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The Use of Symmetry with the Fast Fourier Algorithm
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This paper presents an algorithm for making use of symmetry in the fast Fourier transform in a simple
and general way which is applicable to nearly all space groups. This allows one to reduce storage re-
quirements to approximately what is needed for an asymmetric unit of the electron-density function,
and hence makes possible economical forward and reverse transforms of large unit cells in core.

Introduction

In recent years the 'Fast Fourier Transform' (FFT) of
Cooley & Tukey (1965) has been increasingly applied
to problems in crystallography and electron micros-
copy. A consideration limiting its use, however, has
been the fact that, while Friedel symmetry may be
conveniently incorporated into the algorithm, it has
only recently been possible to make use of space-group
symmetry to reduce storage and computing time re-
quirements. The storage problem is more serious since
it frequently happens, particularly for crystals of large
biological molecules, that the available core storage is
not sufficient to include the entire unit cell, which is
what the fast Fourier algorithm normally requires. Ex-
ceeding the core limitations forces one to use a more
complex and time-consuming form of the algorithm
which uses tape or disk for storage (Gentleman &
Sande, 1966; Brenner, 1968, 1972; Singleton, 1968;
Hubbard & Quicksall, 1970). The net result of not
using space-group symmetry and having to include the
entire unit cell in the transform is to erode the savings
possible with the FFT; indeed, for high-symmetry
space groups, the fast Fourier method may not have a
significant advantage over conventional algorithms,
and may even be costlier. For these reasons, an ap-
proach which allows the FFT to make use of space-
group symmetry is of some value, as this could provide
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the storage factor necessary to allow the computa-
tions to be done in-core.

We present such an approach. A method which bears
some similarities to the procedures we set out here, has
been proposed by Ten Eyck (1973), who has analyzed
how the fast Fourier algorithm might be modified to
include various possible symmetries. The present ap-
proach differs from Ten Eyck's in being simpler and
more general since only standard, unmodified, fast
Fourier subroutines are used. On the other hand, it
suffers from the disadvantage of making full use of
symmetry only for storage, but not for time reductions.

Procedure

For space-group symmetry with N general positions
given by rotations and translations, SJ and tJ, j= 1,
... , N, the electron-density function and its transform
have the symmetry,

e(SJx+tJ)=e(x) (1)
and

F(SJh) = exp ( - 2nih . tJ)F(h) (2)
since

Centering is included in these equations by operations
of the form [SJ, tJ + t] where tis the appropriate trans-
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lation. For example, in C-centered cells.igeneral posi-
tions occur in pairs: [SiX+ti,SiX+t)+T] where T=

+ Ct, -t, OLand j = I ... N12. Note that this gives,via
equation (2), the expected systematic absences, A
related treatment of thesesymmetry equations has been
given by Bienenstock& Ewald (1962).' " .'

We can use (1) and, (2) to generate a complete setof
data from an asymmetric unit (a.u.) in real or recip-
rocal space,t i.e. we need roughly-liN of the complete
set (slightly larger because the boundary of the a.u.
must be included), We can make use of the symmetry
in the transform b~ calculating; for each J,

G,(X,y)= .L .L F,(h,k) [exp 2ni(hx+ky)] , (4)
h k

where hand k range over the whole hk plane, and the
two-dimensional Fl(h,k) are generated from a refer-
ence array of the a.u. Fih, k, I) by equation (2). The
electron-density function is then obtained by a series
of one-dimensional transforms on Gl(x,y):

Qxiz) = .L Gxil)exp (2nili).· (5)'
I

nx • nyjM '(M 5, N) of these values; for use in the sub-
sequent one-dimensional Fourier of equation (5). The
same domain of G in xyis saved, for each I, thus reduc-
ing, at this point, the total storage requirements for
G(x,y, I) to nx• ny• n-l M. In addition mirror planes nor--
mal to z will result in G being real (if the mirror IS at
z = 0) or of known phase, and yield a further reduc-
tion in storage requirements by a factor of two.t We
shall show that in most cases M or, 2M is equal to N.
More specifically, for all space groups not rhombo-
hedralor cubic, all N general positions can be used to'.
reduce the storage requirements of G to nx . ny . nzl N
values, i.e. the same numberneeded for Q and F. "

This results from the fact that, except for the two
cited systems, Si(1,3)=Si(2,3)=Si(3,1)=Si(3,2)=0
and Si(3, 3) = ± I for all j; i.e. [Si,ti] are given by

(7)

, '.

From equation (1), all [Si,ti] operations of the above
form which differ in one or more of the a, b, c, d, tx,

This mixed function, G, we write variously as G,(x,y) ty variables can be used to reduce the domain of x, y
and Gx.il) to emphasize that the calculation takes for Which GI(x,Y) must be saved and the Fourier trans-
place in two stages: a series of two-dimensional Fourier form ofequation (5) calculated. § [Si,ti] operations
syntheses in which we transform between real space differing onlyin the sign of S(3,3) and (perhaps) tz
(x,y) and reciprocaVsp~ce (h,k), 'and a series of one- represent mirror planes normal to z;' in this case,
dimensional transforms, in which (x,y) are held fixed Gl(x,y) hasrknown phase and hence we need save
and we transform on z or (These one-dimensionaloil1y the magnitude of G (see footnote t). The net effect
transforms need only be done for (x,y) in the asym- of all this is that the total storage for G will be ap-
metric unit of real space, 'and hence the Gi(x,y) need- proximately the same as that needed for the asymmetric
only be saved for these values of (x.v). This very simple unit of F or Q.
fact .is the basis for the ptesent approach. The computational procedure used is outlined sche-'

Let us consider the storage requirements forp, F, matically in Fig. 1. The asymmetric unit of F is stored
and' G. The asymmetric unit in Q requires about in planes oft, for I';? O.For each I, equation (2) is used
nx. ny. rtzlN real storage elements where I/nx is the to generate a complete Fl(h,k) plane in a two-dimen-'
sampling interval along the :x axis, and similarly for sional working array (a): The two-dimensional trans-
rt~ and nz. Thedomain in reciprocal space which can, ' form of this function is taken in place to give Gl(x,y)
be used to generate Q is, like the real-space cell, defined' for the completex,y plane. Only the portion of this G
by a' parallelepiped of nx . ny . nz points, and thus the array' needed for the calculation ofcQ need be retained.
asymmetric unit for the F's is again about nx • ny ; n-l N Since the values of the asymmetric unit F,(h, k) are re-
patois. .lfthe F's are real, this is the number of stan- quired only for the calculation of Gl(x,y); the port~on
dard-Iength storage elements needed; if they are com- of the G array to be retained may be stored in the same
plex, Friedel symmetry reduces the number of points locations as the a.u'. F,(h,k). When this procedure is,
by -t, and gives the same req'uirement for storage. done for all I, and the asymmetric unit F's fully r-e-

We now consider the storage requitements for placed by G's, Gxil) values are collected for 'each (x;y)
G(x,y, I). From equation (5), it is dear, from the reality in the asymmetric unit and,Vhe one-dimensional trans~
O[Q, that,- _~!L , , form of equation (5) is performed (b). A workingar-

ray is used for this calculation, but the resulting Qxiz)

This means that equation (4) need be evaluated only
for I?O.
, Equation (4) gives us, for iny I, values of G,(x,y)

for the full plane of nx • ny points, but because of the
space-group symmetry, we need save only a fraction,

f lN~tu~aj!y we also make 'use of the reality of (l, and the
consequent Hermitian symmetry of F.

(6)

t ,If the mirror is at z = m, let (l'(z) = e(z + m) and G'(I) be
the transform of e'. Then (/ is centric, G' is real and Gx//)=
exp [ - 2nilml. G'(/). Thus we need save only the (signed)
magnitude-Of G'(I) rather than a complex value. The phase of
G is given by the equation just Cited; this is what we mean by
'known phase'.

§ If hexagonal axes are -used for the rhombohedral space
groups all lSi, til will be of the form given in equation (7).
For cubic space groups, one third of the general positions are
of this type and can be used for storage reduction.
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values are again stored in place of the corresponding
G"y(l) array. Thus, the same storage area is used for
the asymmetric unit ofF, for the reduced G array, and
for the final asymmetric unit ofQ. .

In the description given here (and in the program to
be described below) we make use of, for the small one-
and two-dimensional transforms, a. perfectly general
fast Fourier routine, incorporating at most Friedel
symmetry. While this procedure is then immediately
applicable to any space-group symmetry, simply by
specifyingthe set of [5), t)], it would be possible to use
more complicated fast Fourier algorithms which make
intrinsic use of some symmetry, as described by Ten
Eyck (1973).

The above procedure is readily 'reversed' so that we
easilycalculate the inverse transform, Q(xyz) -? F(hkl)
by series of one-dimensional (inverse) transforms on Z

to yield G"y{/) followed by two-dimensional (inverse)
transforms. That is, we simply invert equations (5)
and (4). Again, we need only store, at anyone time, an
asymmetric unit of data. The ability to transform back
and forth economically between real and reciprocal
space makes practical some new approaches to direct
methods [See,for example, Barrett & Zwick (1971)].

While full use is made of the space-group symmetry
to reduce storage requirements (except for the cubic
system), the time needed for the transform is only
slightly less than that of an n". ny . nz point in-core

1-1' fli' / (2) J2!flfII (4) ~ 1ft
. - E8Jfjj - ~ -- L-l

. Fr(h;k) Gr(x,y) ;

1-1 flTZ
I-O~

F(h,kJ) G(x,yJ)(a)

(5)

1-2~· .
1=1 .. '

1=0

!J;
~Gxy(/) pxy(z)

(b)
p(x,y,Z)G(x,yJ)

Fig. 1. Schematic representation of transform from F(h,k, l) to
q(x,Y,z). Shaded portions of arrays indicate the portion
actually stored; numbers in parentheses indicate equations
in the text. (a) Transform, plane by plane, to obtain G,(x,y).
(b) One-dimensional transforms from G,(x,Y) to q(x,Y,z).
Asymmetric units in xy or hk need not actually be parallel-
ograms. ..
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fast Fourier transform. The calculation consists of
(nz/2+ 1) two-dimensional transforms of size n". ny

[equation (4)] followed by n" . ,ny/M one-dimensional
transforms of size nz, and thus time savings are only
achieved in the second stage of the calculation. If,
following Ten Eyck, we used two-dimensional sym-
metry in the two-dimensional transform steps, further
time savings would be possible. The advantage of the
present approach is the generality of this algorithm
for all space groups.

To estimate the time required for this calculation,
assume nx=ny=nz=n=2k• We assume a routine which
utilizes Friedel symmetry is used. The time for a full
n3 point transform with the standard fast Fourier
procedure is proportional to n3 log, n3 = 23k • 3k (Coo-
ley & Tukey, 1965). The above algorithm requires a
time proportional to 2(n/2+ l)n2 )Og2 n2=:::.23k2k for
the two-dimensional transforms (where the additional
factor of two results from the absence of Friedel sym-
metry in these transforms) plus' n2• n log, n] M =
23kk/ M for the one-dimensional transforms which, do
have Friedel symmetry. The ratio of these two times,
which is the time reduction factor relative to the non-
symmetry-utilizing FFT, is

23k(2k+ k/M)
23k(3k)

and clearly cannot be, less than l The time savings
relative to conventional Fourier algorithms' are, of
course, much greater. In fact, the most time-consum-
ing portion of calculating electron-density maps with
the fast Fourier is often printing the map in suitable
format.

A program, called CHAFF, implementing this al-
gorithm, space-group independent and for arbitrary
dimensions (not restricted to powers of 2) has been
written in FORTRAN. It takes transforms in either
direction and while only the asymmetric unit of F or Q
is stored, the user can easily access (for input or out-
put) any symmetry-related (h, k, I) or (x.j', z). Thus,
although the data is stored in an asymmetric unit
chosen for convenience in the calculation (0:::;;z < 1 or
0:::;; z < 1" for centric space groups and a domain in xy
approximately l/M of the plane), for purposes of input
and output or modifying values, the user can use any
definition of asymmetric unit he or she chooses.

This program is currently being used for Patterson
and Fourier calculations on yeast tRNAm;t, space
group P6422 (Schevitz, Navia, Bantz, Cornick, Rosa,
Rosa & Sigler, 1972).Actual storage requirements and
running times on an IBM-360/195 are given in Table 1.
For comparison, figures are also shown for the in-core
non-symmetry-utilizing fast Fourier based on a pro-
gram of N. Brenner and a disk version of this program
which we have also implemented. The core require-
ments include subroutines for output of maps, but the
times shown do not include time for this output.

For many applications, the algorithm described here
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Table 1. Storage and time requirements for different fast Fourier algorithms (IBM 360/195)
Times for taking a transform and total core requirements using three fast-Fourier programs. CHAFF is the symmetry-utilizing
in-core program described in this paper. Since IN-CORE and DISK do not use symmetry, transform times and core requirements
are space-group independent. Numbers in parentheses are extrapolated. The times listed include the time for initialization and
data input before transform. This is roughly proportional to the number of reflections.

CHAF IN-CORE DISK
Time Core* Timet Core* Time Core*

Dimensions (sec) (bytes) (sec) (bytes) (sec) (bytes)
32-32·32 1-6 148k 1·7 222k 11·7 138k
32-32-33 1·8 148k 3-3 352k -t -t
64·64'72 6·7 288k (25) (2392k) -t -t
16·16·32 1·2 134k 1-3 122k 4·3 114k
32-32-32 2·2 174k 2·2 222k 11·7 138k
64·64'32 5·0 328k 4'5 614k 89'1 234k
64·64'64 7·4 464k (7) (1I42k) (160) (234k)

32·32-32 1·7 156k 1·4 222k 10·8 138k
64'64'64 6'5 258k (7) (1I42k) (160) (234k)
64·64·96 8·8 296k (40) (3128k) -t -t

Space
group

P6222

1422

* Numbers include buffer space which can be reduced slightly with some loss of efficiency. A 'k' of storage is 1024 bytes; a
byte is an 8-bit unit of storage. Maximum storage available varies from one installation to another, but at present rarely exceeds
about 1000k .

t DISK program requires powers of 2.
t The IN"CORE program uses a less efficient Fourier routine if'any dimension is not a power of 2. It could be modified to

reduce time to approximately that of CHAFF.

will allow Fourier calculations to be done without the
use of external storage, or, if the entire unit cell will
fit into available core, with far less storage than other-
wise.required. For very large unit cells, however, even
an asymmetric unit may be too large to be accom-
modated in core. 'For such cases the CHAFF algorithm.
could be modified to utilize external storage (this has
not actually. been implemented) and since only an
asymmetric unit of data is needed, input-output costs
would be approximately l/M of that required for the
non-symmetry-utilizing program (called DISK in
Table 1).
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