
Atmospheric Environment 36 (2002) 3917–3930

A communication library for the parallelization of air quality
models on structured grids

Philipp Miehea, Adrian Sandua, Gregory R. Carmichaelb,*,
Youhua Tangb, Dacian D&aescuc

aDepartment of Computer Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
bCenter for Global and Regional Environmental Research, The University of Iowa, Iowa City, IA 52240, USA

c Institute for Mathematics and its Applications (IMA), University of Minnesota, 400 Lind Hall, 207 Church Street S.E.,

Minneapolis, MN 55455-0436, USA

Received 02 October 2001; accepted 07 May 2002

Abstract

PAQMSG is an MPI-based, Fortran 90 communication library for the parallelization of air quality models (AQMs)

on structured grids. It consists of distribution, gathering and repartitioning routines for different domain

decompositions implementing a master–worker strategy. The library is architecture and application independent and

includes optimization strategies for different architectures. This paper presents the library from a user perspective.

Results are shown from the parallelization of STEM-III on Beowulf clusters. The PAQMSG library is available on the

web. The communication routines are easy to use, and should allow for an immediate parallelization of existing AQMs.

PAQMSG can also be used for constructing new models. r 2002 Published by Elsevier Science Ltd.

Keywords: Air quality models; Structured grids; Parallel computing

1. Introduction

Comprehensive air quality computer models are

widely used investigation tools in environmental re-

search, in which many physical and chemical processes

are modeled and their integrated impacts on atmo-

spheric pollutant concentrations studied. Air quality

models (AQMs) are also important tools for regulatory

and policy communities. The clean air act stresses the

importance of assessing and managing air pollution

levels to protect human health and the environment.

AQMs are used to develop optimal emission control

strategies for atmospheric pollutants, as required by the

National Ambient Air Quality Standards. Air quality

models are computationally intensive applications.

Incorporation of more detailed chemistry and size

resolved aerosol chemistry and physics increase the

estimated computational requirements by an order of

magnitude. In the future AQMs will be more widely

used in data assimilation and forecasting activities,

which will further increase the computational require-

ments. In this paper we present the tools to facilitate the

parallel implementation of AQMs.

2. The parallelization problem

2.1. Air quality models on structured grids

The theoretical basis for air pollution modeling is the

mass balance equation (Carmichael et al., 1996):

@Ci

@t
þ

@ðUj � CiÞ
@xj

¼
@

@xj
Kjj �

@Ci

@xj

� �
þ Ri þ Ei;

1o ¼ io ¼ Ns: ð1Þ

*Corresponding author.

E-mail addresses: pmiehe@mtu.edu (P. Miehe), asandu@

mtu.edu (A. Sandu), gcarmich@cgrer.uiowa.edu (G.R. Carmi-

chael), ytang@cgrer.uiowa.edu (Y. Tang), daescu@ima.

umn.edu (D. D&aescu).

1352-2310/02/$ - see front matter r 2002 Published by Elsevier Science Ltd.

PII: S 1 3 5 2 - 2 3 1 0 (0 2) 0 0 3 3 8 - 2

There are Ns chemical species considered; Ci stands for

the concentration of species i; t for simulation time, Uj

are the velocity components and xj the spatial coordi-

nates (three dimensional). Kjj are the diffusivities, Ri the

rate of chemical reactions, and Ei the rate of emissions.

For a numerical solution the mass balance equation

(1) is discretized on a grid that covers the part of the

atmosphere of interest. Many present day AQMs, as

well as meteorological simulation codes, are based on

structured grids. For example MM51 uses nested grids to

allow variable spatial resolution. Code preprocessing

(with the Fortran loop and index converter FLIC,

Michalakes, 1997a) and the RSL communication library

(Michalakes, 1997b) have been used to achieve a flexible

MM5 parallelization. The scalable modeling system

(SMS) (Govett, 2000) developed at NOAA/FSL uses a

directive-based approach for the parallelization of

weather and climate models. New standards are

currently being introduced in the weather research and

forecasting (WRF) model2 in America and new models

at the European Centre for Medium-Range Weather

Forecasts (ECMWF).3 The software design principles

and the two-level parallelization strategy of WRF is

detaliated in Michalakes et al. (1998). Recently the use

of non-structured grids in AQMs has been investigated

(Tomlin et al., 1999). Such grids use nested structures

based on tetrahedral or rectangular cell shapes, where

selected areas of the grid can have higher resolutions

than the rest of the grid. Non-structured grids will not be

considered in this work. Nested structured grids are not

treated explicitly in this paper, but they can also be

parallelized using the data types implemented in our

library.

A structured grid can be logically mapped onto a

parallelipipedic lattice with Nx�Ny�Nz points. In

practice the grid is non-uniform, as it takes into account

the Earth curvature and orography. More general, the

grid can be set in a modified set of coordinates (e.g.

latitude–longitude–pressure). The geometric shape of

the modeled region can be arbitrary and has no impact

on the parallelization algorithm; the only requirement is

that the grid is logically structured (such that the

underlying data structures are multidimensional ma-

trices as outlined below). For simplicity we denote the

three spatial dimensions by x; y; z; but the grid does not

have to be aligned with the latitude–longitude system of

coordinates (Table 1).

2.2. Data types

The data structures for simulation on structured grids

are arrays. The main array types used by AQMs are

described in Table 2. The species concentrations, the

major data of interest, are stored in a four dimensional

array (4D) containing the concentration of each species

in each grid cell. Note that for multiple phases several

concentration arrays might be needed. Emission rates

for each species in each grid cell are also represented by

a 4D array. The wind velocity components and

horizontal and vertical diffusion are one scalar per grid

point, and can be represented by 3D arrays. Boundary

information is held in arrays having two spatial and one

species dimension. Domain top layer height is repre-

sented by a 2D array. For a complete list of the array

types implemented in PAQMSG the reader should

consult Miehe and Sandu (2001) and Miehe (2001).

2.3. Analysis of data dependencies

An operator split algorithm advances the solution in

time using a succession of computational steps:

Cðtnþ1Þ ¼TDt
x � TDt

y � TDt
z � R2Dt

� TDt
z � TDt

y � TDt
x � CðtnÞ;

tnþ1 ¼ tn þ 2Dt; ð2Þ

where TDt
x ;TDt

y ;TDt
z are the transport operators in x; y

and z directions (accounting for advection by wind and

turbulent diffusion), and R is the chemistry step. In

more complex models R may also contain particle

dynamics, chemical equilibria calculations, etc. In

general R calculates the effect of local (non-spatially

coupled) processes. This splitting is symmetric (cf.

Strang, 1968) in the sense that different steps alternate

first in a direct, then in a reverse order.

The computation of local processes R typically takes

more than 90% of the total cpu time. This is an ideally

parallelizable task, since the (local) computations at

each grid point are independent from one another.

On the other hand the transport steps T introduce

dependencies between concentrations in different grid

cells. A time-explicit transport scheme requires informa-

tion from the neighboring grid cells (a fixed stencil).

More exactly, as illustrated in Fig. 1, the calculation of

cnþ1
i (the concentration in grid point i at step nþ 1)

requires cni�k;y; cniþk (the previous step concentrations

in 2k þ 1 neighboring grid points). A time-implicit

transport scheme requires the whole row (or column)

of grid data along the transportation direction to be

present at the same processor; this is also illustrated in

Fig. 1. In addition, spectral techniques used in some

AQMs (Dabdub and Seinfeld, 1994a) also require an

1Web Page. MM5 - Pennsylvania State University/ National

Center for Atmospheric Research (PSU/ NCAR) mesoscale

model. http://www.mmm.ucar.edu/mm5/mm5-home.html.
2Web Page. WRF - Weather Research and Forecasting

Model. http://www.wrf-model.org.
3ECMWF European Centre for Medium-Range Weather

Forecasts. http://www.ecmwf.int/.

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–39303918

http://www.mmm.ucar.edu/mm5/mm5-home.html
http://www.wrf-model.org
http://www.ecmwf.int/

entire row/column of grid data to be processed

simultaneously.

It is clear that a data partitioning suitable for implicit

and spectral schemes will also work for explicit methods,

albeit in this case some efficiency may be lost. In this

paper we consider the more general implicit type

partitioning. We note that a tiled domain decomposition

may be used for implicit time stepping schemes using

ghost regions (Govett, 2000).

2.4. Requirements and constraints

The guiding principle in designing PAQMSG is to

build parallel models that behave similarly to the serial

versions. The development of a model is done in serial

mode while the production runs (long simulations) are

done in parallel. Specifically, the serial and parallel

versions have to use the same input files and produce the

same output files. The parallel code has to integrate

the same science modules and numerical methods as

the serial code; such modules have been developed

over years of work and are continuously subject to

modifications.

3. Previous and related work

Carmichael et al. (1996, 1999) describe the framework

and computational challenges of air quality modeling.

Complex processes are incorporated into AQMs. Many

phenomena are not completely understood and have to

be simplified and parameterized in order to be integrated

into the models. This paper presents advantages and

difficulties of parallel implementations while directing

attention to the differences of parallel computers (e.g.

vector machines and message passing systems). Mini-

mizing communication is the goal for the parallel

version in order to achieve high performance. Symmetric

splitting (2) halves the necessary communication.

Table 2

The main array types for a structured grid simulation. The grid

has Nx�Ny�Nz points, and there are Ns chemical species

Type Dimension Example

4D array (Nx;Ny;Nz;Ns) Concentrations; emission

rates

2D array (Nx;Ny) Domain top and bottom

layer heights

3D array (Nx;Ny;Nz) Wind velocities; diffusion

coefficients

BDz

array

(Nx;Ny;Ns) Top boundary

concentrations

BDy

array

(Nx;Nz;Ns) Y boundary

concentrations

BDx

array

(Ny;Nz;Ns) X boundary

concentrations

Table 1

Interaction of the library with the model source code. Only minor changes in the serial driver (left) are required to obtain a parallel

version (right). The same numerical subroutines are used by both the serial and the parallel versions of the model

Serial driver Parallel driver

CALL MAPPING(Nx;Ny;Nz;Nvloc,Nhloc)

ALLOCATE(C, U, V, W) IF (Master) ALLOCATE(C, U, V, W)

ELSE ALLOCATE(Ch, Cv, Uh, Vh, Wv)

CALL INPUT(C) ! Initial IF (Master) CALL INPUT(C)

DO IT ¼ 1,NITER DO IT ¼ 1,NITER

CALL INPUT(U,V,W) IF (Master) CALL INPUT(U,V,W)

CALL HDISTRIBUTE(U,Uh,V,Vh)

DO IT2 ¼ 1,NITER2 DO IT2 ¼ 1,NITER2

CALL TRANX(C,U) CALL TRANX(Ch,Uh)

CALL TRANY(C,V) CALL TRANY(Ch,Vh)

CALL SHUFFLE H2V(Ch,Cv)

CALL TRANZ(C,W) CALL TRANZ(Cv,Wv)

CALL CHEM(C) CALL CHEM(Cv)

CALL TRANZ(C,W) CALL TRANZ(Cv,Wv)

CALL SHUFFLE V2H(Cv,Ch)

CALL TRANY(C,V) CALL TRANY(Ch,Vh)

CALL TRANX(C,U) CALL TRANX(Ch,Uh)

END DO END DO

CALL HGATHER(Ch,C)

CALL OUTPUT(C) IF (Master) CALL OUTPUT(C)

END DO END DO

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–3930 3919

Elbern (1997, 1998) put major effort into the

parallelization and load balancing of the European air

pollution dispersion model (EURAD). In his work he

examined the contributions of dynamics, physics and

chemistry modules to load imbalances and introduced a

family of load balancing schemes for a wide range of

platforms. Elbern used load balancing strategies based

on combined global and local decision and migration

bases. He compared several static and dynamic load

balancing strategies using 2–128 processors on a

message passing machine (Intel Paragon). The full

adjustment scheme (two dimensional load balancing)

produced the best results in balancing the work,

achieving efficiencies from 38% (static) to 62%.

Dabdub and Seinfeld (1994b) and Dabdub and

Manohar (1997) present a portable parallel implementa-

tion of an AQM for distributed memory MIMD

machines. The authors developed a performance model

to predict execution times of a program depending on

the number of processors using machine and applica-

tion-dependent parameters. This performance analysis

did not count for the idle time due to load imbalances.

For their experiments the authors used the California

Institute of Technology (CIT) photochemical model.

Their implementation used a master–worker strategy,

where the master does the I/O handling and distributes

the work to other processors. The communication

routines are portable, being interfaced with MPI, PVM

and p4. Results were obtained on different parallel

machines (Intel Delta, Intel Paragon, IBM SP2, Cray

T3D).

In Owczarz and Zlatev (to appear) the Danish

Eulerian model (DEM) was parallelized by Owczarz

and Zlatev on an IBM SMP machine. Due to the special

structure of the machine general optimizations as well as

machine dependent features were integrated into the

code by the authors. The authors show that optimizing

the serial code results in benefits for the parallel

implementation. Special parallelization strategies were

employed to take advantage of the machine, namely

OpenMP was used to run the parallel code on the shared

memory part of the IBM SMP (one node only), and

MPI is used for communication between nodes. This

strategy lead to impressive efficiencies.

4. The parallelization approach

The parallelization approach in this work is a master–

worker strategy based on domain decomposition. This

strategy targets clusters of workstations/PCs and is

explained in detail in this section.

4.1. The master–worker approach

A master–worker parallelization was implemented,

where the master reads the input files, distributes data to

workers, gathers the results and writes them into output

files. The master does not take part in any of the

simulation computations. This approach is consistent

with the architecture of a Beowulf cluster where a

central box has access to the main storage, while nodes

connected by fast Ethernet have access to local storage

only.

This master–worker strategy allows for overlapping of

input/output with computations. The idle master can

manage a dynamic load balancing strategy. Since the

master is not involved in heavy computations, the

central box of the Beowulf cluster (where the master

process runs) remains available for other users. Recall

that compilation, for example, is done on the central

box. At the same time, an idle master means that the full

processing power of the system is not used. Input and

output is serial. Another disadvantage is the unsym-

metric communication patterns, when the master takes

part in data distribution and result gathering, but during

computational steps only the workers communicate

among themselves.

4.2. Domain decomposition

The chosen decomposition impacts the effectiveness

of a parallelization strategy. It determines load balan-

cing, distribution time, as well as the book-keeping

overhead. PAQMSG implements several data decom-

position strategies, assuming a homogeneous parallel

platform, where each node has the same processor speed

and memory capacity; Beowulf clusters are homo-

geneous.

ii−1 i+1

ci

n+1

i

i+2i−2i−k ...
0

0 Nx

Nx
... i+k

......

time level explicit

n

n+1

ii−1 i+1

c i

n+1

i

i+2i−20

0 Nx

Nx

implicit

1 2 Nx−2 Nx−1

... ...

Fig. 1. Stencils for explicit and implicit transportation schemes determine different data dependencies.

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–39303920

4.2.1. XY-partitioning

In the XY -partitioning all points in the grid having

the same y-coordinate form an X -slice of the domain,

while all points with the same x-coordinate form an

Y -slice. X and Y -slices are distributed to processors in a

circular fashion, assigning the first slice to the first

processor, the next slice to the next processor, etc. until

each processor has a slice, and then starting over with

the assignment to the first processor. This partition

strategy is illustrated in Fig. 2. Data distributed in

X -slice format can be used for X - and Z-transport and

for chemistry calculations. The Y -slice format provides

the layout for Y - and Z-transport, as well as chemistry.

Repartitioning data on the grid, i.e. data shuffling from

X -slices to Y -slices and vice versa, is necessary during

each time step in order to complete all transport

computations. A disadvantage of this layout is that the

number of useful workers is limited by the number of

Y -slices (or X -slices) available. Usually this number is

on the order of tens or a few hundred; therefore the

strategy works best with few processors.

4.2.2. HV-partitioning

All points in the grid having the same Z coordinate

define an H-slice (‘‘horizontal’’ slice) of the grid. A

V -column (‘‘vertical’’ column) consists of all grid points

sharing the same X and Y coordinates. Both the

H-slices and the V -columns are distributed to workers

in a round robin fashion. The layout can be seen in Fig. 3,

which identifies H-slices in comparison to V -columns.

One step of a parallel computation with HV -

partitioning is shown in Fig. 4. A shuffling from H-

slices to V -columns and back has to take place during

each time step. The bulk of the computations take place

with data in V -columns; the number of available V -

columns is NxNy (on the order of thousands). Therefore

the granularity is finer compared to XY -partitioning.

This ensures scalability for larger number of processors,

and provides a better load balancing. An additional

advantage of this partitioning is the possibility to use

genuinely two-dimensional numerical methods for the

horizontal transport, which may be considerably more

accurate than dimensional splitting schemes.

P1

X−Slices Y−Slices

P2 P4 P5P3

Fig. 2. Data layout for XY -partitioning. In this example there are five workers, Nx ¼ 9; Ny ¼ 7:

P1

V−ColumnsH−Slices

P5P3P2 P4

Fig. 3. Data layout for HV -partitioning. In this example there are five workers, Nx ¼ 9; Ny ¼ 7; Nz ¼ 4:

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–3930 3921

4.2.3. Subdomain partitioning

Although not implemented here, another partition is

possible and frequently employed. Each processor can

be assigned a contiguous set of grid points, i.e. a

contiguous subdomain. This partitioning is suitable for

explicit transportation schemes, where load balancing

strategies based on dynamic adjustment of subdomain

boundaries can be applied.

4.3. Communication costs

With a subdomain partitioning (and an explicit

transport scheme) the data exchanged at each time step

consists of concentration fields along subdomain

boundaries. With XY and HV partitionings, however,

a complete exchange of data between workers at each

time step is necessary (the full information in a 4D

concentration array is reshuffled). The communication

time associated with the total exchange decreases with

increasing number of processors, and remains a small

percentage of the total communication time.

4.4. Load balancing

An important factor affecting the performance of the

parallel code is the level of load imbalance during the

execution. If the work is not evenly distributed, some

processors will stay idle waiting for the others to finish,

and the total computational time will be determined by

the slowest processor. Several load balancing schemes

have been investigated by different authors as discussed

in Section 3. Traditionally, dynamic load balancing

schemes work with subdomain partitions and explicit

transport algorithms. Load balancing is achieved by

periodically adjusting the boundaries of the subdomains.

Here we concentrate on the data decompositions XY

and HV that can accommodate implicit transport

schemes. A possible strategy for dynamic load balancing

is to have the master keep a pool of unprocessed

V -columns, and to have workers request the data,

process the V -column, and return results, then request a

new V -column, etc. A watch-dog can also be used to

implement a fault-tolerant system (i.e. if the results are

not returned within a prescribed maximal time, the

V -column is made available to a different worker).

The present library implements a much simpler

strategy with excellent results. In air quality modeling

load imbalances appear when a region of high chemical

activity is localized within a subdomain, and assigned to

a single processor. The chemical solver automatically

takes smaller time steps to meet the accuracy demands,

and this increases the computational burden of the

processor. Note that with adaptive grids load imbal-

ances may result after grid refinement. The discussion of

this situation is outside the scope of this paper.

The HV -partitioning approach offers the possibility

to cover the regions of higher chemical activity with

columns assigned to different processors. Thus load

Fig. 4. One step of a computation in HV layout.

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–39303922

imbalance is alleviated, since each worker gets a share of

the higher work area. This ‘‘inherent’’ load balancing

can be achieved if the V -columns assigned to one worker

are spread uniformly over the computational domain; a

clustering of V -columns of one worker in the same area

has to be avoided, therefore an irregular distribution of

V -columns is sought for.

Our library implements several strategies for assigning

V -columns to processors. They are based on a round

robin approach, where the domain is traversed by rows,

columns, or diagonals, and the next V -column is

assigned to the next processor. A greedy-type algorithm

can be used to ensure that neighboring V -columns are

not assigned to the same processor where one looks at

the already assigned neighbors of the V -column at hand

and then assigns this V -column to the lowest-rank

processor that does hold a neighbor. Several possible

strategies are illustrated in Fig. 5: diagonal round robin

assignment and x–y round robin and diagonal assign-

ments with the greedy algorithm to prevent mapping

neighbors onto the same processor. One notices the

(reasonably) uniform spread of V -columns over the

computational domain.

5. The communication library

Efficient implementation of the communication rou-

tines has a major impact on the parallel performance

(speedup and scalability). In this section we describe the

general communication library PAQMSG. The routines

are architecture independent but need an MPI-imple-

mentation and a FORTRAN90 compiler. The library

implements distribution, shuffling and gathering rou-

tines for the array types described in Section 2.2.

Application of the library assumes that the paralleliza-

tion is conducted on a uniform parallel machine.

5.1. Communication routines

The master holds copies of the global 2D, 3D, BD and

4D arrays as described in Section 2.2. Workers have

local (small) versions of these arrays. For each global

array there are two local counterparts, each holding

local data in one of the complementary formats (X -slice/

Y -slice or H-slice/V -column). Data moves between

master (global arrays) and workers (local arrays); data

also moves between workers, being reshuffled from one

type of local structure to another. We now discuss the

communication routines implemented by the library.

5.1.1. Distribution

The master reads the input data from input files and

updates the global data structures. The data is then

distributed to all the working processors, depending on

the partitioning of the model. For each of the data types

four different distributions are provided: X -slice dis-

tribution, Y -slice distribution, H-slice distribution, and

V -column distribution.

5.1.2. Gathering

In the end of the calculations done by the working

processors the 4D concentration arrays need to be

gathered by the master, which writes the output file.

Gathering from four different partitionings are pro-

vided: X -slice gathering, Y -slice gathering, H-slice

gathering and V -column gathering.

5.1.3. Repartitioning

In order to repartition the data during the computa-

tion routines are implemented to shuffle the data from

X -slices to Y -slices (and vice versa), and to shuffle the

data from H-slices to V -columns (and vice versa). The

reshuffling is only needed for the 4D concentration

arrays. Reshuffling is an ALLTOALL communication,

as each worker needs to exchange data with every

worker.

5.1.4. Implementation variants

Each of the communication routines is available in

three different implementations:

* Version 1 uses one message for each slice/column to

be communicated. This is the most general form and

P1 P4 P5P2 P3

diagonal mapping by lookingx/y−mapping by looking
at already assigned neighbors

diagonal mapping
at already assigned neighbors

Fig. 5. Different V -column distributions. In this example Nworkers ¼ 5; Nx ¼ 9; Ny ¼ 7:

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–3930 3923

is able to support irregular HV -mappings and the

overlap of computation and communication;
* Version 2 uses one message per processor pair. This

implementation builds MPI data structures using

MPI VECTOR. Time savings result since explicit

copying is avoided and the number of messages is

small;
* Version 3 calls the highest-level specific function

provided by MPI (SCATTER for distribution,

GATHER for gathering, and ALLTOALL for

shuffling). These functions are defined by MPI-2

standard and are not available in all MPI imple-

mentations.

The speed of the communication routines depends on

the MPI implementation as well as on the architecture

used. Message passing machines have a high start-up

cost (latency) and therefore give better results when

fewer, longer messages are used, while shared memory

machines can show good results when many short

messages are sent. A setup program is provided to test

and time automatically the versions available, and to

recommend the fastest ones.

6. Using the library

The library is organized as a set of Fortran modules

that enclose the relevant subroutines and data types. The

modules are contained in several files as explained next.

6.1. The user view of the library

Module description and interrelation. The module

ParallelCommunication includes all the other modules

using the FORTRAN use-statement. A parallelization

has to use only this module to allow all library functions

to be called. Fig. 6 displays the interrelation between all

modules.

The module ParallelDataMap describes the mapping

(the layout) of data onto different processors, and

initializes global variables. The module CommDataTypes

defines the communication data structures like slices,

columns and sets of slices or columns. This is only

needed in the actual communication routines hosted by

CommunicationLibrary. ParallelMemAlloc is a stand-

alone module that contains allocation functions for the

global and local data structures. These functions can be

directly called by the user and are not required in any

other routines.

In order to implement a new partitioning the user can

either introduce a new module or change a given one

while preserving the module hierarchy.

File structure. The list of library files and the

distribution of modules is presented in Table 3.

The main component mpi commlibrary.f contains the

communication routines. The definitions of the data

partition scheme and the necessary global variables can

be found in mpi util.f and mpi util mpich.f. The

files (mpi xy setup.f, mpi hv setup.f) contain the

setup routines which time each communication version

and help choose the best one for the architecture at

hand. In addition, the library contains a set of files

that are specific to the parallel implementation of

STEM-III: mpi communication.f, mpi memalloc.f,

mpi aq driver xy.f and mpi aq driver hv.f. The

functions implemented can serve as general templates

for the parallelization of AQMs.

Global variables. The global variables displayed in

Table 4 help create an environment where data

use
useuse use

ParallelMemAlloc Communication
Library

ParallelDataMap

CommDataTypes

ParallelCommunication

Fig. 6. Module hierarchy.

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–39303924

partitioning and repartitioning schemes can be applied.

Global variables are declared in the ParallelDataMap

module.

6.2. Interaction of the library with the model source code

The general structures of the serial and parallel drivers

are presented in Table 1 in Fortran90-style pseudocode.

Drivers manage the allocation of global and local data

structures, the input and output, and call the computa-

tional routines. The presentation is simplified (e.g. the

boundary conditions are omitted). The parallel version

uses the same computational routines (for solving

transport and chemistry) as the serial one, and in

practice their interfaces are a little bit more complex

then presented here. The parallelization is straightfor-

ward, as it only requires the insertion of several calls to

the proper communication routines in the driver.

7. Results

To illustrate the functionality of the library we

implemented a parallel version of the STEM-III AQM

(Carmichael et al., 1996). In this section the results of

this implementation on Beowulf clusters are reported.

7.1. STEM-III

A detailed description of STEM-III and its mathe-

matical and scientific methods can be found in CGRER

Homepage.4 STEM-III uses structured grids. The

computational cycle consists of a double loop. After

setting up the grid and reading part of the input the

outer loop starts. The input necessary for the computa-

tions in the current step is read; e.g. meteorological data.

The inner loop performs operator-split computational

steps of transport and chemistry. At the end of the outer

loop the computed concentration fields are written to

output files. The library allows a straightforward

parallelization of STEM-III.

7.2. Beowulf clusters

Our main testing platforms were Beowulf clusters,

which have recently become very popular in air

pollution studies. A Beowulf system is a collection of

(commodity hardware) PCs running an open-source

network operating system (Linux), interconnected by a

private high-speed network, and configured to operate

as a single parallel computing platform. Typically the

cluster is connected to the outside world through only a

single node; the other nodes are not accessed as

individual computers, but are dedicated to running

cluster jobs. The driving design philosophy of a Beowulf

system is to achieve the best possible price/performance

ratio for a given computing problem.5

Table 3

List of library files

File Description Modules contained

mpi xy setup.f Setup program for XY

mpi hv setup.f Setup program for HV

mpi util.f Communication data types {XY,HV}CommDataTypes

(MPI-2) {XY,HV}ParallelDataMap

mpi util mpich.f Communication data types {XY,HV}CommDataTypes

(MPICH) {XY,HV}ParallelDataMap

mpi communication.f STEM-III specific communication {XY,HV}ParallelCommunication

mpi commlibrary.f General communication library {XY,HV}CommunicationLibrary

mpi memalloc.f Memory allocation functions {XY,HV}ParallelMemAlloc

mpi aq driver xy Parallel driver, XY -partitioning

mpi aq driver hv Parallel driver, HV-partitioning

Table 4

Global variables

Variable name Description

Nprocs Number of processors available

NfX ;Y ;H;Vg
workers

Number of active workers for

fX ;Y ;H;Vg
MyId Processor id

Master True for master processor (processor

with id ¼ 0)

fX ;Y ;H;Vg
Worker

True for all processors with

1pidpNfX ;Y ;H;Vgworkers

4Center for Global and Regional Environmental Research at

University of Iowa. Homepage. http://www.cgrer.uiowa.edu.
5Beowulf clusters of workstations - general information.

http://www.chem.arizona.edu/theochem/beowulf/whatis.html,

http://www.supercomputer.org.8080/FAQ/beowulf-faq.html.

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–3930 3925

http://www.cgrer.uiowa.edu
http://www.chem.arizona.edu/theochem/beowulf/whatis.html
http://www.supercomputer.org.8080/FAQ/beowulf-faq.html

The Beowulf cluster at Michigan Technological

University6 was used for the computational experiments.

It has 64 nodes, each consisting of a 200 MHz dual-

processor Pentium Pro with 128 MB memory, connected

via Fast Ethernet (100 Mb=s) and a 72-port Foundry

switch. Each node runs Red Hat Linux, kernel version

2.2.12. We used the MPICH7 implementation of the

MPI library.

7.3. Run times

The following formula can be used to predict parallel

run times:

tpar ¼
tserial � tio

N
þ tio þ tdistribðNÞ þ tshuffleðNÞ

þ tgatherðNÞ; ð3Þ

where tserial is the serial time, tpar the parallel time, tio the

serial time spent for input/output that is not paralleliz-

able, tdistrib the communication time–distribution, tshuffle
the communication time–shuffle, tgather the communica-

tion time–gather, and N the number of workers.

The communication times depend on the architecture,

the number of workers, as well as on the implementation

of the communication routines (different implementa-

tions use different numbers of messages of different

lengths).

For data distribution/gathering the master sends/

receives data to/from all workers. The implementation

could invoke a number of messages proportional to the

number of workers; the length of each message decreases

as the number of workers increases. No overlapping of

these messages is possible as the master is involved in

every communication. In this implementation the total

time for distributing m words of data can be approxi-

mated by the idealized model

tdistribution ¼ N tstartup þ tword
m

N

� �
¼ N tstartup þ tword m:

The distribution time is composed of a constant transfer

time tword m plus a linearly increasing startup time

component. This conclusion agrees well with the

measurements presented in Table 5, which show a slight

increase in distribution and gathering times for an

increasing number of workers. If one uses an imple-

mentation based on one-to-all operations (scatter/

gather), and these operations use a tree-based commu-

nication pattern, there are log2 N communication stages

and in each stage j one transfers m=2j words of data in

point to point operations. A simple model for the total

distribution time is then

tdistribution ¼
Xlog2 N

j¼1

tstartup þ tword
m

2j

� �

¼ log2 N tstartup þ tword m 1�
1

N

� �
:

Again the communication time has a fixed large

component twordm plus a slowly increasing component,

and this model prediction is also in line with Table 5

measurements.

Shuffling between the workers on the other hand has

no single point of connection, and message overlapping

is possible. The amount of data sent in a shuffling

procedure is the same as in the distribution of a 4D

array, but split into much smaller messages. An idealized

model for all-to-all communication time for m words of

data is

tall-to-all ¼ log2 N tstartup þ tword
m

N

� �
:

For a moderate number of workers and large messages

the first term tstartup log2 N is small compared to the

second, and the shuffling time decreases with the number

of workers at the approximate rate ðlog2 NÞ=N: This

simple model predicts that the shuffling time for 64

workers is about 5.3 times smaller than the shuffling

Table 5

Measured communication times (in s) for minimal and maximal number of workers

Communication Array X -slice Y -slice H-slice V -column

Distribution 2D 0.005–0.01 0.005–0.01 0.005–0.02

3D 0.06 0.06 0.06 0.06

BDfx; y; zg 0.2 0.2 0.2 0.2

4D 5–6 5.5–7 6–7 6–7

Gathering 4D 6 6 6 7–7.5

Shuffling 4D 3.5–0.5 3.5–0.5 3–0.5 3–0.5

6Echtheow - The Beowulf cluster at Michigan Technological

University. http://www.cs.mtu.edu/beowulf.
7Mathematics and Computer Science Division, Argonne

National Laboratory. MPICH - A Portable Implementation of

MPI. http://www-unix.mcs.anl.gov/mpi/mpich/.

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–39303926

http://www.cs.mtu.edu/beowulf
http://www-unix.mcs.anl.gov/mpi/mpich/

time with two workers; the measurements shown in

Table 5 (last row) show this ratio to be 1:7.

Measured communication times on the MTU Beowulf

cluster are shown in Table 5. The shuffling times are

reported for both the minimum (N ¼ 2) and the

maximum (N ¼ 64) number of workers. Different times

in the prediction formula (3) were also measured for 1 h

of simulation time and reported in Table 6. Note that

the serial computation has a simulation time (wall-clock

time) to cpu time ratio less than 1:1. Input/output

accounts for less than 0.6% of the serial time.

The above estimates work for a moderate number of

workers (NBlow hundreds). For massively parallel

architectures (NBthousands) the startup components

become very significant, which may prevent a good

scaling of the PAQMSG communication times. Most

practitioners however will run their parallel air quality

models on medium scale platforms, and will find

PAQMSG scaling to be very satisfactory.

7.4. Parallel code performance

The simulation times with different numbers of

processors are presented in Table 7. The total cpu time

(per 1 h simulation time) decreases from 1 h 15 min

(serial) down to less than 2 min (on 64 workers).

Fig. 7 presents the percentages of the total cpu time

claimed by different communication and computation

steps. The computation with data in V -column format

(including chemistry and Z-transport) accounts for most

of the computational effort (82% with 16 processors and

63% with 60 processors). The complete parallelization

of this part explains the computational savings reported.

The H computation (horizontal transport) accounts for

only 3–4% of the total cpu time; the number of

processors that can contribute to the H computation is

bounded by the number of available H-slices (here 20).

The computational part dominates when a small

number of processors is used. As more processors are

employed, the computational time decreases, while the

communication time remains about the same; therefore

the communication time becomes increasingly important

for larger numbers of processors. For example, the

distribution time is constant and accounts for 3% of the

time with 16 workers and for 14% of the total time with

60 workers. The total shuffling time percentage increases

only modestly (i.e. shuffling scales well with the number

of workers).

The efficiency and speedup diagrams are given in

Fig. 8. The parallel code employing 64 workers is more

than 35 times faster than the serial code. The efficiency

of the parallelization remains above 50% up to 64

workers for the HV -scheme. The efficiency drops of the

XY scheme are due to the load imbalances, as explained

next.

7.5. Load imbalance

Load imbalance has a major impact on parallel

performance. The amount of load imbalance is visua-

lized in Fig. 9. For the HV partitioning the maximal idle

time, and the minimal computational time on V -

columns (Z-transport and chemistry) are given. The

minima correspond to the processor that gets the least

amount of work. The idle time is 2% with 16 workers

and 6% with 60 workers. For the XY partitioning the

maximal idle time, and the minimal computational time

on Y -slices (including chemistry) are given. The max-

imal idle time is significant, 26% with 16 workers and

48% with 60 workers. This is explained by the fact that

in this example there are 61 Y -slices; 59 workers get only

one Y -slice, while the remaining worker gets two. The

total computational time is given by this last worker.

The remaining processors compute one Y -slice, then are

idle for the time needed by the processing of the second

Y -slice. This is shown as a 48% idle time in the figure.

We now can explain the stair-like shape of the speed-up

diagram for the XY partitioning shown in Fig. 8.

Whenever the number of Y -slices divides the number

of workers one has a balanced workload. However, if

the number of workers is between two consecutive

divisors the maximal number of slices per processor is

Table 6

Serial computation time and input–output and communication

overheads for parallel STEM-III, 1 h simulation time

Serial time 4480 s

Input/output time 26 s

Communication XY time (s) HV time (s)

Distribution (4D array) 6 6

Distribution (all other) 6–9 8–10

Gathering 6 6

Shuffling 21–3 19.5–3.6

Table 7

Simulation times (in seconds) of the parallel STEM-III on the

MTU Beowulf cluster

Workers XY -partitioning HV -partitioning

2 2120.55 2070.67

4 1097.47 1061.96

8 573.77 554.64

16 333.72 327.40

32 185.50 183.11

61 119.00 122.41

64 119.44

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–3930 3927

the same, and the speed-up curve is flat (e.g. dividing 61

Y -slices to any number of workers in between 31 and 60

assigns two slices to at least one processor).

Fig. 9 confirms our expectation that the HV static

load balancing scheme yields close to optimal results.

The maximal load imbalance is below 6% when up to 64

workers are employed. A comparison of this approach

with a dynamic load balancing scheme is left to future

work.

8. Conclusions and future work

We developed a communication library for the

parallelization of AQMs on structured grids. It imple-

ments a master–worker strategy and XY and HV

domain decompositions. The use of the MPI message-

passing layer for communication ensures portability.

Application of the library to STEM-III provides a

parallelization example. The computational time is

reduced from 1 h and 15 min per hour of simulation

down to less than 2 min using 64 workers. The efficiency

of the system is above 50%.

The HV -partitioning allows good scaling for large

numbers of processors. The inherent static load balan-

cing strategy performs remarkably well, keeping the load

imbalance in the range of several percent. We believe

that this approach can compete with a dynamic load

balancing approach on uniform parallel machines, since

its overhead is smaller.

Of course, dynamic load balancing can make the

parallelization applicable to non-uniform networks of

workstations, increasing the portability of the commu-

nication library. Future work will be devoted to

developing and implementing various dynamic load

balancing strategies.

In order to reduce the communication overhead

parallel input and output routines can be employed.

This has the potential to significantly reduce the

overhead as the distribution and gathering steps become

1%3%
1%

9%

3%

82%

16 Workers

I/O (1%)
Distribution (3%)
Gathering (1%)
Shuffling (9%)
H Computation (3%)
V Computation (82%)

3%

14%

4%

12%

4%

63%

60 Workers

I/O (3%)
Distribution (14%)
Gathering (4%)
Shuffling (12%)
H Computation (4%)
V Computation (63%)

Fig. 7. Percentage of the total cpu time claimed by communication and computation in a 12 hr STEM-III simulation with HV

domain decomposition.

1 8 16 24 32 40 48 56 64
40%

50%

60%

70%

80%

90%

100%

110%

Number of Workers

E
ffi

ci
en

cy

HV−partitioning
XY−partitioning

1 8 16 24 32 40 48 56 64
1

8

16

24

32

40

48

56

64

Number of Workers

S
pe

ed
up

Ideal Speedup
HV−partitioning
XY−partitioning

Fig. 8. Speedups and efficiencies for a 1 h STEM-III simulation with HV and XY domain decompositions.

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–39303928

unnecessary. On a Beowulf cluster, where only the

central box has access to the main storage, some

collision of simultaneous IO is to be expected.

Acknowledgements

The work of P. Miehe and A. Sandu was supported by

the NSF CAREER award ACI-0093139 and by

Michigan Technological University. Part of this work

was completed by P. Miehe as a Project for the M.S.

degree in the Computer Science Department at Michi-

gan Technological University. The authors wish to

thank the anonymous reviewers for their many con-

structive suggestions.

References

Carmichael, G.R., Sandu, A., Potra, F.A., Damian-Iordache,

V., Damian-Iordache, M., 1996. The current state and the

future directions in air quality modeling. SAMS 25, 75–105.

Carmichael, G.R., Sandu, A., Song, C.H., He, S., Phandis,

M.J., Daescu, D., Damian-Iordache, V., Potra, F.A., 1999.

Computational Challenges of Modeling Interactions Be-

tween Aerosol and Gas Phase Processes in Large Scale Air

Pollution Models. Kluwer Publishers Dordrecht pp. 99–136.

Dabdub, D., Manohar, R., 1997. Performance and portability

of an air quality model. Parallel Computing 23 (14),

2187–2200.

Dabdub, D., Seinfeld, J.H., 1994a. Numerical advective

schemes used in air quality models—sequential and parallel

implementation. Atmospheric Environment 28, 3369–3385.

Dabdub, D., Seinfeld, J.H., 1994b. Air quality modeling on

massively parallel computers. Atmospheric Environment 28,

1679–1687.

Elbern, H., 1997. Parallelization and load balancing of a

comprehensive atmospheric chemistry transport model.

Atmospheric Environment 31, 3561–3574.

Elbern, H., 1998. On the load balancing problem of compre-

hensive air quality models. Journal Systems Analysis-

Modelling-Simulation 32, 31–56.

Govett, M., 2000. The scalable modeling system SMS: a high

level alternative to MPI. Ninth Workshop on the Use of

High Performance Computing in Meteorology. Develop-

ments in Teracomputing. European Centre for Medium-

Range Weather Forecasts Shinfield Park, Reading, 13–17

November 2000.

Michalakes, J., 1997a. FLIC: a translator for same-source

parallel implementation of regular grid applications. Tech-

nical Report ANL/MCS-TM-223, Mathematics and Com-

puter Science Division, Argonne National Laboratory,

Argonne, IL.

98%

2%

HV w/ 16 Workers

Min. V Computation
Max. V Idle

94%

6%

HV w/ 60 Workers

74%

26%

XY w/ 16 Workers

Min. Y Computation
Max. Y Idle

52%
48%

XY w/ 60 Workers

Fig. 9. Load imbalances for a 12 hs STEM-III simulation with HV and XY partitions.

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–3930 3929

Michalakes, J., 1997b. RSL: A parallel runtime system library

for regional atmospheric models with nesting. In: Baden, S.,

Chrisochoides, N., Gannon, D., Norman, M. (Eds.),

Proceedings of the IMA Workshop on Structured Adaptive

Mesh Refinement Grid Methods, Minneapolis, March

12–13, 1997. Springer, Berlin.

Michalakes, J., Dudhia, J., Gill, D., Klemp, J., Skamarock, W.,

1998. Design of a next-generation regional weather research

and forecast model. ECMWF Workshop, Reading, UK,

November 1998. (http://www-unix.mcs.anl.gov/michalak/

ecmwf98/html).

Miehe, P., 2001. Parallelization of air quality models on

structured grids using MPI. MS Project Report, Computer

Science Department, Michigan Technological University.

Miehe, P., Sandu, A., 2001. PAQMSG-User’s Guide. A library

for the parallelization of air quality models on structured

grids. http://www.cs.mtu.edu/asandu/Software/Parallel/

Home.html.

Owczarz, W., Zlatev, Z. Running a large-scale air pollution

model on fast supercomputers. International Journal on

Computer Research, to appear.

Strang, G., 1968. On the construction and comparison of

difference schemes. SIAM Journal on Numerical Analysis 5,

506–517.

Tomlin, A.S., Ghorai, S., Hart, G., Berzins, M., 1999.

3-D adaptive unstructured meshes in air pollution

modeling. Environmental Management and Health 10 (4),

267–274.

P. Miehe et al. / Atmospheric Environment 36 (2002) 3917–39303930

http://www-unix.mcs.anl.gov/michalak/ecmwf98/html)
http://www-unix.mcs.anl.gov/michalak/ecmwf98/html)
http://www.cs.mtu.edu/asandu/Software/Parallel/Home.html
http://www.cs.mtu.edu/asandu/Software/Parallel/Home.html

	A communication library for the parallelization of air quality models on structured grids
	Introduction
	The parallelization problem
	Air quality models on structured grids
	Data types
	Analysis of data dependencies
	Requirements and constraints

	Previous and related work
	The parallelization approach
	The master-worker approach
	Domain decomposition
	XY-partitioning
	HV-partitioning
	Subdomain partitioning

	Communication costs
	Load balancing

	The communication library
	Communication routines
	Distribution
	Gathering
	Repartitioning
	Implementation variants

	Using the library
	The user view of the library
	Interaction of the library with the model source code

	Results
	STEM-III
	Beowulf clusters
	Run times
	Parallel code performance
	Load imbalance

	Conclusions and future work
	Acknowledgements
	References

