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ABSTRACT

In variational data assimilation (VDA) for meteorological and/or oceanic models, the assimilated fields are
deduced by combining the model and the gradient of a cost functional measuring discrepancy between model
solution and observation, via a first-order optimality system. However, existence and uniqueness of the VDA
problem along with convergence of the algorithms for its implementation depend on the convexity of the cost
function. Properties of local convexity can be deduced by studying the Hessian of the cost function in the
vicinity of the optimum. This shows the necessity of second-order information to ensure a unique solution to
the VDA problem.

In this paper a comprehensive review of issues related to second-order analysis of the problem of VDA is
presented along with many important issues closely connected to it. In particular issues of existence, uniqueness,
and regularization through second-order properties are examined. The focus then shifts to second-order infor-
mation related to statistical properties and to issues related to preconditioning and optimization methods and
second-order VDA analysis. Predictability and its relation to the structure of the Hessian of the cost functional
is then discussed along with issues of sensitivity analysis in the presence of data being assimilated. Computational
complexity issues are also addressed and discussed.

Automatic differentiation issues related to second-order information are also discussed along with the com-
putational complexity of deriving the second-order adjoint.

Finally an application aimed at illustrating the use of automatic differentiation for deriving the second-order
adjoint as well as the Hessian/vector product applied to minimizing a cost functional of a meteorological problem
using the truncated-Newton method is presented. Results verifying numerically the computational cost of deriving
the second-order adjoint as well as results related to the spectrum of the Hessian of the cost functional are
displayed and discussed.

1. Introduction

Data assimilation can be described as the ensemble
of techniques for retrieving geophysical fields from dif-
ferent sources such as observations, governing equa-
tions, statistics, etc.

Being heterogeneous in nature, quality, and density,
these data sources have to be put together to optimally
retrieve (the meaning of ‘‘optimal’’ has to be precisely
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defined) the geophysical fields. Due to its inherent op-
erational tasks, meteorology has played an important
role in the development of data assimilation techniques.
An ever-increasing amount of data and models are con-
sidered as an ensemble from which the optimal infor-
mation should be extracted. Behind most of the classical
methods used in meteorology such as optimal interpo-
lation, variational methods, statistical estimation, etc.,
there is a variational principle, that is, the retrieved fields
are obtained through the minimization of some func-
tional depending on the various sources of information.
The retrieved fields are obtained through some opti-
mality condition, which can be an Euler or Euler–La-
grange condition if the regularity conditions are satis-
fied. Since these conditions are first-order conditions, it
follows that they involve the first-order derivatives of
the functional that is minimized. In this sense, data as-
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similation techniques are first-order methods. But first-
order methods are only necessary conditions for opti-
mality but not sufficient ones. To obtain sufficient con-
ditions we need to proceed one step further and to in-
troduce second-order information. By the same token,
from the mathematical point of view sensitivity studies
with respect to some parameter can be obtained through
Gâteaux derivatives with respect to this parameter.
Therefore if we seek the sensitivity of fields that have
already been defined through some first-order condi-
tions, we will have to proceed one order of derivation
further and in this sense our sensitivity studies require
second-order information.

The purpose of this review paper is to show how to
obtain and how to use in an efficient way second-order
information in data assimilation. In a first part we will
show how the second-order derivative can be computed,
primarily in a very general framework, then illustrate it
with some examples. Then we will show how this sec-
ond-order information can be linked to the issues of
uniqueness of a solution to the problem of data assim-
ilation. This will be shown to be not only a mathematical
consideration but also rather a practical issue whereby
information can be extracted by studying second-order
information.

In a second part of the paper we will proceed to show
how to derive sensitivity analyses from models and data.
The analysis of the impact of uncertainties in the model
and in the data provides essential links between purely
deterministic methods (such as variational data assim-
ilation) and stochastic methods (Kalman filter–type). We
will then proceed to demonstrate how the link between
these methods can be clearly understood through use of
second-order information.

Researchers in other disciplines have carried out pi-
oneering work using second-order information. Work in
seismology using second-order information and apply-
ing it to obtain accurate Hessian/vector products for
truncated-Newton minimization was carried out by San-
tosa and Symes (1988, 1989) and by Symes (1990, 1991,
1993). Reuther (1996) and Arian and Ta’asan (1999)
illustrated the importance of second-order adjoint anal-
ysis for optimal control and shape optimization for in-
viscid aerodynamics. Hou and Sheen (1993) used second-
order sensitivity analysis for heat conduction problems.

Second-order information was tackled in automatic
differentiation (AD) by Abate et al. (1997), Giering and
Kaminski (1998a,b), Gay (1996), Hovland (1995), Bis-
chof (1995), Burger et al. (1992), Griewank and Corliss
(1991), and Griewank (1993, 2000, 2001), to cite but a
few. Several AD packages such as the tangent linear
and adjoint model compiler (TAMC) of Giering and
Kaminski (1998a) allow calculation of the Hessian of
the cost functional.

Early work on second-order information in meteo-
rology includes Thacker (1989) followed by work of
Wang et al. (1992, 1993) and Wang (1993). Wang et al.
(1995, 1998) considered use of second-order informa-

tion for optimization purposes namely to obtain trun-
cated-Newton and adjoint Newton algorithms using ex-
act Hessian/vector products. Application of these ideas
was presented in Wang et al. (1997).

Kalnay et al. (2000) introduced an elegant and novel
pseudo-inverse approach and showed its connection to
the adjoint Newton algorithm of Wang et al. (1997) (see
Kalnay et al. 2000; Pu and Kalnay 1999; Pu et al. 1997).

Ngodock (1996) applied second-order information in
conjunction with sensitivity analysis in the presence of
observations and applied it to the ocean circulation. Le
Dimet et al. (1997) presented the basic theory for sec-
ond-order adjoint analysis related to sensitivity analysis.
A condensed summary of the theory is presented in Le
Dimet and Charpentier (1998).

The structure of the paper is as follows. Section 2
deals with the theory of the second-order adjoint meth-
od, both for time-independent and time-dependent mod-
els. The methodology is briefly illustrated using the
shallow-water equations model. Section 3 deals with the
connection between sensitivity analysis and second-or-
der information. Section 4 briefly presents the Kalnay
et al. (2000) quasi-inverse method and its connection
with second-order information. Issues related to second-
order Hessian information in optimization theory are
addressed in section 5. Both unconstrained and con-
strained minimization issues are briefly discussed. Fi-
nally the use of accurate Hessian/vector products to im-
prove the performance of the truncated Newton method
are presented along with the adjoint truncated-Newton
method. A method for approximating the Hessian of the
cost function with respect to the control variables pro-
posed by Courtier et al. (1994), based on rank-p ap-
proximation and bearing similarity to approximation of
the Hessian in quasi-Newton methods (see Davidon
1959, 1991), is presented in section 5d.

Section 6 is dedicated to methods of obtaining the
second-order adjoint via AD technology, while issues
of computational complexity of AD for the second-order
adjoint are presented in the appendix. Use of the Hessian
of the cost functional to estimate error covariance ma-
trices is briefly discussed in section 7. The use of Hes-
sian singular vectors used for development of a sim-
plified Kalman filter is addressed briefly in section 8.

Finally as a numerical illustration we present in sec-
tion 9 the application of the second-order adjoint of a
limited area model of the shallow-water equations to
obtain an accurate Hessian/vector product compared to
an approximate Hessian vector product obtained by fi-
nite differences. Automatic differentiation is imple-
mented using the adjoint model compiler TAMC. The
Hessian/vector information is used in a truncated-New-
ton minimization algorithm of the cost functional with
respect to the initial conditions taken as the control var-
iables and its impact versus the Hessian/vector product
obtained via finite differences is assessed. The numerical
results obtained verify the theoretically derived com-
putational cost of obtaining the second-order adjoint via
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automatic differentiation. The Arnoldi package (AR-
PACK) was then used in conjunction with the second-
order adjoint to gain information about the spectrum of
the Hessian of the cost function. The unified notation
of Ide et al. (1997) for data assimilation will be used.

Summary and conclusions are finally presented in
section 10.

2. Computing the second-order information

In this section we will deal with deterministic models
while the case of stochastic modeling will be discussed
later in this manuscript.

In general we will assume that the model has the
general form

F (X, U) 5 0, (1)

where X, the state variable, describes the state of the
environment and U is the input of the model, that is,
an initial condition that has to be provided to the model
to obtain from Eq. (1) a unique solution X(U). We will
assume that X and U belong to a space equipped with
an inner product.

The closure of the model is obtained through a var-
iational principle that can be considered as the mini-
mization of some functional:

J(X, U). (2)

For instance, in the case of variational data assimilation,
J may be viewed as representing the cost function mea-
suring the discrepancy between the observation and the
solution associated with the value U of the input pa-
rameter. Therefore the optimal input for the model will
minimize J.

a. First-order necessary conditions

If the optimal U minimizes J, then it satisfies the Euler
equations given by

=J(U) 5 0, (3)

where =J is the gradient of J with respect to control
variables.

The gradient of J is obtained in the following way:
We compute the Gâteaux (directional) derivative of

the model and of F in some direction u. We may write

]F ]Fˆ3 X 1 3 u 5 0, (4)
]X ]U

where () stands for the Gâteaux derivative. Let Z be
an application from Rn into Rn with variable U. We
define the Gâteaux derivative of Z in the direction u
when this limit exists. For a generic function Z it is
given by

Z(U 1 au) 2 Z(U)
Ẑ(U, u) 5 lim . (5)

aa→0

If Ẑ(U, u) is linear in u, we can write

Ẑ(U, u) 5 ^=Z(U), u&,

where =Z is the gradient of Z with respect to U, and
^ · , · & stands for the inner product. The Gâteaux de-
rivative is also called a directional derivative.

Here, ]F/]X (or ]F/]U) is the Jacobian of F with
respect to X (or U) and

]J ]Jˆ ˆJ(X, U, u) 5 , X 1 , u . (6)7 8 7 8]X ]U

The gradient of J is obtained by exhibiting the linear
dependence of Ĵ with respect to u. This is done by
introducing the adjoint variable P (to be defined later
according to convenience).

Taking the inner product between (4) and P yields

]F ]Fˆ3 X, P 1 3 u, P 5 0 (7)7 8 7 8]X ]U

T T
]F ]Fˆ3 P, X 1 3 P, u 5 0. (8)71 2 8 71 2 8]X ]U

Therefore using (6), if P is defined as the solution of
the adjoint model,

T
]F ]J

3 P 5 , (9)1 2]X ]X

then we obtain

T
]F ]J

=J(U) 5 2 3 P 1 . (10)1 2]U ]U

Therefore the gradient is computed by solving Eq. (9)
to obtain P, then by applying Eq. (10).

b. Second-order adjoint

To obtain second-order information, we seek the
product of the Hessian matrix G(U) of J with some
vector u. As before we apply a perturbation u to Eqs.
(1) and (9), and from Eqs. (9) and (10) we obtain

T T2 2] F ] F ]Fˆ ˆ3 X 1 3 u 3 P 1 3 P
21 2 1 2]X ]X]U ]X

2 2] J ] Jˆ5 3 X 1 3 u and
2]X ]X]U

(11)

=̂J(U) 5 G(U) 3 u

T2 2] F ] F ˆ5 2 3 u 1 3 X 3 P
21 2]U ]U]X

T 2]F ] Jˆ2 3 P 1 3 u
21 2]U ]U

2] J ˆ1 3 X. (12)
]U]X
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We introduce here Q and R, two additional variables.
To eliminate X̂ and P, we will take the inner product
of Eqs. (4) and (11) with Q and R, respectively; then
we add the results. We then obtain

T T
]F ]F

X̂, 3 Q 1 u, 3 Q7 1 2 8 7 1 2 8]X ]U

2 2] F ] Fˆ1 P, 3 X 3 R 1 P, 3 u 3 R
27 8 7 1 2 8]X ]X]U

]Fˆ1 P, 3 R7 1 2 8]X

T T2 2] J ] Jˆ5 X, 3 R 1 u, 3 R . (13)
27 1 2 8 7 1 2 8]X ]X]U

Let us take the inner product of Eq. (12) with u; then
we may write

T2 2] F ] F ˆ^G(U)3u, u&5 2 3 u1 3X 3P, u
27 1 2 8]U ]U]X

2]F ] Jˆ1 P, 2 3 u 1 3 u, u
27 1 2 8 7 8]U ]U

T2] Jˆ1 X, 3 u . (14)7 1 2 8]U]X

From (13) we get

T 2 2]F ] F ] J
X̂, 3 Q 1 3 P 3 R 2 3 R

2 27 1 2 1 2 8]X ]X ]X

]Fˆ1 P, 3 R7 8]X

T T2]F ] F
5 u, 2 3 Q 2 3 P 3 R7 1 2 1 2]U ]X]U

2] J
1 3 R . (15)8]X]U

Therefore if Q and R are defined as being the so-
lution of

T T2 2]F ] F ] J
3 Q 1 3 P 3 R 2 3 R

2 21 2 1 2]X ]X ]X

T2 2] J ] F
5 3 u 2 · u 3 P (16)1 2 1 2]X]U ]U]X

]F ]F
3 R 5 2 3 u, (17)1 2]X ]U

then we obtain

G(U) 3 u

T2 2] F ] J ]F
5 2 3 u 3 P 1 3 u 2 3 Q

2 21 2 1 2]U ]U ]U

2 2] F ] J
2 3 P 3 R 1 3 R. (18)1 2]X]U ]X]U

For Eqs. (14)–(15) we took into account the symmetry
of the second derivative, for example,

T2 2] J ] J
5

2 21 2]X ]X

leading to some simplifications.
The system (16)–(17) will be called the second-order

adjoint. Therefore we can obtain the product of the Hes-
sian by a vector u by (i) solving the system (16)–(17)
and (ii) applying formula (18).

c. Remarks

The system (16)–(17), which has to be solved to ob-
tain the Hessian/vector product, can be derived from the
Gâteaux derivative (4), which is the same as (17). In
the literature, the system (16)–(17) is often called the
tangent linear model, this denomination being rather
inappropriate because it implies the issue of lineariza-
tion and the subsequent notion of range of validity,
which is not relevant in the case of a derivative.

In the case of an N-finite dimensional space the Hes-
sian can be fully computed after N integrations of vector
components ei of the canonical base.

Equation (16) differs from the adjoint model by the
forcing terms, which will depend on u and R.

The system (16)–(18) will yield the exact value of
the Hessian/vector product. An approximation could be
obtained by standard finite differences, that is,

1
G(U) 3 u . [=J(U 1 au) 2 =J(U)], (19)

a

where a is the finite-difference interval that has to be
judicially chosen. In the incremental three- and four-
dimensional variational data assimilation (3D-/4DVAR)
approach the Hessian can readily be obtained by dif-
ferencing two gradients.

However several integrations of the model and of its
adjoint model will be necessary in this case to determine
the range of validity of the finite-difference approxi-
mation (Wang 1995 and references therein).

d. Time-dependent model

In the case of variational data assimilation the model
F is a differential system on the time interval [0, T].
The evolution of X between 0 and T is governed by the
differential system:
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]X
5 F (X) 1 B 3 V. (20)

]t

Here X belongs to the Hilbert space H, which is a sub-
space of the n-dimensional Cartesian product space
[C(0, T)]n.

The input variable is often the initial condition:
nX(0) 5 U ∈ R . (21)

In this system F is a nonlinear operator that describes
the dynamics of the model; V ∈ V , [C(0, T)]m is a
term used to represent the uncertainties of the model,
which we assume to be linearly coupled through the (n,
m)-dimensional matrix B; U is the initial condition; and
the criteria J is the discrepancy between the solution of
(20)–(21) and observations:

T1
2J(U, V) 5 \HX 2 X \ dt, (22)E obs2 0

where H is the observation matrix, that is, a linear op-
erator mapping X into Oobs. The problem consists in
determining U and V that minimize J.

A perturbation v on V and u on U gives X̂ and Ĵ the
Gâteaux derivatives of X and J as a solution of

ˆdX ]F ˆ5 3 X 1 B 3 v (23)
dt ]X

X̂(0) 5 u (24)
T

ˆ ˆJ(U, V, u, v) 5 ^HX 2 X , HX& dt. (25)E obs

0

Let us introduce P, the adjoint variable; we take the
product of (23) with P after a summation on the interval
[0, T] and an integration by parts followed by identi-
fication of linearities with respect to u and v in (25);
next we conclude that if P is defined as the solution of
the adjoint model

TdP ]F
T1 3 P 5 H (HX 2 X ) (26)obs1 2dt ]X

P(T ) 5 0, (27)

then the components of the gradient =J with respect to
U and V are

=J 5 2P(0) (28)U

T=J 5 2B P. (29)V

Because V is time dependent, its associated adjoint
variable Q will be also time dependent. Let us remark
that the gradient of J with respect to V will depend on
time, which is not surprising since J also depends on
time. From a computational point of view the discret-
ization of V will have to be carried out in such a way
that the discretized variable remains in a space of ‘‘rea-
sonable’’ dimension.

The second derivative will be derived after a pertur-
bation h on the control variables U and V:

hUh 5 . (30)1 2hV

The Gâteaux derivatives X̂, P of X, and P in the direc-
tion of h are obtained as the solution of the coupled
system:

ˆdX ]F ˆ5 X 1 BhVdt ]X
(31)

X̂(0) 5 h (32)U

T T2ˆdP ] F ]F
Tˆ ˆ1 3 X 3 P 1 3 P 5 H HX (33)

21 2 1 2dt ]X ]X
ˆ=J 5 2P(0) (34)U

T ˆ=J 5 2B P. (35)V

We then introduce Q and R, second-order adjoint
variables. They will be defined later for ease in use of
presentations.

Taking the inner product of (31) with Q and of (33)
with R, integrating from 0 to T, then adding the resulting
equations, we may write

T TT 2ˆ ˆdX ]F dP ] F ]F
Tˆ ˆ ˆ ˆ, Q 2 3 X, Q 2 ^Bh , Q& 1 , R 1 3 X 3 P, R 1 3 P, R 2 ^H HX, R& dtE V 27 8 7 8 7 8 71 2 8 71 2 8[ ]dt ]X dt ]X ]X0

5 0, (36)

The terms in P̂ and X̂ are collected and after integration by parts and some additional transformations we obtain

T TT T2dQ ]F ] F dR ]F
Tˆ ˆX, 2 2 3 Q 1 3 P 3 R 2 H HR dt 1 P, 2 1 3 R dtE E27 1 2 8 7 1 2 8[ ]dt ]X ]X dt ]X0 0

T

T ˆ ˆ ˆ ˆ2 ^h , B 3 Q& dt 1 ^X(T ), Q(T )& 2 ^X(0), Q(0)& 1 ^P(T ), R(T )& 2 ^P(0), R(0)& 5 0. (37)E V

0
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Let G be the Hessian matrix of the cost J. We then
have

G GUU UVG 5 . (38)1 2G GVU VV

Therefore if we define the second-order adjoint as
being the solution of

TT 2dQ ]F ] F
T1 3 Q 5 3 P 3 R 2 H HR (39)

21 2 [ ]dt ]X ]X

dR ]F
5 3 R and (40)[ ]dt ]X

Q(T ) 5 0 (41)

R(0) 5 h , (42)U

then it remains

ˆ2^h , Q(0)& 5 ^P(0), R(0)& (43)U

P̂(0) 5 2Q(0). (44)

We would like to point out that Eq. (44) follows di-
rectly from Eq. (43) by using Eq. (42). The product of
the Hessian by a vector is obtained exactly by a direct
integration of (40) and (42) followed by a backward
integration in time of (39) and (41).

One can obtain G by n integrations of the differential
system:

T T2dQ ]F ] F
T1 3 Q 5 3 P 3 R 2 H HR (45)

21 2 1 2dt ]X ]X

dR ]F
5 3 R, (46)1 2dt ]X

with the conditions

Q(T ) 5 0 (47)

R(0) 5 e (48)i

where e i are the n vectors of the canonical base of Rn

thus obtaining

G e 5 Q(0) (49)UU i

TG e 5 B 3 Q. (50)UV i

One then integrates m times the differential system:

T T2dQ ]F ] F
T1 3 Q 5 3 P 3 R 2 H HR (51)

21 2 1 2dt ]X ]X

dR ]F
2 3 R 5 f , (52)j1 2dt ]X

with terminal and, respectively, initial conditions

Q(T ) 5 0 (53)

R(0) 5 0, (54)

where f j are the m canonical base vectors of Rm obtaining

TG 3 f 5 B 3 Q.VV j (55)

The system defined by these equations is the second-
order adjoint model. The Hessian matrix is obtained via
n 1 m integrations of the second-order adjoint. The
second-order adjoint is easily obtained from the first-
order adjoint; differing from it only by some forcing
terms, in particular the second-order term. The second
equation is that of the linearized model (the tangent
linear model).

One can also obtain the product of a vector of the
control space, times the Hessian at the cost of a single
integration of the second-order adjoint.

e. Example: The shallow-water equations

The shallow-water equations (SWEs) represent the
flow of an incompressible fluid whose depth is small
with respect to the horizontal dimension.

The SWEs can be written in a Cartesian system:

]u ]u ]u ]f
1 u 1 y 2 fy 1 5 0 (56)

]t ]x ]y ]x

]y ]y ]y ]f
1 u 1 y 1 fu 1 5 0 (57)

]t ]x ]y ]y

]f ]uf ]yf
1 1 5 0. (58)

]t ]x ]y

In this system of equations X 5 (u, y, f)T is the state
variable, u and y are the components of the horizontal
velocity, f is the geopotential, and f the Coriolis pa-
rameter. We aim to present this example in order to
provide a didactic setup, thus we will make the strongest
simplifications.

a) We neglect the model error, which following the pre-
vious notation, implies B [ 0. We only control the
initial conditions.

b) We impose periodic boundary conditions.
c) The observations are assumed continuous in both

space and time, which is tantamount to assuming H
[ I, where I is the identity operator. Let U0 5 (u0,
y 0, f0)T, that is, the initial condition, then the cost
function assumes the form

T1
2 2J(U ) 5 [(u 2 u ) 1 (y 2 y )0 E obs obs2 0

21 g (f 2 f ) ] dt, (59)obs

where g is a nonunit weighting term.

We derive directly the tangent linear model (TLM).
The barred variables 5 ( , , )T are the directionalX u y f
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derivatives in the direction of the perturbation h 5 (hu,
hy , hf)T applied to the initial condition and we obtain

]u ]u ]u ]u ]u ]f
1 u 1 u 1 y 1 y 2 f y 1 5 0 (60)

]t ]x ]x ]y ]y ]x

]y ]y ]y ]u ]y ]f
1 u 1 u 1 y 1 y 1 f u 1 5 0 (61)

]t ]x ]x ]y ]y ]y

]f ]uf ]uf ]y f ]yf
1 1 1 1 5 0. (62)

]t ]x ]x ]y ]y

By transposing the TLM we obtain the adjoint model.
Let P 5 (ũ, , )T be the adjoint variable, then theỹ f̃
adjoint model satisfies

]ũ ]ũ ]ỹ ]y ]y ]f̃
1 u 1 y 1 ũ 2 ỹ 2 f ỹ 1 f

]t ]x ]y ]y ]y ]x

5 u 2 u (63)obs

]ỹ ]u ]ỹ ]u ]ỹ ]f̃
1 ũ 2 u 1 ỹ 1 y 1 f ũ 1 f

]t ]y ]x ]x ]y ]y

5 y 2 y (64)obs

]f̃ ]ũ ]ỹ ]f̃ ]f̃
1 1 1 u 1 y 5 g (f 2 f). (65)obs]t ]x ]y ]x ]y

To obtain the second-order model we linearize the
couple direct model and adjoint model; we then trans-
pose and obtain the second-order adjoint variable Q 5
(û, , )T and the variable R 5 ( , , )T defined byŷ f̂ u y f
the TLM:

]û ]û ]ŷ ]y ]y ]f̂
1 u 1 y 1 û 2 ŷ 2 f ŷ 1 f

]t ]x ]y ]y ]y ]x

]y ]ũ ]u ]y ]f̃
5 ỹ 2 u 2 y 1 ũ 2 f 2 u (66)

]x ]x ]y ]y ]x

]ŷ ]u ]ŷ ]u ]ŷ ]f̂
1 û 2 u 1 ŷ 1 y 1 f û 1 f

]t ]y ]x ]x ]y ]y

]u ]ỹ ]u ]ỹ ]f̃
5 ũ 2 u 2 ỹ 1 u 2 f 2 y (67)

]x ]x ]y ]y ]y

]f̂ ]û ]ŷ ]f̂ ]f̂
1 1 1 u 1 y

]t ]x ]y ]x ]y

]f̃ ]f̃
5 2u 2 y 2 gf . (68)

]x ]x

We see that formally the first- and second-order adjoint
models differ only by second-order terms, which contain
the adjoint variables.

The calculation of second-order derivatives requires
the storage of the model trajectory, the tangent linear
model, and the adjoint model.

3. Sensitivity analysis and second-order
information

a. General sensitivity analysis

In general a model has the following kinds of vari-
ables:

(i) State variable: Z in a space L, which describes the
physical properties of the medium (velocity, pres-
sure, temperature, . . .); Z depends on time and
space.

(ii) Input variable: I in a space L, which has to be
provided to the model (e.g., initial or boundary
conditions), most of the time these variables are
not directly measured but they can be estimated
through data assimilation.

(iii) Parameters: K represents empirical parameters
(e.g., diffusivity) that most models contain, which
have to be tuned to adjust the model to the ob-
servations.

From the mathematical point of view a model is writ-
ten as

F 9(Z, I, K) 5 0, (69)

where F 9 is some PDE operator (depending on time or
being steady state) or its discrete counterpart. We as-
sume that if I and K are given, then the model has a
unique solution Z(I, K).

In many applications sensitivity analysis is carried
out; for instance if we consider some scalar quantity
linked to a solution of the model, what will be its var-
iation if there is some perturbation on the inputs of the
model?

From the formal point of view a sensitivity analysis
is defined by a so-called response function G: L → R,
depending on the state variable X (and therefore indi-
rectly depending on I and K). By definition the sensi-
tivity of G with respect to K (respectively I) is the gra-
dient of G with respect to K (respectively I):

]G
S 5 .

]K

There are two ways to estimate the sensitivity.

b. Sensitivity analysis via finite differences

Assume we are looking for the sensitivity with respect
to K in a finite space of dimension N. Let ki, 1 # i #
N be the components of K, then

]G ]G
5 , 1 # i # N,1 2]K ]kii

and estimation of ]G/]ki can be carried out by com-
puting

]G G(K 1 ak ) 2 G(K)i. , (70)
]k ai
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where ki are the canonical base vectors. This procedure
for estimating a sensitivity is simple. Nevertheless it can
be costly if N is large since it will require as many
integrations of the model as N. Furthermore, (70) gives
only one approximation of the gradient. The scalar a
has to be chosen such that the model has a linear be-
havior with respect to a. The determination of a may
require several integrations of the model for each value
of ki. The main advantage of this method is that it does
not require important software development.

c. Sensitivity via the adjoint

Because the sensitivity is a gradient, the adjoint var-
iable may be used to derive it. Let i and k be pertur-
bations on I and K. The derivation of (69) leads to

]F 9 ]F 9 ]F 9ˆ3 Z 1 3 i 1 3 k 5 0, (71)
]Z ]I ]K

and for the response function,

]Gˆ ˆG(Z, I, K, i, k) 5 , Z . (72)7 8]Z

The gradient will be obtained by exhibiting the linear
dependence of Ĝ with respect to i and k. Let us introduce
P, an adjoint variable of the same dimension as Z.

Taking the inner product of (71) with P gives

]F 9 ]F 9 ]F 9ˆ3 Z, P 1 3 i, P 1 3 k, P 5 07 8 7 8 7 8]Z ]I ]K

T T
]F 9 ]F 9

Ẑ, 3 P 5 2 i, 3 P7 1 2 8 7 1 2 8]Z ]I
T

]F 9
2 k, 3 P7 1 2 8]K

By identification to (72), if the adjoint model is de-
fined as the solution of

T
]F 9 ]G

3 P 5 ,1 2]Z ]Z

then the sensitivities SI with respect to I (respectively
SK, with respect to K) are given by

T T
]F 9 ]F 9

S 5 2 3 P, S 5 2 3 P.I K1 2 1 2]I ]K

It is worth noting that the sensitivity is obtained only
after one run of the adjoint model and the result is exact.
The cost to be paid is in software development since
an adjoint model has to be developed.

d. Sensitivity analysis and data assimilation

Previously we have assumed that the input parameters
of the model are known. In fact they are indirectly de-

rived from observations through a process of data as-
similation. If a variational data assimilation procedure
is carried out, and if X is a state variable, I the input,
F the model, and P the adjoint variable, then X and P
are solutions of the following optimality system (OS),
J(X, I) being the cost function:

F (X, I) 5 0

T
]F ]J

3 P 2 5 01 2]X ]X

T
]F ]J

3 P 2 5 0 (73)1 2]I ]I

For sensitivity studies in the presence of observations,
with a given response function we have to consider the
OS as a generalized model F 9 with a state variable
Z 5 (X, P)T, and a general sensitivity analysis has to
be applied to this general model. Therefore the adjoint
of the optimally system has to be derived.

After a perturbation i on I, we may write

]F ]Fˆ3 X 1 3 i 5 0 (74)
]X ]I

T T2 2] F ] F ]Fˆ ˆ3 X 1 3 i 3 P 1 3 P
21 2 1 2]X ]X]I ]X

2 2] J ] Jˆ2 3 X 2 3 i 5 0 (75)
2]X ]X]I

T T2 2] F ] F ]Fˆ ˆ3 X 1 3 i 3 P 1 3 P
21 2 1 2]X]I ]I ]I

2 2] J ] J ˆ2 3 i 2 3 X 5 0, (76)
2]I ]I]X

and for the response function G defined earlier we get

]G ]GˆĜ(X, I, i) 5 3 X 1 3 i. (77)
]X ]I

Here, X̂ and P̂ are the Gâteaux derivatives of X and
P in the direction i. After second-order adjoint variables
Q and R are introduced, we take the inner product of
(74) and (75) by Q and (76) by R; then we add the
three equations and we may write

T T2 2]F ] F ] J
X̂, 3 Q 1 3 P 3 Q 2 3 Q

2 27 1 2 1 2]X ]X ]X

T2 2] J ] F
2 3 R 1 3 P 3 R1 2 8]I]X ]X]I

]F ]Fˆ1 P, 3 Q 1 3 R7 1 2 1 2 8]X ]X

T T2]F ] F
1 i, 3 Q 1 3 P 3 Q7 1 2 1 2]I ]X]I
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2 2] J ] J
2 3 Q 2 3 R

2]X]I ]I

T2] F
1 3 P 3 R 5 0.

21 2 8]I

By identification in (77) it follows that if Q and R
are defined as solution of

T T2 2]F ] F ] J
3 Q 1 3 P 3 Q 2 3 Q

2 21 2 1 2]X ]X ]X

T T2 2] J ] F ]G
2 3 R 1 3 P 3 R 5 2

21 2 1 2]I]X ]X ]X

]F ]F
3 Q 2 3 R 5 0, (78)1 2 1 2]X ]I

then we get the gradient of G with respect to I, that is
the sensitivity

T T2dG ]F ] F
S 5 5 2 3 Q 2 3 Q 3 P1 2 1 2dI ]I ]X]I

2 2] J ] J
1 3 Q 2 3 R

21 2]X]I ]I

T2] F ]G
2 3 R 3 P 1 . (79)

21 2]I ]I

Therefore the algorithm to get the sensitivity is as
follows:

(i) solve the optimality system to obtain X and P,
(ii) solve the coupled system (78) to obtain Q and R,

and
(iii) compute the sensitivity by (79).

The sensitivity in the presence of observations re-
quires taking into account the second-order information.
A very simple example given by Le Dimet et al. (1997)
clearly shows the necessity of the introduction of this
term.

4. Kalnay et al. (2000) quasi-inverse method and
second-order information

The inverse 3DVAR method proposed by Kalnay et
al. (2000) is introduced by considering a cost func-
tional:

1
T 21J 5 (Ldx) B (Ldx)

2

1
T 211 [HLdx 2 dy] R [HLdx 2 dy], (80)

2

where dx is the difference between the analysis and the

background at the beginning of the assimilation window,
L and LT are the TLM and its adjoint, and H is the
tangent linear version of the forward observation op-
erator H . In addition, B is the forecast error covariance
and R is the observational error covariance.

Taking the gradient of J with respect to the initial
change dx 5 xa 2 xb, where xa and xb are the analysis
and first guess, respectively, we obtain

21 21T T=J 5 L [B Ldx 1 H R (HLdx 2 dy)]. (81)

In an adjoint 4DVAR an iterative minimization al-
gorithm such as the quasi-Newton or conjugate gradient
is employed to obtain the optimal perturbation:

i i21dx 5 a =J ;i (82)

here i is the minimization counter, where a i is the step
size in the minimization algorithm.

One stops after a number of minimization iterations
when \=J\ is small enough to satisfy a convergence
criterion.

In order to determine the optimal value of the step
size, the minimization algorithm, say quasi-Newton, re-
quires additional computations of the gradient =J i21, so
that the number of direct and adjoint integrations re-
quired by adjoint 4DVAR can be larger than the number
of minimization iterations (see Kalnay et al. (2000).

The inverse 3DVAR approach of Kalnay seeks to
obtain directly the ‘‘perfect solution,’’ that is, the special
dx that makes =J 5 0, provided dx is small.

Eliminating in (81) the adjoint operator one gets
21 21 21 21T TLdx 5 (B 1 H R H) H R dy. (83)

Since we have the quasi-inverse model obtained by
integrating TLM backward, that is, a good approxi-
mation of L21, we obtain

21 21 21 21 21T Tdx 5 L (B 1 H R H) H R dy. (84)

As shown by Kalnay et al. (2000) this is equivalent
to the adjoint Newton algorithm used by Wang et al.
(1997) except that it does not require a line minimi-
zation.

Wang et al. (1998) proposed an adjoint Newton al-
gorithm that also required the backward integration of
the tangent linear model and proposed a reformulation
of the adjoint Newton when the TLM is not invertible.
They did not explore this idea in depth. Physical pro-
cesses are generally not parameterized in a reversible
form in atmospheric models—a problem that can be
only overcome to some extent by using simplified re-
versible physics. Also truly dissipative processes in at-
mospheric models are not reversible and as such will
constitute a problem for the inverse 3DVAR. To show
the link of inverse 3DVAR to second-order information
we follow Kalnay et al. (2000) to show that inverse
3DVAR is equivalent to using a perfect Newton iterative
method to solve the minimization problem at a given
time level.

If we look for the minimum of the cost functional at
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x 1 dx given that our present estimate of the solution
is x, then expanding =J(x 1 dx) in a Taylor series to
second term yields

2=J(x 1 dx) 5 =J(x) 1 ¹ J(x)dx 5 0, (85)

where ¹2J(x) is the Hessian matrix.
The Newton iteration is

2 21dx 5 2[¹ J(x)] =J(x). (86)

For the cost function (80) the Hessian is given by
2 21 21T T= J(x) 5 L (B 1 H R H)L. (87)

A first iteration with the Newton minimization al-
gorithm yields

21T 21 T 21 T T 21dx 5 [L (B 1 H R H)L] L H R dy, (88)1

which is identical with the inverse 3DVAR solution.
Since cost functions used in 4DVAR are close to

quadratic functions, one may view 3DVAR as a perfect
preconditioner of a simplified 4DVAR problem.

In general, availability of second-order information
allows powerful minimization algorithms to be used
(Wang et al. 1995, 1997) even when the inverse 3DVAR
is difficult to obtain as is the case with full physics
models.

5. Hessian information in optimization theory

Hessian information is crucial in many aspects of both
constrained and unconstrained minimization. All min-
imization methods start by assuming a quadratic model
in the vicinity of the minimum of a multivariate mini-
mization problem.

For the problem

min F (X), (89)
nX∈R

the necessary condition for X* to be a stationary point is

=F(X*) 5 0 (90)

and in order to obtain sufficient conditions for the ex-
istence of the minimum of the multivariate uncon-
strained minimization problem, we must require that the
Hessian at X* is positive definite.

a. Spectrum of the Hessian and rate of convergence
of unconstrained minimization

The eigenvalues of the Hessian matrix predict the
behavior and convergence rate for unconstrained min-
imization. To show this, let us consider again the mul-
tivariate nonlinear function F(X) of (89) and let X*
denote a local minimizer point that satisfies the con-
dition

F(X*) # F(X) (91)

for all X such that

\X 2 X*\ , e, (92)

where e is typically a small positive number whose value
may depend on the value of X*. We define F(X*) as
an acceptable solution of (89).

If F is twice continuously differentiable, and X* is
an absolute minimum, then

=F(X*) 5 0, (93)

and the Hessian G(X*) of F at X* is positive definite,
that is,

nTp G(X*)p . 0, ∀ p ∈ R . (94)

Let us expand F in a Taylor series about X*:

F (X) 5 F (X* 1 hp)

1
2 T 35 F (X*) 1 h p G(X*)p 1 O(h )

2

[since =F (X*) 5 0], (95)

where

\p\ 5 1 and h 5 \X 2 X*\. (96)

For any acceptable solution we obtain

2e
2 2h 5 \X 2 X*\ ø (97)

Tp G(X*)p

such that the condition number of the Hessian G(X*)
substantially affects the size of \X 2 X*\, that is, the
rate of convergence of the unconstrained minimization
(Gill et al. 1981).

If G(X*) is ill-conditioned, the error in X will vary
with the direction of the perturbation p.

If p is a linear combination of eigenvectors of G(X*)
corresponding to the largest eigenvalues, the size of
\X 2 X*\ will be relatively small, while if, on the other
hand, p is a linear combination of eigenvectors of G(X*)
corresponding to the smallest eigenvalues, the size of
\X 2 X*\ will be relatively large; that is, there will be
slow convergence.

b. Role of the Hessian in constrained minimization

The Hessian information plays a very important role
in constrained optimization as well. We shall deal here
with optimality conditions where again Taylor series
approximations are used to analyze the behavior of the
objective function F and constraints hi about a local
constrained minimizer X*.

We shall consider first optimal conditions for linear
equality constraints.

The problem is cast as

min F (X), subject to AX 5 b, (98)
nX∈R

where A is an m 3 n matrix, m # n. We assume that
F is twice continuously differentiable and that rows of
A are independent, that is, A has full row rank. The
feasible region consists of the set of points satisfying
all the constrains.
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Any problem with linear constraints AX 5 b can be
recast as an equivalent unconstrained problem. Assume
we have a feasible point ; that is,X

AX 5 b.

Then any other feasible point can be expressed as

X 5 X 1 p,

where p is a feasible direction.
Any feasible direction must lie in the null space of

A, the set of vectors p satisfying

Ap 5 0.

Denoting the null space of A by N(A), the feasible re-
gion is given by

{X: X 5 X 1 p, p ∈ N(A)}.

Let Z be the null space matrix for A of dimension n 3 r
with r $ n 2 m. Then the feasible region is given by

r{X: X 5 X 1 Zv, where v ∈ R } and AZ 5 0.
(99)

Then the constrained minimization problem in X is
equivalent to the unconstrained problem:

min F(v) 5 F (X 1 Zv), (100)
rv∈R

where X is a feasible point (Gill et al. 1981; Nash and
Sofer 1996). The function F is the restriction of F onto
the feasible region, called the reduced function. If Z is
a basis matrix for the null space of A, then F is a
function of n 2 m variables. The constrained problem
has been transformed into an unconstrained problem
with a reduced number of variables.

Optimality conditions involve derivatives of the re-
duced function. If X 5 1 Zv,X

T T=f(v) 5 Z =F (X 1 Zv) 5 Z =F (X)
2 2 2T T¹ F(v) 5 Z ¹ F (X 1 Zv)Z 5 Z ¹ F (X)Z. (101)

The vector
T=F(v) 5 Z =F (X) (102)

is called the reduced gradient of F at X. Similarly the
matrix

2 T 2¹ F(v) 5 Z ¹ F (X)Z (103)

is called the reduced or projected Hessian matrix.
The reduced gradient and Hessian matrix are the gra-

dient and Hessian of the restriction of F onto the feasible
region evaluated at X. If X* is a local solution of the
constrained problem, then

X* 5 X 1 Zv* for some v* (104)

and v* is the local minimizer of F. Hence we can write

=F(v*) 5 0 (105)

and ¹2F(v*) is positive semidefinite.

Here we briefly present in the framework of opti-
mality conditions for linear equality constraints the nec-
essary conditions for a local minimizer. If X* is a local
minimizer of F and Z is the null-space matrix for A,
then

TZ =F (X*) 5 0 (106)

and ZT¹2F (X*)Z is positive semidefinite. That is, the
reduced gradient is zero and the reduced Hessian matrix
is positive semidefinite. (The second-order derivative
information is used to distinguish local minimizers from
other stationary points.) The second-order condition is
equivalent to the condition

T 2Tv Z ¹ F (X*)Zv $ 0 for all v. (107)

Noting that p 5 Zv is a null-space vector, we can rewrite
(107) as

T 2p ¹ F (X*)p $ 0 for all p ∈ N(A); (108)

that is, the Hessian matrix at X* must be positive sem-
idefinite on the null space of A.

c. Application of second-order-adjoint technique to
obtain exact Hessian/vector product

We will exemplify this application by considering a
truncated-Newton algorithm for large-scale minimiza-
tion.

DESCRIPTION OF TRUNCATED-NEWTON METHODS

Truncated-Newton methods are used to solve the
problem

Tmin f (X), X 5 (x , x , . . . , x ) . (109)1 2 n

They are a compromise on the Newton method [see also
Gill and Murray (1979) and O’Leary (1983)], whereby
they compute a search direction by finding an approx-
imate solution to the Newton’s equations

2¹ f (X )p ø 2= f (X )k k (110)

using a conjugate-gradient (CG) iterative method; we
note here that Newton equations are a linear system of
the form

AX 5 b, (111)

where
2A 5 ¹ f (X ), b 5 2= f (X ). (112)k k

The conjugate gradient method is ‘‘truncated’’ before
the exact solution to the Newton equations has been
found. The CG method computes the search direction
and requires storage of a few vectors.

The only obstacle for using minimization is the re-
quirement that it computes Hessian matrix/vector prod-
ucts of the type

2Av 5 ¹ f (X )vk (113)
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for arbitrary vectors v. One way to bypass the storage
difficulty is to approximate the Hessian matrix/vector
products using values of the gradient in such a way that
the Hessian matrix need not be computed or stored.
Using Taylor series

2 2= f (X 1 hv) 5 = f (X ) 1 h¹ f (X )v 1 O(h ), (114)k k k

we obtain

= f (X 1 hv) 2 = f (X )k k2¹ f (X )v 5 lim ; (115)k hh→0

that is, we approximate the matrix/vector product

= f (X 1 hv) 2 = f (X )k k2¹ f (X )v ø (116)k h

for some small values of h.
The task of choosing an adequate h is an arduous one

(see Nash and Sofer 1996, chapter 11.4.1 and references
therein). For in-depth descriptions of the truncated-
Newton (also referred to as the Hessian-free) method,
see Nash (1984a–d, 1985) and Nash and Sofer
(1989a,b), as well as Schlick and Fogelson (1992a,b),
and early work by Dembo et al. (1982) and Dembo and
Steihaug (1983). A comparison of limited memory qua-
si-Newton (see Liu and Nocedal 1989) and truncated-
Newton methods is provided by Nash and Nocedal
(1991), while a comprehensive well-written survey of
truncated-Newton methods is presented in Nash (2000).
A comparison between limited memory quasi-Newton
and truncated-Newton methods applied to a meteoro-
logical problem is described in depth by Zou et al.
(1990, 1993).

d. A method for estimating the Hessian matrix

The cost function measuring the misfit between the
forecast model solution and available observations dis-
tributed in space and time may be expressed as

R1
obs TJ[X(t )] 5 {B[X(t )] 2 X (t )}O0 r r2 r50

obs3 W(t ){B[X(t )] 2 X (t )}. (117)r r r

For the sake of simplicity we choose R 5 1, which
yields

1
obs TJ[X(t )] 5 {B[X(t )] 2 X (t )}0 0 02

obs3 W(t ){B[X(t )] 2 X (t )}0 0 0

1
obs T1 (B{F [X(t )]} 2 X (t ))0 N2

obs3 W(t )(B(F [X(t )] 2 X (t )), (118)N 0 N

where B is an observation operator, X(tr) the vector of
model control variables, Xobs(tr) the vector of obser-
vational data at time t 5 tr, t 5 tN is the final time of

model integration, and W(tr) is the inverse of the ob-
servation covariance matrix.

The operator of model integration from time t 5 t0

to t 5 tN is

N

F 5 F . (119)P n
n51

At the minimum Xmin, the gradient of the cost function
=J vanishes.

If we introduce random variables h(t0) and h(tN),
with zero expectations and whose covariances are the
diagonal elements of W21(t0) and W21(tN), respectively,
to the observations

obs obsX (t ) 5 X (t ) 1 h (t ) (120)1 0 0 0

obs obsX (t ) 5 X (t ) 1 h (t ), (121)1 N N N

then =J(at ) is a random variable and we obtainX*min

TE[=J(=J) ] 5 J0, (122)

where E[·] is the mathematical expectation and J0 is the
Hessian matrix. We can see that we obtain an outer
vector product expression, which is a rank-one matrix.

For each realization i of (t0) and (tN) we canobs obsX X1 1

calculate =J i at Xmin and after p such realizations we
obtain at most a rank p approximation of the Hessian
of the cost function (Yang et al. 1996; Rabier and Cour-
tier 1992; Courtier et al. 1994):

P1
i i TH ø J0 ø J 5 =J (=J ) . (123)0 Op p i51

This approach is analogous to quasi-Newton methods
where symmetric rank-one or rank-two updates are col-
lected to update approximations of the Hessian or the
inverse of the Hessian matrix as the minimization pro-
ceeds. As shown by Yang et al. (1996) use of the ap-
proximate as a preconditioner is extremely efficient.J0p
Forsythe and Strauss (1955) have already shown that
using the diagonal of the Hessian is optimal among all
diagonal preconditioning methods.

6. Second-order adjoint via automatic
differentiation

There is an increased interest in obtaining the second-
order adjoint via automatic differentiation (AD).

Research work has been carried out in the recent ver-
sion of the FORTRAN TAMC AD package designed
by Giering and Kaminski (1998a) allowing for both the
calculation of Hessian/vector products as well as for the
more computationally expensive derivation of the full
Hessian with respect to the control variables. Compa-
rable CPU times to those required for hand coding were
reported (Giering and Kaminski 1998b).

The importance of the Hessian/vector products de-
rived by AD is particularly important in minimization
where there is often interest not only in the first but
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rather in the second derivatives of the cost functional,
which convey crucial information.

Griewank (2000) estimated the computational com-
plexity of implementing second-order adjoints in a thor-
ough manner.

He found that for calculating Hessian/vector products
an effort leading to a run-time ratio of about a factor
of 13 was required.

The calculation of the ratio between the effort re-
quired to obtain Hessian/vector products and that re-
quired to calculate the gradient of the cost was found
to be a factor between 2 and 3 only.

All analytic differentiation methods are based on the
observation that most vector functions f are being eval-
uated as a sequence of assignments:

y 5 f (y ) for i 5 1, . . . , l 1 m.i i j j,i

Here variables y i are real scalars and the elemental func-
tions fi are either binary arithmetic operations or uni-
variate intrinsics.

Consequently, only one or two of the partial deriv-
atives,

]
c [ f (y ) ,ij i k k,i]y j

do not vanish identically.
Without loss of generality we may require that the

first n variables

y 5 x , j 5 1, . . . , nj2n j

represent independent variables and that the last m var-
iables

y 5 y , i 5 1, . . . , mi l1i

represent dependent variables.
In AD calculation of f 9(x), it can be represented by

a sparse triangular matrix

j 5 1 2 n . . . l 1 n
C 5 C(x) 5 (c )ij 5 i 5 1 2 n . . . l 1 m.

This C can also be interpreted as a computational graph
whose vertices are elemental functions fi and the edges
are the nonvanishing partial cij.

Exploiting sparsity for AD calculation of the second-
order adjoint Griewank (2000) shows that economy can
be realized when the computational Hessian graph sym-
metry allows the AD-computed Hessian to assume the
form

n3n2 ˙ ˙¹ f 5 ZSZ ∈ R , (124)

which leads to a dyadic representation first put forward
in a paper by Jackson and McCormick (1988); see below
Eqs. (125)–(126).

The derivation originates in the approach put forward
by Griewank (2001) of Jacobian accumulation proce-
dures using implicit function theorem.

Griewank (2000) derives a class of derivative accu-

mulation procedures as edge eliminations on the line-
arized computational Hessian graph.

Functions defined by an evaluation procedure can be
characterized by a triangular system of nonlinear equa-
tions E(X, y) 5 0. Applying the implicit function the-
orem one obtains the derivative of ]y/]x. The (n 1 i)-th
row of ]y/]x represents exactly the gradient

V̇ 5 = yi x i

of the ith intermediate value y i with respect to all in-
dependent variables:

nx 5 y , j 5 1, 2, . . . , n, x ∈ R .j j2n

Now
(l2m1n)3nT l2m˙Z 5 (V ) ∈ Ri i512n

denotes the matrix formed by the gradients
TV̇ 5 = yi x i

of all intermediates y i, with respect to the independents
x ∈ Rn, which is computed during a forward sweep to
calculate the gradient

= f 5 = f .x

Then the Hessian takes the product form
n3n2 T˙ ˙¹ f 5 Z SZ ∈ R ,

where S ∈ R (l2m1n)3(l2m1n) is zero except for diagonal
elements of the form jfj and diagonal blocks of they
form

0 y j1 2y 0j

(f j being a nonlinear elemental).
One can show that first-order derivatives form the

nonzero elements of matrix Ż.
The representation

2 ˙ ˙¹ f 5 ZSZ

results in a sum of outer products called dyadic repre-
sentation, which was used extensively by Jackson and
McCormick (1988), who referred to the functions de-
fined by the evolution procedures as ‘‘factorable.’’

Here,
(l2m1n)3nT l2m˙Z [ (V ) ∈ R and (125)i i51, ...,n

(l2m1n)3(l2m1n)S ∈ R , (126)

where
TV̇ 5 = y , andi x i (127)

y i are intermediates with respect to independents x ∈
Rn.

7. Use of Hessian of cost functional to estimate
error covariance matrices

A relationship exists between the inverse Hessian ma-
trix and the analysis error covariance matrix of either
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3DVAR or 4DVAR (see Thacker 1989; Thepaut and
Courtier 1991; Rabier and Courtier 1992; Yang et al.
1996; Le Dimet et al. 1997).

Following Courtier et al. (1994) we consider methods
for estimating the Hessian in the weakly nonlinear prob-
lem when the tangent linear dynamics is a good ap-
proximation to nonlinear dynamics. As a consequence
the cost function is near to being quadratic. If as in
Gauthier (1992) we consider the observations as random
variables and we look at variational analysis as attempt-
ing to solve the minimization problem

1
T 21minJ(v) 5 (x 2 x ) B (x 2 x )b b2

1
T 211 (Hx 2 y) O (Hx 2 y), (128)

2

where xb is the unbiased background field and y the set
of unbiased observations, both being realizations of ran-
dom variables of covariances B and O, respectively, and
where the operator H computes the model equivalent
Hx of the observation y, then the Hessian J0 of the cost
function J at the minimum is given by

21 21TJ0 5 B 1 H O H, (129)

obtained by differentiating (128) twice.
Moreover the analysis error covariance matrix is the

inverse of the Hessian as shown in appendix B of Rabier
and Courtier (1992). Calling xa the result of the mini-
mization (i.e., the analysis) and xt the truth, one sees
that the error covariance at the minimum is

T 21E[(x 2 x )(x 2 x ) ] 5 (J0)a t a t

2121 T 215 (B 1 H O H) . (130)

A requirement is that the background error and the ob-
servation error are uncorrelated (Rabier and Courtier
1992; Fisher and Courtier 1995). See also the work of
Thepaut and Moll (1990) who point out that the diagonal
of the Hessian is optimal among all diagonal precon-
ditioners.

8. Hessian singular vectors

Computing Hessian singular vectors (HSVs) uses the
full Hessian of the cost function in the variational data
assimilation, which can be viewed as an approximation
of the inverse of the analysis error covariance matrix
and it is used at initial time to define a norm. The total
energy norm is still used at optimization time. See work
by Barkmeijer et al. (1998, 1999). The HSVs are con-
sistent with the 3DVAR estimates of the analysis error
statistics. They are also defined in the context of
4DVAR. In practice one never knows the full 3DVAR
Hessian in its matrix form and a generalized eigenvalue
problem is solved as will be described below.

The HSVs are also used in a method first proposed
by Courtier (1993) and tested by Rabier et al. (1997)

for the development of a simplified Kalman filter fully
described by Fisher (1998) and compared with a low-
resolution explicit extended Kalman filter by Ehren-
dorfer and Bouttier (1998).

Let M be the propagator of the tangent linear model,
and P a projection operator setting a vector to zero
outside a given domain.

Consider positive-definite and symmetric operators
including a norm at initial and optimization time, re-
spectively.

Then the HSVs defined by

^Pe(t), EPe(t)&
(131)

^e(t ), Ce(t )&0 0

under an Euclidean norm are the solution of the gen-
eralization eigenvalue problem. Here the positive-defi-
nite and symmetric operators C and E induce a norm at
initial and optimization time, respectively. Usually the
total energy metric is used and then C and E are iden-
tical:

M*P*EPMx 5 lCx (132)

The adjoint operators M* and P* are determined with
respect to the Euclidean inner product.

In HSVs the operator C is equal to the Hessian of
the 3D-/4DVAR cost function.

The operator C is specified to be equal to the full
Hessian of the 3DVAR cost function. While C is not
known in matrix form and determining its square root
is not feasible, Barkmeijer et al. (1999) show that one
can solve (132) by a generalized eigenvalue problem
solver called the generalized Davidson algorithm (see
Barkmeijer et al. 1998; Davidson 1975). See also Sleij-
pen and van der Vorst (1996). Using

2 21 21TC [ ¹ J 5 B 1 H R H (133)

and carrying out a coordinate transformation,

21 21x 5 L x, LL 5 B. (134)

Then we have a transformed operator

21 T(L ) CL, (135)

and the Hessian becomes equal to the sum of identity
and a matrix with rank less than or equal to the dimen-
sions of the vector of observations (see Fisher and Cour-
tier 1995).

The reduced-rank Kalman filter requires as input pairs
of vectors that satisfy

21fz 5 (P ) s ,k k

where Pf is a flow-dependent approximation to the co-
variance matrix of the background error. Such pairs of
vectors can be calculated during the course of Hessian
singular vector calculation (see Fisher 1998).

In this calculation, in which the inner product at the
initial time is defined by the Hessian matrix of an anal-
ysis cost function, the vectors sk are partially evolved
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FIG. 1. The absolute (dashed line) and relative (solid line) differ-
ences between the Hessian/vector product computed with the SOA
method and with the finite-difference method at the first iteration
(initial guess state). The first 100 components are considered.

singular vectors, while the vectors zk are produced dur-
ing the adjoint model integration.

Veerse (1999) proposes to take advantage of this form
of the appropriate Hessian in order to obtain approxi-
mations of the inverse analysis error covariance matrix,
using the limited memory inverse Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) minimization algorithm.

Let H be (¹2J)21 the inverse Hessian and H1 the
updated version of the inverse Hessian, and

n11 ns 5 x 2 x , (136)

where s is the difference between the new iterate and
the previous one in a limited memory quasi-Newton
minimization procedure and

n11 ny 5 g 2 g (137)

is the corresponding gradient increment.
One has the formula

s J y s J s
1H 5 U(H, y, s) 5 I 2 , (138)1 2^y, s& ^y, s&

where ^ , & is a scalar product with respect to which the
gradient is defined and J stands for the outer product.

Many minimization methods are implemented by us-
ing the inverse Hessian matrix/vector product that is
built into the minimization code, such as Nocedal’s al-
gorithm (Nocedal 1980). These methods are useful when
the second-order adjoint is not available due to either
memory or CPU limitations.

9. Numerical experiments: Application of AD
Hessian/vector products to the truncated
Newton algorithm

For the numerical experiments we consider the trun-
cated-Newton algorithm to minimize the cost function
(59) associated with the SWE model (56)–(58). The
spatial domain considered is a 6000 km 3 4400 km
channel with a uniform 21 3 21 spatial grid, such that
the dimension of the initial condition vector (u, y, f)T

is 1083, and the Hessian of the cost function is a 1083
3 1083 matrix.

The initial conditions are those of Grammeltvedt
(1969). As for the boundary conditions, on the southern
and northern boundaries the normal velocity compo-
nents are set to zero, while periodic boundary conditions
are assumed in the west–east direction. Integration is
performed with a time increment Dt 5 600s and the
length of the assimilation window is 10 h. Data assim-
ilation is implemented in a twin experiments framework
such that the value of the cost function at the minimum
point must be zero. As the set of control parameters,
we consider the initial conditions that are perturbed with
random values chosen from a uniform distribution.

The second-order adjoint model was generated using
TAMC (Giering and Kaminski 1998a). The correctness
of the adjoint-generated routines was checked using the

small perturbations technique. Assuming that the cost
function J (X) is evaluated by the subroutine model
(J, X), computation of the Hessian/vector products
G(X)u via automatic differentiation is performed in two
steps. First the reverse (adjoint) mode is applied to gen-
erate the adjoint model. Next, the tangent (forward)
mode is applied to the adjoint model to generate the
second-order adjoint (SOA) model. The performance of
the minimization process using AD SOA is analyzed
versus an approximate Hessian/vector product compu-
tation given by (116), with a hand-coded adjoint model
implementation. The absolute and relative differences
between the computed Hessian/vector product at the first
iteration (initial guess state) are shown in Fig. 1 for the
first 100 components. The first-order finite-difference
method (FD) provides in average an accuracy of two to
three significant digits. The optimization process using
FD stops after 28 iterations when the line search fails
to find an acceptable step size along the search direction,
whereas for the SOA method a relative reduction in the
cost function up to the machine precision is reached at
iteration 29. The evolution of the normalized cost func-
tion and gradient norm are presented in Figs. 2 and 3,
respectively.

The computational cost is of same order of magnitude
for both the finite-difference approach and the exact
second-order adjoint approach. The second-order ad-
joint approach requires integrating the original nonlinear
model and its TLM forward in time and integrating the
first-order adjoint model and second-order adjoint mod-
el backward in time once. The average ratio of the CPU
time required to compute the gradient of the cost func-
tion to the CPU time used in evaluating the cost function
was CPU(=J)/CPU(J) ø 3.7. If we assume that the
value of the gradient =J(X) in (116) is already available
(previously computed in the minimization algorithm),
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FIG. 2. The evolution of the normalized cost function during the
minimization using the SOA method (solid line) and the finite-dif-
ference method (dashed line) to compute the Hessian/vector product.

FIG. 3. The evolution of the normalized gradient norm during the
minimization using the SOA method (solid line) and the finite-dif-
ference method (dashed line) to compute the Hessian/vector product.

TABLE 1. First five largest and smallest computed Ritz values of the Hessian matrix and the corresponding relative residuals. The Hessian
is evaluated at the initial guess point.

Largest values Relative residuals Smallest values Relative residuals

5.294 32 3 102

4.871 11 3 102

4.356 18 3 102

3.868 87 3 102

3.815 11 3 102

1.743 29 3 1026

2.186 54 3 1026

1.795 99 3 1026

2.036 00 3 1026

1.808 12 3 1026

3.190 71 3 1022

6.023 01 3 1022

7.779 66 3 1022

7.830 50 3 1022

9.164 25 3 1022

3.040 94 3 1023

2.856 39 3 1023

1.443 37 3 1023

1.994 69 3 1023

1.756 24 3 1023

only one additional gradient evaluation =J(X 1 hu) is
needed in (116) to evaluate the Hessian/vector product
using the FD method. In this case, we then have an
average ratio to compute the Hessian/vector product
CPU(Gu)FD/CPU(J) ø 3.7. Using the SOA method to
compute the exact Hessian/vector product, we obtained
an average CPU(Gu)SOA/CPU(J) ø 9.4, in agreement
with the estimate (A4) in the appendix. We notice that
in addition to the Hessian/vector product the AD SOA
implementation also provides the value of the gradient
of the cost function. The average ratio CPU(Gu)SOA/
CPU(=J) ø 2.5 we obtained is also in agreement with
the CPU estimate (A2) in the appendix.

Numerical calculation of Hessian eigenvalues

Iterative methods and the SOA model may be com-
bined to obtain information about the spectrum of the
Hessian matrix of the cost function. In this application
we used the ARPACK package (Lehoucq et al. 1998)
to compute five of the largest and smallest eigenvalues
of the Hessian matrix. The method used is the implicitly
restarted Arnoldi method (IRAM), which reduces to the
implicitly restarted Lanczos method (IRLM) since G is
symmetric. For our application, only the action of the
Hessian matrix on a vector is needed and we provide
this routine using the SOA model. The condition number
is evaluated as

lmaxk(G) 5 . (139)
lmin

The computed Ritz values and the relative residuals
are included in Table 1 for the Hessian evaluated at the
initial guess point, and in Table 2 for the Hessian eval-
uated at the optimal point X*. For our test example the
eigenvalues of the Hessian are positive, such that the
Hessian is positive definite and the existence of a min-
imum point is assured. The condition number of the
Hessian is of order k(G) ; 104, which explains the slow
convergence of the minimization process.

Use of the Hessian of cost function eigenvalue in-
formation in regularization of ill-posed problems was
illustrated by Alekseev and Navon (2001, 2002). The
application consisted of a wavelet regularization ap-
proach for dealing with an ill-posed problem of adjoint
parameter estimation applied to estimating inflow pa-
rameters from downflow data in an inverse convection
case applied to the two-dimensional parabolized Na-
vier–Stokes equations. The wavelet method provided a
decomposition into two subspaces, by identifying both
a well-posed as well as an ill-posed subspace, the scale
of which was determined by finding the minimal ei-
genvalues of the Hessian of a cost functional measuring
the lack of fit between model prediction and observed
parameters. The control space is transformed into a
wavelet space. The Hessian of the cost was obtained
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TABLE 2. First five largest and smallest computed Ritz values of the Hessian matrix and the corresponding relative residuals. The Hessian
is evaluated at the computed optimal point.

Largest values Relative residuals Smallest values Relative residuals

5.129 37 3 102

4.739 81 3 102

4.196 11 3 102

3.888 57 3 102

3.785 70 3 102

1.635 03 3 1026

1.540 48 3 1026

1.731 89 3 1026

1.704 23 3 1026

1.892 42 3 1026

1.467 26 3 1022

1.714 99 3 1022

4.569 08 3 1022

7.229 96 3 1022

8.282 72 3 1022

5.878 33 3 1023

1.605 47 3 1022

3.072 14 3 1023

1.895 07 3 1023

3.006 16 3 1023

either by a discrete differentiation of the gradients of
the cost derived from the first-order adjoint or by using
the full second-order adjoint. The minimum eigenvalues
of the Hessian are obtained either by employing a shifted
iteration method following Zou et al. (1992) or by using
the Rayleigh quotient. The numerical results obtained
illustrated the usefulness and applicability of this al-
gorithm if the Hessian minimal eigenvalue is greater or
equal to the square of the data error dispersion, in which
case the problem can be considered to be well-posed
(i.e., regularized). If the regularization fails, that is, the
minimal Hessian eigenvalue is less than the square of
the data error dispersion of the problem, the following
wavelet scale should be neglected, followed by another
algorithm iteration.

10. Summary and conclusions

The recent development of variational methods in op-
erational meteorological centers (European Centre for
Medium-Range Weather Forecasts, Météo-France) has
demonstrated the strong potential of these methods.

Variational techniques require the development of
powerful tools such as the adjoint model, which are
useful for the adjustment of the inputs of the model
(initial and/or boundary conditions). From the mathe-
matical point of view the first-order adjoint will provide
only necessary conditions for an optimal solution. The
second-order analysis goes one step further and provides
information that is essential for many applications:

(i) Sensitivity analysis should be derived from a sec-
ond-order analysis, that is, from the derivation of
the optimality system. This is made crystal clear
when sensitivity with respect to observations is
required. In the analysis, observations appear only
as a forcing term in the adjoint model; therefore,
in order to estimate the impact of observations this
is the system that should be derived.

(ii) Second-order information will improve the con-
vergence of the optimization methods, which are
the basic algorithmic components of variational
analysis.

(iii) The second-order system permits estimating the
covariances of the fields. This information is es-
sential for the estimation of the impact of errors
on the prediction.

The computational cost to be paid in order to obtain the

second-order adjoint system is twofold: 1) We have to
consider the computational cost for the derivation of the
SOA. It has been seen that we can get it directly from
the linear tangent model and from the adjoint model.
Only the right-hand sides should be modified. 2) Com-
puting the second-order information. Basically the first-
order information has the same dimension as the input
of the model. Let n be this dimension. The second-order
information will be represented by an n 3 n matrix. For
operational models the computation of the full Hessian
matrix is prohibitive; nevertheless, it is possible to ex-
tract the most useful information (eigenvalues and ei-
genvectors, spectrum, condition number, etc.) at a rea-
sonable computational cost. The numerical results ob-
tained illustrate the ease with which present-day auto-
matic differentiation packages allow one to obtain
second-order adjoint models as well as Hessian/vector
products. They also confirm numerically the CPU es-
timates for computational complexity as derived in sec-
tion 7 (see also Griewank 2000).

Numerical calculation of the leading eigenvalues of
the Hessian along with its smallest eigenvalues yields
results similar to those obtained by Wang et al. (1998)
and allows for valuable insight into the Hessian spec-
trum, thus allowing us to deduct the important infor-
mation related to condition number of the Hessian and,
hence, to the expected rate of convergence of minimi-
zation algorithms.

With the advent of ever more powerful computers,
the use of second-order information in data assimilation
will be within realistic reach for 3D models and is ex-
pected to become more prevalent.

The purpose of this paper has been to demonstrate
the importance of new developments in second-order
analysis: many directions of research remain open in
this domain.
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APPENDIX

Computational Complexity of AD Calculation of
the Second-Order Adjoint

Griewank (2000) starts by working out a represen-
tation of the complexity measure as a task consisting of
moves, adds, multiplications, and nonlinear operations,
thus obtaining a representation of work (task) as:

moves no. of fetches and stores   

 adds  no. of adds and subtracts 
work(task) 5 5 .   

mults no. of multiplications   
nlops no. of nonlinear operations   

Then run time can be written as
TTIME[task(F )] 5 w work[task(F )].

Here w is a vector of positive weights that depend
on the computing system and represent the number of
clock cycles needed for fetching and/or storing data
items, multiplication, addition, and finally for taking
into account nonlinear operations.

Usually the vector wT assumes the form
Tw 5 (m, 1, p, n) (A1)

and for most computing platforms m $ max(1, p/2), p
# 1 and n # 2p. For example, this assumption implies
that a memory access (m) is at least as slow as an ad-
dition or half a multiplication (p). Griewank (2000)
derives the computational complexity of the tangent
model (directional derivative) wtang, gradient (first order
adjoint) wgrad, and second-order adjoint wSOA normalized
by the complexity of the model evaluation as

2m 6m 1 2 6m 1 1 1 3p
w 5 max , , ,tang 5 m 3m 1 1 3m 1 p

4m 1 p 1 2n 5
∈ 2, (A2)6 [ ]2m 1 n 2

2m 9m 1 3 11m 1 2 1 3p
w 5 max , , ,grad 5 m 3m 1 1 3m 1 p

7m 1 1 1 p 1 2n
∈ [3, 4] (A3)62m 1 n

4 1 m 18m 1 6 22m 1 7 1 9p
w 5 max , , ,SOA 5 m 3m 1 1 3m 1 p

m 1 3 1 5p 1 3n
∈ [7, 10]. (A4)62m 1 n

As mentioned by Nocedal and Wright (1999) auto-
matic differentiation has increasingly been using more
sophisticated techniques that allow, when used in re-
verse mode, for calculation either of full Hessians or
Hessian/vector products. However the automatic dif-

ferentiation technique should not be regarded as a sub-
stitute for the user to think that this is a fail-safe product
and each derivative calculation obtained with AD should
be carefully assessed.

Gay (1996) has shown how to use partial separability
of the Hessian in AD while Powell and Toint (1979)
and Coleman and More (1984), along with Coleman
and Cai (1986), have shown how to estimate a sparse
Hessian using either graph-coloring techniques or other
highly effective schemes.

Software for the estimation of sparse Hessians is
available in the work of Coleman et al. (1985a,b). See
also the work of Dixon (1991) and the general presen-
tation of Gilbert (1992).

Averbukh et al. (1994) supplemented the work of
Moré et al. (1981), which provides function and gradient
subroutines of 18 test functions for multivariate mini-
mization. Their supplementary Hessian segments enable
users to test optimization software that requires second
derivative information.
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