 2>C(tn),

with a splitting intervalt,,1 — t, = 15 min. The advection operator is discretized using
limited k = 1/3 upwind flux interpolation as presented in [17], and the diffusion operatc
using central differences formula. Together they defgeThe numerical method defining

F A is the explicit trapezoidal rule. Concentrations are kept constant at the left bound
(x = 0), and at the right boundary, we consi(gﬁrz 0. For a full description of the space

discretization the reader should consult [25]. With the spatial domain [0, 500] km anc
uniform grid Ax = 5 km, the dimension of the corresponding (1.2) problem is 3200. /
highly polluted region is considered between 200 and 300 km, with initial concentratio
and emissions as in the urban scenario, and for the rest of the domain rural concentra
and emissions are provided [27]. Emissions take place at constant rate, and are includ
Fr. Interpolation is done between the center (250 km) and the urban limits. To allow t
system to equilibrate, box models (chemistry only) are integrated for one day over the wr
grid. The results are the “true” initial conditiongf'c“Measurements” are then generated
every 15 min by a 6-h transport—chemistry run. Figure 4 shows the spatial distribution
the reference concentrations at the beginning (6:00 LT) and at the end (12:00 LT) of
assimilation interval for @and NQ. First guess initial concentrations are generated simila
to &', but with a uniform injection of 0.1 ppb/hour over the rural area and 0.5 ppb/hour ov
the urban area of NQduring the box models integration, which accounts for an error i
emission estimates. Assimilation starts at 6:00 LT over a 6-hour interval, with measureme
for ozone every 15 min and for N@ach hour, at all grid points. A checkpointing strategy
is applied for the gradient computations. First, a full forward run is used to store the sta
of the model after each operator splitting interval. Second, for the backward integrati
a forward run stores the states within a splitting interval-(all chemistry steps). Third,

the pure backward integration is performed, where the intermediate states within trans
and within the chemistry steps need to be provided by a simplified forward run. The adjc
part of the advection—diffusion equations is automatically generated using TAMC. T
computational scheme for one split interval is described in Fig. 5. The performance
the optimization process is given in Table | (Run 3, KPP-AD) and the assimilation resu



ADJOINT IMPLEMENTATION OF ROSENBROCK METHODS 507

03 concentrations
120 T T T T T T
s~
Ay
100 o
/N
: A / X :
a Y |
Q III| .J \‘ +
60 | / 1 :
[ | \
[ s | ]
40+ [ \
e f ! Spmemmacsinememyman
20 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
NO2 concentrations
0.6 T T T T T T T
05f 2
o S
0.4k | ||r X
1 s
| |I 1
203 i | 1
& f ]
02k [ II v ]
! l\ \
(1] e / \\ oo
0 = I I [ 1 I I I
0 50 100 150 200 250 300 350 400 450 500
location (Km)

FIG. 4. Spatial distribution of the reference concentrations fea@d NQ. Solid line=initial (LT = 6:00),
dotted line=final (LT = 12:00). High NQ emissions take place in the urban area (200—300 km).
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FIG. 5. Computational scheme of the adjoint code for one time split interval. Concentrations are sto
after each step during the forward integration, then loaded for the adjoint integration. Additional partial forw.
computations are required during the adjoint integration.
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FIG. 6. Assimilation results at some representative points for each area. Firsilise€@nd NQ, third NO.
Solid dots= true solution, solid line= assimilation result, dotted line first guess solution.

are presented in Fig. 6. We note here that the previous timing results for the adjoint ¢
are recovered, confirming the success of the implementation. The results obtained
TAMC applied for full transport—chemistry adjoint computations are also included in Tabl
(Run 3, TAMC).

5. CONCLUSIONS AND FURTHER WORK

The development of powerful computing machines in the past decade made the variati
data assimilation technique for large-scale models an intensively explored area. Wit
dimension of the systems of order®1@ny attempt to provide the gradient of the cost
function using a direct method (finite differences, solving the sensitivity systems) is r
feasible, and the adjoint approach is an attractive alternative. In the context of stiff chem
equations, explicit integrators may take prohibitive small stepsize (or just fail), which high
affects the performance of the adjoint code.

While several adjoint models for explicit or semi-implicit numerical methods have bet
constructed, implementation of implicit methods remains a delicate problem. In this pa
we introduced the adjoint computations and an efficient implementation of the two-ste
Rosenbrock methods which is suitable for automatization and parallel coding. The algorit
and the properties we described can easily be generalized-$tage methods and it is of
interest to analyze how this implementation can be applied to implicit Runge-Kutta methc
[16]. Further work includes testing on comprehensive models, extending the set of con
variables to include the emission field and depositions, implementing in the context
W-transformation and different types of operator splitting, and the possibility of usir
approximate gradients.
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