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Abstract

Several methods of image reconstruction from projections are treated within a
unified formal framework to demonstrate their common features and highlight
their particular differences. This is done analytically (ignoring ecomputational fac-
tors) for the following techniques: the Convolution method, Algebraic Reconstruc-
tion, Back-projection, and the Fourier-Bessel approach.

Inhalt

Bildrekonstruktion aus Projektionen. Verschiedene Methoden, die zur Re.
konstruktion von Objekten mit Hilfe von gegebenen Projektionen dicser Objekte
entwickelt wurden, werden in einem analytisch einheitlichen Formalismus darge-
stellt mit dem Ziel, gemeinsame Ziige und vor allem prinzipielle Unterschicde der
einzelnen Methoden klarzustellen. {Maschinenkalkulatorische lirwigungen werden
nicht angestellt.} Es werden behandelt: die Konvolutionsmethode, die Algebraische
Rekonstruktion, Back-projection und die ¥ourier-Besscl-Methode.

The realization of DeRosier and Klug [1] that it is possible to combine a
number of two-dimensional electron microscope images of three-dimensional
objects to obtain “‘reconstruction” and that for objects of high internal
symmetry a single or a small number of projections may suffice for this
purpose has stimulated a number of proposals for reconstruction techniques
[2-6]. We offer in this paper a theoretical consideration of several of these
methods. In general our approach is very close to that of Klug, Crowther,
De Rosier and their colleagues, and, in fact, some of our conclusions have been
reached by Gilbert |7] in his recent very extensive consideration of direct
space reconstruction methods. On some points, however, our approach
differs from that of the above authors. In addition, we hope that this unified
and independent presentation of the problem will help dispel some of the
confusion that investigators new to this area experience when confronted
with the problem of choosing a method for reconstruction.

* 60637,
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We restrict ourselves to the formal basis underlying these techniques,
omitting from the present discussion considerations of computational
convenience and efficiency, although we recognize that these two factors
cannot altogether be separated, because computer programs do not always
exactly realize the theoretical equations upon which they are based. We shall
compare the following methods:

(1) The Convolution method, ““CM”, of Ramachandran and Lakshminaraya-
nan [6].

(2) The Algebraic Reconstruction technique, “ART", of Gordon, Bender
and Herman [B].

(3) The Back-projection which will be referred to as “BP”’, which is dis-
cussed by Crowther, DeRosier and Klug [2]. (As these authors note [8], the
projection function approach of Vainshtein [4] may be considered a form of
BP.)

(4) The Fourier-Bessel approach of Crowther, DeRosier and Klug [2, 9].
This will be referred to as “¥B”,

We shall show how these methods relate to one another and to a very
simple approach which makes use of a Fourier transform sampled by only
those views which are available. We take this method as our starting point
and call it “F37,

We choose the two-dimensional single-axis rotation case for simplietty of
analyvsis and eomparison of methods. Obviously, for several views about a
common axis, the three-dimensional case can be considered as a series of
planar two-dimensional reconstructions.

1. Definition of the problem and the sampled Fourier (FS).

Fig. 1, reproduced from the original DeRosier-Klug paper, summmarizes the
reconstruction of a density function f(r, ¢) from a set of projections.

If the Fourier transforms of the measured projections, g(x, 8), are written
as

F(R, ) == Oj? g(x, f) e?miRx dx {1)

the density function is represented as a Fourier synthesis in polar coordinates

(R, §) as:
o 2o

f(r, ¢) = 6[ (_[ F(R, 0) e-271 Rr cos (-9 RAR d8. (2)

This is the most common and probably the simplest formulation of the
problem, though it would be somewhat more elegant if we could begin our
derivation with a definition of our measured g’s in terms of the true f and
proceed from there to derive an expression for the reconstructed f. The pro-
jection operation, however, is analytically cumbersome when we consider
our object fixed, as in Fig. 1, and for this reason is usually not written out.
Matters are simpler and, for the asymmetric object, also more in keeping
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Fig. 1. Scheme for the general process of reconstruction of a structure from its
transmission images. (Taken from DeRosier and Klug!.)

with the experimental arrangement, if we treat our projection or optical axis

(called y) as fixed and rotate the object through an angle, £2. (Fig. 2.) We

write out the relevant equations for completeness and for possible interest.
In our new coordinate system we have

==}

g(x, ) =_I f(r, ¢) dy (3)
where
T (x? -y x =t cos (¢ + )
or (4)
9S:tan—1(l)—.9 v =rsin (¢ + £2).
x

g is now rigorously defined and the goal of reconstruction may be simply stated
as the inversion of the above Eq. {3). We consider the one-dimensional Fourier
transform of both sides

It

o w 2
G(h, 2) = [ g(x, 2)etninxdx = [ | rdrdgf(r, $) eribr cos@+2)  (5)
oo 0 0

from which we can obtain

It

w 2 o
f(r, ¢,) — g A‘ hdhdQ e—2nihr cos(é+ (1) J’ g(x, Q) elribhx dx . (6)
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Fig. 2. Alternate coordinate system as defined by the experimental set-up.

This finally and rigorously accomplishes the inversion of Eq. (3) for our
present convention of fixed projection axes. (To relate this to our earlier
convention and Eqgs. (1) and (2), one must recall that rotation of our object
produces a counter-rotation of its transform; i.e., F(R, 8) = G(R, —0).) In
a sense, our taking of a Fourier transform of both sides of Eq. (3) served the
purpose, essentially, of simply adding a needed integration over x. Without
this, the dependence of f on both x and y would make inversion difficult.
It should not, however, be concluded from this that a Fourier approach is
actually necessary, since other methods of inversion might well exast.

We return now to the earlier and more familiar convention of fixed object
and rotating projection direction. Our scheme for reconstruction is to calcu-
late the central sections from the projections by Eq. (1) and then to combine
them by Eq. (2). The principal practical difficulty for reconstruction arises
from the fact that not all views are available; i.e., that we have g(r, 8), and
thus F(R, ), only at discrete 0’s. We might then take, for our desired func-
tion, what obtains from the sampled transform equation,

[==]

fulr, ¢) = Z .[ F(R, Bk} e—27iRr cos(¢—0) R 4R (7)
k

<

and we shall refer to such direct use of the views which are available as the
“sampled Fourier’” or “FS” approach. This procedure, in effect, makes use
of, in place of the true F(R, ), the sampled transform

Fi(R,0) = % F(R, 6) 6(6 —0x) . (8)

We shall see that, in general, this is not the optimum method of reconstruc-
tion to use. Because of its great simplicity, however, it will be convenient to
discuss the other methods of CM, ART, BP, and FB in terms of it to clarify
their analytic bases and mutual relationships.
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II. The Convolution Method and Back-projection

The convolution method (CM) of Ramachandran and Lakshwminarayanan
6], 1s formally equivalent to the conventional Fourier approach embodied
in Eqs. (1) and (2). Because F(R, § -+ ) = F(—R, 0), the limits of integra-
tion of the polar-coordinate Fourier of Eq. (2) can be changed, giving

f(r, ) = (;f dﬂj |R|F(R, ) e~2iRr cos (—0) qR.. (9)

Using Eq. (1), and noting that there will generally be some limiting resolution

L bevond which F(R, ) is negligible, we have

L @
fir, ¢) = J dO [ e=*RER[AR | g(x, 0) e?mifixdx (10)

Srmy Oty

oo L
df | g(x)dx | e-2miRE X |R|dR
© — L

where t = 1 cos (¢ — B).
The innermost integral is the Fourier transform of a finite ramp which we
evaluate as follows:

+1. I R _
q(s) = § e2mRs|R[dR =1L | {1 — (1 - ‘L_'>} o 2riRs dR
—L

= L2[2 sinc(2mLs) — sinc(mls)) (11)
= qn(s) —qcls).
Combining Egs. {(10) and (11), we have

ST + oz
f(T‘, ?S) = 0.[ de—j g(X, 0) {QB(‘J* X) 7 qC(t Ax)} dx. (12)

Following Bracewell and Riddle [10] we interpret the g and q¢ terms as
follows: For large L, qg acts as a d-function with area L and thus

f{r, ¢) = L 0} df g(rcos [~ 0], 0) — 0‘? d0+ng{x, 0) qe(t —x) dx  (13)
= fB(I', ¢) - fc(ra ¢) .

The first integral is a summation of all the projections, which can easily be
performed experimentally, hence the name *‘back-projection”. The accuracy
of this method will depend cbviously on the magnitude of f¢ in Eq. (13),
which can be written as

t—x

fe(r, ) = J‘ g((:i?—)x(::{ j sin (27tLiz) dz
—a 0

o5 o 1L
—2 Jsin(zn Lz) dz j fg(t 1+ s, 0) + g6 —s, 0); % -
s

=
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If we expand the integrand of the inner integral in a Taylor series, only the
even terms, which can be interpreted as the curvature of g(x, 6) and its higher
derivatives, remain. If the g(x, 8)’s are smooth functions, back projection
will give a fair representation of f. We feel that this result should suffice for
a qualitative understanding, and we will not go into a more rigorous estimate
of the errors in the back projection method (see Gilbert [7]) since more accu-
rate reconstruction methods are available.

Rawmachandran and Lakshminarayanan do not initially separate the g-
function into two parts. They deal directly with the convolution expression of
Eq. (10)

T o

f(r, ¢) = gd@ _j a{x, 0) q{r cos [¢ — 0} — x) dx. (15)

For the actual evaluation of this equation they take the experimental limita-
tions into account in two ways. First, they replace the integration over 0
simply by the sum over available views,

fr, ) = X | &(x, 8y) qlr cos{$ — ) — x] dx

j —ao
= 2 | R|F(R, ) e-2nikr cos 400 AR, (16)
j —w

where the §; range from O to 7. This shows clearly that their convolution
method is formally equivalent to what we have referred to as FS, and which
they call Fourier Transform in Polar Coordinates (FTPC). The statement by
Ramachandran and Lakshminarayanan that CM gives more accurate results
than FTPC is therefore a little difficult to understand; the apparent short-
comings of the latter method may result from insufficient sampling in R of
F(R, 8) or from too short a resolution limit. Since CM and FTPC (= FS) are
formally identical, there must be some computer realization for both which
gives identical results. This might possibly require more computer time and/or
storage for FS, but these considerations should not obscure the formal
identity of the two methodsl.

Second, they replace the x integration by a summation of the integrand at
equidistant sampling points, which are separated, according to the assumed
cut-off frequency, I, by a distance a — 1/2 L. Applying the discreteness of
both variables, 8 and x, to lq. (13}, we obtain

fr = L 2'g(r cos(¢ — 05), 85) (17)
]

1 The simple statement by Klug and Crowther [8], in their concluding remarks,
that the convolution method is equivalent to the Fourier method must be understood
ag saying, in our notation, that CM = FS. As we show later, for the case of uniform
sampling in 8, these two approaches are also equivalent to the Fourier-Besscl techni-
ques used by the above authors. However, as Gilbert [7] bas pointed out, CM and ¥S
are not equivalent to FB for non-uniform sampling.
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and
fo =1/2fp + 2L 2 &Y L)zg(rcos(¢~0j)+ka, 8y) . (18)

j kodd

Note that the f¢ term actually contains one-half a back-projection. Rama-
chandran and Lakshminarayanan apply the discreteness to Eq. (15) and
obtain a two term expression where the back-projection components are
already combined, i.e.,

fu(r, ¢) = 1/2 n(r, ) 2L X 5 1

J koda ko

g(r cos(p — ;) + ka, By) . (19)

)2

It is interesting to note that the double sum resembles but, in fact, is not
equal to a weighted summation of shifted back-projections [since a is con-
stant and not proportional to cos (¢ — 8))].

In essence, the convolution method is a novel way of performing the one-
dimensional R-integration in Eq. (2). This convolution could alternatively
have been done in reciprocal space as a multiplication: one could simply
calculate the central sections, F(R, 0), by Eq. (1), multiply by |R|and per-
form the inverse transform. (Such an approachis of interest for computation-
al purposes, as it would allow the use of the Fast Fourier transform.) The
situation here is similar to the real space implementation of the Tangent
Formula and related calculations proposed by Barrett and Zwick [11], where
the usual convolution in reciprocal space is replaced by a faster multiplication
(squaring) in real space, just as in the present case the convolution in real
space can be replaced by a multiplication in reciprocal space,

We might attempt to use these relations in reverse, i.e., to obtain an
expression for fg in terms of the true f as follows:

fa(r, ) = [ 6  Fn(R, 0) e-2riRt| R|dR (20)
0 —a

where
1

R|

This shows again that back-projection underweights the high frequency
terms and might be suitable only for reconstructing smooth functions.
Transforming Kq. (21) into real space leads to a convolution of the true
f with 1/r, as found by Gilbert [T].

Fu(R, 6) = F(R, 8) (21)

III. Algebraic Reconstruction

We now discuss the Algebraic Reconstruction Technique (ART) of Gordon,
Bender and Herman [b], particularly, the additive method. We shall show
that, except for the requirement for positive density which ART imposes,
and m the limit of continuous sampling of available views, ART is equivalent
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to the back-projection method. This conclusion was reached also by Gilbert [7]
who states it without proof.

To clarify the essential analytic nature of the ART additive method, we
rewrite the basic equations given by Gordon and Bender as follows:

tTHi(x, y) =1 (x,5) + {gjr1 (X) — " (")) (22)
where
g™t (x") = {dy"fI (x,y) (23)
and
gi+1(x) = g(x’, O541). (24)

For the sake of clarity we use lower indices to denote observed quantities,
and upper indices to indicate iterated, i.e., calculated, quantities. We consider
here continuous density and projection functions? and use the convention
that the projection direction will define a y’-axis of a rotated coordinate
system with coordinates relative to the fixed system (e. g., of Fig. 1) given by:

x'y31 = x c08 Bj1) -+ ysin By =rcos (¢ — Ojq)

¥'ij+1 = —xsin iy + y cos 41 = rsin (¢ — Gj4)) (25)
h'y11 = hcos @41 4 ksin 013 = Rcos (¢ — B41)

k'j+1 = —hsin 851 + k cos 0541 = R sin (¢ — H511).

(We will temporarily drop the subscripts on x’, v', h’, k’, for convenience,
but it is important to recall that these primed variables depend upon the
view being considered.)

We here omit consideration of the positivity requirement imposed by the
ARTists, which would have the effect of replacing the average over y’ in Eq.
(22) by the maximum of the average and zero. We define the Fourier trans-
form of the density function at the jth iteration as follows:

Fith,k) = | § dx dye?2rix*ky) fi(x, y), (26)

—c) —a0

and taking the transform of both sides of Eq. (22), we have

Fi*i(h, k) — Fi(h, k) + (A — B) 27)
where
A= T dx dye2mi®xto (g (x)>ye. (28)

B is a similar expression with the observed projection replaced by the calcu-
lated one, gi*!. We change variables in Eq. (28) to their primed forms, and

t The analytic treatment of the discrete and bounded density matrix used by
Gordon et al [5] is difficult, particularly because the number of points sampled by a
projection ray is not a smooth function of the projection angle. To circumvent this
problem, we attempted to adjust our cell parameters to fit the angles of projection,
but for the general case, this requires one such an adjustment for each view, and
hence seems of questionable value.
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to handle the problem of averaging g over y’, we replace the limits of inte-
gration of ¥’ from —co to oo, with finite ones, —L to L, and then let L. ap-
proach =c. We thus obtain:

=8} =} 1
A=Ilim f dx' [ dy — gj+1 (x) 270" 2/¥K'y")
L—osoo —e — L

= Fj;; (b)) lim 1/2L _[ e27ik'y’ dy’ (29
L—co
== Fj.(h") 6(k"),

where Fj., is the one-dimensional transform of the observed projection,

Fipf(h) = [ gjy(x) e3> dx’. (30)

By analogy, we have
B = GI*Yh") o(k’) (31)

where GI*1 is the one-dimensional transform of the calculated projection,
gi*l (x}). Since Gi*! is based on the density function at the jth iteration, fi,
we may write GI*1(h’) in terms of the Fourier transform, Fi, as follows:

QI (W) = T gu(x) e*inx dx’ — J e271h’x’ dx’ I fi(x, y) dy’

—
= J{ dh"" dk” Fi(h" cos § — k' sin ), h"" sin 6 + k" cos 0) j dx’ e27i(’—h’") x
J dy’ e 27ik” v = Fj(h' cos 8, h' sin 0} = Fi(h, k). {(32)

Combining these equations, we have finally
Fiti(h, k) = Fi(h, k) + F;1, (b") (k") — Fi(h, k) 6(k) . (33)

This gives us, 1n the reciprocal space, the tteration which a continuous ver-
sion of ART Would perform. Where k' = 0O, 1.e., along the h'-axis which is
perpendicular to the direction of projection for our j + 15t view, we replace
Fi(h, k), our transform at the previousiteration, with F;;,(h"}, the transform
of the observed projection being currently considered. Elsewhere in the
transform, where k' # (), we =simply keep our old values of F(h, k). We are
thus adding up, in reciprocal space, the transform of all the projections but
taking the origin polnt h' = k' = O only once, giving us the familiar *“‘star’’
plus V»hatever remains, outside the star, of the initial transform, F°(h, k)
If we assume that f° is chosen so that its transform is non-zero except on
the star, which 1s a reasonable and not very restrictive condition, then after
N iterations, we have the very simple result (restoring now the subscripts
on the primed variables),
X
FN(h, ) = 3 Fy(vy) 8(s) + (N — 1) Fy (h) 3(0) (34)
j=
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where K, is either the total or the average mass, M, depending on how
normalization 1s done in the Fourier expression.

The second term now corrects the sum for the multiple occurrence of the
origin term. By taking a two-dimensional transform of F¥, the &-functions
of Eq. (34) lead to, for the result of this ART procedure,

falx, y) = Xg(x') — (N — 1) M
]

= 2 g(rcos [¢—0;],0) — (XN — 1) M. (35)
1

—0

— X T F(R, ) e>iRr costs0 . AR (N — 1) M.
]

This would be the same as the result of back-projection [fp in Eq. (13), for
discrete views], except that back-projection does not include the necessary
corrective constant.

As we have shown in the previous section, back projection is incorrect. We
feel it is important to stress that this incorrectness is not caused by the fact
that only discrete views are available, but comes rather from the absence of
the necessary convolution in real space, or equivalently, from the omission
of the required |R|-multiplication in reciprocal space. This absence of
| R|-weighting is intrinsic to the ART procedure, although this fact may
not be obvious from the defining Eqs. (22} and (23). Pictorially, the correct
procedure could be represented by replacing the rays of our “star” with
wedges, as shown in Fig. 3.

FEven with the improper Fourier summation implicit in ART, we would
nonetheless expect convergence after only a single cycle, i.e., after a single
consideration of each view, just as would be obtained by a correct iterative
formulation of FS. The fact that ART seems to require more than one cycle
to converge (and, as found by Gilbert [12], in some conditions, does not con-
verge at all), is probably due to the effects of finite box size and discrete

Fig. 3. Pictorial representation of the weighting necessary in the summation of

Fourier central sections. The “star’”” represents the sampling in #, and the increasing

height of the vertical ““wedges” (shown only for three ravs) symbolizes the | R |-

multiplication discussed in the text. The number of views and the dimension of the

object determine a resolution limit, Rw, for the mathematical reconstruction pro-

cedure, while the projection micrographs will contain experimental information to
some resolution, Ke, which may differ in either direction from Ra.
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sampling. These conditions, we recognize, make the actual form in which ART
has been implemented by Gordon, Bender, and Herman differ from our ideal-
ized model of this procedure, but these differences would not improve the
results obtained by this general approach. The present analysis, we feel,
reveals the essential nature of the ART algorithm to be incorrect. (Essen-
tially identical objections apply also to the SIRT method of Gilbert [12]; the
consideration of several views at once does not restore the missing |R|
welghting.)

Some discussion of the effect of the assumption of positivity in ART is
now in order, It should be apparent that for the continuous case with unlimit-
ed resolution in reciprocal space (no series termination errors) and with
ideal data, no imposition of positivity is required since each of the projections
will be non-negative and thus a linear combination of them, which Eq. (35)
performs, will also be non-negative.

However, because of finite sampling and box size and experimental error,
a simple Fourier summation may actually yield negative density and thus
in this respect ART introduces a “new’’ feature into the reconstruction prob-
lem, not implicit in the Fourier formalism. One might note, however, that
this feature is easily added to a Fourier approach by simply zeroing all nega-
tive density in fs, taking an inverse transform back to reciprocal space,
restoring the values of FN on the star, and cycling until the results converge.
(I. e., there is no need to zero negative regions for each view individually.)
This procedure 1s very similar fo the real space implementation of the Tangent
Formula in crystallography, mentioned earlier. Hoppe and Gassmann [13]
and Kartha [14] have developed similar techniques, wherein the available
density function is modified, making use of “‘a priori” physical knowledge
such as simple positivity and/or the Sayre Relation. In the crystallographic
case, this information is used to either refine or extend (in resolution) a set of
phases; for reconstruction, we are interested in obtaining both amplitudes
and phases at values of 0 for which projection data is not available. Rama-
chandran and Lakshminarayanan have experimented with incorporating
such an approach into their convolution method [15].

1V. The Fourier-Bessel Method

We now consider the Fourier-Bessel approach of Crowther, DeRosier and
Klug [2]. From the original work of Klug, Crick and Wyckoff [16], it is ob-
vious that the basic equations of a cylindrical expansion can be derived
from the familiar expression for the Fourier transform in polar coordinates?,

* This treatment contains two errors: the absence of a factor of e—in=/2 in the
expression for ¥(RR, 0, 1) which precedes their Eq. (18), and an incorrect statement
of the orthogonality properties of Bessel functions in this equation, which causes
Eq. (19) to be incorrect, aside from the absence of the phase shift factor. Most
workers in this area, including, of course, the original authors, have long since
realized that correct Eq. (17) should be used in place of Eq. (19). We mention this
since it might be helpful to newcomera.
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We repeat the derivation here in an abbreviated form. Utilizing the rela-
tionship

+ oo
e-2mR cosb—0) — 3 J (27 TR) e-in(—b)—n/2) (36)

—n

in Eq. (2), and rearranging terms, we have
+ = el 2T
f(r,$) = 2 e iné¢ | RAR Ju(2m Rr) [ein™2 | (R, 0) ein? d0]. (37)
—_ 0 0

The bracketed term we call F'h(R) = einm/2 F (R), and its Bessel transforma-
tion, 1.e., the result of the R integration, we refer to as fy(r).? Fn(R) and £,(r)
are clearly the Fourier components of expansions of F(R, 0) and f(r, ¢),
which are @ priori periodic in their angular variables, i.e.,

F(R,0) — % Fu(R)e-in? (38)
+ a0
f(r, §) = 2 f5(r) e-ind, (39)

In this formulation, the problem of reconstruction reduces to the determina-
tion of the Fps from F(R, 0) experimentally known only at discrete (. _

Because of the sampling of F(R, 0), the usual method of finding Fourier
components by integration over 0, as in Eq. (37), is impossible. At this point
it 1s convenient to distinguish between the two cases: (1) uniformly spaced
views over the full 27z range, and (2) non-uniform sampling (or uniform
sampling over a limited range in ). In the former instance, for N/2 = M
views we can rewrite Kq. (38) in the form

+ G
FR, 0x) = 2 Fy(R)e 27ink/N |k —19 . . N. (40)

Since we have N values of 0y, clearly only N (or fewer) Fy, coefficients can be
obtained by the solution of this set of simultaneous equations. Thus only
density functions which can be effectively represented with N (or fewer) fy
coefficients can be correctly reconstructed. Assuming we knew in advance
that this condition were fulfilled, we could replace the limits of summation
in Kq. (38) by —M +- 1 and M, and this equation could be inverted by
multiplying the set of equations on both sides by e—27imk/N summing over k,
yielding

N
Fin(R) = X F(R, ) e2mimi/, (41)

! Fpand fs in our nomenclature is the same as Gq and go in Refs. [2,18]. We use this
different notation to aveid confusion with our projections, called g, and to conform
to the common convention of denoting Fourier components by adding a subscript
to the symbol of the function.

38 Optik 38, Heft 5
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By Bessel transformation, as indicated in Eq. (37), we would obtain our
required N Fourier component of f(r, ¢).

Unfortunately, our requirement for a solution of the simultaneous equa-
tions does not really constitute a valid justification for omitting the high order
terms. Hence the above procedure really gives us

~N @
2 F(R, Oy) e?rimk/N = 3" F(R) n-m mod N (42)
k=1 n=—:co

and thus does not lead to a solution for the Fys. In place of a single Fy, term,
we now have a sum of equally-spaced harmonics, a phenomenon known as
“aliasing”’. This is a common problem in crystallography and other fields
where discrete Fourier transforms are used. Lipson and Coclrar {17], for
example, suggest as a rule of thumb that the index for the highest Fourier
coefficient used should not be greater in magnifude than one third N.
Qualitatively, it should be obvious from Eq. (42) that the terms with small n
are less affected by aliasing, assuming that there is some general fall-off of
| Fa(R)| with increasing n. More rigorously [1, 2, 8], if definite limits on the
size of the object are known, for a given number of views (either explicitly
measured or implicit by virtue of internal symmetry}, and hence for a maxi-
mum of twice that number of Fy, terms5, 1t is possible to derive a “mathemati-
cal” resolution limit, Ry, within which the effect of aliasing is negligible, and
which, therefore, is taken as the upper limit for the integration in Kq. (37).
We shall not here discuss the details of this derivation, but it is perhaps
worth stressing that this Ry 1s altogether distinct from the exrperimental
resolution limit, Rg, and is a feature of the projection micrographs (Fig. 3).
When Ry < Ry, we can make full use of the experimentally available data,
but if R > Ry, the values of the transform F(R, 0y) for all k and Ry < R
< Rg may not be used in the reconstruction since mcluding them would
introduce unpredictable aliasing errors. In this case, 1t would appear that
we must content ourselves with a coarser reconstructed image than the reso-
lution of our micrographs would suggest should be achicvable. Gilbert [7] has
proposed reconstruction using variable resolution limits at different radii, r,
and this would be the optimal approach if we avoid additional assumptions
about the density function.

It might alse be possible, however, to utilize some of the “density modifi-
cation” iterative techniques discussed earlier, to help fill in for the missing
necessary views. The “extra’ information in the transform bevond Ry might
be utilized in another way: Suppose that full use of the F(RR, §) to Rg requires

5 Nince, when we introduce finite limits of summation in Eq. {40), we usually
wish to use an cqual number of terms with positive and negative indices. For the
case of BL views or N = 2M wvalues of 0k, we generally solve for a maximum of
2M —- 1 terms: iromn = —{(M-—1) to n = - {M —1). The computational imple-
mentation of 5¢. (41) does vield, however, the full 2M coefficients from the 2M
values of F(12, %), The additional Ty term may be indexed as either F + y and must
be included in ti¢ recoustruction, since, obviously, its omission in a back transform
would yield incorrect F(R, Oi) values.
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the use of H coefficients, while we have f-sampling only for K -< H values.
We have thus a set of underdetermined equations,

H
FR,0k) = X2 Fp(R)einf: k=1,2,.. . K, (43)
j=1

and their solution may be accomplished by the familiar method of Lagrange
multipliers; and indeed such an approach has been explored as a modification
of the ART-method by Gaarder and Herman [18]. This work will not be
considered here, as these authors state that they have managed only to satisfy
approximately the linear constraints and extremum condition they employ.
The implementation of the Lagrange method in FB 1s mathematically more
tractable and should produce & reconstructed density which is fully consis-
tent with all measured projections and also satisfies an intuitively justified
extremum condition. As pointed out by Gordon et al [5], it would seem rea-
sonable for an underdetermined reconstruction to choose the least feature-
full density function, as this might be considered as the least biased solution,
in the absence of a priori know ledge about the structure®., These authors
suggest that “maximum entropy” might be an appropriate condition for
such a solution. While thev do not actually employ this criterion in their
method, they find that averaging a number of reconstruction solutions to a
given underdetermined case has the effect of nearly maximizing the entropy.
We here propose the use of a measure of smoothness, V, of the density func-
tion which is analytically more convenient. Hence

S5V =0, (44)

where

oo 2n oo
Vosfrde [ Al ¢) — i ¢ Oj‘RdR(g[ T, |2—| Fol2). (45)
1

Since we wish to solve the set of equations for discrete values of R, we take,
for V, the integrand in Eq. (45). The solution of a set of linear equations
(¥q. [43]) subject to the minimization of the above quadratic 1s a textbook
application of the Lagrange method and will not be set out here. As unplied
in Eq. (43) it is applicable to general, arbitrary, sampling intervals n .
We now return to our discussion of the inversion of Iiq. (40). The solution
given in Eq. (41} is, we have seen, appropriate to some limiting resolution,
and, subject to this condition, may therefore be used to repluace the (-inte-
gration in Kq. (37). It should be apparent that this gives us a result precisely
identical to that obtained by the previously discussed “sampled ¥Fourier”
and convolution methods, assuming that the implementation of these methods
is likewise restricted to the same necessary resolution limit. This restriction

s Crowther and Klug [19] raise legitimate objections to recconstruction under
underdetermined condilions: clearly the solution obiained is not unique. We here
mercly suggest a way that the extra information in the F(R, i) for Bm R < Rg
mwht be used to supplement the more rigorous reconstructmn which is llmlted to
reso]utlon, Rm.
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is easily imposed on F8 (Eqg. [7]), but not on the real-space convolution
equation, unless this convolution is evaluated by reciprocal-space multipl:-
cation, as discussed earlier.

We now consider the case of non-uniform sampling in 6. Here Eq. (38),
sampled at arbitrary 0y, even with restricted limits, cannot be solved for
F, by a Fourier operation and must be treated as a general problem in linear
equations, as discussed by Crowther, DeRosier, and Klug [2]. For the ideal
case of the same number of equations and unknowns, a straightforward ma-
trix inversion applies. Because of experimental error, these authors prefer to
deal with the over-determined case and solve for fewer unknowns, by the
method of least squares. Note that this gives equal weight to the various
F(0y) values independent of their angular separation. Alternatively, one
might consider giving greater weight to the transform at those 0y’'s most
distant from neighboring rays, as proposed by Bracewell and Riddle [10],
since “isolated’” F(f) rays carry the most new information. The FS and CM
methods, however, effectively assume a Fourier inversion analogous to Eq.
(41), of the form

N
Fu(R) = X F(R, 8y) eintx (46)
k=1
which is, in fact, incorrect, except for ) = 27 k/N. Thus these methods

cannot be expected to give correct results for the non-uniform sampling case.

In summary, then, the Fourier-Bessel method is the only procedure of
those here discussed which is generally valid. For the case of uniform sampling
in 0, the convolution approach and also the “‘sampled Fourier” produce
equivalent results, but for non-uniform sampling, these latter methods are
incorrect. The algebraic reconstruction technique (the additive method) and
the method of back-projection are both incorrect approximations to the
sampled Fourier method and thus appear to be the least valid approaches
to the reconstruction problem.
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