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SUMMARY

Order reduction strategies aim to alleviate the computational burden of the four-dimensional variational
data assimilation by performing the optimization in a low-order control space. The proper orthogonal
decomposition (POD) approach to model reduction is used to identify a reduced-order control space for a
two-dimensional global shallow water model. A reduced second-order adjoint (SOA) model is developed
and used to facilitate the implementation of a Hessian-free truncated-Newton (HFTN) minimization
algorithm in the POD-based space. The efficiency of the SOA/HFTN implementation is analysed by
comparison with the quasi-Newton BFGS and a nonlinear conjugate gradient algorithm. Several data
assimilation experiments that differ only in the optimization algorithm employed are performed in the
reduced control space. Numerical results indicate that first-order derivative methods are effective during
the initial stages of the assimilation; in the later stages, the use of second-order derivative information
is of benefit and HFTN provided significant CPU time savings when compared to the BFGS and CG
algorithms. A comparison with data assimilation experiments in the full model space shows that with an
appropriate selection of the basis functions the optimization in the POD space is able to provide accurate
results at a reduced computational cost. The HFTN algorithm benefited most from the order reduction
since computational savings were achieved both in the outer and inner iterations of the method. Further
experiments are required to validate the approach for comprehensive global circulation models. Copyright
q 2006 John Wiley & Sons, Ltd.

Received 17 January 2006; Revised 22 June 2006; Accepted 24 June 2006

KEY WORDS: data assimilation; model reduction; adjoint model; optimization

∗Correspondence to: D. N. Daescu, Department of Mathematics and Statistics, Portland State University, P.O. Box
751, Portland, OR 97207, U.S.A.

†E-mail: daescu@pdx.edu
‡E-mail: navon@csit.fsu.edu

Contract/grant sponsor: National Science Foundation Collaboration in Mathematical Geosciences Program;
contract/grant number: ATM-0327818

Copyright q 2006 John Wiley & Sons, Ltd.



986 D. N. DAESCU AND I. M. NAVON

1. INTRODUCTION

The development of efficient tools to assimilate observational data into models is crucial to
the weather/climate analysis and forecast activities. The theoretical foundations of modern data
assimilation techniques used in atmospheric sciences and oceanography, including implementa-
tion and operational issues, are discussed in the work of Daley [1], Bennett [2], and Kalnay
[3]. The four-dimensional variational data assimilation (4D-Var) method [4] combines in a con-
sistent manner a dynamical model, a background estimate, and observational data to provide
optimal initial conditions of a dynamical system. The optimality criteria is formulated as the min-
imization of a cost functional that incorporates the least-squares distance to a prior (background)
estimate of the initial state and to time distributed observations in an analysis interval [t0, tN ].
Statistical information on the errors in the background and data is used to define appropriate
weights.

A major difficulty in the operational use of 4D-Var for oceanographic and atmospheric global
circulation models is the large dimension m of the control space which is the size of the discrete
model initial conditions x0 ∈ Rm , typically in the range 106–108. A feasible implementation may be
achieved by using the incremental 4D-Var [5] which is currently the method adopted at operational
centres implementing 4D-Var [6]. In this approach a succession of quadratic problems is solved in
an inner loop using a simplified/coarse resolution model and its adjoint then corrected by full model
runs in an outer loop. The method is characterized by the fact that the dimension of the control
space remains very large and in practice only a few outer loop iterations are affordable. Veersé and
Thépaut [7] provide convergence conditions and analyse the quality of the incremental solution.
Issues related to the linearization, accuracy and preconditioning of the inner loop minimization
and the overall (outer loop) convergence of the method are discussed by Trémolet [8, 9].

Significant research efforts to reduce the computational burden of the data assimilation by
reducing the dimension of the system have centred on Kalman and extended Kalman filter methods
(see, for example, References [10–13]). Model reduction techniques [14, 15] may be used in the
4D-Var data assimilation context to define a reduced-order control space. To drastically decrease
the dimension of the control space without significantly compromising the quality of the solution,
the reduced space must capture most of the energy and the main directions of variability of the
model. If such a space exists, one would then attempt to control the vector of initial conditions by
projecting it into the low-dimensional space.

The proper orthogonal decomposition (POD) method (also known as the Karhunen–Loève
decomposition, principal component analysis) is a singular value decomposition (SVD)-based
method that provides an optimal representation of a data set into a subspace of lower dimension.
Theoretical foundations and recent applications of the methodology may be found in References
[14–18]. A reduced-order strategy in oceanic 4D-Var data assimilation was considered by Blayo
et al. [19], Durbiano [20], and Hoteit et al. [21]. They used a low-dimensional space based on
first few empirical orthogonal functions (EOFs) appropriately chosen from a sampling of the
model trajectory (EOFs are basically equivalent to the POD basis). Recently, Robert et al. [22]
implemented an EOFs-based reduction method for the incremental 4D-Var.

The experience gained from the application of the EOFs/POD procedure to 4D-Var data
assimilation problems indicates that the computational savings result mainly from speeding up
the optimization by controlling the initial conditions in a subspace of much lower dimension.
The efficiency of the optimization algorithm is therefore crucial for the practical implementation
and performance of the reduced-order control strategy. Typically, the number of iterations may
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be reduced by on order of magnitude as compared to controlling the full model initial state. So
far, quasi-Newton and conjugate gradient algorithms have been the methods of choice since they
require only first-order derivatives of the cost functional. The gradient in the reduced control space
may be computed with a full model forward/adjoint integration to obtain the ‘full’ gradient which
is then projected onto the reduced space [20, 21]. Truncated-Newton (TN) minimization methods
[23, 24] can be highly effective for solving the optimization problem since they take full advantage
of the first- and second-order derivative information. The Hessian-free implementation (HFTN)
requires only Hessian/vector products that may be obtained from a second-order adjoint model as
explained in Reference [25].

In this work a POD-based reduced second-order adjoint (SOA) model is developed for a two-
dimensional global shallow water model and used to implement the HFTN optimization algorithm
in the POD space. The implementation and use of a second-order adjoint model to the reduced
control optimization problem is per se a novel element and was not previously considered in
data assimilation. Several numerical experiments that differ only in the optimization algorithm
employed are first set up in the POD control space. In each case the efficiency of the SOA/HFTN
implementation is analysed by comparison with the quasi-Newton BFGS and the nonlinear con-
jugate gradient algorithm of Shanno and Phua [26]. Data assimilation experiments in the full
model space are then performed and are used to assess the potential computational savings of the
reduced-order control procedure.

The paper is organized as follows: the 4D-Var data assimilation problem is set up in a twin
experiments framework in Section 2 and the construction of the POD-based reduced control space
is presented in Section 3. Implementation of the discrete second-order adjoint model, evaluation of
the derivatives in the reduced space and verification are discussed in Section 4. The minimization
algorithms are briefly revised in Section 5 and the use of the reduced SOA model in the HFTN
algorithm is explained. Numerical results, analysis, and concluding remarks are presented in
Section 6.

2. THE 4D-VAR DATA ASSIMILATION SET-UP

We use a two-dimensional global shallow water model in spherical coordinates. The state variables
are the zonal and meridional wind components u and v, respectively, and the height of the
homogeneous atmosphere, h. A full model description may be found in Reference [27]. We
consider a spatial discretization on a 72× 36 grid (5◦ × 5◦) such that the dimension of the discrete
state vector x= (u, v, h) is m = 7776. The software developed by Giraldo and Neta [28] was
used to implement the numerical integration with an explicit Turkel-Zwas scheme and a time step
�t = 200 s. An analytic geopotential height field as in References [27, 29] is specified at the initial
time

h0(�, �) = 1

g
(� + 2�aϑ sin3 � cos � sin �) (1)

and the initial velocities u0, v0 are derived from the geostrophic relations; � and � denote the
longitudinal and latitudinal coordinates, respectively, and the values of the constants were specified
g= 9.8m s−2, �= 5.768× 104 m2 s−2, ϑ = 20m s−1, a=6.37× 106 m, �= 7.292× 10−5 rad s−1.
The initial state of the model is displayed in Figure 1. We will refer to this configuration as
the reference state at the initial time and denote it by xref0 .
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Figure 1. Configuration of the reference initial state of the 2D global shallow water model. Top figure:
isopleths of the geopotential height field h in meters. Bottom figure: the velocity vector field (u, v).
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Figure 2. Isopleths of the errors in the first guess (background) estimate to initial conditions. At each grid
point the magnitude of the error is evaluated in the total energy norm.

The cost functional in the 4D-Var data assimilation is defined as

J=Jb + Jo = 1

2
(x0 − xb)TB−1(x0 − xb) + 1

2

N∑

k=0
(Hkxk − xok)

TR−1
k (Hkxk − xok) (2)

where xk is the discrete model state at time tk , xb is the prior estimate for the initial condition
(background), B is the covariance matrix of the background errors, Rk is the covariance matrix
of the observational errors, and Hk is the observational operator that maps the state space into
observations xok taken at time tk . Since in practice it is difficult to provide statistical information
on the errors, simplifying assumptions need to be made [30]. Without statistical interpretation,
B and Rk specify appropriate weights in the least-squares fitting of model to data. The model
equations xk =M(x0) are used to express the state evolution in terms of the initial conditions,
and the optimal initial state (analysis) xa0 is obtained by solving the unconstrained optimization
problem

min
x0

J(x0); xa0 =ArgminJ (3)

The twin experiments framework for the 4D-Var data assimilation is set in a time interval of
length six hours. A model integration initiated from xref0 is first performed to obtain a reference state
trajectory. ‘Observations’ xok are selected from the reference run at a time increment of 10min (every
third time step) at all grid points. A first guess approximation xb to the reference initial conditions
is constructed by shifting xref0 one grid point in the longitudinal direction xb(�, �) = xref0 (�−��, �).
The errors in the background estimate, �x0 = xref0 − xb, are shown in Figure 2 in the total energy
norm ‖�x‖2 = 1

2 ((�u)2 + (�v)2) + g
h
(�h)2, where gh =�. In the cost functional the distance to
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background and observations is also measured in the total energy norm such that the weights
are diagonal matrices. By solving the minimization problem (3) with the initial guess x0 = xb we
attempt to recover xa0 ≈ xref0 .

3. THE REDUCED-ORDER CONTROL SPACE

The POD approach to model reduction [14] is used to formulate the optimization problem
in a low-order control space. To implement the method of snapshots, an ensemble data set
{x(1), x(2), . . . , x(n)}, x(i) ∈ Rm is collected from the state evolution at various instants in the
analysis time interval. The mean of data is computed x= 1

n

∑n
i=1 x

(i) and a modified
m × n-dimensional matrix of snapshots is constructed

X=[x(1) − x, x(2) − x, . . . , x(n) − x] (4)

In practice, m � n. The ‘thin’ singular value decomposition X=URVT is performed [31] where
U∈ Rm × n,V∈ Rn × n have orthogonal columns, UTU=VTV= In and R∈ Rn × n is a diagonal
matrix R= diag(�1, �2, . . . , �n) whose entries �1��2� · · ·��n�0 are the singular values of X.
The columns of U, ui ∈ Rm , are the left singular vectors and the columns of V, vi ∈ Rn , are the
right singular vectors. For k<n, the truncated SVD approximation

X≈Xk =UkRkVT
k (5)

Uk =[u1, . . . ,uk],Rk = diag(�1, . . . �k),Vk = [v1, . . . , vk] is an optimal low-rank representation
of the snapshot matrix in the sense that

‖X − Xk‖2F = min
rankY�k

‖X − Y‖2F =
n∑

i=k+1
�2i (6)

where ‖ · ‖F denotes the Frobenius matrix norm. The percentage of total information captured by
the reduced space is I (k) = (

∑k
i=1 �2i )/(

∑n
i=1 �2i ) and in practice, given a tolerance 0<��1 in the

vicinity of the unity, k must be selected such that I (k)��.
The reduced-order control is obtained by projecting x0 − x onto the POD space spanned by the

first k left singular vectors:

PPOD(x0 − x) =Ukg=
k∑

i=1
�iui (7)

The coordinates vector of the projection in the POD space is

g=UT
k (x0 − x) ∈ Rk (8)

and the minimization problem is thus reduced to finding the optimal coefficients g

Ĵ(g) :=J(x + Ukg); min
g∈Rk

Ĵ(g) (9)

If ga denotes the solution to (9), an approximation to the analysis (3) is obtained as

xa0 ≈ x + Ukg
a (10)
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Remark
Equivalently [15], the POD space may be determined by finding the eigenpairs (�i ,wi ),w

T
i wi = 1

of the n × n correlation matrix

C= 1

n
XTX, Cwi = �iwi

The POD basis vectors are defined as Ui = (1/
√
n�i )Xwi , and the equivalence follows from the

relations �2i = n�i , vi =wi ,Xvi = �iui .

4. THE DISCRETE SECOND-ORDER ADJOINT MODEL

Given the time evolution of the nonlinear discrete model

xk+1 =Mk(xk), k = 0, 1, . . . , N − 1 (11)

the gradient of the cost functional is evaluated through the backward integration of the adjoint
equations

kN+1 = 0; kk =MT
k kk+1 + HT

kR
−1
k (Hkxk − xok), k = N , N − 1, . . . , 0 (12)

where Mk = (Mk)xk (xk) is the state-dependent Jacobian of the model, to obtain

∇x0J=B−1(x0 − xb) + k0 (13)

The product ∇2
x0Jw of the Hessian matrix of the cost with a user-defined vector w is the

w-directional derivative of the application x0 → ∇x0J. The computation, known as the forward
over reverse procedure, requires the linearization of the forward–backward equations (11)–(12)
with respect to the state and adjoint variables:

l0 =w; lk+1 =Mklk, k = 0, 1, . . . , N − 1 (14)

fN+1 = 0; fk =MT
k fk+1 + (MT

k kk+1)xklk + HT
kR

−1
k Hklk, k = N , . . . , 0 (15)

In the equation above, (MT
k kk+1)xk is a symmetric matrix of second-order derivatives of the

model, and the notation kk+1 indicates that the adjoint variables are treated as constants during
the differentiation. The integration of the second-order adjoint (SOA) model (14)–(15) provides
the Hessian/vector product as

∇2
x0Jw=B−1w + f0 (16)

Automatic differentiation (AD) tools [32–34] may be used to facilitate the development of
the second-order adjoint code. User intervention is often required to optimize the AD generated
subroutines and a careful validation of the SOA model needs to be performed. The computa-
tional cost is demanding both in terms of the memory storage requirements and the number
of floating point operations. The relative CPU ratio r =CPU(∇2Jw)/CPU(J) is typically in
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the range 7�r�10 and may increase due to additional checkpointing and data manipulation
costs [33, 35].

4.1. Evaluating derivatives in the reduced-order space

The gradient of the cost (9) may be expressed as

∇gĴ(g) =UT
k (∇x0J)|x0=x+Ukg (17)

and its evaluation requires a forward integration and trajectory storage of the full model (11)
initialized with x + Ukg, followed by a full adjoint model (12) integration. The cost function is
also computed during the forward run. Given a vector x∈ Rk , the Hessian/vector product in the
reduced control space is

∇2Ĵ(g)x=UT
k (∇2

x0J)|x0 = x+UkgUkx (18)

The computation involves a full second-order adjoint model (14)–(15) integration in the direction
w=Ukx. A few additional matrix/vector products Uk(·),UT

k (·) are required in (17) and (18) but
their computational cost is much lower as compared to the cost of the forward/adjoint model
integrations. Evaluating first- and second-order derivatives in the reduced space is thus roughly
as expensive as in the full model space. Significant savings may be achieved only through a fast,
highly efficient optimization algorithm in the reduced space.

From the implementation point of view, once a first and second-order adjoint for the full model
are developed, the reduced gradient and Hessian/vector evaluation require no further software
modifications. Switching from the full to reduced space control space is straightforward and an
adaptive optimization procedure may be developed. Hoteit et al. [21] used a reduced first-order
adjoint to show that a hybrid approach may be of benefit for both qualitative and quantitative
aspects of the assimilation. In their work the reduced adjoint method was used in the first stages
of optimization then switched to full state control.

4.2. The second-order adjoint model verification

The tangent linear, adjoint, and second-order adjoint models were implemented using the TAMC
software [36]. Additional user intervention was required to optimize the performance of the
automatic generated subroutines. We obtained a relative CPU ratio of the forward and adjoint
computation (cost function and gradient combined) to the forward integration of ∼ 2.6 and a ratio
of ∼ 5.7 for the CPU time of the Hessian/vector computation (SOA) to the CPU time of the
forward integration. To validate the implementation of the second-order adjoint model in the full
and reduced control space, we consider a Taylor series test by defining

�(	) = J(x0 + 	w) − J(x0) − 	(∇J(x0)) · w
1
2 	

2w · (∇2J(x0)) · w , w∈ Rn (19)

�̂(	) = Ĵ(g+ 	x) − Ĵ(g) − 	(∇Ĵ(g)) · x
1
2 	

2x · (∇2Ĵ(g)) · x , x∈ Rk (20)

Theoretically, if the SOA implementation is correct, lim	→0 �(	) = 1, lim	→0 �̂(	) = 1. Illustrative
results are shown in Figure 3.
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Figure 3. Illustrative results of the Taylor series tests for the verification of the second-order adjoint model
in the full space and in the reduced-order space.

5. THE MINIMIZATION ALGORITHMS

The efficiency of the minimization algorithm is a key element of the 4D-Var data assimila-
tion process. The first-order adjoint model is used to provide the gradient of the cost, whereas
Hessian/vector products are obtained via SOA model integration. The limited memory L-BFGS
method [37, 38] and the truncated-Newton method [24, 39] have been proved to be powerful large-
scale unconstrained optimization algorithms that are more efficient than other methods. Due to the
large dimensionality of the parameter space, the minimization problem is often ill-conditioned and
requires a large number of iterations. Preconditioning algorithms to speed up the convergence of
4D-Var data assimilation are discussed in References [40, 41].

When the optimization is performed in the reduced-order control space, the low dimensionality
entails a lower Hessian condition number. In addition, since a modest effort is required to store
the reduced state/gradient pairs, full quasi-Newton methods, such as BFGS, may be implemented.
Newton’s method involves the solution to a low-dimensional linear system:

∇2Ĵ(g(i))d(i) = −∇Ĵ(g(i)) (21)

The computational burden to obtain the exact Newton’s direction d(i) remains high, since the
evaluation of the reduced Hessian matrix requires a number of SOA model integrations equal
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to the dimension k of the reduced space, typically in the range 10–100. For practical im-
plementation, a Hessian-free truncated-Newton (HFTN) method must be considered. In this
approach, each ‘outer’ iteration g(i+1) = g(i) + 
(i)d(i) involves an ‘inner’ iteration where a
preconditioned linear conjugate-gradient (CG) method is used to find an approximate solution
to the Newton equations (21). The Hessian/vector products required by the CG algorithm are
obtained by integrating the reduced SOA model. The inner CG iteration is terminated when
the residual

r=∇2Ĵ(g(i))d + ∇Ĵ(g(i))

satisfies the convergence criteria

‖r‖�	i‖∇Ĵ(g(i))‖, 	i = min(0.5/ i, ‖∇Ĵ(g(i))‖)
or a user prescribed maximum number of inner iterationsmaxitwas achieved. A detailed description
of the HFTN method and the preconditioner may be found in References [23, 24].

6. NUMERICAL RESULTS AND DISCUSSION

All the numerical results reported in this work were obtained on a Dell Precision Workstation 670
equipped with an Intel Xeon processor 2.8GHz and 1Gb of main memory, using double precision
FORTRAN 77.

Data assimilation experiments that differ only in the optimization algorithm employed are first
set up in the reduced control space. We investigate the efficiency of the reduced SOA/HFTN
method by comparison with the BFGS variable metric algorithm and the Beale-restarted conjugate
gradient algorithm provided in the CONMIN package [26]. Two different scenarios to build the
snapshot matrix and to define the POD space are considered: in the first set of experiments
(hereafter referred to as case 1) snapshots are selected from the observational (reference) data,
whereas in the second set of experiments (case 2) snapshots are selected from the model trajectory
initiated from the background state. Experiments in case 1 provide insight on the performance of
the optimization when a reduced model that accurately approximates the ‘true’ state evolution is
available. Experiments in case 2 correspond to the more realistic situation when the reduced model
is based on the best forecast state available.

To assess the potential savings that may be achieved from the low-order control procedure, data
assimilation experiments are then performed in the full model space. The large-scale optimization
problem is solved using HFTN and nonlinear CG algorithms and the results are compared to the
optimization in the POD-reduced-order space.

The ARPACK package [42] was used to perform the singular value decomposition and in each
case we found that a dimension k = 20 of the POD reduced space was able to capture 99.9% of
the total information of the snapshot matrix. The dimension of the control space is thus reduced
from m = 7776 to k = 20. The development of the second-order adjoint model in the full and
reduced-order space allowed us to estimate the condition number of the Hessian matrix of the
cost functional in the data assimilation. In the full model space the Hessian condition number
measured by the max/min eigenvalues ratio was of order 106 whereas in the POD space this ratio
was reduced to order 104.
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Figure 4. Case 1.1: numerical performance of the optimization algorithms in terms of number of iterations
(left figure) and of CPU time (right figure) versus relative reduction in cost functional.

6.1. Experiments in reduced-order space: case 1

Data assimilation numerical experiments are used to assess the efficiency of the HFTN, BFGS
and CG optimization algorithms in the reduced space. For all algorithms we use a gradient test
‖∇Ĵ(g)‖�0.1 as the convergence criteria and for the HFTN method a number maxit= 5 was
found to be sufficient for the convergence of the inner CG iterations. Two sets of experiments
are considered in this case: in case 1.1 the cost functional is defined in terms of the distance to
observations only, J=Jo; in case 1.2 the background term is included in the cost, J=Jb+Jo.
The performance of the optimization algorithms in terms of the relative reduction in the cost
functional versus the number of iterations and versus the CPU time is represented in Figure 4
(case 1.1) and in Figure 5 (case 1.2).

The BFGS and CG methods perform inexpensive iterations, as compared to the HFTN, but the
lack of accurate curvature information resulted in a slow convergence rate. Each iteration of the
HFTN method involves a high computational effort, but only a few iterations are required to reach
a close vicinity of the minimum point.

We used the reduced second-order adjoint model in conjunction with the ARPACK package
to provide information on the spectrum of the reduced Hessian matrix. In case 1.1 the extremal
eigenvalues of the Hessian matrix of the cost functional evaluated at the initial guess point were
�max ≈ 11.66 and �min ≈ 3.76× 10−4 which gives a condition number �max/�min ≈ 3.10× 104. In
case 1.2 the inclusion of the background term in the cost functional provided a small reduction in
the Hessian condition number to 2.85× 104.

In both cases the BFGS and CG algorithms are effective during the first stages of the minimization
and their overall performance was similar in terms of the CPU time/cost reduction. The HFTN
method is much more efficient in the later stages of the minimization where the BFGS and CG
methods required as much as 75% more CPU time than HFTN to achieve the same reduction in
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Figure 5. Same as Figure 4, for the data assimilation experiments in case 1.2.

the cost functional. For example, in case 1.1, HFTN reduced the cost to 0.07% of its initial value in
four iterations and a CPU time of 98.9 s. To achieve a similar level of reduction, BFGS performed
63 iterations in 174.0 s that represent 75.9% increase in CPU time; CG performed 31 iterations in
172.1 s, an increased CPU time by 74%. These experiments show that in certain applications the
computational benefits of implementing the HFTN method with the reduced SOA model may be
significant as compared to algorithms that use first-order derivative information only.

From the qualitative point of view, the reduced space accurately captures the dynamics of the
reference state evolution. In case 1.1 the solution ga to the reduced problem (9) provided, according
to (10), a very close approximation xa0 ≈ xref0 . The analysis errors measured in the total energy
norm were in this case of order 10−6 (results not shown) and the retrieved initial conditions were
nearly identical to the reference state. In case 1.2, the reduced solution is constrained by the
background term, yet the assimilation of data reduced the cost to ∼ 0.6% of its initial value and
provided a major improvement in the state estimation. The errors in the retrieved initial conditions
are displayed in Figure 6 using the total energy norm. We notice a reduction by three orders of
magnitude as compared to the backgrounds errors (see Figure 2) showing that also in this case the
reduced-order data assimilation procedure was successful.

6.2. Experiments in reduced-order space: case 2

We also consider two subsets of experiments: in case 2.1 we define J=Jo and in case 2.2 we
define J=Jb + Jo. The performance of the optimization algorithms is represented in Figure 7
(case 2.1) and in Figure 8 (case 2.2).

From the computational point of view, in terms of the CPU time required to approach the
optimal point, the numerical results agree to our previous findings. The BFGS and CG algo-
rithms are effective in the first stages of the optimization that correspond in this case to the
first HFTN iteration. The next two HFTN iterations are significantly more efficient and in both
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Figure 6. Isopleths of the errors in the retrieved initial conditions measured in the total energy norm.
Results corresponding to the data assimilation experiments in case 1.2.
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Figure 7. Same as Figure 4, for the data assimilation experiments in case 2.1.

experiments the HFTN algorithm practically reaches the optimal state after only three (outer)
iterations. In case 2.1, two HFTN iterations reduced the cost to 16.6% of its initial value and
required a CPU time of 66.2 s; to achieve a similar reduction in cost, BFGS performed 37
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Figure 8. Same as Figure 4, for the data assimilation experiments in case 2.2.

iterations in 121.5 s that represent 83.5% increase in CPU time. In case 2.2, two HFTN iterations
reduced the cost to 19.4% of its initial value and required a CPU time of 70.2 s; to achieve a
similar reduction in cost, BFGS performed 37 iterations in 119.8 s, a 70.6% increase in CPU
time. In this set of experiments, the CG algorithm had a poor performance near the minimum
point when compared to the HFTN and BFGS methods. For all algorithms we notice a loss of
efficiency near the optimal point indicating that a flexible criteria to terminate the iteration would be
of benefit.

From the qualitative point of view, there are major differences as compared to the previous set
of experiments. Since in this case the POD space is determined by evolution of the background
state, the ability of the reduced control space to provide an accurate analysis representation is
limited by the quality of the background estimate. At the optimal point the cost functional was
reduced to 15.6% of its initial value in case 2.1 and to 18.3% of its initial value in case 2.2. The
errors in the retrieved initial conditions were reduced accordingly and in Figure 9 we show the
analysis errors corresponding to case 2.2. While this may be a satisfactory result, the experiments
show that in practical applications an adaptive procedure to order reduction is required to achieve
accurate estimates.

6.3. Experiments in full model space

To assess the potential computational savings of the reduced-order control procedure data assimila-
tion experiments are performed in the full model space using the nonlinear conjugate gradient and
HFTN algorithms. The moderate dimension of the full state vector allowed us to obtain information
on the spectrum of the Hessian matrix using the full second-order adjoint model. At both ends
of the spectrum the eigenvalues were clustered and, in particular, finding the smallest eigenvalue
required an extensive use of the computational resources. For the Hessian matrix ∇2Jo evaluated
at x0 = xb we computed the eigenvalues �max = 770.18 and �min = 2.018× 10−4. The condition
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Figure 9. Isopleths of the errors in the retrieved initial conditions measured in the total energy norm.
Results corresponding to the data assimilation experiments in case 2.2.

number �max/�min ≈ 3.8× 106 in the full space is thus two orders of magnitude higher than in
the POD space. For the Hessian matrix ∇2(Jb + Jo) the condition number was estimated to be
3.12× 106.

The optimization is also performed in two cases, first with the cost J=Jo then with the
distance to background taken into consideration J=Jb + Jo. For each case, the performance
of the large-scale optimization algorithms is displayed in Figures 10 and 11, respectively. The
convergence process is slow and for both algorithms the large condition number entailed an
increased number of iterations. It is important to notice that the initial value of the cost functional
in the full model space is distinct from the initial value of the cost functional in the POD space.
Starting with the initial guess given by the background estimate x0 = xb, the value of the cost in
the full model space is J(xb). The corresponding initial guess in the reduced space is obtained by
projecting the background on the POD space g0 =UT

k (xb − x) thus providing an initial cost value

Ĵ(g0) =J(x+Ukg0). This situation arises also in practical applications where the background is
the best prior estimate to the initial conditions and the projection/retrieval operations on/from the
POD space may deteriorate the quality of the first guess estimate.

For comparison with the POD procedure, the relative reduction in cost as a metric to assess
the efficiency may not be well suited. To account for both computational and qualitative as-
pects of the reduced/full order optimization, it is of interest to assess the CPU time required
to achieve the same value of the cost functional, Ĵ(g) =J(x). For each algorithm the POD
results of case 1.1 and 1.2 are also displayed in Figures 10 and 11, respectively. To facilitate
the analysis, all the results are shown in terms of the value of the cost functional (log10) versus
the number of iterations and versus CPU time. For both algorithms the reduced-order optimiza-
tion was able to significantly reduce the computational time while preserving the quality of the
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Figure 10. The optimization process in the full model space versus the reduced-order POD space for the
HFTN and CG algorithms. The cost functional is defined as the distance to observations only.

solution. When the cost functional was defined as the distance to observations only (Figure 10)
the CPU time near the optimal point was reduced by nearly a factor of 5 for the CG algorithm
and by as much as a factor of 6 for the HFTN method. An increased efficiency is noticed as
the optimization is approaching the optimal point. With the background included in the cost
(Figure 11) the POD-CG optimization was able to reduce the CPU time up to a factor of 2 versus
the optimization in the full space, whereas the POD-HFTN algorithm provided savings up to a
factor of 3.

The increased efficiency of the POD-HFTN is due to the fact that the computational savings in
the POD-HFTN versus the full model HFTN iteration are twofold: not only the number of outer
iterations is reduced, but also the number of inner iterations required to satisfy the convergence
criteria in the inner CG iteration is reduced. In the POD space, a number of inner iterationsmaxit= 5
was proved to be sufficient for convergence whereas in the full space some outer iterations required
as many as 30 inner iterations for convergence. An attempt to force early termination (e.g. by setting
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Figure 11. The optimization process in the full model space versus the reduced-order POD space for the
HFTN and CG algorithms with the background term included in the cost functional.

maxit= 20) resulted in an increased number of outer iterations and overall loss of efficiency. In the
low-order space the HFTN algorithm performs thus fewer and typically less expensive iterations
than in the full model space.

6.4. Summary and concluding remarks

Order reduction strategies aim to reduce the computational burden of the 4D-Var data assimilation
by performing the optimization in a low-order control space. A successful implementation relies
on the identification of a reduced space that accurately captures the dynamics of the full system
and an efficient optimization algorithm.

The POD approach to model reduction is used to illustrate the potential benefits that may
be achieved by performing the optimization in the low-order control space and, in particular,
from the use of a second-order adjoint model in the reduced-order minimization procedure. No
claim is made here that the POD method is the optimal approach to order reduction, and in
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practice other strategies should be also considered, as discussed in the work of Crommelin and
Majda [43]. The key element is that once the basis functions are selected (prior to optimization,
in an off-line process), the second-order adjoint model may be used to implement the HFTN
algorithm in any reduced control space. The software modifications required to change the control
space are minimal, as only the projection operators need to be constructed.

In this work a reduced second-order adjoint model was developed in a POD-based control space
for a 2D global shallow water model. The use of a second-order adjoint model in the reduced
control space is novel and was not previously considered in 4D-Var data assimilation. The second-
order adjoint model was further used to provide information on the spectrum of the Hessian matrix
in the full and reduced-order space. Numerical experiments show that the POD order reduction
procedure entailed also a smaller condition number for the optimization problem, and thus an
increased computational efficiency. In our study eigenvalues computation was feasible due to the
simplicity of the shallow water model and the moderate dimension of the state vector. For realistic
4D-Var applications an attempt to obtain and use such information prior to data assimilation may
not be practical since the iterative procedure to estimate the eigenvalues involves several SOA
model integrations that may require a higher computational cost than the data assimilation process
itself.

Twin experiments were used first in the POD space to investigate the efficiency of the SOA/HFTN
implementation in a comparative analysis with the BFGS and CG algorithms. The numerical results
show that first-order methods are efficient during the initial stages of the assimilation. The second-
order derivative information is particularly effective during the later stages of the optimization and
using the SOA/HFTN iterations significant CPU time savings were achieved. For each of CG and
HFTN methods a comparison with data assimilation experiments in the full model space shows
that with an appropriate selection of the basis functions the optimization in the reduced-order POD
space is able to provide accurate results and requires a much lower computational cost. The HFTN
algorithm benefited most from the order reduction since computational savings were achieved both
in the outer and inner iterations of the method.

The efficiency of the reduced second-order adjoint model remains to be further tested and
validated when observational data are assimilated into atmospheric/oceanic models. For practical
applications the development and an efficient implementation of the (first- and) second-order
adjoint model may involve several model simplifications such as the use of a simplified physics
in global circulation models. The impact of the checkpointing schemes, necessary in the adjoint
coding of 3D operational models, remains to be assessed.

Generating a ‘good’ set of snapshots and finding optimal basis functions is crucial for the
applicability of the reduced-order procedure. An ensemble of model forecasts may be used to
generate snapshots taken from multiple state calculations with perturbations in the initial condi-
tions that capture the main directions of variability of the model such as the bred vectors and
singular vectors of the tangent linear model [3]. Adjoint model information may be taken into
account using a dual-weighted procedure [44]. For practical applications an adaptive methodol-
ogy for order reduction must be considered and this is an area where future research is much
needed.
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