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In the past decade the variational method has been successfully applied in data as-
similation problems for atmospheric chemistry models. In 4D-var data assimilation,
a minimization algorithm is used to find the set of control variables which minimizes
the weighted least squares distance between model predictions and observations over
the assimilation window. Using the adjoint method, the gradient of the cost function
can be computed fast, at the expense of few function evaluations, making the opti-
mization process very efficient. For large-scale models, the high storage requirements
and the difficulty of implementing the adjoint code when sophisticated integrators
are used to solve the stiff chemistry make the assimilation a very intensive computa-
tional process. If the sparse structure of the chemical models is carefully exploited,
Rosenbrock methods have been proved to be reliable chemistry solvers because of
their outstanding stability properties and conservation of the linear invariants of the
system. In this paper we present an efficient implementation of the adjoint code for
the Rosenbrock type methods, which can reduce the storage requirements of the
forward model and is suitable for automatization. The adjoint code is completely
generated using symbolic preprocessing and automatic differentiation tools which
allow flexibility and require minimal user intervention.c© 2000 Academic Press
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1. INTRODUCTION

Consider a 3D atmospheric transport–chemistry model given by the system of differential
equations

∂

∂t
ci = −∇ · (uci )+∇ · (K · ∇ci )+ fi (c)+ Ei , i = 1, S. (1.1)
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The initial condition is c(t0) = c0 and appropriate boundary values are prescribed. The solu-
tion c(t, x, y, z) ∈ RS of problem (1.1) represents the concentration vector of the chemical
species in the model,u is the wind field, andK is the eddy diffusivity tensor; the chemical re-
actions are modeled by the nonlinear stiff termsfi (c) = Pi (c)− Di (c)ci , with Pi (c), Di (c)
the chemical production and destruction terms;Ei represents the source term, and deposi-
tions are modeled as a boundary condition at earth’s surface,

−nh · (K · ∇ci ) = Qi − vi ci ,

with nh the inward vector normal to the earth’s surface,Qi andvi the surface emission rate
and deposition velocity of speciesi , respectively. Space and time dependence is assumed for
all terms, but for simplicity the explicit notation is omitted. A complete model description
is given in [6]. We will refer to problem (1.1) as the forward model and c(t), t ∈ [t0, T ]
will represent the “forward trajectory.” The forward trajectory is determined by the values
of the parameters in (1.1), and typical choices for the set of control variables in data
assimilation are the boundary values, initial concentrations, emissions, and deposition rates.
When the identifying parameters are distributed in the space–time domain, instabilities and
nonuniqueness problems may appear for the inverse modeling techniques (in addition to
those given by the nonlinear structure of the model). A general framework for adjoint
parameter estimation and a discussion of the parameter identifiability problem is presented
in [23]. For the purpose of this paper, we consider the 4D variational data assimilation
problem associated to (1.1) with the set of control variables given by the initial state of the
model,c0. Under suitable assumptions, problem (1.1) has a unique solution, and we can
view this solution as a function of the initial conditions, c= c(t, x, y, z, c0).

If space discretization is applied to problem (1.1) on a grid(Nx, Ny, Nz), the resulting
ODE system of dimensionN = S× Nx × Ny × Nz is

dc

dt
= FA(c)+ FD(c)+ FR(c)

(1.2)
c(t0) = c0,

whereFA represents the advection and horizontal diffusion,FD is the vertical diffusion,
which may introduce additional stiffness, and the reaction terms are given byFR. The source
and sink terms may be included inFD [6] or in the chemistry operatorFR [3, 33]. We assume
that a previous analysis provides a “background estimate”cb of c0 with the error covariance
matrixB, and measurements co

k, k = 1,m of the concentrations at momentstk are scattered
over the interval [t0, T ]. The errors in measurements and model representativeness are given
by the covariance matricesRk, k = 1,m. The covariance matricesB andRk are symmetric
and positive definite (if they do not contain null or infinite variances, or perfect correlations,
[32]) such thatB−1,R−1

k are well defined. In practice,B,Rk are often taken diagonal,
which corresponds to the assumption that there is no spatial and chemical correlation in the
background errors, and measurement and model errors are uncorrelated in space and time.
The 4D-var data assimilation finds an initial statec0 that minimizes the distance between
the model predictions and observations expressed by the cost function:

F(c0) = 1

2
(c0− cb)TB−1(c0− cb)+ 1

2

m∑
k=1

(
ck − co

k

)T
R−1

k

(
ck − co

k

)
. (1.3)
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The quality of the assimilation results depends on several factors such as availability and
spatial–temporal distribution of measurements, accuracy of the background estimate, length
of the assimilation window, errors in measurements, and model representativeness. The
existence of multiple local minima of the functionalF may lead to ambiguous assimilation
results. This analysis is beyond the goal of this paper, and details can be found in [10, 12,
18] and the references therein.

Most of the powerful optimization techniques require the evaluation of the gradient∇c0F
of the cost function. In a comprehensive atmospheric chemistry model, the dimension of
the vector c0 can easily be of order 106, which makes the optimization a very expensive
computational process.

In the variational approach, one computes the gradient of the functionalF using the
“adjoint method.” Since for nonlinear problems (such as 1.1, 1.2) the corresponding adjoint
equations depend on the forward trajectory, the computational cost and the complexity of the
adjoint implementation are significantly increased compared with those of linear problems.
The general theory of adjoint equations is described in [20, 21] and the derivation of the
adjoint model for the continuous and discrete case is given in [12, 31]. Below we outline
the basic ideas. The gradient of the cost function is

∇c0F(c0) = B−1(c0− cb)+
m∑

k=1

(
∂ck

∂c0

)T

R−1
k

(
ck − co

k

)
. (1.4)

Using the chain rule in its transpose form( ∂ck
∂c0
)T = ( ∂ck−1

∂c0
)T ( ∂ck

∂ck−1
)T , we can deduce the

algorithm to compute the necessary gradient:

STEP1. Initializegradient= 0

STEP2. for k = m, 1,−1 do

gradient=
(
∂ck

∂ck−1

)T[
R−1

k

(
ck − co

k

)+ gradient
]

STEP3. gradient= B−1(c0− cb)+ gradient

The main advantage of the adjoint method is that explicit computation of the Jacobian
matrices ∂ck

∂ck−1
is avoided and the matrix–vector products can be computed directly at Step 2.

For the theory and actual implementation of the adjoint computations the reader should
consult [14, 15, 22]. Because the algorithm described above requires the values of ck in
reverse order, these values need to be stored from a previous run or recomputed. Moreover,
in practice the measurements are usually sparse and the value of ck is obtained from ck−1

with a sequence of steps ck−1→ c1
k → · · · → cs

k → ck. The computational trade-off is then
between allocating a huge amount of memory to store the states of the system during the
forward run, or frequent recomputations which increase the running time of the code. If an
explicit numerical method is used to solve the stiff chemistry part of problem (1.2), then
the “trajectory” from ck−1 to ck may become very long, increasing the cost of the adjoint
code. On the other hand, if an implicit method is used, then the adjoint computations may
become complicated. Ideally one would like a method capable of taking large stepsize and
an efficient adjoint implementation.
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2. OPERATOR SPLITTING

A popular way to solve problem (1.2) is to use operator splitting, which has the advantage
that processes such as advection, vertical diffusion, and chemical reactions can be treated
with different numerical methods. In a second order accurate Strang splitting [30] approach
with the time steph = tn+1− tn, the solution cn+1 is obtained from cn as

cn+1 = F̄ A

(
tn+1/2,

h

2

)
F̄ D

(
tn+1/2,

h

2

)
F̄ R(tn, h)F̄ D

(
tn,

h

2

)
F̄ A

(
tn,

h

2

)
cn, (2)

where the operators̄F are defined by the numerical method used to solve the corresponding
processes. If̄J denotes theN × N Jacobian matrix associated tōF , the adjoint algorithm
to compute the gradient (1.4) of the cost function requires products of the formJ̄Tu, with
u an arbitrary seed vector. Because constructing the adjoint code for large systems by hand
can be a frustrating process, automatic tools have been developed [14, 24]. Automatic
implementation allows also for flexibility, such that if the model is modified, minimal user
intervention is required.

Usually F̄ A is defined by an explicit method and may be nonlinear (e.g., if a flux-limiter
is applied for positivity [17, 35]);F̄ D is linear, defined by a (semi-) implicit method. The
productsJ̄T

Au andJ̄T
Du can be then efficiently computed using an automatic adjoint compiler.

Colemanet al. [8] present an “extended Jacobian” framework to exploit the sparsity of a
finite difference scheme, which leads to efficient computations of the adjoint products when
automatic differentiation is applied on the finite difference stencils.

The operatorF̄ R is highly nonlinear, given by a stiff numerical method, and the computa-
tion of J̄T

Ru needs special consideration. A key element for the efficient implementation of
the forward code is to exploit the sparse structure of the chemical model. Sparse computa-
tions must be then performed as well during the backward integration. Because the adjoint
method requires several integrations of the direct model, the storage of (part of) the forward
trajectory and the computation of the (jacobian)T · vectorproducts, the performance of the
adjoint model is dominated by the implementation of the direct and adjoint method used
in the chemistry integration, which takes in practice as much as 90% of the CPU time.
Fisher and Lary [12] show the adjoint computations for the adaptive-timestep Bulirsch-
Stoer method, and Elbern and Schmidt [10] use the adjoint model for a quasi-steady-state
approximation (QSSA) scheme. In the next section, we present the adjoint formulas for a
general 2-stage Rosenbrock method and an efficient implementation which is suitable for
automatization. The L-stable methodROS2 we obtain as a particular case was applied for
the chemistry integration in the forward 3D model LOTOS [3] in the context of various
types of operator splitting and using approximate Jacobians (as a W-method). Extension to
a generals-stage method [16] is straightforward.

3. ADJOINT COMPUTATIONS AND IMPLEMENTATION FOR A 2-STAGE

ROSENBROCK METHOD

3.1. Derivation of the Adjoint Formulas

We consider now the problem

dc

dt
= f (c)
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c(t0) = c0 (3.1)

with c(t), c0 ∈ Rn and f : Rn→ Rn, f = ( f1, f2, . . . fn)
T .

One step fromt0 to t1 with h = t1− t0 of a 2-stage Rosenbrock method as presented in
[16] reads (

1

γ11h
I − J0

)
k1 = f (c0) (3.2)(

1

γ22h
I − J0

)
k2 = f (c0+ αk1)+ β

h
k1 (3.3)

c1 = c0+m1k1+m2k2, (3.4)

whereJ0 is the Jacobian matrix off evaluated at c0, J0 = ( ∂ fi
∂c j
)i j |c=c0, and the coefficients

γ11, γ22, α, β,m1,m2 are chosen to obtain a desired order of consistency and numerical
stability. Because the methods that require only oneLU decomposition of 1

γi i h
I − J0 per

step are of special interest, we consider the case whenγ11 = γ22 = γ .
For the adjoint computations from (3.2), (3.3) we have(
∂k1

∂c0

)T

=
(

JT
0 +

(
∂ J0

∂c0
× k1

)T)(( 1

γh
I − J0

)T)−1

(3.5)(
∂k2

∂c0

)T

=
((

I + α ∂k1

∂c0

)T

JT
1 +

β

h

(
∂k1

∂c0

)T

+
(
∂ J0

∂c0
× k2

)T)(( 1

γh
I − J0

)T)−1

,

where J1 is the Jacobian evaluated at c0+ αk1, and the terms( ∂ J0
∂c0
× ki ), i = 1, 2, are

n× n matrices whosej column is( ∂ J0

∂c j
0

)ki , i = 1, 2. We want to stress here the fact that

these matrices are not symmetric; we will return to the computation of these terms later.
Using (3.4, 3.5), for an arbitrary seed vector u∈ Rn we have(

∂c1

∂c0

)T

u = u+m1

(
JT

0 +
(
∂ J0

∂c0
× k1

)T)(( 1

γh
I − J0

)T)−1

u

+m2

((
I +α

(
∂k1

∂c0

)T)
JT

1 +
β

h

(
∂k1

∂c0

)T

+
(
∂ J0

∂c0
× k2

)T)(( 1

γh
I − J0

)T)−1

u.

To avoid frequent recomputations and to exploit the particular properties of the method,
the order of the operations in the formula above become important. Below we present an
efficient algorithm.

STEP1. Solve for v the linear system( 1
γh I − J0)

Tv = u. Then,

(
∂c1

∂c0

)T

u = u+m1

(
JT

0 +
(
∂ J0

∂c0
× k1

)T)
v+m2JT

1 v

+m2

(
∂k1

∂c0

)T(
αJT

1 +
β

h
I

)
v+m2

(
∂ J0

∂c0
× k2

)T

v. (3.6)
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STEP2. Computeω = JT
1 (m2v);ω1 = αω + m2β

h v. Using (3.5) we get next:

STEP3. Solve forθ the linear system( 1
γh I − J0)

Tθ = ω1.
After replacing in (3.6), there results

(
∂c1

∂c0

)T

u = u+m1

(
JT

0 +
(
∂ J0

∂c0
× k1

)T)
v+ ω

+
(

JT
0 +

(
∂ J0

∂c0
× k1

)T)
θ +m2

(
∂ J0

∂c0
× k2

)T

v (3.7)

and after arranging the terms we obtain:

STEP4. Compute

(
∂c1

∂c0

)T

u= u+ω+ JT
0 (m1v+ θ)+

(
∂ J0

∂c0
× k1

)T

(m1v+ θ)+m2

(
∂ J0

∂c0
× k2

)T

v (3.8)

In formula (3.7) it appears that a routine to compute the productJT
0 s (sa seed vector) must

be called twice: first with the seed vectorm1v, second with the seed vectorθ . From (3.8)
it is enough to call the routine once, with the seed vectorm1v+ θ . The same observation
is made for the products( ∂ J0

∂c0
× k1)

Tm1v, ( ∂ J0
∂c0
× k1)

Tθ . We now focus on the terms of the

form ( ∂ J0
∂c0
× k)Tv whose evaluation dominate the computational cost of the algorithm given

by Steps 1–4. Here k, v ∈ Rn are arbitrary constant vectors. For thei component we have

((
∂ J0

∂c0
× k

)T

v

)
i

=
(
∂ J0

∂ci
0

k

)T

v = kT

(
∂
(
JT

0 v
)

∂ci
0

)
=
(
∂
(
JT

0 v
)

∂ci
0

)T

k. (3.9)

Consider now the functiong : Rn→ Rn, g(c0) = JT
0 v. Observe that the Jacobian matrix

of g is symmetric. We have

g(c0) =
(

n∑
l=1

J0,(l ,1)vl , . . . ,

n∑
l=1

J0,(l ,n)vl

)T

,

which gives for the (i, j) entry in the Jacobian matrix

∂gi (c0)

∂c j
0

=
n∑

l=1

(
∂2 fl

∂ci
0∂c j

0

)
vl =

n∑
l=1

H fl (i, j )vl ,

whereH fl is the Hessian matrix of the functionfl : Rn→ R.
Thus ∂g(c0)

∂c0
=∑n

l=1 H fl vl , so ∂g(c0)

∂c0
is symmetric. Using (3.9) results in

((
∂ J0

∂c0
× k

)T

v

)
=
(
∂g(c0)

∂c0

)
k. (3.10)

The symmetry of the Jacobian matrix of the functiong used in relation (3.10) plays a
significant role in the implementation of the adjoint code which we present next.
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3.2. Implementation of the Adjoint Code

The forward integration of problem (3.1) using implicit methods together with the per-
formance analysis is given in [27, 28, 34], proving that when the sparsity of the system
is efficiently exploited Rosenbrock methods outperform traditional explicit methods like
QSSA and CHEMEQ. Implementation is done in the symbolic kinetic preprocessor KPP
environment [9], which generates the sparse matrix factorizationLU required in (3.2, 3.3)
with a minimal fill-in [26] and the routine to forward–backward solve the linear systems
without indirect adressing. One step of the adjoint code (fromt1 to t0) requires a forward run
from t0 to t1 given by the formulas (3.2)–(3.4) followed by the pure adjoint computations
given by Steps 1–4. It is important to notice that theLU decomposition accounts for most
of the CPU time of the code, and there is no need to repeat it during the pure backward
integration.

With theLU decomposition of( 1
γh I − J0) available from (3.2) Step 1 readsU T LTv = u.

A new loop-free routine is generated by KPP for forward–backward solution of this system
in sparse format, avoiding indirect addressing. The computational cost of Steps 1 and 3 can
be then compared with the corresponding part from (3.2) and (3.3).

Step 2 requires evaluation of the productJT
1 v, which is automatically computed by KPP

using sparse multiplications. This introduces some extra work (J1 is evaluated at c0+ αk1),
but its cost is relatively cheap. The efficiency of the adjoint code is then dominated by the
implementation of Step 4, given by the formula (3.8). The computation of the terms of the
form ( ∂ J0

∂c0
× k)Tv in formula (3.8) appears to require the following order: forward automatic

mode to computeJ0k, and reverse mode to compute( ∂ J0
∂c0
× k)Tv. Relation (3.10) can be

used to rewrite (3.8) as

(
∂c1

∂c0

)T

u= u+ ω + g1(c0)+
(
∂g1(c0)

∂c0

)
k1+m2

(
∂g2(c0)

∂c0

)
k2, (3.11)

with g1, g2 : Rn→ Rn, g1(c0) = JT
0 (m1v+ θ), g2(c0) = JT

0 v.
The functionsg1, g2 are generated via KPP, taking full advantage of the sparsity of

the Jacobian matrixJ0. In (3.11) we have then to compute theJacobian· vectorproducts
for the functionsg1, g2, which can be done byforward automatic differentiation [2, 14].
The cost is 2–3 times the cost of evaluatingg1(c0), g2(c0) and remains low because of the
sparse structure ofJ0. This leads to a considerable saving in CPU time. By default, during
the computation ofJacobian· vectorproducts, forward automatic differentiation computes
the value of the function. Automatic differentiation forg1 then provides the valueg1(c0),
and there is no need to compute it separately. Last but not least, the computations related
to g1 andg2 are independent, allowing parallel implementation.

4. PERFORMANCE AND VALIDATION OF THE ADJOINT ALGORITHM

The algorithm and implementation presented in Section 3 have the benefit that the adjoint
part of the chemistry integration is generated completely automatically, taking full advantage
of the sparsity of the system. This allows the user to move easily from one model to another
and makes it very attractive compared with the handwritten codes whose construction for
large models can be a difficult process. Moreover, because symbolic computations are used,
rounding errors are avoided and the accuracy of the results goes up to the machine precision.
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Implementation in the KPP context also has the advantage of avoiding the introduction of
auxiliary adjoint variables, which has direct impact on the performance of the code both in
terms of memory usage and CPU time.

In particular, we consider the 2nd order 2-stage Rosenbrock methodROS2 which is
obtained from (3.2)–(3.4) by takingα = 1

γ
, β = − 2

γ
,m1 = 3

2γ ,m2 = 1
2γ . Choosingγ =

1± 1/
√

2, the method is L-stable and the numerical experiments presented in this section
were performed withγ = 1+ 1/

√
2. The superior stability, positivity, and conservation

properties of this scheme are analyzed by Verweret al. [34], who report good results in
the context of various types of operator splitting, even when large fixed step sizes (10 to
20 min.) are used.

4.1. The Box Model

To test the performance of the implementation we consider first a box model for the
problem (1.1). The chemistry part is based on the Carbon Bond Mechanism IV (CBM-IV
[13]) with 32 chemical species involved in 70 thermal and 11 photolytic reactions. The
data assimilation problem is set using the “twin experiments method,” with the background
term dropped and the logarithmic form of (1.3). Taking the logarithm of the concentrations
has the advantage that the positivity constraint is eliminated and scales the system. The
minimization routine used is the Quasi-Newton limited memory L-BFGS algorithm [4, 5],
anticipating extension to large-scale models. The initial concentrations follow the urban
scenario as described in [27], with an initial concentration of 70 ppb for O3. Assimilation
starts at the beginning of the third day (6:00 LT) over a period of 6 h, with measurements
provided every 15 min. As the initial guess for the concentrations we chose the values at
the beginning of the second day. The one-day period is introduced to allow the system
to equilibrate. The integration is restarted every 15 min with a minimum stepsize of 1 s,
simulating an operator-splitting environment. With the absolute and relative tolerances
Atol= 1 molecules, Rtol= 0.01, the number of intermediate steps within a 15-min interval
ranges from 5 to 12, providing a relatively short forward trajectory. Two experiments were
performed: in Run 1 measurements were provided for ozone only, and in Run 2 for ozone
and NO2. The results of the assimilation for O3, NO2, and NO are shown in Fig. 1. It can
be seen that model predictions are highly improved even after the end of the assimilation
window (12:00 LT), and introducing NO2 measurements is of benefit not only for the NO2

and NO analysis, but also for the O3 analysis. However, because additional constraints are
introduced, the number of iterations in the optimization is increased (Table I).

Alternatively, to compute the gradients we use the second-order central difference formula
[1] with ε = (2.22× 10−16)1/3. Figure 2 (left Run 1, right Run 2) shows the relative and
absolute differences between the computed gradients with respect to some important species
in the model. Because in the context of stiff computations and a long trajectory, the roundoff
errors can highly affect the accuracy of the difference schemes, we also show in Fig. 3 the
corresponding results for assimilation with only one measurement, at T= 6:15 LT, together
with the computed gradients. On average, 8 to 10 significant digits of the gradients are
matched (when∇F is nearly zero, the relative error size in the gradient approximation for
difference schemes may become very large [1]).

For consistency with the implementation for large-scale models, where the storage of
the entire trajectory is not a realistic option, a checkpointing scheme is applied for the
gradient computations. First, a full forward run is used to store the states of the system
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FIG. 1. Assimilation takes place from 6 to 12 LT. Measurements are provided every 15 min for O3 only in
Run 1 (left), and for O3 and NO2 in Run 2 (right). Solid line with dots= reference run; solid line= assimilation
result; dotted line= first guess.

at the measurement moments. Second, during the backward integration, a full forward
run stores the trajectory between measurements (see Section 1) and information about the
stepsize used. Third, the computations given by Steps 1–4 in Section 3 are performed (pure
backward integration). Observe that the numerical values ofk1, k2 are still required. These
recomputations may be avoided by storing allk1 during the second forward run, but this will
double its storage requirements. We prefer to repeat (3.2) to computek1, then avoid (3.3) by
settingm2k2 = c1− c0−m1k1 in (3.11). The technical report of the optimization process
is outlined in Table I (Run 1, 2). We denote by KPP-AD the implementation of the adjoint
code using the KPP generated adjoint routines and forward automatic differentiation. It can

TABLE I

Performance of the Optimization Process and the Adjoint Codea

∼cpu(F +∇F )/
∼cpu/iter cpu(F )

Run Iter. (F,∇F )-eval. ∼cpu(F ) KPP–AD TAMC KPP–ADb TAMCb Finit/Fend

1. 27 32 0.017 0.35 0.42 3.66 7.71 1.e5
2. 32 38 0.017 0.36 0.44 3.71 7.75 2.8e3
3.c 34 34 2.05 8.32 16.6 3.65 7.69 1.e2

a All the computations were done on a HP-UX B.10.20 A 9000/778 machine with level 2 optimization.
The CPU time is in seconds.

b The time to read–write data to files is not considered for these ratios.
c Simplified recomputations for the advection–diffusion part are taken during the backward integration

(see Fig. 5).
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FIG. 2. Absolute (solid line) and relative (dotted line) differences between the computed gradients using the
central difference formula and automatic adjoint computations during the optimization process. Left—Run 1,
right—Run 2.

FIG. 3. Absolute (dashed line) and relative (dotted line) differences between the computed gradients (solid
line) using the central difference formula and automatic adjoint computations. Left—Run 1, right—Run 2. To
reduce the roundoff errors a short assimilation interval (15 min) is considered.
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be seen that the average ratio between the CPU time required to compute the gradient (and
cost function value) and the CPU time of a forward run is about 3.7, which gives an average
ratio cpu(pure backward integration+ (3.2))/cpu(forward integration)≈ 1.7. This makes
our implementation very efficient.

As an alternative way for automatic adjoint code generation, we applied the adjoint model
compiler TAMC [14, 15] to (3.2)–(3.4) using the same checkpointing scheme. In particular,
we noticed that the adjoint compiler fails to generate an efficient adjoint code for the sparse
chemistry computations. The timing results included in Table I (TAMC) were obtained with
significant user intervention to reduce the frequent recomputations generated by the adjoint
compiler.

4.2. Application to a 1-D Problem

We consider now a one-dimensional horizontal test problem corresponding to (1.1). The
wind field and the diffusion coefficient are taken constant,u = 10 km/h (left-to-right),
K = 10−3 km2/sec. Second-order Strang splitting is applied,

c(tn+1) = F̄ A

(
tn+1/2,

h

2

)
F̄ R(tn, h)F̄ A

(
tn,

h

2

)
c(tn),

with a splitting intervaltn+1− tn = 15 min. The advection operator is discretized using a
limited k = 1/3 upwind flux interpolation as presented in [17], and the diffusion operator
using central differences formula. Together they defineFA. The numerical method defining
F̄ A is the explicit trapezoidal rule. Concentrations are kept constant at the left boundary
(x = 0), and at the right boundary, we consider∂c

∂n = 0. For a full description of the space
discretization the reader should consult [25]. With the spatial domain [0, 500] km and a
uniform grid1x = 5 km, the dimension of the corresponding (1.2) problem is 3200. A
highly polluted region is considered between 200 and 300 km, with initial concentrations
and emissions as in the urban scenario, and for the rest of the domain rural concentrations
and emissions are provided [27]. Emissions take place at constant rate, and are included in
FR. Interpolation is done between the center (250 km) and the urban limits. To allow the
system to equilibrate, box models (chemistry only) are integrated for one day over the whole
grid. The results are the “true” initial conditions, cref

0 . “Measurements” are then generated
every 15 min by a 6-h transport–chemistry run. Figure 4 shows the spatial distribution of
the reference concentrations at the beginning (6:00 LT) and at the end (12:00 LT) of the
assimilation interval for O3 and NO2. First guess initial concentrations are generated similar
to cref

0 , but with a uniform injection of 0.1 ppb/hour over the rural area and 0.5 ppb/hour over
the urban area of NOx during the box models integration, which accounts for an error in
emission estimates. Assimilation starts at 6:00 LT over a 6-hour interval, with measurements
for ozone every 15 min and for NO2 each hour, at all grid points. A checkpointing strategy
is applied for the gradient computations. First, a full forward run is used to store the states
of the model after each operator splitting interval. Second, for the backward integration,
a forward run stores the states within a splitting interval (1+ all chemistry steps). Third,
the pure backward integration is performed, where the intermediate states within transport
and within the chemistry steps need to be provided by a simplified forward run. The adjoint
part of the advection–diffusion equations is automatically generated using TAMC. The
computational scheme for one split interval is described in Fig. 5. The performance of
the optimization process is given in Table I (Run 3, KPP-AD) and the assimilation results
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FIG. 4. Spatial distribution of the reference concentrations for O3 and NO2. Solid line= initial (LT = 6:00),
dotted line= final (LT= 12:00). High NOx emissions take place in the urban area (200–300 km).

FIG. 5. Computational scheme of the adjoint code for one time split interval. Concentrations are stored
after each step during the forward integration, then loaded for the adjoint integration. Additional partial forward
computations are required during the adjoint integration.



508 DAESCU, CARMICHAEL, AND SANDU

FIG. 6. Assimilation results at some representative points for each area. First line O3, second NO2, third NO.
Solid dots= true solution, solid line= assimilation result, dotted line= first guess solution.

are presented in Fig. 6. We note here that the previous timing results for the adjoint code
are recovered, confirming the success of the implementation. The results obtained with
TAMC applied for full transport–chemistry adjoint computations are also included in Table I
(Run 3, TAMC).

5. CONCLUSIONS AND FURTHER WORK

The development of powerful computing machines in the past decade made the variational
data assimilation technique for large-scale models an intensively explored area. With a
dimension of the systems of order 106, any attempt to provide the gradient of the cost
function using a direct method (finite differences, solving the sensitivity systems) is not
feasible, and the adjoint approach is an attractive alternative. In the context of stiff chemical
equations, explicit integrators may take prohibitive small stepsize (or just fail), which highly
affects the performance of the adjoint code.

While several adjoint models for explicit or semi-implicit numerical methods have been
constructed, implementation of implicit methods remains a delicate problem. In this paper
we introduced the adjoint computations and an efficient implementation of the two-stage
Rosenbrock methods which is suitable for automatization and parallel coding. The algorithm
and the properties we described can easily be generalized tos—stage methods and it is of
interest to analyze how this implementation can be applied to implicit Runge-Kutta methods
[16]. Further work includes testing on comprehensive models, extending the set of control
variables to include the emission field and depositions, implementing in the context of
W-transformation and different types of operator splitting, and the possibility of using
approximate gradients.
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