Jason
Newsom's
Structural Equation Modeling Reference List
(References for Journal Articles and Chapters on Structural Equation Models)
© 1999-2008 Jason T. Newsom
Last Updated: January, 7, 2008
This
site is expected to be in perpetual evolution, so perfection may never be
reached.
Searching
is low tech for now. Use your browser to find topics (IN ALL CAPS for case
sensitive searches), authors, or just browse.
For
books, see the SEMbooks
list.
Want
something added? Drop me a line (in APA format please) at newsomj@pdx.edu
INTRODUCTORY
CHAPTERS
Alwin, D.F., & Jackson, D.J. (1979).
Measurement models for response errors in surveys: Issues and applications.
Sociological Methodology, 1980. San Francisco, CA: Jossey-Bass.
Anderson, J. C., & Gerbing, D. W. (1988).
Structural Equation modeling in practice : A review and recommended two-step
approach. Psychological Bulletin, 103(3), 411-423.
Bentler, P. M., & Chou, C. (1987).
Practical issues in structural modelling. Sociological Methods and Research,
16, 78-117.
Bentler, P.M., & Chou, C.-P. (1988). Practical
issues in structural modeling. In J.S. Long (Ed.), Common problems/proper
solutions (pp. 161-192). Beverly Hills, CA: Sage.
Glaser, D. (2002). Structural Equation
Modeling Texts: A primer for the beginner. Journal
of Clinical Child Psychology, 31(4), 573-578.
Diamantopoulos, A.(1994),
'Modeling with LISREL: A guide for the uninitiated', Journal of Marketing
Management, 10, 105-136.
Kelm, L. (2000). Structural
equation modeling. In L. G. Grimm & P. R. Yarnold (Eds.) Reading and understanding more multivariate
statistics (pp.
227-260). Washington, DC:
American Psychological Association.
MacCallum, R. (1986). Specification searches
in covariance structure modeling. Psychological Bulletin, 100, 107-120.
Mueller, R. (1997). Structural equation
modeling: Back to basics. Structural Equation Modeling, 4, 353-369.
Tanaka, J.S., Panter, A.T., Winborne, W.C.,
& Huba, G.J. (1990). Theory testing in personality and social psychology
with structural equation models: A primer in 20 questions. In C. Hendrick,
& M.S. Clark (Eds.), Review of personality and social psychology (Vol 11,
pp. 217-241). Newbury Park, CA: Sage.
INTRODUCTORY
TEXTS
(See the SEMbooks list
also)
Arbuckle, James (1997). AMOS Users' Guide
Version 3.6. Smallwaters Corporation. (1-56827-125-5)
Bollen, K.A. (1989). Structural equations with
latent variables. New York: Wiley.
Hoyle, Rick (1995). Structural Equation
Modeling: Concepts, Issues and Applications. Sage Publications (0-8039-5318-6).
Kline, R. B. (2004). Principles and practice
of structural equation modeling (Second Edition). New York: Guilford Press. (1572306904)
Loehlin, John C. (1998). Latent Variable
Models: An Introduction to Factor, Path, and Structural Analysis. 3rd
ed. Mahwah, N.J.: Lawrence Erlbaum Associates.
Maruyama (1998).Basics of Structural Equation
Modeling. Thousand Oaks: Sage.
Mueller, Ralph (1996). Basic Principles of
Structural Equation Modeling: An introduction to LISREL and EQS, Springer Press
(0-387-94516-4).
Schumacker, Randall & Lomax, Richard
(1996). A Beginner's Guide to Structural Equation Modeling. Lawrence Erlbaum.
(0-8058-1766-2).
HISTORY
OF STRUCTURAL EQUATION MODELING
Aigner, D.J., Hsiao, C., Kapteyn, A., &
Wansbeek, T. (1984). Latent variable models in econometrics. IN Z. Griliches
& M.D. Intriligator (Eds.), Handbook of Econometrics (Vol. 2, pp.
1321-1393). Amsterdam: North-Holland.
Austin, J.T., & Wolfle, D. (1991).
Theoretical and technical contributions to structural equation modeling: An
updated annotated biliography. Structural Equation Modeling, 3, 105-175.
Bentler, P.M. (1980). Multivariate analysis
with latent variables: Causal modeling. Annual Review of Psychology, 31,
419-456.
Bentler, P.M. (1986). Structural equation
modeling and Psychometrika: An historical perspective on growth and
achievements. Psychometrika, 31, 35-51.
Bielby, W.T., & Hauser, R.M. (1977).
Structural equation models. Annual Review of Sociology, 3, 137-161.
Bollen, K.A. (1989). Structural equations with
latent variables. New York: Wiley. [Chapter 1]
Epstein, R.J. (1987). A history of
econometrics. Amsterdam: Elsevier.
Tremblay, P.F., & Gardner, R.C. (1996). On
the growth of structural equation modeling in psychological journals.
Structural Equation Modeling, 3, 93-104.
PATH
ANALYSIS, PATH MODELS
(see also mediation, indirect effects)
Alwin, D. F., & Hauser, R.
M. (1975). The decomposition of effects in path analysis. American Sociological
Review, 40, 37-47.
Bollen, K.A.
(1987). Total, direct, and indirect effects in structural equation models. In
C.C. Clogg (Ed.), Sociological methodology 1987 (pp. 37-69). Washington, D.C.:
American Sociological Association.
DeShon, R.P.
(1998). A cautionary note on measurement error corrections in structural
equation models. Psychological Methods, 3, 412-423.
Everitt, B. S.,
and G. Dunn, G. (1991). Applied multivariate data analysis. London: Edward
Arnold.
Duncan, O.D. (1966). Path analysis: Sociological
examples. American Journal of Sociology, 72, 219-316.
Duncan, O.D.
(1975). Introduction to structural equation models. New York: Academic Press.
Freedman, D.A.
(1987). As others see us: A case study in path analysis. Journal of Educational
Statistics, 12, 101-128.
Kelm, L. (2000).
Path Analysis. In L. G. Grimm & P. R. Yarnold (Eds.) Reading and understanding multivariate statistics (pp. 65-97).
Washington, DC: American Psychological Association.
Loehlin, John C. (1998). Latent Variable
Models: An Introduction to Factor, Path, and Structural Analysis. 3rd
ed. Mahwah, N.J.: Lawrence Erlbaum Associates.
Maassen, G. H., & Bakker, A. B. (2001). Suppressor
variables in path models: Definitions and interpretations. Sociological Methods and Research, 30, 241-270.
McDonald, R.P. (1996). Path analysis with
composite variables. Multivariate Behavioral Research, 31, 239-270.
Holland, P. W. (1988). Causal
inference, path analysis, and recursive structural equations models.
Sociological Methodology, 18, 449-493.
Pedhazur, Elazer J. (1982).
Multiple regression in behavioral research, 2nd edition. NY: Holt. Chapter 15
(pp. 577-635) covers path analysis. Widely used textbook.
Wolfe, L.M. (1999). Sewall Wright
on the method of path coefficients: An annotated bibliography. Structural
Equation Modeling, 6, 280-291.
Wright, S. (1934). The method of
path coefficients. Annals of Mathematical Statistics, Vol. 5: 161-215.
CRITICAL
REVIEWS, CRITIQUES, and GENERAL COMMENTARY
Baumrind, D. (1983). Specious causal
attributions in the social sciences: The reformulated stepping-stone theory of
heroin use as an exemplar. Journal of Personality and Social Psychology, 45,
1289-1298.
Berk, R.A. (1988). Causal inference for
sociological data. In N.J. Smelser (Ed.), Handbook of Sociology. Newbury Park,
CA: Sage.
Biddle, B. J., & Marlin, M. M. (1987).
Causality, confirmation, credulity, and structural equation modeling. Child
Development, 58, 4-17.
Breckler, S. J. (1990). Applications of
covariance structure modeling in psychology: Cause for Concern? Psychological
Bulletin, 107, 260-273.
Cliff, N. (1983). Some cautions concerning the
application of causal modeling methods. Multivariate Behavioral Research, 18,
81-105.
Cohen, Cohen, Teresi, Marchi, and Velez
(1990). Problems in the measurement of latent variables in structural equations
casual models. Applied Psychological Measurement, vol 14,(2), 183-196.
Freedman, D.A. (1987). As others see us: A
case study in path analysis. Journal of Educational Statistics, 12, 101-128.
MacCallum, R. C., Roznowski, M., &
Necowitz, L. B. (1992). Model modifications in covariance structure analysis:
The problem of capitalization on chance. Psychological Bulletin. 111, 490-504
MacCallum, R. C., Wegener, D. T., Uchino, B.
N., & Fabrigar, L. R.(1993). The problem of equivalent models in
applications of covariance structure analysis. Psychological Bulletin, 114,
185-199.
Mueller, R. (1997). Structural equation
modeling: Back to basics. Structural Equation Modeling, 4, 353-369.
Rogosa, D. (1987). Casual models do not
support scientific conclusions: A comment in support of Freedman. Journal of
Educational Statistics, 12, 185-195.
Tanaka, J.S., Panter, A.T., Winborne, W.C.,
& Huba, G.J. (1990). Theory testing in personality and social psychology
with structural equation models: A primer in 20 questions. In C. Hendrick,
& M.S. Clark (Eds.), Review of personality and social psychology (Vol 11,
pp. 217-241). Newbury Park, CA: Sage.
Williams, L. J., Bozdogan, H., &
Aiman-Smith, L. (1996). Inference problems with equivalent models. In G. A.
Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation
modeling: Issues and techniques (pp.279-314). Mahwah, NJ: Erlbaum.
SAMPLE
SIZE ISSUES
Anderson, J. C., & Gerbing, D. W. (1988).
Structural Equation modeling in practice : A review and recommended two-step
approach. Psychological Bulletin, 103(3), 411-423.
Barrett, P. T., & Kline, P. (1981). The
observation to variable ratio in factor analysis. Personality Study and Group
Behavior, 1, 23-33.
Bentler, P. M. (1990). Comparative fit indexes
in structural models. Psychological Bulletin, 107, 238-246.
Bentler, P. M., & Chou, C. (1987).
Practical issues in structural modelling. Sociological Methods and Research,
16, 78-117.
Bollen, K.A. (1990) Overall fit in covariance
structure models: Two types of sample size effects. Psychological Bulletin,
107, 256-259.
Boomsma, A. (1982). The robustness of LISREL
against small sample size in factor analysis models. In K. G. JF6reskog &
H. Wold (Eds.), Systems under indirect observation, Part 1 (pp. 149-173).
Amsterdam: North-Holland.
Fan, X., Thompson, B., & Wang, L. (1999). Effects
of sample size, estimation methods, and model specification on structural
equation modeling fit indexes. Structural Equation Modeling, 6, 56-83.
Finch, J. F., West, S. G., & MacKinnon, D.
P. (1997). Effects of sample size and nonnormality on the estimation of
mediated effects in latent variable models. Structural Equation Modeling, 4(2),
87-107.
Gerbing, D.W., & Anderson, J.C. (1993).
Monte Carlo evaluations of goodness-of-fit indices for structural equation
modeling. In
Gerbing, D.W., & Anderson, J.C. (1993).
Monte Carlo evaluations of goodness-of-fit indices for structural equation
models. In K.A. Bollen, & J.S. Long (eds.), Testing structural equation
models. Newbury Park, CA: Sage.
Guadagnoli, E., & Velicer, W. F. (1988).
Relation of sample size to the stability of component patterns. Psychological
Bulletin, 103(2),265-275.
Hu, L.-T., & Bentler, P. (1995).
Evaluating model fit. In R. H. Hoyle (Ed.), Structural Equation Modeling.
Concepts, Issues, and Applications (pp. 76-99). London: Sage.
Hu, L.-T., & Bentler, P. (1999). Cutoff
criteria for fit indexes in covariance structure analysis: Conventional
criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.
Tanaka, J.S. (1987). "How big is big
enough?": Sample size and goodness of fit in structural equation models
with latent variables. Child Development, 58, 134-146.
Tanaka, J.S. (1993). Multifaceted conceptions
of fit in structural equation models. In K.A. Bollen, & J.S. Long (eds.),
Testing structural equation models. Newbury Park, CA: Sage.
CORRELATION
VS. COVARIANCE MATRICES
Cudek, R. (1989). Analysis of correlation
matrices using covariance structure models. Psychological Bulletin, 2, 317-327.
MISSING
DATA, MISSING DATA IMPUTATION, MISSING DATA ESTIMATION, MULTIPLE IMPUTATION
Allison, P.D. (1987) Estimation of
linear models with incomplete data. In C.C. Clogg [Ed.] Sociological
Methodology (pp. 71-103). San Francisco: Jossey-Bass,
Arbuckle, J.L. (1996) Full information
estimation in the presence of incomplete data. In G.A. Marcoulides and R.E.
Schumacker [Eds.] Advanced structural equation modeling: Issues and Techniques.
Mahwah, NJ: Lawrence Erlbaum Associates.
Duncan, T.E., Duncan, S.C. and
Li, F. (1998) A comparison of model and multiple imputation-based approaches to
longitudinal analyses with partial missingness. Structural Equation Modeling: A
Multidisciplinary Journal, 5(1), 1-21.
Enders, C.K. (2001). A primer on maximum
likelihood algorithms available for use with missing data. Structural Equation
Modeling, 8, 128-141.
Enders, C.K. (2001). The impact of
nonnormality on full information maximum-likelihood estimation for structural
equation models with missing data. Psychological Methods, 6, 352-370.
Enders, C. K., Peugh, J.L.
(2004). Using an EM covariance matrix to estimate structural equation models
with missing data: Choosing an adjusted sample size to improve the accuracy of
inferences. Structural Equation Modeling:
A Multidisciplinary Journal, 11, 1-19.
Enders, C. K. (2005). A SAS macro for
implementing the modified Bollen-Stine bootstrap for missing data: Implementing
the bootstrap using existing structural equation modeling software. Structural Equation Modeling: A
Multidisciplinary Journal, 12(4), 620-641.
Enders, C. K. (2006).
Analyzing structural equation models with missing data. In G.R. Hancock &
R.O. Mueller (Eds.), Sstructural equation
modeling: A second course. Greenwich, CT: .Information Age.
Ford, B. L. (1983). An overview of hot-deck
procedures. In W. G. Madow, I. Olkin, & D. B. Rubin (Eds.), Incomplete Data
in Sample Survey. Volume II: Theory and Bibliographies (pp. 185-207). New York:
Academic Press.
Gold, M.S., & Bentler, P.M.
(2000). Treatments of missing data: A Monte Carlo comparison of RBHDI,
iterative stochastic regression imputation, and expectation-maximization. Structural
Equation Modeling, 7, 319-355.
Graham, J. W., Hofer, S.M., Donaldson, S.I.,
MacKinnon, D.P., & Schafer, J.L. (1997). Analysis with missing data in
prevention research. In K. Bryant, M. Windle, & S. West (Eds.), The science
of prevention: methodological advances from alcohol and substance abuse
research. (pp. 325-366). Washington, D.C.: American Psychological Association.
Graham, J. W., Hofer, S. M., & MacKinnon,
D. P. (1996). Maximizing the usefulness of data obtained with planned missing
value patterns: An application of maximum likelihood procedures. Multivariate
Behavioral Research, 31, 197-218.
Hedeker & Gibbons (1997). Application of
random-effects pattern-mixture models for missing data in longitudinal studies.
Psychological Methods, 2, 64-78.
Jinn, J.H., & Sedransk, J. (1989).
Effect on secondary data analysis of common imputation methods. Sociological
Methodology. Washington, DC: American Sociological Association.
Jones, M. P. (1996). Indicator and
Stratification Methods for Missing Explanatory Variables in Multiple Linear
Regression. Journal of the American Statistical Association, 91, 222-230.
Kaplan, D. (1995). The impact of
BIB-spiraling induced missing data patterns on goodness-of-fit tests in factor
analysis. Journal of Educational and Behavioral Statistics, 20, 69-82.
Lepkowski, J. M., Landis, J. R., &
Stehouwer, S. A. (1987). Strategies for the analyses of imputed data from a
sample survey: The national medical care utilization and expenditure survey.
Medical Care, 25, 705-716.
Little, R.J.A., & Rubin, d.B.
(1989). The analysis of social science data with missing values, Sociological
Methods and Research, 18, 292-326.
Little, RJA & Rubin, D (1987).
Statistical analysis with missing data. Wiley.
Marsh, H.W. (1998). Pairwise deletion for
missing data in structural equation models with missing data: Nonpositive
definite matrices, parameter estimates, goodness of fit, and adjusted sample
sizes. Structural Equation Modeling, 5, 22-36.
Muthen, B., Kaplan, D., & Hollis, M.
(1987). On structural equation modeling with data that are not missing
completely at random. Psychometrika, 51,431-462.
Roth, P. L. (1994). Missing data: A
conceptual review from applied psychologists. Personnel Psychology, 47,
537-560.
Roth, P.L. (1994). Missing data: A
conceptual review for applied psychologists. Personnel Psychology, 47, 537-560.
Roth, P. L., Switzer, F. S. ,
& Switzer, D. (1999). Missing data in multiple item scales: A monte carlo
analysis of missing data techniques. Organizational Research Methods, 2(3),
211-232.
Rubin, D. (1987). Multiple imputation
for nonresponse in surveys. Wiley.
Santos, R. (1981). Effects of imputation
on regression coefficients. Proceedings of the Section on Survey research
Methods, American Statistical Association, 1981, 1401. (Cited in Lepkowski et
al, 1987).
Schafer, J (1997). Analysis of
incomplete multivariate data. Chapman & Hall.
Schafer, J.L., & Graham, J.W. (2002). Missing
data: Our view of the state of the art. Psychological Methods, 7, 147-177.
Wothke, W. (in press) Longitudinal and
multi-group modeling with missing data. In T.D. Little, K.U. Schnabel, and J.
Baumert [Eds.] Modeling longitudinal and multiple group data: Practical issues,
applied approaches and specific examples. Mahwah, NJ: Lawrence Erlbaum
Associates. (forthcoming Summer1999, also available at http://www.smallwaters.com/whitepapers)
LATENT
CLASS ANALYSIS
Dillon, W.R., & Goldstein, M. (1984).
Latent structure analysis (pp. 491-520). In Multivariate analysis: Methods and
applications. New York: Wiley.
Collins, L. M. (1991). Measurement in
longitudinal research. In L. M.Collins and J. L. Horn (Eds.), Best methods for
the analysis of change (pp. 137-148). Washington, DC: American Psychological
Association.
Goodman, L. A. (1974). The analysis of systems
of qualitative variables when some of the variables are unobservable. Part I—A
modified latent structure approach. American Journal of Sociology, 79,
1179-1259.
Langeheine, R. (1994). Latent variables Markov
models. In A.von Eye and C. C. Clogg (Eds.), Latent variables analysis (pp.
373-395). Thousand Oaks, CA: Sage Publications.
Macready, G. B., & Dayton, C. M. (1994).
Latent class models for longitudinal assessment of trait acquisition. In A. von
Eye and C. C. Clogg (Eds.), Latent variables analysis (pp. 245-273). Thousand
Oaks, CA: Sage Publications.
McCutcheon, A. L. (1994). Latent logit models
with polytomous effects variables. In A. von Eye and C. C. Clogg (Eds.), Latent
variables analysis (pp. 353-372). Thousand Oaks, CA: Sage Publications.
von Eye, A., & Clogg, C. C. (1995,
Editors). Latent variables analysis. Thousand Oaks, CA: Sage Publications.
CROSS-LAGGED
PANEL MODELS, LONGITUDINAL MODELS, LONGITUDINAL ANALYSIS GENERAL (see also
latent growth curve models)
Allison, P. (1990). Change
scores as dependent variables in regression analysis. Sociological Methodology,
20, 93-114.
Collins, L.M., & Horn, J.L. (1991). Best
Methods for the Analysis of Change . Washington, D.C: American Psychological
Association.
Collins, L.M., & Sayer, A.G. (2001). New
methods for the analysis of change. Washington, D.C.: American Psychological
Association. (ISBN: 1557987548)
Finkel, S.E. (1995). Causal analysis with
panel data. Thousand Oaks, CA: Sage. (QASS #105).
Kessler, R.C., Greenberg, D.F. (1981). Linear
panel analysis: Models quantitative change. New York: Academic Press.
Gottman J.M. (1995). The Analysis of Change
(pp. 261-276). Mahwah, NJ: Lawrence Erlbaum).
Marsh, H. W. (1993). Stability of individual
differences in multiwave panel studies: Comparison of simplex models and
one-factor models. Journal of Educational Measurement, 30, 157-183.
Menard, S. (1991). Longitudinal research.
Newbury Park, NJ: Sage. (QASS #76).
Nielsen, F., & Rosenfeld,
R. (1981). Substantive Interpretation of Differential Equation Models. American
Sociological Review 46:159-174.
Sivo, S.A, & Willson, V.L. (2000). Modeling
causal error structures in longitudinal panel data: A Monte Carlo study. Structural Equation Modeling, 7(2),
174-205.
Willett, J.B. (1988).Questions and answers in
the measurement of change. Review of Research in Education, 15, 345-422.
Williams, L. J., & Podsakoff, P. M.
(1989). Longitudinal field methods for studying reciprocal relationships in
organizational behavior research: Toward improved causal analysis. In B. M.
Staw & L. L. Cummings (Eds.), Research in organizational behavior, vol. 11.
Greenwich, CT: JAI Press.
SIMPLEX
MODELS
Jones, M. B. (1959). Simplex Theory .
Pensacola: U.S. Naval Aviation Medicine Monograph No. 3.
Jones, M. B. (1960). Molar Correctional
Analysis. Pensacola, FL: U.S. Naval Aviation Medicine Monograph No. 4.
Jöreskog, K. G. (1970). Estimation and testing
of simplex models. British Journal of
Mathematical and Statistical Psychology, 23, 121-145.
Joreskog, K. G. (1979). Statistical models and
methods for analysis of longitudinal data. In J. Magidson (ed.) Advances in
Factor Analysis and Structural Equation Models. Cambridge, MA: Abt Books.
Marsh, H. W. (1993). Stability of individual
differences in multiwave panel studies: Comparison of simplex models and
one-factor models. Journal of Educational Measurement, 30, 157-183.
LATENT
GROWTH CURVE MODELS (LGC)
Bock, R. D. (1991). Prediction of growth. In
L. M. Collins & J. L. Horn(Eds.), Best Methods for the Analysis of Change .
Washington, D.C: American Psychological Association.
Chan, D. (1998). The conceptualization and
analysis of change over time: An integrative approach incorporating
longitudinal mean and covariance structures analysis (LMACS) and multiple
indicator latent growth modeling (MLGM). Organizational Research Methods,
1,421-483.
Duncan, S.C., & Duncan, T.E. (1994).
Modeling in complete longitudinal substance use data using latent variable
growth curve methodology. Multivariate Behavioral Research, 29, 313-338.
Duncan, S.C., & Duncan, T.E. (1996). A
multivariate growth curve analysis of adolescent substance use. Structural
Equation Modeling, 3, 323-347.
Duncan, T. E., Duncan, S. C., & Li, F.
(1998). A comparison of model- and multiple imputation-based approaches to
longitudinal analyses with partial missingness. Structural Equation Modeling,
5(1), 1-21.
Duncan, T.E., Duncan, S.C., & Hops, H.
(1994). The effects of family cohesiveness and peer encouragement on the
development of adolescent alcohol use: A cohort-sequential approach to the
analysis of longitudinal data. Journal of Studies on Alcohol, 55, 588-599.
Duncan, T.E., Duncan, S.C., Alpert, A., Hops,
H., Stoolmiller, M., & Muthen, B. (1997). Latent variable modeling of
longitudinal and multilevel substance use data. Multivariate Behavioral
Research, 32, 275-318.
Duncan, T.E., Duncan, S.C., Strycker, L.A.,
Li, F., & Alpert, A. (1999). An introduction to latent variable growth
curve modeling: Concepts, issues, and applications. Mahwah, NJ: Erlbaum.
Hancock, G.R., Kuo, W.-L., & Lawrence,
F.R. (2001). An illustration of second-order latent growth models. Structural
Equation Modeling, 8, 470-489.
Hancock, G. R., & Lawrence, F. R. (2006). Using
latent growth models to evaluate longitudinal change. In G. R. Hancock & R.
O. Mueller (Eds.), Structural Equation Modeling: A Second Course. Greenwood,
Lawrence, F. R., & Hancock, G. R. (1998).
Assessing change over time using latent growth modeling. Measurement and
Evaluation in Counseling and Development, 30, 211-224.
Lawrence, F. R., & Hancock, G. R. (1998).
Methods, plainly speaking. Assessing change over time using latent growth
modeling. Measurement and Evaluation in Counseling and Development, 30, 211-224.
Marsh, H. W., & Grayson, D. (1994).
Longitudinal stability of latent means and individual differences: A unified
approach. Structural Equation Modeling, 1, 317-359.
McArdle, J.J. (1986). Dynamic but structural
equation modeling of repeated measures data. In Nesselroade, J.R., and Cattel,
R.B. (eds.), Handbook of Multivariate Experimental Psychology (2nd ed.). New
York: Plenum Press.
McArdle, J.J. (1996). Current directions in
structural factor analysis. Current Directions, 5, 11-18.
Meredith, W, & Tisak, J. (1990). Latent
curve analysis. Psychometrika, 55, 107-122.
Muthen, B.O. (1997). Latent variable modeling
of longitudinal and multilevel data. In A.E. Raftery (Ed.), Sociological
methodology (pp.453-480). Washington, DC: Blackwell.
Muthen, B.O., & Curran, P.J. (1997).
General longitudinal modeling of individual differences in experimental
designs: A latent variable framework for analysis and power estimation.
Psychological Methods, 2, 371-402.
Muthen, B. O., & Khoo, S.-T. (1998). Longitudinal
studies of achievement growth using latent variable modeling. Learning and
Individual Differences, 10, 73-101.
Rogosa, D. R. (1995). Myths
and methods: "Myths about longitudinal research," plus supplemental
questions. In J. M. Gottman, (Ed.), The analysis of change (pp. 3-66)
Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Raykov, T. (1997). Growth curve analysis of
ability means and variances in measures of fluid intelligence of older adults.
Structural Equation Modeling,4(4), 283-319.
Sayer, A.G., Cumsille, P. E. (2001).
Second-order latent growth models. In L.M. Collins,& A.G. Sayer (Eds). New
methods for the analysis of change. Decade of behavior. (pp. 179-200).
Washington, DC: American Psychological Association.
Steyer, R., Eid, M., & Schwenkmezger, P.
(1997). Modeling true intraindividual change: True change as a latent variable.
Methods of Psychological Research, 2(1).
Tisak, J, & Meredith, W. (1990). Descriptive and
associative developmental models. In A. von Eye (Ed.), Statistical methods in
developmental research (Vol. 2, pp. 387-406). San Diego, CA: Academic Press.
Willett, J. B., & Sayer, A. G. (1994).
Using covariance structure analysis to detect correlates and predictors of
individual change over time. Psychological Bulletin, 116, 363-381.
Willett, J. B., & Sayer, A. G. (1996).
Cross-domain analysis of change overtime: Combining growth modeling and
covariance structure analysis. In G. A. Marcoulides & R. E. Schumacker
(Eds.), Advanced Structural Equation Modeling. Issues and Techniques
(pp.125-157). Mahwah, NJ: Lawrence Erlbaum.
Willett, JB, Ayoub, CC, Robinson, D. (1991).
using growth modelling to examine systematic differences in growth: An example
of change in the functioning of families at risk of maladaptive parenting,
child abuse or neglect. Journal of Consulting & Clinical Psychology, 59,
38-47.
LATENT
GROWTH CURVE EXAMPLES
Curran, P.J., Harford, T., & Muthen, B.O.
(1996). The relation between heavy alcohol use and bar patronage: A latent
growth model. Journal of Studies on Alcohol, 57, 410-418.
Curran, P.J., Stice, E., & Chassin, L.
(1997). The relation between adolescent alcohol use and peer alcohol use: A
longitudinal random coefficients model. Journal of Consulting and Clinical
Psychology,65, 130-140.
Duncan, T. E. & Duncan, S. C. (1994)
Modeling developmental processes using latent growth structural equation
methodology. Applied Psychological Measurement, 18(4), 343-354.
Stoolmiller, M. (1995). Using latent growth
curve models to study developmental processes. In J. M. Gottman (Ed.), The
analysis ofchange. Mahwah, NJ: Lawrence Erlbaum.
Wickrama, K. A. S., Lorenz, F. O., &
Conger, R. D. (1997). Parental support and adolescent physical health status: A
latent growth-curve analysis. Journal of Health and Social Behavior, 38,
149-163.
LATENT
STATE-TRAIT MODELS, LATENT TRAIT-STATE MODELS
Dumenci, L, & Windle, M.
(1996). A latent trait-state model of adolescent depression using the center
for epidemiologic studies-depression scale. Multivariate Behavioral Research,
31, 313-330.
Dumenci, L, & Windle, M.
(1998). A multitrait-multioccassion generalization of the latent trait-state
model: Description and application. Structural Equation Modeling, 5,
391-410.
Kenny, D.A., & Zautra, A. (1995).
The trait-state-error model for multiwave data. Journal of Consulting and
Clinical Psychology, 63, 52-59.
Kenny, D.A., & Zautra, A.
(2001). Trait-state models for longitudinal data. In L.M. Collins & A.G.
Sayer (Eds.), New methods for the analysis of change. Decade of behavior (pp.
243-263). Washington, DC: American Psychological Association .
Steyer, R., Majcen, A.-M.,
Schwenkmezger, P. & Buchner, A. (1989). A latent state-trait anxiety model
and its application to determine consistency and specificity coefficients. Anxiety Research, 1, 281-231.
Steyer, R., Ferring, D., &
Schmitt, M. J. (1992). States and traits in psychological assessment. European Journal of Psychological
Assessment, 8, 79-98.
Steyer, R., Majcen, A.-M.,
Schwenkmezger, P. & Buchner, A. (1989). A latent state-trait anxiety model
and its application to determine consistency and specificity coefficients. Anxiety Research, 1, 281-231.
POWER,
POWER ANALYSIS, SAMPLE SIZE
sem power analysis software by
Paul Dudgeon www.psych.unimelb.edu.au/people/staff/DudgeonP.html
Hancock, G. R. (2006). Power
analysis in covariance structure models. In G. R. Hancock & R. O. Mueller
(Eds.), Structural Equation Modeling: A Second Course. Greenwood,
Hu, L-T., & Bentler, P.M.
(1999). Cutoff criteria for fit indexes in covariance structure analysis:
Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.
Jackson, D. L. (2001). Sample
size and number of parameter estimates in maximum likelihood confirmatory
factor analysis: A Monte Carlo investigation. Structural Equation Modeling, 8(2), 205-223.
Kaplan, D. (1995). Statistical power in
structural equation modeling. In R. Hoyle (Ed). Structural Equation Modeling:
Concepts, Issues, and Applications. pp. 100-117. Thousand Oaks, CA: Sage.
Kaplan, D., & George, R. A study of the
power associated with testing factor mean differences under violations of
factorial invariance. Structural Equation Modeling: A Multidisciplinary
Journal, 2, 101-118.
Kaplan, D., & Wenger, R. N. (1993).
Asymptotic independence and separability in covariance structure models:
Implications for specification error, power, and model modification.
Multivariate Behavioral Research, 28, 483-498.
MacCallum, R. C., & Hong, S. (1997). Power
analysis in covariance structure modeling using GFI and AGFI. Multivariate
Behavioral Research, 32(2), 193-210.
MacCallum, R. C., Browne, M. W., &
Sugawara, H.M. (1996). Power analysis and determination of sample size for
covariance structure modeling. Psychological Methods. 1(2), 130-149.
MacCallum, R.C., Widaman, K.F., Zhang, S.,
& Hong, S. (1999). ``Sample Size in Factor Analysis.'' Psychological
Methods 4:84-99
MacCallum, R. C., Browne, M. W., & Cai, L.
(2006). Testing differences between nested covariance structure models: Power
analysis and null hypotheses. Psychological Methods, 11, 19-35.
Matsueda, R. L. and Bielby, W. T. (1986).
Statistical power in covariance structure models. pp. 120-158 in Sociological
Methodology 1986, edited by Nancy B. Tuma. Washington, DC: American
Sociological Association.
Muthen, B.O., & Curran, P.J. (1997).
General longitudinal modeling of individual differences in experimental
designs: A latent variable framework for analysis and power estimation.
Psychological Methods, 2, 371-402.
Muthén, L.K., & Muthén, B.O. (2002). How
to use a Monte Carlo study to decide on sample size and determine power.
Structural Equation Modeling, 4, 599-620.
Preacher, K. J., & Coffman, D. L. (2006,
May). Computing power and minimum sample size for RMSEA [Computer software].
Available from http://www.quantpsy.org/.
Saris, W. E. and Stronkhorst, H. (1984).
Causal modelling in nonexperimental research: An introduction to the LISREL
approach. Amsterdam, The Netherlands: Sociometric Research Foundation.
Saris. W. E., Satorra, A., and Sorbom, D.
(1987). The detection and correction of specification errors in structural
equation models. pp. 105-129 in Sociological Methodology 1987, edited by
Clifford Clogg. Washington, DC: American Sociological Association.
Sarris, W. E., & Satorra, A. (1993). Power
evaluations in structural equation models. In K. A. Bollen & J. S. Long
(Eds.), Testing structural equation models (pp. 181-204). Newbury Park, CA:
Sage.
Satorra, A. and Saris, W. E. (1985). The power
of the likelihood ratio test in covariance structure analysis. Psychometrika
50: 83-90.
SOFTWARE
Kline, R. B. (1998). Software programs for
structural equation modeling: Amos, EQS, and LISREL. Journal of
Psychoeducational Assessment,16, 302-323.
ALPHA
INFLATION, FAMILYWISE ERROR
Green, Samuel B; Thompson, Marilyn S; Babyak,
Michael A. (1998). A Monte Carlo investigation of methods for controlling Type
I errors with specification searches in structural equation modeling.
Multivariate Behavioral Research, 33, 365-383.
Green, Samuel B; Babyak, Michael A. (1997).
Control of Type I errors with multiple tests of constraints in structural
equation modeling. Multivariate Behavioral Research, 32, 39-51.
EXAMPLES
OF SECOND-ORDER FACTOR MODELS
(HIEARCHICAL FACTOR MODELS)
Bunting, B, Saris, W.E. and McCormack, J.A
(1987). Second-order factor analysis of the reliability and validity of the 11
plus examination in Northern Ireland. The Economic and Social Review, 18,
137-147.
Catalano, R. F., Kosterman, R., Hawkins, J.
D., Newcomb, M. D., & Abbott, R. D. (Spring, 1996). Modeling the etiology
of adolescent substance use: A test of the social development model. Journal of
Drug Issues, 26 429-455.
Gerbing, D.W., Hamilton, J.G., & Freeman,
E.B. (1994). A large-scale second-order structural equation model of the
influence of management participation on organizational planning benefits.
Journal of Management, 20, 859-885.
Goldman, M. S., Greenbaum, P. E., &
Darkes, J. (1997). A confirmatory test of hierarchical expectancy structure and
predictive power: Discriminant validation of the Alcohol Expectancy
Questionnaire. Psychological Assessment, 9, 145-157.
Gustafson, J. E., & Balke, G. (1993).
General and specific abilities as predictors of school achievement.
Multivariate Behavioral Research, 28, 407-434.
Kaplan, D. & Elliott. P. R. (1997) A
model-based approach to validating education indicators using multilevel
structural equation modeling. Journal of Educational and Behavioral Statistics,
22, 323-348.
Kaplan, D., & Elliott, P. R. (1997) A
didactic example of multilevel structural equation modeling applicable to the
study of organizations. Structural Equation Modeling, 4, 1-24.
McGrew, K. S., Flanagan, D. P., Keith, T. Z.,
& Vanderwood, M. (1997). Beyond g: The impact of Gf-Gc specific cognitive
abilities research on the future use and interpretation of intelligence test
batteries in the schools. School Psychology Review, 26, 189-210.
Mulaik, S. A. & Quartetti, D. A. (1997).
First order or higher order general factor? Structural Equation Modeling, 4,
193-211.
Rindskopf, D., & Rose, T.
(1988). Some theory and applications of confirmatory second-order factor
analysis. Multivariate Behavioral
Research, 23, 51-67.
Russell, D., & Cutrona, C. E. (1991).
Social support, stress, and depressive symptoms among the elderly: Test of a
process model. Psychology and Aging, 6, 190-201.
COEFFICIENT
ALPHA, RELIABILITY, CRONBACH’S ALPHA
Rasmussen, J. L. (1989). Analysis
of Likert-scale data: A reinterpretation of Gregoire and Driver. Psychological Bulletin, 105, 167-170.
Bandalos, D. L., & Enders,
C. K. (1996). The effects of nonnormality and number of response categories on
reliability. Applied Measurement in
Education, 9, 151-160.
Bollen, K., & Lennox, R. (1991).
Conventional Wisdom on Measurement: A structural equation perspective.
Psychological Bulletin, Vol. 110(2): 305-314.
Cortina, J.M. (1993). What is coefficient
alpha? An examination of theory and applications. Journal of Applied
Psychology, 78, 98-104.
Enders, C. K., & Bandalos, D. L. (1999).
The effects of heterogeneous item distributions on reliability. Applied Measurement in Education,12,
133-150.
Enders, C. K. (2001). The
impact of nonnormality on full information maximum likelihood estimation for
structural equation models with missing data. Psychological Methods, 6, 352-370.
Enders, C. K. (2003). Using
the EM algorithm to estimate coefficient alpha for scales with item level
missing data. Psychological Methods, 8,
322-337.
Enders, C. K. (2004). The impact of missing
data on sample reliability estimates: Implications for reliability reporting
practices. Educational and Psychological
Measurement, 64, 419-436.
Green, S.B., Lissitz, R.W., & Mulaik, S.A.
(1977). Limitations of coefficient alpha as an index of test unidimensionality.
Educational and Psychological Measurement, 37, 827-837.
Greene, V.L., & Carmines, E.G. (1979).
Assessing the reliability of linear composites. Sociological Methodology, 1980.
San Francisco: Jossey-Bass.
Guttman, L. (1953). Reliability formulas that
do not assume experimental independence. Psychometrika, 18, 225-239.
Jenkins, G. D., & Taber,
T. D. (1977). Monte Carlo study of factors affecting three indices of composite
scale reliability. Journal of Applied
Psychology, 62, 392-398.
Joreskog, K.G. (1971). Statistical analysis of
sets of congeneric tests. Psychometrika, 36, 109-133.
Komaroff, E. (1996). Coefficient alpha under
simultaneous violations of essential tau-equivalence and uncorrelated errors.
(Doctoral dissertation, University of Miami, 1996). Dissertation Abstracts
International, 57-05, 2013.
Komaroff, E. (1997). Effect of simultaneous
violations of essential tau-equivalence and uncorrelated error on coefficient
alpha. Applied Psychological Measurement, 21(4) (in press).
Levine (1994). Trues scores, error,
reliability, and unit of analysis in environment and behavior research.
Environment and Behavior, 26, 261-293.
Li, Heng; Rosenthal, Robert; Rubin, Donald B.
Reliability of measurement in psychology: From Spearman-Brown to maximal
reliability. Psychological Methods. Vol 1(1) 98-107, Mar 1996.
Matell, M. S., & Jacoby,
J. (1972). Is there an optimal number of alternatives for Likert-scale items?
Effects of testing time and scale properties. Journal of Applied Psychology, 56, 506-509.
Matell, M. S., & Jacoby,
J. (1971). Is there an optimal number of alternatives for Likert scale items?
I. Reliability and validity. Educational
& Psychological Measurement, 31, 657-674.
Miller, M. B. (1995). Coefficient alpha: A
basic introduction from the perspectives of classical test theory and
structural equation modeling. Structural Equation Modeling, 2(3), 255-273.
Novick, M.R., & Lewis, C. (1967).
Coefficient alpha and the reliability of composite measurements. Psychometrika,
32, 1-13.
Okleshen-Peters, C. & Enders, C. K.
(2002). A primer for the estimation of structural equation models in the
presence of missing data: Maximum likelihood algorithms. Journal of Targeting, Measurement, and Analysis for Marketing, 11,
81-95.
Preston, C. C., & Colman, A. M. (2000). Optimal
number of response categories in rating scales: Reliability, validity,
discriminating power, and respondent preferences. Acta Psychologica, 104, 1-15.
Raykov, T. (1997). Estimation of composite
reliability for congeneric measures. Applied Psychological Measurement, 21,
173-184.
Raykov, T. (2004). Estimation
of maximal reliability: A note on a covariance structure modelling approach. British Journal of Mathematical &
Statistical Psychology, 57, 21-27.
Raykov,
T. (2001). Estimation of congeneric scale reliability using covariance
structure analysis with nonlinear constraints. British Journal of Mathematical & Statistical Psychology, 54, 315-323.
Reuterberg, S.E., & Gustafsson, J.E.
(1992). Confirmatory factor analysis and reliability: Testing measurement model
assumptions. Educational and Psychological Measurement, 52, 795-811.
Richards, et al. (1991.) Units of analysis and
the psychometrics of environmental assessment scales. Environment and Behavior,
23, 423-437.
Rozeboom, W.W. (1966). Foundations of the
theory of prediction. Homewood, IL: Dorsey.
Smith, D. A., & Davidson, L. A. (1986).
Interfacing Indicators and Constructs in Criminological Research: A Note on the
Comparability of Self-Report Violence Data for Race and Sex Groups. Criminology,24,
473-488.
Van Zyl, J. M., Neudecker, H.,
& Nel, D. G. (2000). On the distribution of the maximum likelihood
estimator of Cronbach's Alpha. Psychometrika,65(3),
271--280.
Zimmerman, D.W., Zumbo, B.D., & Lalonde,
C. (1993). Coefficient alpha as an estimate of test reliability under violation
of two assumptions. Educational and Psychological Measurement, 53, 33-49.
LIKERT
RESPONSE SCALES, SCALING, ORDINAL MEASUREMENT
Champney, H., & Marshall,
H. (1939). Optimal refinement of the rating scale. Journal of Applied Psychology, 23, 323-331.
Cox,
E. P. (1980). The optimal number of response alternatives for a scale: A
review. Journal of Marketing Research,
17, 407-422.
Ghiselli, E. E. (1939). All or
none versus graded response questionnaires. Journal
of Applied Psychology, 23, 405-413.
Green, P. E., & Rao, V. R.
(1970). Rating scales and information recovery - how many scales and response
categories to use? Journal of Marketing,
34, 33-39.
Jenkins, G. D., & Taber,
T. D. (1977). Monte Carlo study of factors affecting three indices of composite
scale reliability. Journal of Applied
Psychology, 62, 392-398.
Johnson, D.R., & Creech,
J.C. (1983). Ordinal measures in multiple indicator models: A simulation study
of categorization error. American
Sociological Review, 48, 398-407.
Lissitz, R. W., & Green,
S. B. (1975). Effect of the number of scale points on reliability: A monte
carlo approach. Journal of Applied
Psychology, 60, 10-13.
Matell, M. S., & Jacoby,
J. (1971). Is there an optimal number of alternatives for Likert scale items? Study
I: Reliability and validity. Educational
and Psychological Measurement, 31, 657-674.
Matell, M. S., & Jacoby,
J. (1972). Is there an optimal number of alternatives for Likert-scale items? Effects
of testing time and scale properties. Journal
of Applied Psychology, 56, 506-509.
Michell, J. (1986).
Measurement scales and statistics: A clash of paragdigms. Psychological Bulletin, 100, 398-407.
Michell, J. (1990). An introduction to the logic of
psychological measurement. Hillsdale, NJ: Lawrence Erlbaum Associates.
Narens, L., & Luce, R. D.
(1986). Measurement: The theory of numerical assignments. Psychological Bulletin, 99, 166-180.
Preston, C. C., & Colman,
A. M. (2000). Optimal number of response categories in rating scales:
Reliability, validity, discriminating power, and respondent preferences. Acta Psychologica, 104, 1-15.
Ramsay, J. O. (1973). The
effect of number of categories in rating scales on precision of estimation of
scale values. Psychometrika, 38,513-532.
Stevens, S. S. (1946). On the
theory of scales of measurement. Science,
103, 667-680.
Suppes, P., & Zinnes, J.
L. (1963). Basic measurement theory. In R. D. Luce & R. Bush & E. Galanter
(Eds.), Handbook of mathematical
psychology (Vol. 1, pp. 3-76). New York: Wiley.
Symonds, P. M. (1924). On the
loss of reliability in rating due to coarseness of the scale. Journal of Experimental Psychology,
456-461.
Trout, J. D. (1999).
Measurement. In W. H. Newton-Smith (Ed.), A
companion to the philosophy of science. Oxford: Blackwell.
ADF,
AGLS, and WLS ESTIMATION METHODS
Browne, M.W. (1984). Asymptotic distribution
free methods in analysis of covariance structures. British Journal of
Mathematical and Statistical Psychology, 37, 62-83.
McCullagh, P., & Nelder, J. A. (1989).
Generalized linear models (2nd ed.). London: Chapman Hall.
Muthen, B. (1993). Goodness of fit with
categorical and other nonnormal variables. In K.A. Bollen & J.S. Long
(Eds.), Testing structural equation models (pp. 205-234). Newbury Park, CA:
Sage.
Muthen, B., & Kaplan, D. (1985). A
comparison of some methodologies for the factor analysis of non-normal Likert
variables. British Journal of Mathematical and Statistical Psychology, 38,
171-189.
Olsson, U.H., Foss, T., Troye, S. V., &
Roy D. Howell (2000). The Performance of ML, GLS and WLS Estimation in
Structural Equation Modeling Under Conditions of Misspecification and
Nonnormality. Structural Equation Modeling, 7 (4), 557-595.
Sugawara, Hazuki M. and Robert C. MacCallum
(1993), "Effect of Estimation Method on Incremental Fit Indexes for
Covariance Structure Models," Applied Psychological Measurement, 17,
365-77.
Yuan, K.-H., & Bentler, P. M. (1997). Mean
and covariance structure analysis: Theoretical and practical improvements.
Journal of the American Statistical Association, 92, 767-774.
NONNORMALITY,
DISTRIBUTIONAL ASSUMPTIONS, CATEGORICAL DATA, ORDINAL, MULTIVARIATE KURTOSIS
Babakus, E., Ferguson, C.E., Jr., and
Joreskog, K.G. (1987). The sensitivity of confirmatory maximum likelihood
factor analysis to violations of measurement scale and distributional
assumptions. Journal of Marketing Research, 24, 222-28.
Bandalos, D. L., & Enders,
C. K. (1996). The effects of nonnormality and number of response categories on
reliability. Applied Measurement in
Education, 9, 151-160.
Curran, P. J., West, S. G, & Finch, J. F.
(1996). The robustness of test statistics to nonnormality and specification
error in confirmatory factor analysis. Psychological Methods, 1, 16-29.
D'Agostino, R. B., Belanger, A., &
D'Agostino, R. B. (1990). A suggestion for using powerful and informative tests
of normality. American Statistician, 44, 316-321.
DeCarlo, L. T. (1997), On the meaning and use
of kurtosis. Psychological Methods, 2, 292-307.
Enders, C. K. (2001). The
impact of nonnormality on full information maximum likelihood estimation for
structural equation models with missing data. Psychological Methods, 6, 352-370.
Fan, X., Thompson, B., &
Wang, L. (1999). Effects of sample size, estimation method, and model
specification on structural equation modeling fit indexes. Structural Equation
Modeling, 6, 56-83.
Finch, J.F., West, S.G., & MacKinnon, D.
(1997). Effects of sample size and nonnormality on the estimation of mediated
effects in latent variables models. Structural Equation Modeling, 4, 87-107.
Fouladi, R.T. (2000)
Performance of modified test statistics in covariance and correlation structure
analysis under conditions of multivariate nonnormality. Structural Equation
Modeling, 7(3), 356-410.
Hoogland & Boomsma (1998). Robustness
studies in Covariance Structure Modeling: An overview and a meta-analysis.
Sociological Methods and Research, 26, 329-3
Hosking, J. R. M. (1997). Regional frequency
analysis. An approach base on L-Moments. Cambridge, UK: Cambridge University
Press.
Hu, L-T., & Bentler, P.M.
(1998). Fit indices in covariance structure modeling: Sensitivity to
underparameterized model misspecification. Psychological Methods, 3(4),
424-453. Nevitt, J., & Hancock, G.R. (2000). Improving the root mean square
error of approximation for nonnormal conditions in structural equation
modeling. Journal of Experimental Education, 68(3), 251-268.
Muthén, B., & Kaplan, D. (1985). A
comparison of methodologies for the factor analysis of non-normal Likert
variables. British Journal of Mathematical and Statistical Psychology, 38,
171-189.
Muthén, B., & Kaplan, D. (1992). A
comparison of some methodologies for the factor analysis of non-normal Likert
variables: A note on the size of the model. British Journal of Mathematical and
Statistical Psychology, 45, 19-30.
Olsson, U. H, Troye, S. V.,
and Howell, R. D. (1999). Theoretic fit and empirical fit: The performance of
maximum likelihood versus generalized least squares estimation in structural
equation models. Multivariate Behavioral Research, 34, 31-58.
Olsson, U.H., Foss, T., Troye,
S. V., & Roy D. Howell (2000). The Performance of ML, GLS and WLS
Estimation in Structural Equation Modeling Under Conditions of Misspecification
and Nonnormality. Structural Equation Modeling, 7 (4), 557-595.
Preston, C. C., & Colman,
A. M. (2000). Optimal number of response categories in rating scales:
Reliability, validity, discriminating power, and respondent preferences. Acta Psychologica, 104, 1-15.
Satorra, A., & Bentler,
P.M. (1988). Scaling corrections for chi-square statistics in covariance
structure analysis. 1988 Proceedings of the Business and Economic Statistics
Section of the American Statistical Association, 308-313.
Satorra, A., & Bentler, P.M. (1994). Corrections
to test statistics and standard errors in covariance structure analysis. In A.
von Eye and C.C. Clogg (eds.), Latent Variable Analysis: Applications to
Developmental Research (pp. 399-419). Newbury Park: Sage.
Stuart, A., & Ord, J. K. (1987). Kendall's
advanced theory of statistics (Vol. 1). London: Charles Griffin and Co.
West, S. G., Finch, J.F, & Curran, P.J.
(1995). Structural equation models with nonnormal variables: Problems and
remedies. In R.H. Hoyle (Ed), (1995). Structural equation modeling: Concepts,
issues, and applications. (pp. 56-75). Thousand Oaks, CA: Sage Publications.
Xie, Yu (1989) Structural equation models for
ordinal variables, Sociological Methods & Research, 17, 325-352.
Yuan, K.-H., & Bentler, P. M. (1997).
Improving parameter tests in covariance structure analysis. Computational
Statistics & Data Analysis, 26, 177-198.
Yuan, K.-H., & Bentler, P. M. (1997). Mean
and covariance structure analysis: Theoretical and practical improvements.
Journal of the American Statistical Association, 92, 767-774.
Yuan, K-H., & Bentler, P.
M. (1998). Normal theory based test statistics in structural equation
modelling. British Journal of Mathematical and Statistical Psychology, 51,
289-309.
ASSUMPTIONS,
MULTICOLLINEARITY, NONCONSTANT VARIANCE, HETEROSCEDASTICITY, OUTLIERS
Rensvold, R. B.,
& Cheung, G. W. (1999). Identification of influential cases in structural
equation models using the jackknife method. Organizational Research Methods, 2(3),
293-308.
POLYCHORIC
CORRELATIONS, TETRACHORIC CORRELATIONS, POLYSERIAL CORRELATIONS, and
NONNORMALITY
Babakus, Ferguson and Joreskog (1987), The
Sensitivity of Confirmatory Maximum Likelihood Factor Analysis to Violations of
Measurement Scale and Distributional Assumptions, J. of Marketing Research, 24,
222-228.
Bentler (1990), Comparative Fit Indices in
Structural Models, Psychological Bulletin, 107, 238-246.
Brown. R.L. (1989). Using Covariance Modeling
for Estimating Reliability on Scales with Ordered Polytomous Variables,
Educational and Psychological Measurement, 49, 385-398.
Fornell and Larcker (1981), Evaluating
Structural Equation Models with Unobservable Variables and Measurement Error,
J. of Marketing Research, 18, 39-50.
Muthen, B., & Hofacker, C. (1988). Testing
the assumptions underlying tetrachoric correlations. Psychometrika, 53,
563-578.
Ollson (1979), On the Robustness of Factor
Analysis Against Crude Classification of the Observations, Multivariate
Behavioral Research, 14, 485-500.
Rigdon, E.E. and Ferguson, C.E., Jr. (1991),
The Performance of the Polychoric Correlation Coefficient and Selected Fitting
Functions in Confirmatory Factor Analysis with Ordinal Data, Journal of
Marketing Research, 28, 491-497.
MTMM
(MULTI-TRAIT MULTI-METHOD MATRIX)
Bagozzi, R. P., & Yi, Y. (1990). Assessing
method variance in multitrait-multimethod matrices: The case of self-reported
affect and perceptions at work. Journal of Applied Psychology, 75, 547-560.
Bagozzi, R. P., & Yi, Y. (1991).
Multitrait-multimethod matrices in consumer research. Journal of Consumer
Research, 17, 426-439.
Bagozzi, R. P., & Yi, Y. (1992). Testing
hypotheses about methods, traits, and commonalties in the direct-product model.
Applied Psychological Measurement, 16, 373-380.
Bagozzi, R. P., Yi, Y., & Phillips, L. W.
(1991) Assessing construct validity in organizational research. Administrative
Science Quarterly, 36, 421-458. Byrne, B & Goffin (1993). Modeling MTMM
data from additive and multiplicative covariance structures: An audit of
construct validity concordance. Multivariate Behavioral Research, 28, 67-96.
Bollen, K.A. & Joreskog, K.G. (1985).
Uniqueness does not imply identification. Sociological Methods and Research,
14, 155-163.
Bollen, K.A., & Paxton, P. (1998).
Detection and determinants of bias in subjective measures. American
Sociological Review, 63, 465-478.
Cook, W.L. (1994). A structural equation model
of dyadic relationships within the family system. Journal of Consulting and
Clinical Psychology, 62, 500-509.
Cook, W. L. & Goldstein, M. J. (1993).
Multiple perspectives on family relationships: A latent variables model. Child
Development, 64,1377-1388.
Coovert, M. D., & Craiger, J. P.,
Teachout, M. S. (1997). Effectiveness of the direct product versus confirmatory
factor model for reflecting the structure of multimethod-multirater job
performance data. Journal of Applied Psychology, 82, 271-280.
Kenny, D. A., & Kashy, D. A. (1992). Analysis
of the multitrait-multimethod matrix by confirmatory factor analysis.
Psychological Bulletin, 112, 165-172.
Marsh, H. W. & Bailey, M. (1991).
Confirmatory factor analysis of multitrait-multimethod data: A comparison of
alternative models. Applied Psychological Measurement, 15, 47-70.
Marsh, H. W. (1989). Confirmatory factor
analysis of multitrait-multimethod data: Many problems and a few solutions.
Applied Psychological Measurement, 13, 335-361.
Marsh, H. W. (1993). Multitrait-multimethod
analyses: Inferring each trait/method combination with multiple indicators.
Applied Measurement in Education, 6, 49-81.
Marsh, H. W., & Bailey, M. (1991).
Confirmatory factor analysis of multitrait-multimethod data: A comparison of
alternative models. Applied Psychological Measurement, 15, 47-70.
Marsh, H. W., & Grayson, D. (1995).
Latent-variable models of multitrait-multimethod data. In R. H. Hoyle (Ed.),
Structural equation modeling: Issues and applications (pp. 177-198). Newbury,
CA,. Sage.
Marsh, H. W., & Hocevar, D. (1988). A new,
more powerful approach to multitrait-multimethod analyses: Application of
second order confirmatory factor analysis. Journal of Applied Psychology, 73,
107-117.
Marsh, H. W., Byrne, B. M., & Craven, R.
(1992). Overcoming problems in confirmatory factor analyses of MTMM data: The
correlated uniqueness model and factorial invariance. Multivariate Behavioral
Research, 27, 489-507.
Millsap, R.E. (1992) Sufficient conditions for
rotational uniqueness in the additive MTMM model. British Journal of
Mathematical and Statistical Psychology, 45, 125-138.
Scullen, S. E. (1999). Using
confirmatory factor analysis of correlated uniqueness to estimate method
variance in multitrait-multimethod matrices. Organizational Research Methods,
2(3), 275-292.
Widaman, K. F. (1985). Hierarchically nested
covariance structure models for multitrait-multimethod data. Applied
Psychological Measurement, 9, 1-26.
Wothke, W. (1996). Models for
multitrait-multimethod matrix analysis. In G. A. Marcoulides & R. E. Schumacher
(Eds.) Advanced Structural Equation Modelling. Mahwah, NJ: Erlbaum.
VALIDITY
Cronbach, L. J. (1971). Test validity. In R.
L. Thorndike (Ed.)Educational Measurement (2nd ed., pp. 443-507) Washington,
D.C.: American Council on Education.
Goodman, N. (1979). Fact fiction and forecast
(4th ed.). Cambridge, MA: Harvard University press.
Hubley, A. M., & Zumbo, B. D. (1996). A
dialectic on validity: Where we have been and where we are going. The Journal
of General Psychology, 123,207-215.
Hubley, A.M. & Zumbo, B.D. (1996). A
dialectic on validity: Where we have been and where we are going. The Journal
of General Psychology, 123, 207-215.
Loevinger, J. (1967). Objective tests as
instruments of psychological theory. In D. N. Jackson & S. Messick (Eds.)
Problems in Human Assessment (pp. 78-123). New York: Krieger.
Messick, S. (1989). Validity. In R. L. Linn
(Ed.) Educational measurement(3rd ed., pp. 13-103). New York: American Council
on Education.
STANDARDIZED
SOLUTIONS
Chou, C. P., & Bentler, P. M. (1993).
Invariant standardized estimated parameter change for model modification in
covariance structure analysis. Multivariate Behavioral Research, 28, 97-110.
Raykov, T., & Marcoulides, G.A. (2000). A
method for comparing completely standardized solutions in multiple groups. Structural
Equation Modeling, 7, 292-308.
Kim, J.
O., & Ferree, G. D., Jr. (1981). Standardization in causal analysis. Sociological
Methods and Research, 10, 187-210.
Kim, J. O., & Mueller, C. W. (1976). Standardized
and unstandardized coefficients in causal analysis: An expository note. Sociological
Methods and Research, 4, 428-438.
SAMPLE
WEIGHTING, COMPLEX SURVEY DESIGNS, SAMPLING ADJUSTMENTS
Kaplan, D., & Ferguson, A.J. (1999). On
the utilization of sample weights in latent variable models. Structural
Equation Modeling, 6, 305-321.
Muthen, B., & Satorra, A. (1995). Complex
sample data in structural equation modeling. Sociological methodology, 25,
267-316.
REGRESSION
DIAGNOSTICS, SEM DIAGNOSTICS, OUTLIERS, MULTICOLLINEARITY
Belsley, D.A., Kuh, e., & Welsch, R.E.
(1980). Regression diagnostics: Identifying influential data and sources of
collinearity. New York: John Wiley.
Bollen, K.A. and G. Arminger. 1991. Observational
Residuals in Factor Analysis and Structural Equation Models (pp.
235-62). In P.M. Marsden (Ed.), Sociological Methodology 1991.
Oxford: Basil-Blackwell.
Bollen, K.A., & Jackman, R.W. (1990).
Regression diagnostics: An expository treatment of outliers and influential
cases. In J. Fox, J.S. Long (Eds.), Modern methods of data analysis.
Newbury Park, CA: Sage.
Cook, R.D., & Weisberg, S. (1994). An
introduction to regression graphics. New York: Wiley.
Fox, J. (1991). Regression diagnostics.
Newbury Park, CA: Sage.
Kaplan, D. (1995). Estimator conditioning
diagnostics for covariance structure models. Sociological Methods and Research, 23, 200-229.
Neter, J., Kutner, M.H., Nachtsheim, C.J.,
& Wasserman, W. (1996). Applied linear regression models (3rd
Ed.). Chicago, IL: Irwin.
Rensvold, R. B.,
& Cheung, G. W. (1999). Identification of influential cases in structural
equation models using the jackknife method. Organizational Research Methods, 2(3),
293-308.
Yuan, Ke-Hai; Bentler, Peter
M. (2001). Effect of outliers on estimators and tests in covariance structure
analysis. British Journal of Mathematical
& Statistical Psychology, 54(1), 161-175.
REVERSED
ITEMS, SCALING, ACQUIESCENCE, RESPONSE BIAS, SOCIAL DESIRABILITY, METHODS
FACTORS
Andrich, D. (1988) The application of an
unfolding model of the PIRT type to the measurement of attitude. Applied
Psychological Measurement, 12, 33-51.
Goldsmith, R. E. (1987). Two Studies of
Yeasaying, Psychological Reports, 60, 239-244.
J. J. Ray (1983). Reviving the Problem of
Acquiescent Response Bias. Journal of Social Psychology, 121, 81-96.
J. J. Ray (1985). Acquiescence and response
skewness in scale constructional paradox," Person. Individual Differences,
6, 655-656.
Marsh, H. W. (1996). Positive and negative
global Self-Esteem: A substantively meaningful distinction or artifactors?
Journal of Personality and Social Psychology, 70, 810-819.
Mitchell, J. (1994). Measuring dimensions of
belief by unidimensional unfolding. Journal of Mathematical Psychology, 38,
244-273
Russo, J. (1994). Thurstone's scaling model
applied to assessment of self-reported depression severity. Psychological
Assessment, 6, 159-171.
Spector (1976). Choosing response categories
for summated rating scales. Journal of Applied Psychology, 61, 374-375.
Spector (1980). Ratings of equal and unequal
response choice intervals. Journal of Social Psychology,112, 115-119.
Spector, P.E., Van Katwyk, P.T., Brannick,
M.T., & Chen, P.Y. (1997). When two factors don't reflect two constructs:
How item characteristics can produce artificial factors. Journal of Management,
23, 659-677.
Tomas, J.M., & Olivers, A. (1999).
Rosenberg's self-esteem scale: Two factors or method effects. Structural
Equation Modeling, 6, 84-98.
van Schuur, H. and Kiers, H. (1994). Why
factor analysis is often the incorrect model for analyzing bipolar concepts,
and what model to use instead. Applied Psychological Measurement, 18, 2,
97-110.
ITEM
PARCELING, ITEM PARCELS
Bandalos, D.L. (2002). The effects of item
parceling on goodness-of-fit and parameter estimate bias in structural equation
modeling. Structural Equation Modeling, 9, 78-102.
Bogozzi, R. P., & Heatherton, T. F.
(1994). A general approach to representing multifaceted personality constructs:
Application to state self-esteem. Structural Equation Modeling, 1, 35-67.
Hall, R. J.,
Snell, A. F., & Foust, M. S. (1999). Item parceling strategies in SEM:
Investigating the subtle effects of unmodeled secondary constructs.
Organizational Research Methods 2(3), 233-256.
Kishton, J. M; Widaman, K. F. (1994).
Unidimensional versus domain representative parceling of questionnaire items:
An empirical example. Educational & Psychological Measurement, 54, 757-765.
Marsh HW. Hau KT. Balla JR. Grayson D. (1998).
Is more ever too much: The number of indicators per factor in confirmatory
factor analysis. Multivariate Behavioral Research, 33, 181-220.
Russell, D. W., Kahn, J. H., Spoth, R., &
Altmaier, E. M. (1998). Analyzing data from experimental studies: A latent
variable structural equation modeling approach. Journal of Counseling
Psychology, 45, 18-29.
West, S. G., Finch, J.F, & Curran, P.J.
(1995). Structural equation models with nonnormal variables: Problems and
remedies. In R.H. Hoyle (Ed), (1995). Structural equation modeling: Concepts,
issues, and applications. (pp. 56-75). Thousand Oaks, CA: Sage Publications.
META-ANALYSIS
Erez, A., Bloom, M.C., and Wells, M.T. (1996).
Using random rather than fixed effects models in meta-analysis: Implications
for situational specificity and validity generalization. Personnel Psychology
49:275-306.
Knight, G. P; Fabes, R. A; Higgins, D. A.
(1996). Concerns about drawing causal inferences from meta-analyses: An example
in the study of gender differences in aggression. Psychological Bulletin, 119,
410-421.
Rice, N. and Leyland, A. (1996). Multilevel
models: Applications to health data. Journal of Health Services Research and
Policy1(3):154-164.\
Shadish, W. R. (1996). Meta-analysis and the
exploration of causal mediating processes: A primer of examples, methods, and
issues. Psychological Methods, 1, 47-65.
Viswesvaran, C., & Ones, D.S. (1995).
Theory testing: Combining psychometric meta-analysis and structural equation
modeling. Personnel Psychology, 48, 865-883.
EXAMPLES
OF META-ANALYSIS with SEM
Becker, B. J. (1992). Models of science
achievement: Forces affecting male and female performance in school science. In
T. D. Cook, H.M. Cooper, D. S. Cordray, H. Hartmann, L. V. Hedges, R. J. Light,
T. A. Louis, & F. Mosteller (Eds.), Meta-analysis for explanation: A
casebook(pp. 209-281). New York: Russell Sage Foundation.
Brown, S. P., & Peterson, R. A. (1993).
Antecedents and consequences of salesperson job satisfaction: Meta-analysis and
assessment f causal effects. Journal of Marketing Research, 30, 63-77.
Harris, M. J., & Rosenthal, R. (1985).
Mediation of interpersonal expectancy effects: 31 meta-analyses. Psychological
Bulletin, 97, 363-386.
Hom, P. W., Caranikas-Walker, F., Prussia, G.
E., & Griffeth, R. W.(1992). A meta-analytical structural equations
analysis of a model of employee turnover. Journal of Applied Psychology, 77,
890-909.
Peters, L. H., Hartke, D. D., & Pohlmann,
J. T. (1985). Fiedler's contingency theory of leadership: An application of the
meta-analysis procedures of Schmidt and Hunter. Psychological Bulletin, 103,
223-234.
Premack, S. L., & Hunter, J. E. (1988).
Individual unionization decisions. Psychological Bulletin, 103, 223-234.
Rooney & Murray (1996). A meta-analysis of
smoking prevention programs after adjustment for errors in the unit of
analysis. Health Education Quarterly,23(10, 48-64.
Schmidt, F. L., Hunter, J. E., &
Outerbridge, A. N. (1986). The impact of job experience and ability on job
knowledge, work sample performance, and supervisory ratings of job performance.
Journal of Applied Psychology, 71, 432-439.
IRT,
FULL-INFORMATION ML FACTOR ANALYSIS, DIF
Bock, R.D., Gibbons, R., and Muraki, E.
Full-Information Item Factor Analysis. Applied Psychological Measurement
12(3):261-280, 1988.
Bock, RD (1989). Multilevel Analysis of
Educational Data. San Diego: Academic Press.
Bollen, K. A., & Lennox, R. (1991).
Conventional wisdom on measurement: A structural equation perspective.
Psychological Bulletin, 110, 305-314.
Christensen, H., Jorm, A. F.,
Mackinnon, A. J., Korten, A. E., Jacomb, P. A., Henderson, A. S., &
Rodgers, B. (1999). Age differences in depression and anxiety symptoms: a
structural equation modeling analysis of data from a general population sample.
Psychological Medicine, 29(2), 325-39.
Clark, L. A., & Watson, D. (1995).
Constructing validity: Basic issues in objective scale development.
Psychological Assessment, 7, 309-319.
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah,
N.J.: Lawrence Erlbaum Associates.
Floyd, F. J., & Widaman, K. F. (1995).
Factor analysis in the development and refinement of clinical assessment
instruments. Psychological Assessment, 7, 286-299.
Gallo, J. J., Anthony, J. C.,
& Muthén, B. O. (1994). Age differences in the symptoms of depression: a
latent trait analysis. Journals of Gerontology, 49(6), 251-64.
Gallo, J. J., Rabins, P. V.,
& Anthony, J. C. (1998). Sadness in older persons: 13-year follow-up of a
community sample in Baltimore, Maryland. Psychological Medicine, 29, 341-350.
Hambleton, R. K., Swaminathan,
H., & Rogers, H. (1991). Item and Test Information Functions, Fundamentals
of Item Response Theory (pp. 91-98). Thousand Oaks, CA: Sage.
Hambleton, R. K., &
Swaminathan, H. (1985). Item Response
Theory: Principles and applications. Boston: Kluwer-Nijhoff.
Harnqvist, K, et al. (1994). Hierarchical
models of ability at individual and class levels. Intelligence, 18, 165-187.
Linden, W. J., & Hambleton, R. K. (1997). Handbook of modern item response theory.
New York: Springer.
Mellenbergh, G. J. (1994). Generalized Linear
Item Response Theory. Psychological
Bulletin, 115, 300-307.
Meredith, W. (1993). Measurement invariance,
factor analysis and factorial invariance. Psychometrika, 58, 525-543.
Mislevy, RJ (1991). Randomization-based
inference about latent variables from complex samples. Psychometrika, 56,
177-196.
Muthén, B. (1988). Some uses
of structural equation modeling in validity studies: Extending IRT to external
variables. In H. Wainer & H. Braun (Eds.), Test Validity (pp. 213-238).
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Muthén, B. O. (1989). Latent
variable modeling in heterogeneous populations. Meetings of Psychometric
Society (1989, Los Angeles, California and Leuven, Belgium). Psychometrika,
54(4), 557-585.
Muthén, B. O., Kao, C. F.,
& Burstein, L. (1991). Instructionally sensitive psychometrics: Application
of a new IRT-based detection technique to mathematics achievement test items.
Journal of Educational Measurement, 28 (1), 1-22.
Muthén, B., & Lehman, J.
(1985). Multiple group IRT modeling: Applications to item bias analysis.
Journal of Educational Statistics, 10(2), 133-142.
Muthen, BO (1991). Multilevel factor analysis
of class and student achievement components. Journal of Educational
Measurement, 28, 338-354.
Oort, F. (1996). Using restricted factor
analysis in test construction. Amsterdam: Faculteit der Psychologie,
Universiteit van Amsterdam.
Raudenbush, S (1995). A multivariate
hierarchical model for studying change within married couples. Journal of
Family Psychology, 9,161-174.
Teresi, J. A., Kleinman, M.,
& Ocepek-Welikson, K. (2000). Modern psychometric methods for detection of
differential item functioning: Application to cognitive assessment measures.
Statistics in Medicine, 19, 1651-1683.
van der Linden, W.J. and Hambleton, R.K.
Handbook of modern Item Response Theory, Berlin: Springer, 1997.
Weiss, D., & Yoes, M.
(1990). Item Response Theory (Chapter 3). In R. Hambleton & J. Zaal (Eds.),
Advances in educational and psychological testing: Theory and applications .
Boston: Kluwer Academic Publishers.
RASCH
MODELS
Bond, T. G, & Christine, M. (2001). Applying the Rasch model: fundamental
measurement in the human sciences. Mahwah, NJ: L. Erlbaum Associates.
Fischer, G. H., &
Molenaar, I. W. (1993). Rasch Models.
New York:Springer-Verlag.
Fischer, G.H., & I. W. Molenaar (Eds.)
(1996), Rasch Models: Foundations, Recent Developments, and Applications.
Berlin: Springer
Fischer, G.H., & Molenaar, I.W. (1995). Rasch models: Foundations, recent
developments, and Applications. New York: Springer-Verlag.
SUPPRESSION
EFFECTS, SUPPRESSOR VARIABLES
Cohen, J., & Cohen, P. (1983). Applied
multiple regression/correlation analysis for the behavioral sciences. Mahway,
NJ: Erlbaum
Maassen, G.H., & Bakker, A.B. (2001).
Suppressor variables in path models: Definitions and interpretations. Sociological
Methods and Research, 30, 241-270.
Smith, R. L., Ager, J. W., & Williams, D.
L. (1992). Suppressor variables in multiple regression/correlation. Educational
and Psychological Measurement, 52, 17-29.
CORRELATED
ERRORS, CORRELATED UNIQUENESS
Gerbing, D. W., &
Anderson, J.C. (1984). On the meaning of within-factor correlated measurement
errors. Journal of Consumer Research, 11, 572-580.
Gillespie, M. W., & Fox,
J. (1980). Specification errors and negatively correlated disturbances in
"parallel" simultaneous-equation models. Sociological Methods and Research,
8, 273-308.
Green, S.B., &
Hershberger, S.L. (2000). Correlated errors in true score models and their
effect on coefficient alpha. Structural Equation Modeling, 7, 251-270.
Meng, X., Rubin, D.B., & Rosenthal, R.
(1992) Comparing correlated correlation coefficients. Psychological Bulletin,
111(1), 172-175.
Rigdon, E. E. (1994).
Demonstrating the effects of unmodeled random measurement error. Structural
Equation Modeling, 1, 375-80.
Sivo, S.A., & Willson,
V.L. (2000). Structural Equation Modeling, 7, 174-205.
Steiger, J.H. (1980). Tests for comparing
elements of a correlation matrix. Psychological Bulletin, 87(2), 245-251.
FACTOR
SCORES
Bentler & Yuan "Optimal conditionally
unbiased equivariant factor score estimators." In M. Berkane (ed.) Latent
variable modeling with applications to causality (pp. 259-281). New York:
Springer Verlag.
Bernstein, I. H., & Teng, G. (1989).
Factoring items and factoring scales are different: Spurious evidence for
multidimensionality due to item categorization. Psychological Bulletin, 105,
467-477.
HIERARCHICAL
LINEAR MODELING (HLM) and MULTILEVEL MODELS
Bentler, P. M., & Satorra,
A. (2000). Hierarchical regression without phantom factors. Structural Equation
Modeling: A Multidisciplinary Journal, 7(2), 287-291.
Cook, W.L. (1994). A structural equation model
of dyadic relationships within the family system. Journal of Consulting and
Clinical Psychology, 62, 500-509.
de Jong, P. F. (1999).
Hierarchical regression analysis in structural equation modeling. Structural
Equation Modeling, 6(2), 198-211.
Florin et al. (1990). Levels of analysis and
effects: Clarifying group influence and climate by separating individual and
group effects. Journal of Applied Social Psychology, 20(11), 881-900.
Haney, W. (1980). Units and levels of analysis
in large-scale evaluation. New Directions for Methodology of Social and
Behavioral Science, 6, 1-15.
Harnqvist, K., Gustafsson, J.E., Muthen, B,
& Nelson, G. (1994). Hierarchical models of ability at class and individual
levels. Intelligence, 18, 165-187.
J.J. Hox (1995). Applied Multilevel
Analysis. Amsterdam: TT-Publikaties.
Kaplan, D., & Elliott, P.R. (1997). A
didactic example of multilevel structural equation modeling applicable to the
study of organizations. Structural Equation Modeling, 4, 1-24.
Kenny, David A; Kashy, Deborah A; Bolger,
Niall. Data analysis in social psychology. In D.T. Gilbert, S.T. Fiske et al.
(1998). The handbook of social psychology, Vol. 2 (4th ed.). (pp. 233-265).
Boston, MA, USA: Mcgraw-Hill. x, 1085 pp.
Kenny, D. A., & La Voie, L. (1985).
Separating individual and group effects. Journal of Personality and Social
Psychology, 48, 339-348.
Klein, K.J., Dansereau, F., & Hall, R.J.
(1994). Levels issues in theory development, data collection, and analysis.
Academy of Management Review, 19, 195-229.
McArdle, JJ., & Hamagami, F. (1996).
Multilevel models from a multiple group structural equation perspective. In
G.A. Marcoulides & R.E. Schumacker (eds.), Advanced Structural Equation
Modeling: Issues and Techniques (pp. 89-124). Mahway, NJ: Erlbaum.
Muthen, B. (1994). Multilevel covariance
structure analysis. In J. Hox &I. Kreft (eds.), Multilevel Modeling, a
special issue of Sociological Methods & Research, 22, 376-398.
Muthen, B. & Satorra, A. (1995). Complex
sample data in structural equation modeling. In P. Marsden (ed.), Sociological
Methodology 1995, 216-316.
Muthen, B. (1989). Latent variable modeling in
heterogeneous populations. Psychometrika, 54, 557-585.
Muthen, B. (1991). Multilevel factor analysis
of class and student achievement components. Journal of Educational
Measurement, 28, 338-354.
Muthen, B. (1997). Latent variable growth
modeling with multilevel data. In M. Berkane (ed.), Latent Variable Modeling
with Applications to Causality (149-161), New York: Springer Verlag.
Muthen, B. (1997). Latent variable modeling
with longitudinal and multilevel data. In A. Raftery (Ed.), Sociological
Methodology (pp.453-480). Boston: Blackwell Publishers.
Newsom, J.T. (2002). A multilevel structural
equation model for dyadic data. Structural Equation Modeling, 9, 431-447.
Rooney & Murray (1996). A meta-analysis of
smoking prevention programs after adjustment for errors in the unit of
analysis. Health Education Quarterly,23(10, 48-64.
DYADIC
DATA, SOCIAL RELATIONS MODELS
Cook, W.L. (1994). A structural equation model
of dyadic relationships within the family system. Journal of Consulting and
Clinical Psychology, 62, 500-509.
Cook, W. L. & Goldstein, M. J. (1993).
Multiple perspectives on family relationships: A latent variables model. Child
Development, 64,1377-1388.
Kenny, D.A., Kashy, D.A., Bolger, N. (1998).
Data analysis in social psychology. In D.T. Gilbert, S.T. Fiske et al. The
handbook of social psychology, Vol. 2 (4th ed., pp. 233-265). Boston, MA:
Mcgraw-Hill.
Kenny, D. A., & La Voie, L. (1984). The
social relations model. In L. Berkowitz (Ed.), Advances in experimental social
psychology (Vol. 18, pp 141-182). San Diego, CA: Academic Press.
Kenny, D. A., & La Voie, L. (1985).
Separating individual and group effects. Journal of Personality and Social
Psychology, 48, 339-348.
Neale, M.C., Eaves, L.J., Kendler, K.S.,
Heath, A.C., & Kessler, R.C. (1994). Multiple regression with data
collected from relatives: Testing assumptions of the model. Multivariate
Behavioral Research, 29, 33-61.
Newsom, J.T. (2002). A multilevel structural
equation model for dyadic data. Structural Equation Modeling, 9, 431-447.
EXPLORATORY
DATA ANALYSIS
Hartwig, F. & Dearing, B. E. (1979).
Exploratory data analysis. Beverly Hills, CA: Sage. (QASS #16)
Mulaik, S. A. (1985). Exploratory statistics
and empiricism. Philosophy of Science, 52, 410-430.
Tukey, J. W. (1977) Exploratory data analysis.
Reading, MA: Addison-Wesley.
NONRECURSIVE
MODELS, RECIPROCAL PATHS, RECIPROCAL CAUSES, FEEDBACK LOOPS
Berry, W.D. (1984). Nonrecursive causal
models. Newbury Park, CA: Sage. QASS #37).
Pesaran, M.H. and R.J. Smith (1994). A
Generalized R2 Criterion for Regression Models Estimated by the
Instrumental Variables Method. Econometrica, 62, 705-710.
Teel, J.E.J., Beardon, W.O., & Sharma, S.
(1986). Interpreting LISREL estimates of explained variance in nonrecursive
structural equation models. Journal of Marketing Research, 23, 164-168.
Wong, C., &
Law, K.S. (1999). Testing reciprocal relations by nonrecursive structural equation models using cross-sectional
data. Organizatonal Research Methods, 2, 69-87.
HISTORY
OF STATISTICS
Cowles, M. (1989). Statistics in psychology:
An historical perspective. Hillsdale NJ: Erlbaum.
Gigerenzer, G., Swijtink, Z., Porter, T.,
Daston, L. Beatty, J. and Kruger, L. (1989). The empire of chance. Cambridge:
Cambridge University Press.
Mackenzie, Donald A. (1981). Statistics in
Britain 1865-1930 The social construction of scientific knowledge. Edinburgh:
Edinburgh University Press.
Porter, T. M. (1986). The rise of statistical
thinking 1820-1900. Princeton: Princeton University Press.
Stigler, S.M. (1986). The history of
statistics: The treatment of uncertainty before 1900. Cambridge, MA: Harvard
Univ. Press
PSYCHOMETRICS,
PSYCHOMETRIC THEORY
Alwin & Jackson (1979). Measurement Models
of Response Errors in Surveys: Issues and Applications. Sociological
Methodology, 1980,68-119.
Carmines, E. G., & Zeller, R. A. (1979).
Reliability and Validity Assessment. Newbury Park, CA: SAGE.
Cronbach (1951). Coefficient alpha and the
internal structure of tests. Psychometrika, 16, 297-334.
Heise & Bohrnstedt (1970). Validity,
Invalidity, and Reliability. Sociological Methodology, 1970, 104-129.
Hinkin, T. R. (1995). A review of scale
development practices in the study of organizations. Journal of Management, 21,
967-988.
Janda, L. (1998). Psychological testing:
theory and applications(Allyn & Bacon)
Lord, F.M., & Novick, M.R. (1968).
Statistical theories of mental test scores. Reading, MA: Addison-Wesley.
Nunnally, J. C. (1978). Psychometric Theory.
New York: McGraw-Hill.
Nunnally, J.C., & Bernstein, I.H. (1994).
Psychometric theory (3rd Ed.). New York: McGraw-Hill.
Pedhazur, E.J., & Schmelkin, L.P. (1991).
Measurement, design, and Analysis: An integrated approach. Hillsdale, NJ:
Erlbaum.
Reise, Widaman, and Pugh (1993). Confirmatory
Factor Analysis and item Response Theory: Two Approaches for Exploring
Measurement Invariance. Psychological Bulletin, 114, 552-566.
Steyer, R. (1989). Models of Classical
Psychometric Test Theory as Stochastic Measurement Models: Representation,
Uniqueness, Meaningfulness, Identifiability, and Testability. Methodika, 3,
25-60.
ten Berge, J. M. F. (1995). Review:
Psychometric theory. Psychometrika, 60, 313-315.
EFFECTS
OF MEASUREMENT ERROR
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and
interpreting interactions. Newbury Park, CA: Sage.
P. M. Bentler, (1983). Simultaneous equation
systems as moment structure models: With an introduction to latent variable
models. Journal of Econometrics, 22,
13-42.
Bollen, K.A. (1989). Structural equations with
latent variables. New York: Wiley.
DeShon, R.P. (1998). A cautionary note on
measurement error corrections in structural equation models. Psychological
Methods, 3, 412-423.
Fergusson, D. M., & Horwood, L. J. (1984).
Life events and depression in women: A structural equation model. Psychological
Medicine, 14, 881-889.
Gillespie, M. W., & Fox, J. (1980).
Specification errors and negatively20correlated disturbances in
"parallel" simultaneous-equation models. Sociological Methods and
Research, 8, 273-308.
Rigdon, .E. E. (1994). Demonstrating the
Effects of Unmodeled Random Measurement Error, Structural Equation Modeling, 1,
375-80.
EXTENSION
ANALYSIS
Dwyer, P.S. (1937). The determination of the
factor loadings of a given test from the known factor loadings of other tests.
Psychometrika, 2,173-178.
McDonald, R.P. Some checking procedures for
extension analysis. Multivariate Behavioral Research, 13, 319-325.
PARTIAL
CORRELALATIONS
Olkin, I., and Finn, J.D. (1995).
Correlation Redux. Psychological Bulletin, 118,155-164.
Cohen, J., & Cohen, P. (1983).
Applied multiple regression/correlation analysis for the behavioral sciences.
Mahway, NJ: Erlbaum
MEDIATION, INDIRECT EFFECTS (with sem)
Alwin, D. F., & Hauser, R. M. (1975). The
decomposition of effects in path analysis. American Sociological Review, 40,
37-47.
Bollen, K.A.
(1987). Total, direct, and indirect effects in structural equation models. In
C.C. Clogg (Ed.), Sociological methodology 1987 (pp. 37-69). Washington, D.C.:
American Sociological Association.
Brown, R.L.
(1997). Assessing specific mediational effects in complex theoretical models. Structural
equation modeling, 4, 142-156.
Finch, J. F., West, S. G., & MacKinnon, D.
P. (1997). Effects of sample size and nonnormality on the estimation of
mediated effects in latent variable models. Structural Equation Modeling, 4,
87-107.
Holland, P. W. (1988). Causal
inference, path analysis, and recursive structural equations models.
Sociological Methodology, 18, 449-493.
Holmbeck,
G. N. (1997). Toward terminological, conceptual, and statistical clarity in the
study of mediators and moderators: Examples from the
child-clinical and pediatric
psychology literatures. Journal of Consulting and Clinical Psychology, 65,
599-610.
Hoyle, R.H. & Kenny, D.A.
(1999). Sample size, reliability, and tests of statistical mediation. In R.
Hoyle (Ed.) Statistical Strategies for Small Sample Research. Thousand Oaks,
CA: Sage Publications.
Kenny, David A; Kashy, Deborah A; Bolger,
Niall. Data analysis in social psychology. In D.T. Gilbert, S.T. Fiske et al.
(1998). The handbook of social psychology, Vol. 2 (4th ed.). (pp. 233-265).
Boston, MA, USA: Mcgraw-Hill. x, 1085 pp.
Maruyama, Chapter 5, “Effects of random and
nonrandom error on path models.” Maruyama (1998).Basics of Structural Equation
Modeling. Thousand Oaks: Sage.
MacKinnon, Lockwood, Hoffman, West, &
Sheets, 2002, A comparison of methods to test mediation and other intervening
variable effects. Psychological Methods, 7(1), 83-104).
MEDIATION,
INDIRECT EFFECTS (with regression)
Baron, R. M., & Kenny, D. A. (1986). The
moderator-mediator variable distinction in social psychological research:
Conceptual, strategic, and statistical considerations. Journal of Personality
and Social Psychology,51, 1173-1182.
Davis, J. A. (1985). The logic of
causal order. SAGE Quantitative Psychology Series Paper 55. Newbury Park, CA.
Goodman, L. A.
(1960). On the exact variance of products. Journal of the American Statistical
Association, 55, 708-713.
Holmbeck, G. N. (1997). Toward terminological,
conceptual, and statistical clarity in the study of mediators and moderators:
Examples from the child-clinical and pediatric psychology literature. Journal
of Consulting and Clinical Psychology, 65, 599-610.
Holmbeck, G. N. (1997). Toward terminological,
conceptual, and statistical clarity in the study of mediators and moderators:
Examples from the child-clinical and pediatric psychology literature. Journal
of Consulting and Clinical Psychology, 65, 599-610.
James, L. R., & Brett, J. M. (1984).
Mediators, moderators, and tests for mediation. Journal of Applied Psychology,
69, 307-321.
Judd, C. M., & Kenny, D. A. (1981).
Process analysis: Estimating mediation in treatment evaluations. Evaluation
Review, 5, 602-619.
Judd, C.M., Kenny, D.A., & McClelland,
G.H. (2001). Estimating and testing mediation and moderation in within-subjects
designs. Psychological Methods, 7, 115-134.
MacKinnon, D. P. (in press).
Contrasts in multiple mediator models. In J. Rose & L. Chassin (Eds.),
Multivariate applications in substance use research. New York: Lawrence
Erlbaum.
MacKinnon, D. P., & Dwyer, J. H. (1993).
Estimating mediated effects in prevention studies. Evaluation Review, 17,
144-158.
MacKinnon,
D.P. (1994). Analysis of mediating variables in prevention and intervention
research. In A. Cazares and L. A. Beatty, Scientific Methods in Prevention
Research. NIDA Research Monograph 139. DHHS Pub. No. 94-3631. Washington, DC:
U.S. Govt. Print. Office, pp. 127-153.
MacKinnon, D. P., Warsi, G., & Dwyer, J.
H. (1995). A simulation study of mediated effect measures. Multivariate
Behavioral Research, 30, 41-62.
MacKinnon, D.P.,
Lockwood, C.M., Hoffman, J. M.,West, S.G., & Sheets, V. (2002) A comparison
of methods to test mediation and other intervening variable effects. Psychological
Methods, 7, 83-104.
Shrout, P. E.,
& Bolger, N. (2002). Mediation in experimental and nonexperimental studies:
New procedures and recommendations. Psychological
Methods, 7(4), 422-445.
Sobel, M. E. (1982). Asymptotic confidence
intervals for indirect effects in structural equation models. In S. Leinhart
(Ed.), Sociological methodology 1982 (pp. 290-312). San Francisco: Jossey-Bass.
Sobel, M.E. (1986). Some new
results on indirect effects and their standard errors in structural equation
models. In N.B. Tuma (Ed.) Sociological Methodology (pp. 159-186). San
Francisco: Jossey-Bass.
INTERACTIONS,
MODERATOR, MODERATION, LATENT MODERATORS (SEM)
(see also: NONLINEAR sem and 2SLS)
Algina, J., & Moulder, B.C. (2001). A Note
on Estimating the Jöreskog-Yang Model for Latent Variable Interaction Using
LISREL 8.3. Structural Equation Modeling, 8, 40-52.
Amemiya,
Y., & Yalcin, I. ( 1997). Model fitting procedures for nonlinear factor
analysis using the errors-in-variables parameterization. In M. Berkane (Eds.),
Latent variable modeling and applications to causality (pp. 195-210). New York,
Springer-Verlag.
Bollen, K.
A. (1995). Structural equation models that are nonlinear in latent variables: A
least-squares estimator. Sociological Methodology, 25, 223-251.
Bollen, K.
A., & Paxton, P. (1998). Two-stage least squares estimation of interaction
effects. In R. E. S. G. A. Marcoulides (Eds.), Interaction and nonlinear
effects in structural equation modeling (pp. 125-151). Mahwah, NJ, Lawrence
Erlbaum Associates.
Bollen, K.A., & Paxton, P. (1998).
Interactions of latent variables in structural equation models. Structural
Equation Modeling, 5, 267-293.
Busemeyer, J. & Jones, L. R., (1983).
Analysis of multiplicative causal rules when the causal variables are measured
with error. Psychological Bulletin, 93, 549-562.
Fuzhong, L. et al. (1998). Approaches to
testing interaction effects using structural equation modeling methodology.
Multivariate Behavioral Research, 33, 1-39.
Jaccard,
J., & Wan, C. K. (1995). Measurement error in the analysis of interaction
effects between continuous predictors using multiple regression: Multiple
indicator and structural equation approaches. Psychological Bulletin, 117(2),
348-357.
Joreskog,
K. G. (1998). Interaction and nonlinear modeling: Issues and approaches. In G.
A. M. R. E. Schumacker (Eds.), Interaction and nonlinear effects in structural
equation modeling (pp. 239-250). Mahwah, NJ, Lawrence Erlbaum Associates.
Jaccard, J. & Wan, C. K.
(1996). LISREL Approaches to interaction effects in multiple regression.
Thousand Oaks, Calif.: Sage Publications. (Quantitative Applications in the
Social Sciences, Vol. 114 ISBN: 0-8039-7179-6).
Jöreskog, K. G., & Yang,
F. (1996). Nonlinear structural equation models: The Kenny-Judd model with
interaction effects. In G. A. Marcoulides and R. E. Schumacker (Eds.), Advanced
structural equation modeling (pp. 57-88). Mahwah, NJ: Lawrence Erlbaum.
Kenny, D. A., & Judd, C.
M. (1984). Estimating the nonlinear and interactive effects of latent
variables. Psychological Bulletin, 96, 201-210.
Klein,
A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent
interaction effects with the LMS method. Psychometrika, 65(4), 457-474.
Kline,
T. J. B., & Dunn, B. (2000). Analysis of interaction terms in structural
equation models: A non-technical demonstration using the deviation score
approach. Canadian Journal of Behavioral Science, 32(2), 127-132.
Laplante,
B., Sabourin, S., Cournoyer, L.-G., & Wright, J. (1998). Estimating
nonlinear effects using a structured means intercept approach. In G. A. Marcoulides and R. E. Schumacker (Eds.),
Advanced structural equation modeling (pp. 183-202). Mahwah, NJ, Lawrence
Erlbaum Associates.
Li, F., Duncan, T. E., & Acock, A.
(2000). Modeling interaction effects in latent growth curve models. Structural
Equation Modeling, 7(4), 497-533.
Li, F.Z., Harmer, P., Duncan,
T.E., Duncan, S.C., Acock, A., & Boles S. (1998). Approaches to testing
interaction effects using structural equation modeling methodology.
Multivariate Behavioral Research, 33, 1-39.
Lubinsky, D, & Humphreys, L. G. (1990).
Assessing spurious moderator effects: Illustrated substatively with the
hypothesized ("synergistic") relation between spatial and
mathematical ability. Psychological Bulletin, 107, 385-393.
McDonald,
R. P. (1967). Factor Interaction in nonlinear factor analysis. British Journal
of Mathematical & Statistical Psychology, 20(2), 205-215.
Moulder, B.C., & Algina, J. (2002). Comparison
of methods for estimating and testing latent variable interactions. Structural
Equation Modeling, 9, 1-19.
Ping, R.A. (1995). A
parsimonious estimating technique for interaction and quadratic latent
variables Journal of Marketing Research, 32, 336-347.
Ping, R.A. (1996). Estimating
latent variable interactions and quadratics: The state of this art Journal of
Management, 22, 163-183. Ping, R.A. (1996). Latent variable regression: A
technique for estimating interaction and quadratic coefficients Multivariate
Behavioral Research, 31, 95-120.
Ping, R.A. (1996). Improving
the detection of interactions in selling and sales management research. Journal
of Personal Selling & Sales Management, 16(1), 53-64
Ping, R.A. (1996). Latent variable interaction
and quadratic effect estimation: A two-step technique using structural equation
analysis. Psychological Bulletin, 119, 166-175.
Ping, R.
A. (1996). Latent variable regression: A technique for estimating interaction
and quadratic coefficients. Multivariate Behavioral Research, 31(1), 95-120.
Rigdon, E.
E., Schumacker, R. E., & Wothke, W. (1998). A comparative review of
interaction and nonlinear modeling. In G.
A. Marcoulides and R. E. Schumacker (Eds.), Advanced structural equation
modeling
(pp. 1-16). Mahwah, NJ, Lawrence Erlbaum Associates.
Schumaker, R.E. (2002). Latent
variable interaction modeling. Structural Equation Modeling, 9, 40-54.
Tate,
R. L. (1998). Effect decomposition in interaction and nonlinear models In G. A. Marcoulides and R. E. Schumacker (Eds.),
Advanced structural equation modeling (pp. 167-181). Mahwah, NJ, Lawrence
Erlbaum Associates.
Wall,
M. M., & Amemiya, Y. (2000). Estimation for polynomial structural equation
models. Journal of the American Statistical Association, 95(451), 929-940.
Wall,
M. M., & Amemiya, Y. (2001). Generalized appended product indicator
procedure for nonlinear structural equation analysis. Journal of Educational
and Behavioral Statistics, 26, 1-29.
Wen, Z., Marsh, H.W., &
Hau, K.-T. (2002). Interaction effects in growth modeling: A full model. Structural Equation Modeling, 9, 20-39.
Yalcin,
I., & Amemiya, Y. (2001). Nonlinear factor analysis as a statistical
method. Statistical Science, 16(3), 275-294.
INTERACTIONS,
MODERATOR, MODERATION (REGRESSION)
Aiken, L. S., & West, S.
G. (1991). Multiple regression: Testing and interpreting interactions. Newbury
Park, CA: Sage.
Arnold, H.J. (1982). Moderator variables: A
clarification of conceptual, analytic, and psychometric issues. Organizational
Behavior and Human Performance, 29, 143-174.
Arnold, H.J. & Evans, M.G.
(1979). Testing multiplicative models does not require ratio scales.
Organizational Behavior and Human Performance, 24, 41-59.
Busemeyer, J.R., & Jones,
L.E. (1983). Analysis of multiplicative combination rules when the causal
variables are measured with error. Psychological bulletin, 93, 549- 562.
Cortina, J.M. (1993).
Interaction, Nonlinearity, and Multicollinearity - Implications for Multiple-
Regression. Journal of Management, 19, 915-922.
Evans, M.G. (1985). A
Monte-Carlo study of the effects of correlated method variance in moderated multiple
regression analysis. Organizational Behavior and Human Decision Processes, 36,
305-323.
Evans, M.G. (1991). The
problem of analyzing multiplicative composites: Interactions revisited.
American Psychologist, 46, 6-15. Evans, M.G. (1991). On the use of moderated
regression. Canadian Psychology, 32, 116- 119.
Ganzach, Y. (1997). Misleading
interaction and curvlinear terms. Psychological Methods, 2 (3), 235-247.
Jaccard, J. & Wan, C.
K.(1995). Measurement error in the analysis of interaction effects between
continuous predictors using multiple-regression - multiple indicator and
structural equation approaches. Psychological Bulletin, 117, 348-357.
Kanetkar, V., Evans, M.G., Everell, S.A.,
Irvine, D., & Millman, Z. (1995). The effect of scale changes on
meta-analysis of multiplicative and main effects models. Educational &
Psychological Measurement, 55, 206-224.
Judd, C.M., Kenny, D.A., & McClelland,
G.H. (2001). Estimating and testing mediation and moderation in within-subjects
designs. Psychological Methods, 7, 115-134.
McClelland, G.H., & Judd,
C.M. (1993). Statistical difficulties of detecting interactions and moderator
effects. Psychological bulletin , 114, 376-390.
Rosnow & Rosenthal (1995).
Some things you learn aren't so: Cohen's paradox, Asch's paradigm, and the
interpretation of the interaction. Psychological Science, 6, 3-9.
Zedeck, S. (1971). Problems
with the use of moderator variables. Psychological Bulletin, 76(4), 295-310.
NONLINEAR,
QUADRATIC, CURVILINEAR, POLYNOMIAL
(see also moderation)
MacCallum, R. C., & Mar, C.M. (1995). Distinguishing
between moderator and quadratic effect in multiple regression. Psychological
Bulletin, 118, 405-421.
Joreskog, K.G., & Yang, F. (1996). Nonlinear
structural equation models: The Kenny-Judd model with interaction effects. In
G.A. Marcoulides, & R.E. Schumacker (Eds.), Advanced structural equation
modeling: Issues and techniques. Mahwah, NJ: Erlbaum.
Schumacker, R. E., & Marcoulides, G.A.
(Eds.) (1998). Interaction And Non-Linear Effects In Structural Equation.
Mahwah, N.J.: Lawrence Erlbaum Associates.
Wall, M.M., and Amemiya, Y.,
(2000). Estimation for polynomial structural equation Models. The Journal of
the American Statistical Association, 95, 929-940.
Wall, M. M., & Amemiya, Y.
(2001). Generalized appended product indicator procedure for nonlinear
structural equation analysis. Journal of Educational and Behavioral Statistics,
26, 1-29.
TWO-STAGE LEAST SQUARES, 2SLS, TSLS
(see also moderation)
Bollen, K.A. (1995). Structural Equation Models that are
Nonlinear in Latent Variables: A Least-Squares Estimator. Ch 6, pp223-252 in P.
Marsden (ed) Sociological Methodology, Blackwell
Publishers: Oxford.
Bollen, K.A. (1996). An Alternative Two Stage Least Squares
(2SLS) Estimator for Latent Variable Equations. Psychometrika, 61, 109-121.
Bollen, K.A. (2001). Two-Stage Least Squares and Latent
Variable Models: Simultaneous Estimation and Robustness to Misspecifications.
Ch 7, pp 199-138 in R. Cudeck, S. du Toit and D. Sorbom (eds) Structural
Equation Modeling: Present and Future: A Festschrift in honor of Karl Joreskog, Scientific Software International:
Lincolnwood.
Bollen, K.A. and Paxton, P. (1998). Interactions of Latent
Variables in Structural Equation Models. Structural Equation Modeling, 5,
267-293.
Oczkowski, E. (2001) Hedonic
Wine Price Functions and Measurement Error. Economic Record, 77, 374-382.
Oczkowski, E. (2002)
.Discriminating Between Measurement Scales using Non-nested Tests and 2SLS:
Monte Carlo Evidence. Structural Equation Modeling, 9, 103-125.
Oczkowski, E. and M. Farrell
(1998). Discriminating between Measurement Scales using Non-Nested Tests and
Two-Stage Least Squares Estimators: The Case of Market Orientation.
International Journal of Research in Marketing, 15, 349-366.
CONFIRMATORY
FACTOR ANALYSIS (CFA)
Bollen, K.A. (1984). Multiple indicators:
Internal consistency or no necessary relationship? Quality and Quantity, 18,
377-385.
Bollen, K.A. (1989). Structural equations with
latent variables. New York: Wiley.
Bollen, K. and Lennox, R. (1991). Conventional
wisdom on measurement: A structural equation perspective. Psychological
Bulletin, 110, 305-314.
Bollen, K. A. (2002). Latent variables in
psychology and the social sciences. Annual
Review of Psychology, 53, 605-634.
Cohen, P., Cohen, J., Teresi, J., Marchi, M.,
& Velez, C.N. (1990). Problems in the measurement of latent variables in
structural equations causal models. Applied Psychological Measurement, 14,
183-196.
Hayduk, L.A. (1987). Structural equation
modeling with LISREL: Essentials and Advances. Baltimore, MD: Johns Hopkins
University Press.
Hayduk, L.A. (1996). LISREL: Issues, Debates,
and Strategies. Baltimore, MD: Johns Hopkins University Press.
MacCallum, R.C., & Brown, M.W. (1993). The
use of causal indicators in covariance structure models: Some practical issues.
Psychological Bulletin, 114, 533-541.
Millsap, R. A., & Everson, H. (1998).
Confirmatory measurement model comparisons using latent means. Multivariate Behavioral Research, 26, 479-497.
Mulaik, Stanley A.
Confirmatory factor analysis. In J.R. Nesselroade, R.B. Cattell, et al. (Eds)
(1988). Handbook of multivariate experimental psychology (2nd ed.).
Perspectives on individual differences. (pp.259-288). New York, NY, USA: Plenum
Press.
EXPLORATORY
FACTOR ANALYSIS, EFA
(see also comparing exploratory factor analysis and confirmatory factor
analysis)
Cudeck, R. (2000). Exploratory
factor analysis. In In H.E.A. Tinsley & S.D. Brown (Eds.), Handbook of applied multivariate statistics
and mathematical modeling (pp. 265-296). San Diego, CA: Academic Press.
Fabrigar, L. R., Wegener, D.
T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of
exploratory factor analysis in psychological research. Psychological Methods,
4, 272-299.
Kim, J.-O., &
Mueller, C.W. (1978). Introduction to factor analysis: What it is and how to do
it. Newbury Park: Sage.
Kim, J.-O., &
Mueller, C.W. (1978). Factor analysis: Statistical methods and practical
issues. Newbury Park: Sage.
Tabachnick, B.G.,
& Fidell, L.S. (2000). Using multivariate statistics (4th Ed.). New
York: Harper-Collins.
Gorsuch, R.L. (1990).
Common factor analysis versus component analysis: Some well and little known facts.
Multivariate Behavioral Research, 25, 33-39.
Hurley, A.E. et
al. (1997). Exploratory and confirmatory factor analysis: Guidelines, issues,
and alternatives. Journal of Organizational Behavior, 18, 667-683.
Snook, S.C., & Gorsuch, R.L. (1989). Principal
component analysis versus common factor analysis: A Monte Carlo study. Psychological
Bulletin, 106, 148-154.
COMPARING
EXPLORATORY FACTOR ANALYSIS (EFA) AND CONFIRMATORY FACTOR ANALYSIS (CFA)
Borkenau, P.,
& Ostendorf, F. (1990). Comparing exploratory and confirmatory factor
analysis: A study on the 5-factor model of personality. Personality and
Individual Differences, 11, 515-524.
Church, A. T.,
& Burke, P., J. (1994). Exploratory and confirmatory tests of the Big Five
and Tellegen's three- and four-dimensional models. Journal of Personality and
Social Psychology, 66, 93-114.
Hurley, A.E. et al. (1997). Exploratory
and confirmatory factor analysis: Guidelines, issues, and alternatives. Journal
of Organizational Behavior, 18, 667-683.
McCrae, R. R., Zonderman, A. B.,
Costa, P. T. J. r., Bond, M. H., & Paunonen, S. V. (1996). Evaluating
replicability of factors in the revised NEO Personality Inventory: Confirmatory
factor analyses versus procrustes rotation. Journal of Personality and Social
Psychology, 70, 552-566.
CAUSAL
INDICATORS
(FORMATIVE INDICATORS, FORMATIVE VS. REFLECTIVE INDICATORS, COMPOSITES,
PRINCIPAL COMPONENTS)
Blalock, H.M. (1964). Causal inference in
nonexperimental research. Chapel Hill, NC: University of North Carolina Press.
Bollen, K.A. & Lennox, (1991) Conventional
Wisdom on Measurement: A Structural Equation Perspective, Psychological Bull, ,
110,2
Bollen, K.A., & Ting, K-f.
(2000). A tetrad test for causal indicators. Psychological Methods, 5, 3-22.
Diamontopoulos, A., &
Winklhofer, H. M. (2001). Index construction with formative indicators: An
alternative to scale development. Journal of Marketing Research, 38: 269-277.
Edwards, J.R., Bagozzi, R.P. (2000). On the
nature and direction of relationships between constructs and measures. Psychological
Methods, 5, 155-174.
MacCallum and Browne, (1993). Use of Causal
Indicators in Covariance Structure Models: Some, Psychological Bulletin, 114, 3
McDonald, (1996). Path Analysis with Composite
Variables, Multivariate Behavioral Research, 31, 2,
COMPARING
CORRELATIONS, COMPARING CORRELATION MATRICES
Meng, X., Rubin, D.B., & Rosenthal, R.
(1992) Comparing correlated correlation coefficients. Psychological Bulletin,
111(1), 172-175.
Raghunathan, Rosenthal, & Rubin (1996).
Comparing correlated but nonoverlapping correlations. Psychological Methods, 1,
178-183
Steiger (1980). Tests for comparing elements
of a correlation matrix. Psychological Bulletin, 37, 245-251
Tatsuoka, M. M (1988). Multivariate analysis:
Techniques for educational and Psychological Research. New York. MacMillan.
Green, J.A. (1992). Testing whether
correlation matrices are different from each other. Developmental-Psychology,
28, 215-224.
INTERRATER
RELIABILITY
Bartko, J.J.(1991). Measurement and
Reliability: Statistical Thinking Considerations. Schizophrenia Bulletin, 17:
483-489.
Commenges, D., & Jacquin, H. (1994). The
Intraclass Correlation Coefficient: Distribution-Free Definition and Test.
Biometric, 50, 517-526.
Drewes, D. W. (2000). Beyond
the Spearman-Brown: A Structural Approach to Maximal Reliability. Psychological
Methods, 5, 214-227.
Guggenmoos-Holzmann, I. (1996) The Meaning of
Kappa: Probabilistic Concepts of Reliability and Validity revisited. Journal of
Clinical Epidemiology, 49: 775 - 782.
Li, H., Rosenthal, R., & Rubin, D.B.
(1996). Reliability of measurement in psychology: From Spearman-Brown to
maximal reliability. Psychological Methods, 1, 98-107.
Tinsley, H.E.A., & Weiss, D.J. (1975).
Interrater reliability and agreement of subjective judgments. Journal of
Counseling Psychology, 22(4),358-376.
FIT
INDICES (FIT INDEXES)
(see also noncentrality parameter)
Bentler, P. M. (1990). Comparative fit indexes
in structural models. Psychological Bulletin, 107, 238-246.
Bollen, 1990, Overall fit in covariance
structure models: Two types of sample size effects. Psychological Bulletin,
107, 256-259.
Ding, L., Velicer, W. F., & Harlow, L. L.
(1995). Effects of estimation methods, number of indicators per factor, and
improper solutions on structural equation modeling fit indices. Structural Equation Modeling, 2,119-144.
Fan, X., Thompson, B., & Wang, L. (1999).
Effects of sample size, estimation method, and model specification on
structural equation modeling fit indexes. Structural
Equation Modeling, 6, 56-83.
Gerbing, D.W., & Anderson, J.C. (1993).
Monte Carlo evaluations of goodness-of-fit indices for structural equation
models. In K.A. Bollen, & J.S. Long (eds.), Testing structural equation
models. Newbury Park, CA: Sage.
Haughton, D.M.A., Oud, J.H.L., & Jansen,
R.A.R.G. (1997). Information and other criteria in structural equation model
selection. Communications in Statistics: Simulation and Computation, 26,
1477-1516.
Hu, L., & Bentler, P. M. (1998). Fit
indices in covariance structure modeling: Sensitivity to underparameterized
model misspecification. Psychological Methods, 3(4), 424-453.
Hu, L., & Bentler, P. M. (1999). Cutoff
criteria for fit indexes in covariance structure analysis: Conventional
criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
Marsh, H. W., Balla, J. R., & McDonald, R.
P. (1988). Goodness of fit indexes in confirmatory factor analysis: The effect
of sample size. Psychological Bulletin, 103, 391-410.
Marsh, H. W., Balla, J. W., & Hau, K. (1996).
An evaluation of incremental fit indices: A clarification of mathematical and
empirical properties. In G. A. Marcoulides and R. E. Schumacker (Eds.),
Advanced structural equation modeling: Issues and techniques (pp. 315-353).
Mahwah, NJ: Erlbaum.
Nevitt, J., & Hancock, G.
R. (2000). Improving the root mean squared error of approximation for nonnormal
conditions in structural equation modeling. Journal
of Experimental Education, 68, 51-268.
Raykov, T. (2000). On the large-sample bias,
variance, and mean squared error of the conventional noncentrality parameter
estimator of covariance structure models. Structural Equation Modeling, 7,
431-441.
Steiger, J.H. (1989). EZPATH: A supplementary
module for SYSTATand SYGRAPH. Evanston, IL: SYSTAT.
Tanaka, J.S. (1993). Multifaceted conceptions
of fit in structural equation models. In K.A. Bollen, & J.S. Long (eds.),
Testing structural equation models. Newbury Park, CA: Sage.
POST
HOC MODEL MODIFICATION, MODIFICATION INDICES
Green, S.B., Thompson, M.S., & Poirer, J.
(1999). Exploratory analysis to improve model fit: Errors due to
misspecification and a strategy to reduce their occurrence. Structural Equation
Modeling, 6, 113-126.
Green, S.B., Thompson, M.S., & Poirer, J.
(2001). An adjusted Bonferroni method for the elimination of parameters in
specification addition searches. Structural Equation Modeling, 8, 18-39.
Hancock, G.R. (1999). A sequential
Scheffe-type respecification procedure for controlling Type I error in
exploratory structural equation model modification. Structural Equation
Modeling, 6, 158-168.
MacCallum, R. C., Roznowski, M., &
Necowitz, L. B. (1992). Model modifications in covariance structure analysis:
The problem of capitalization on chance. Psychological Bulletin. 111, 490-504
MacCallum, R. C., Wegener, D. T., Uchino, B.
N., & Fabrigar, L. R.(1993). The problem of equivalent models in
applications of covariance structure analysis. Psychological Bulletin, 114,
185-199.
NONCENTRALITY PARAMETER, NCP, DELTA, D
Bentler, P.M.
(1990). Comparative fit indexes in structural models. Psychological Bulletin,
107, 238-246.
McDonald, R.P.,
& Marsh, H.W. (1990). Choosing a multivariate model: Noncentrality and
goodness of fit. Psychological Bulletin, 107, 247-255.
Raykov, T. (2000). On the
large-sample bias, variance, and mean squared error of the conventional
noncentrality parameter estimator of covariance structure models. Structural
Equation Modeling, 7, 431-441.
Steiger, J.H.,
& Lind, J. (1980, May). Statistically based tests ofr the number of common
factors. Paper presented at the annual meeting of the Psychometric Society,
Iowa City, IA.
Steiger, J.H.
(1990). Structural model evaluation and modification: An interval estimation
approach. Multivariate Behavioral Research, 25, 173-180.
TWO-STEP
APPROACH TO SEM, FOUR-STEP DEBATE
Anderson, J.C., & Gerbing, D.W. (1988).
Structural Equation Modeling in Practice: A Review and Recommended Two-Step
Approach, Psychological Bulletin, 103, 411-23.
Anderson, J.C., & Gerbing, D.W. (1992).
Assumptions and Comparative Strengths of the Two-Step Approach: Comment on
Fornell and Yi. Sociological Methods & Research, 20, 321-33.
Fornell, C., & Yi, Y. (1992). Assumptions
of the Two-Step Approach to Latent Variable Modeling. Sociological Methods
& Research, 20, 291-320.
Fornell, C., & Yi, Y. (1992). Assumptions
of the Two-Step Approach: Reply to Anderson and Gerbing, Sociological Methods
& Research, 20, 334-339.
Hayduk, L.A. (1996). LISREL: Issues, Debates,
and Strategies. Baltimore, MD: Johns Hopkins University Press.
Hayduk, LA., & Glaser, D.N. (2000). Jiving
the four-step, waltzing around factor analysis, and other serious fun. Structural
Equation Modeling, 7, 1-35. See also replies by Mulaik & Millsap, Bollen,
Bentler, Herting & Costner in Vol. 7 of Structural Equation Modeling.
Markus, K.A. (2000). Comceptual shell games in
the four-step debate. Structural Equation Modeling, 7, 163-173.
Mulaik, S.A., & Millsap, R.E. (2000). Doing
the four-step right. Structural Equation Modeling, 7, 36-73.
BOOTSTRAPPING
(see also missing data section)
Bollen, K. A. & Stine, R. A. (1992).
Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21, 205-229.
Bollen, K.A., & Stine, R.A. (1993).
Bootstrapping goodness-of-fit measures in structural equation models. In K.A.
Bollen & J.S. Long (Eds.), Testing structural equation models (pp.
195-226). Newbury Park, CA: Sage. (Reprint of above 1992 reference)
Ichikawa, M. & Konishi, S. (2001).
Efficient bootstrap tests for the goodness of fit in covariance structure
analysis. Behaviormetrika, 28(2),103-110.
Johnson, T.R., & Bodner, T.E. (2007). A
Note on the Use of Bootstrap Tetrad Tests for Covariance Structures. Structural
Equation Modeling: A Multidisciplinary Journal, 14, 113-124.
Nevitt, J. & Hancock, G. R. (2001).
Performance of bootstrapping approaches to model test statistics and parameter
standard error estimation in structural equation modeling. Structural Equation Modeling,8, 353-377.
Yung, Y.-F., & Bentler, P.M. (1994).
Bootstrap-corrected ADF test statistics in covariance structure analysis.
British Journal of Mathematical and Statistical Psychology, 47, 63-84.
Yung, Y.-F., & Bentler, P.M. (1996).
Bootstrapping techniques in analysis of mean and covariance structures. In G.
A. Marcoulides & R. E. Schumacker (Eds.), Advanced Structural Equation
Modeling. Issues and Techniques (pp.125-157). Mahwah, NJ: Lawrence Erlbaum.
CAUSALITY AND SEM, CAUSAL INFERENCE, CAUSATION
Blalock, H. M. Jr. Correlation
and causality: The multivariate case. [Journal Article] Social Forces. 39 1961,
246-251. Univ. of North Carolina Press,
US
Berk, R.A. (1988). Causal
inference for sociological data. In N.J. Smelser (Ed.), Handbook of Sociology. Newbury
Park, NJ: Sage.
Chambers, W.V. (2000).
Causation and corresponding correlations. The Journal of Mind and Behavior, 21,
437-460.
Duncan, Otis Dudley (1975).
Introduction to structural equation models. New York: Academic Press. ISBN:
0-1222-41509.
Glymour, C. (2001). The mind's arrows. Cambridge,
Massachusets: MIT Press.
Holland, P. W.
(1988). Causal inference, path analysis, and recursive structural equations
models. Sociological Methodology, 18, 449-493.
Jöreskog, Karl G. and Herman
Wold, eds. (1982). Systems under indirect observation: causality, structure,
prediction. Vol. I, II. Amsterdam: North-Holland. ISBN:
0-44486301X (set)
Kenny, David A. (1979).
Correlation and causality. New York: John Wiley. ISBN: 0-471-02439-2.
Mulaik, S.A., & James, L.R. (1995). Objectivity
and reasoning in science and structural equation modeling. In R. H. Hoyle
(Ed.), Structural Equation Modeling. Concepts, Issues, and Applications (pp.
118-137). London: Sage.
Pearl, Judea (2000). Causality: models,
reasoning, and inference. Cambridge: Cambridge University Press. ISBN:
0521773628.
Scheiblechner, H. (1999).
Additive conjoint isotonic probabilistic models. Psychometrika, 64, 295-316.
Scheines, Richard, Peter Spirtes, Clark
Glymour, and Christopher Meek (1994) TETRAD II: Tools for Discovery. Hillsdale,
N.J.: Lawrence Erlbaum Associates.
Sobel, M.E. (1994). Causal inference in latent
variable models. In von Eye, A., & Clogg, C.C. (Eds.). Latent variable
Analysis: Applications for developmental research (pp. 3-35). Thousand Oaks,
CA: Sage.
BAYESIAN
INFORMATION CRITERIA (BIC)
Raftery, A.E. (1993). Bayesian model selection
in structural equation models. In K.A. Bollen & J.S. Long (Eds.), Testing
structural equation models (pp. 163-180). Newbury Park, CA: Sage.
Raftery, A.E. (1995). Bayesian Model Selection
in Social Research. Sociological Methodology, 25, 111-163.
PLS
(PARTIAL LEAST SQUARES)
Fornell , C., & Bookstein, F.L (1982), Two
structural equation models: LISREL and PLS applied to consumer exit-voice theory.
Journal of Marketing Research, 19, 440-452.
Fornell, C., & Cha, J. (1994), Partial
least squares. In R.P. Bagozzi (Ed.), Advanced Methods of Marketing Research
(pp. 52-78), Cambridge, MA: Blackwell Business,
Joreskog, K.G., & Wold, H. (1982). The ML and
PLS techniques for modeling with latent variables: Historical and comparative
aspects. In K.G. Joreskog, & Ketterlinus, R.D. et al. (1990). Partial least
squares analysis in developmental psychopathology. Development and
psychopathology, 1, 351-371.
McDonald, R. P. (1996). Path
analysis with composite variables. Multivariate
Behavioral Research, 31, 239-270.
Wold, H. (1982). Soft modeling: the basic
design and some extensions. In K.G. Joreskog & H. Wold (ed.), Systems under
Indirect Observation: Causality, Structure, Prediction, Vol.2, North-Holland,
Amsterdam, p1-54.
For basic information about PLS as an
alternative to SEM, see the "Related Methods" page in the SEMNET FAQ:
http://www.gsu.edu/~mkteer/relmeth.html#pls
TIME
SERIES
Bakeman & Gottman (1997). Observing
interaction: An introduction to sequential analysis (2nd ed., Cambridge
University Press; New York, NY.
Gottman, J. M., & Roy, A. K. (1990).
Sequential analysis: A guide forbehavioral researchers. Cambridge: Cambridge
University Press.
Hershberger, S.L., Molenaar, P.C.M., &
Corneal, S.E. (1996). A hierarchy of univariate and multivariate structural
time series models. In G. A. Marcoulides & R. E. Schumacker (Eds.),
Advanced Structural Equation Modeling: Issues and Techniques (pp.159-194).
Mahwah, NJ: Lawrence Erlbaum.
See also LATENT GROWTH CURVE ANALYSIS for
related methods
FACTOR
ANALYSIS WITH DICHOTOMOUS DATA
Bock, D., Gibbons, R., & Muraki, E (1988).
Full-information item factor analysis. Applied Psychological Measurement, 12,
261-280.
Muthen, B. (1983). Latent variable structural
equation modeling with categorical data. Journal of Economics, 22, 43-65.
Muthen, B. (in press). Second-generation
structural equation modeling with a combination of categorical and continuous
latent variables: New opportunities for latent class/latent growth modeling. In
A. Sayer & L. Collins (Eds.), New methods for the analysis of change.
Muthen, B. (1984). A general structural
equation model with dichotomous, ordered categorical, and continuous latent
variable indicators. Psychometrika, 115-132.
http://www.ssicentral.com/irt/testfact.htm
Mplus software http://www.statmodel.com/
FACTORIAL
SURVEYS
Hox, J.J., Kreft, G.G., & Hermkens,
P.L.J. (1991). The analysis of factorial surveys. Sociological Methods &
Research, 19, 493- 510.
MULTIGROUP
SEM, STACKED MODELS, CROSS-GROUP ANALYSIS, MEASUREMENT INVARIANCE, FACTORIAL
INVARIANCE
Alwin, D.F., & Jackson, D.J. (1981).
Applications of simultaneous factor analysis to issues of factorial invariance.
In D. Jackson & E. Borgotta (Eds.), Factor analysis and measurement in
sociological research: A multi-dimensional perspective. Beverly Hills, CA:
Sage.
Bloxom, B. (1972). Alternative approaches to
factorial invariance. Psychometrika, 37,
425-40.
Byrne, B.M. & Shavelson,
R.J. (1987). Adolescent self-concept: Testing the assumption of equivalent
structure across gender. American Educational Research Journal, 24, 365-385.
Byrne, B.M., Shavelson, R.J., & Muthen, B.
(1989). Testing for the equivalence of factorial covariance and mean structures:
The issue of partial measurement invariance. Psychological Bulletin, 105,
456-466.
Cheung, G.W. & Rensvold,
R.B. (1999). Testing factorial invariance across groups: A reconceptualization
and proposed new method. Journal of Management, 25, 1-27.
Hayduk, L.A. (1987). Structural equation
modeling with LISREL: Essentials and Advances. Baltimore, MD: Johns Hopkins
University Press.
Hayduk, L.A. (1996). LISREL: Issues, Debates,
and Strategies. Baltimore, MD: Johns Hopkins University Press.
Joreskog, K.G. (1971). Statistical analyses of
sets of congeneric tests. Psychometrika, 36, 109-134.
Kaplan, D. (1989). A study of the sampling
variability and z-values of parameter estimates from misspecified structural
equation models. Multivariate Behavioral Research, 24, 41-57.
Kaplan, D. (1985). Statistical power in
structural equation modeling. In R. H. Hoyle (Ed.), Structural Equation
Modeling. Concepts, Issues, and Applications (pp. 100-117). London: Sage.
Kim, J.
O., & Ferree, G. D., Jr. (1981). Standardization in causal analysis. Sociological
Methods and Research, 10, 187-210.
Kim, J. O., & Mueller, C. W. (1976). Standardized
and unstandardized coefficients in causal analysis: An expository note. Sociological
Methods and Research, 4, 428-438.
Lennox, J.A., & Lennox, R.D. (1995).
Sex-race differences in social support in depression in older low-income
adults. In R. H. Hoyle (Ed.), Structural Equation Modeling. Concepts, Issues,
and Applications (pp. 199-216). London: Sage.
Little, T. D. (1997). Mean and
covariance structures (MACS) analyses of cross-cultural data: Practical and
theoretical issues. Multivariate
Behavioral Research, 32, 53-76.
Little, T. D. (2000). On the comparability of
constructs in cross-cultural research: A critique of Cheung and Rensvold. Journal of Cross-Cultural Psychology, 31, 213-219.
Magidson, J. (1977). Toward a
causal model approach for adjusting for preexisting differences in the
nonequivalent control groupsituation. Evaluation Quarterly, 1, 399-420.
Meredith, W. (1993).
Measurement invariance, factor analysis and factorial invariance.
Psychometrika, 58, 525-543.
Millsap, R.E. (1995).
Measurement invariance, predictive invariance, and the duality paradox.
Multivariate Behavioral Research, 30, 577-605
Millsap, R. E. (1997).
Invariance in measurement and prediction: Their relationship in the
single-factor case. Psychological Methods, 2, 248-260.
Muthen, B. (1989). Latent
variable modeling in heterogenous populations. Psychometrika, 54, 557-88.
Muthen, B., & Christofferson, A. (1981). Simultaneous
factor analysis of dichotomous variables in several groups. Psychometrika, 46,
485-500.
Raykov, T., & Marcoulides, G.A. (2000). A
method for comparing completely standardized solutions in muliple groups. Structural
Equation Modeling, 7, 292-308.
Steenkamp, J-B.E.M. &
Baumgartner, H. (1998). Assessing measurement invariance in cross-national
consumer research. Journal of Consumer Research, 25, 78-90.
Vandenberg, R. J. & Lance,
C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions,
practices, and recommendations for organizational research. Organizational
Research Methods, 3, 4-69.
Werts, C.E., Rock, D.A., Linn, R.L., &
Joreskog, K.G. (1977). Validating psychometric assumptions within and between
several populations. Educational and Psychological Measurement, 37, 863-872.
STRUCTURAL
MEANS, MEAN STRUCTURES, LATENT MEANS
Aiken, L.S., Stein, J.A., & Bentler, P.M.
(1994). Structural equation analyses of clinical subpopulation differences and
comparative treatment outcomes: Characterizing the daily lives of drug addicts.
Journal of Consulting and Clinical Psychology, 62, 488-499.
Browne, M.W., & Arminger, G. (1995). Specification
and estimation of mean- and covariance-structure models. In G. Arminger, C.C.
Clogg, & M.E. Sobel (eds.), Handbook of statistical modeling for the social
and behavioral sciences (pp. 185-241). New York: Plenum Press.
Byrne, B.M., Shavelson, R.J., & Muthen, B.
(1989). Testing for the equivalence of factorial covariance and mean
structures: The issue of partial measurement invariance. Psychological
Bulletin, 105, 456-466.
Cole, D.A., Maxwell, S.E., Arvey, R., &
Salas, E. (1993). Multivariate group comparisons of variable systems: MANOVA
and structural equation modeling. Psychological Bulletin, 114, 174-184.
Hancock, G.R., Lawrence, F.R., & Nevitt,
J. (2000). Type I error and power of latent mean methods and MANOVA in
factorially invariant and noninvariant latent variable systems. Structural
Equation Modeling, 7, 534-556.
Marsh, H. W., & Grayson, D. (1994).
Longitudinal stability of latent means and individual differences: A unified
approach. Structural Equation Modeling, 1, 317-359.
Millsap, R. A., & Everson, H. (1998). Confirmatory
measurement model comparisons using latent means. Multivariate Behavioral Research, 26, 479-497.
Sorbom, D. (1974) A general
method for studying differences in factor means and factor structure across
groups. British Journal of Mathematical and Statistical Psychology, 27,
229-239.
Sorbom, D. (1978). An
alternative to the methodology for analysis of covariance. Psychometrika , 43,
381-396.
Sorbom, D. (1982). Structural
equation models with structured means. In K.G. Joreskog & H. Wold (Eds.) Systems
under indirect observation: Causality, structure, prediction_. (pp. 183-195).
Amsterdam: North-Holland.
PARSIMONY
Markus, K. A. (1998). Judging
Rules. The Journal of Experimental Education, 66, 261-265.
Marsh, H. W., & Hau, K-T. (1996).
Assessing goodness of fit: Is parsimony always desirable? Journal of
Experimental Education, 64, 364-390.
Marsh, H. W., & Hau, K-T. (1998). Is
parsimony always desirable: Response to Hoyle, Sivo & Willson, Markus,
Mulaik, Tweedledee, Tweedledum, the Cheshire Cat, and others. Journal of
Experimental Education
Mulaik, S.A., James, L.R., Van Alstine, J.,
Bennett, N., Lind, S., & Stillwell, C.D. (1989). Evaluation of
goodness-of-fit indices for structural equation models. Psychological Bulletin,
105, 430-445.
Raykov, T., & Marcoulides, G.A. (1999). On
desirability of parsimony in structural equation model selection. Structural
Equation Modeling, 6, 292-300.
HEYWOOD
CASES, NEGATIVE ERROR VARIANCES, NONPOSITIVE DEFINITE MATRIX, IDENTIFICATION
Bekker, Merckens & Wansbeek (1994). Identification, Equivalent Models, and
Computer Algebra. New York: Academic Press.
Bentler, P.M., & Chou, C.-P. (1988).
Practical issues in structural modeling. In J.S. Long (Ed.), Common
problems/proper solutions (pp. 161-192). Beverly Hills, CA: Sage.
Bollen, K.A., & Jöreskog, K.G. (1985).
Uniqueness Does Not Imply Identification: A Note on Confirmatory Factor
Analysis. Sociological Methods and Research, 14, 155-63.
Chen, F., K.A. Bollen, P.
Paxton, P. Curran, and J. Kirby. 2001. Improper Solutions in Structural
Equation Models: Causes, Consequences, and Strategies. Sociological Methods
and Research, 29, 468-508.
Dillon, W.R., Kumar, A., & Mulani,
N. (1987). Offending estimates in covariance structure analysis: Comments on
the causes of and solutions to Heywood cases. Psychological Bulletin, 101,
126-135.
Johnson, T.R., & Bodner, T.E. (2007). A
Note on the Use of Bootstrap Tetrad Tests for Covariance Structures. Structural
Equation Modeling: A Multidisciplinary Journal, 14, 113-124.
Rigdon, E E. (1995). A
necessary and sufficient identification rule for structural models estimated in
practice. Multivariate Behavioral
Research, 30, 359-384.
Steiger, J.H. (2002). When constraints
interact: A caution about reference variables, identification constraints, and
scale dependencies in structural equation modeling. Psychological Methods, 7,
210-227.
Wothke, W. (1993). Nonpositive definite
matrices in structural equation modeling. In K.A. Bollen & J.S. Long
(Eds.), Testing structural equation models (pp. 205-234). Newbury Park, CA:
Sage.
WRITING
ABOUT SEM, WRITE-UP, REPORTING SEM ANALYSES
Boomsma, A. (2000). Reporting analyses of
covariance structures. Structural Equation Modeling, 7, 461-483.
Hoyle, R.H., & Panter, A.T. (1995). Writing
about structural equation models. In In R. H. Hoyle (Ed.), Structural
equation modeling: Comments, issues, and applications. (pp. 56-77). Thousand
Oaks, CA: Sage.
McDonald, R.P., Ho, M-H. R. (2002). Principles
and practice in reporting structural equation analyses. Psychological Methods,
7, 64-82.
Raykov, T., Tomer, A., & Nesselrode, R.J.
(1991). Reporting structural equation modeling results in psychology and aging:
Some proposed guidelines. Psychology and Aging, 6, 499-501.