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ABSTRACT

This paper is an overview of reconstructability analysis
(RA), an approach to discrete multivariate modeling
developed in the systems community. RA includes set-
theoretic modeling of relations and information-theoretic
modeling of frequency and probability distributions. It thus
encompasses both statistical and non-statistical problems. It
overlaps with logic design and machine learning in
engineering and with log-linear modeling in the social
sciences. Its generality gives it considerable potential for
knowledge representation and data mining.

1. INTRODUCTION

This paper is an overview of reconstructability analysis
(RA), a discrete multivariate modeling methodology
developed in the systems literature; an earlier version of this
tutorial is (Zwick 2001). RA derives from Ashby (1964),
and was developed by Broekstra, Cavallo, Cellier, Conant,
Jones, Klir, Krippendorff, and others (Klir 1986, 1996). RA
resembles and partially overlaps log-linear (LL) statistical
methods used in the social sciences (Bishop et al 1978;
Knoke & Burke 1980). RA also resembles and overlaps
methods used in logic design and machine learning (LDL)

Table 1. Aspects of RA. (Prototypical RA task shown in bold.)

1. VARIABLE TYPE
ordinal (discrete)
guantitative (typically continuous)

nominal (discrete) [binary/multi-valued]

http://www.sysc.pdx.edu/Faculty/Zwick

in electrical and computer engineering (e.g., Perkowski
1997). Applications of RA, like those of LL and LDL
modeling, are diverse, including time-series analysis,
classification, decomposition, compression, pattern
recognition, prediction, control, and decision analysis.

RA involves the set-theoretic modeling of relations and
mappings and the information-theoretic modeling of
probability/frequency distributions. Its different uses can be
categorized using the dimensions of variable, system, data,
problem, and method-types shown in Table 1. These will
now be briefly discussed. Section Il explains RA in more
detail. Section Il gives examples, Section 1V discusses
software, and Section V offers a concluding discussion.

1. Variable-type: Nominal, ordinal, and quantitative

RA applies to multivariate data involving nominal variables
or quantitative variables which are converted into nominal
variables by being discretized. Variables need not be binary
(dichotomous) but can be multi-valued. Nominal variables,
whose states are discrete and unordered, are the most
general type of variable, and so methods which apply to
them encompass ordinal and quantitative variables as well.
Continuous quantitative variables can be discretized either
by quantization (non-overlapping binning intervals) or by
fuzzification (Zadeh, 1965; Cellier et al, 1995), which is less
sensitive to the boundaries of the bins. Although
discretization loses information, this loss is offset by the fact
that RA can detect nonlinearities and interaction effects
which might be missed by standard
methods. Moreover, it is not necessary
to hypothesize specific nonlinear and
interaction effects to detect their
existence. The subject of discretization
is mentioned only to emphasize the

2. SYSTEM TYPE

directed system (has inputs & outputs)
deterministic vs. non-deterministic
neutral system (no input/output distinction)

3. DATATYPE

information theoretic RA (freg./prob. distribution)
set-theoretic RA (set-theoretic relation/function)

4. PROBLEM TYPE

reconstruction (decomposition)
confirmatory vs. exploratory (data analysis/mining)
identification (composition)

5. METHOD TYPE

variable-based modeling (VBM)
state-based modeling (SBM)
latent variable-based modeling (LVVBM)

generality of nominal variable methods;
it is outside the scope of this paper.

2. System-type: directed vs. neutral

To relate RA to a familiar LDL problem,
consider the task of decomposing a logic
function Z=g(A, B, C), where variables
are either binary or multivalued. In RA
terminology this is a directed system,
since inputs and outputs (“independent
variables” and “dependent variables™)
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are distinguished. Directed systems are further classified as
deterministic or stochastic. While most RA applications
involve predictive, dynamic, or causal (hence directed)
relationships between variables, sometimes variables have
equal status; these systems are called neutral.

RA can be applied to directed -- both deterministic and
stochastic -- and neutral systems. By contrast, in LL
modeling, stochastic systems are usually the focus. In LDL
modeling, deterministic directed systems are the rule, and
neutral systems are rarely considered.

3. Data-type: Information-theoretic and set-theoretic RA

RA has two versions: a set-theoretic (here called SRA), or
more precisely, a “crisp possibilistic,” version which applies
to set-theoretic relations and mappings, and an information-
theoretic (here called IRA) “probabilistic” version which
applies to frequency (and probability) distributions (Conant,
1981; Klir, 1985; Krippendorff, 1986). IRA can also be
applied to quantitative functions of nominal variables by
rescaling these functions so that they can be treated as
probability distributions (Jones, 1985a). SRA and IRA are
similar in many respects, and together constitute a coherent
framework. Moreover, probabilistic and crisp possibilistic
analyses are encompassed within a “generalized information
theory” (Klir & Wierman, 1998), which includes also fuzzy
possibilistic and probabilistic distributions.

The same model structures are considered in both IRA and
SRA. Let ABC represent a set-theoretic relation or mapping
or a probability or frequency distribution for a three-variable
system, with projections AB, AC, and BC, and A, B, and C.
Define a structure as a non-redundant set of projections. If
ABC is the data, the possible model structures shown in
Figure 1. At the top of the lattice is the data, also called the
“saturated model.” At the bottom is A:B:C, called the
“independence model.” (In IRA, the bottom model may
alternatively chosen to be the uniform distribution.)

Figure 1. Lattice of Specific Structures for a 3-variable
neutral system. The shaded sublattice is for a directed
system, with inputs A & B and output C.

ABC
\

AB:AC:BC
T
AB:AC AB:BC BC:AC
AB:C AC:B BC:A
L

A:B:C

The figure shows that the lattice of structures for a directed
three variable system (with two inputs and one output) is a
sublattice of the lattice for neutral systems. For directed
systems with output C, the independence model is AB:C,
not A:B:C, and only the 5 shaded structures need to be
considered. Each of these 5 structures contains an AB
component (relation or distribution). A directed system
model always has one component which collects together all
inputs, allowing for but ignoring the possible presence of
constraint among them. Every other component includes at
least one output. Directed system models can thus be
characterized by their number of predicting components.
For inputs A, B, and output C, model AB:AC has one
predicting component, AC. (We do not here employ a
notation which explicitly shows directedness, e.g., A — C,
any relation or distribution written as a string of letters may
be either neutral or directed.) Model AB:AC:BC has two
predicting components, which are “independent” in a
“maximum uncertainty” sense, to be described later. Only
in model ABC do A and B interact in their joint effect on C.

The most commonly used version of RA is IRA. Here the
problem is typically the decomposition of frequency or
probability distributions, where RA does statistical analysis.
This is the main subject of this paper. Consider a frequency
distribution f(A, B, C, Z) for a directed system, where A, B,
and C are inputs and Z is an output. RA decomposes such
distributions into projections, such as f;(A, B, Z) and f,(B,
C, Z), and models are assessed for statistical significance,
usually with the Chi-square distribution. This use of RA
overlaps considerably with LL modeling but has no parallel
in LDL, where “statistical” considerations can arise in that
functions or relations may be partially specified, e.g., due to
sparse sampling.

Where IRA and LL overlap, they are equivalent, but each
has distinctive strengths. The LL literature is more
advanced statistically, includes latent variable techniques
(discussed below), and offers methods to analyze ordinal
variables. Well tested LL software exists (e.g., in SPSS and
SAS). On the other hand, in IRA, graph-theoretic methods
are used to define explicitly various lattices of possible
models and to suggest heuristic techniques to search these
lattices. RA makes extensive use of the uncertainty
(Shannon entropy) measure, which is conceptually
transparent because of its similarity to variance, and
includes innovations like state-based modeling (discussed
below), absent in the LL literature. However, the RA and
LL communities have been only dimly aware of -- and have
not benefitted much from -- each other’s existence, despite
early work which linked the two (Kullback, 1959; Ku &
Kullback, 1968).
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While IRA is statistical in its overlap with LL, it includes
also non-statistical applications. For example, the k-
systems methodology of Jones (1985a) is used primarily for
function approximation and compression. IRA can also be
used to analyze set-theoretic relations and functions (this is
done, for example, in the analyses of cellular automata
reported below). SRA, in contrast, is completely and
inherently non-statistical. It is the natural RA approach to
set-theoretic relations and functions. SRA here overlaps
with LDL. While it appears to be different from any
particular LDL technique, it resembles LDL methods which
decompose functions into generalized (arbitrary) as opposed
to specific components (like ‘and” and “or’ gates).

RA thus bridges two very disparate fields: log linear
modeling in the social sciences and logic design and
machine learning in electrical and computer engineering..

4. Problem-type: Reconstruction vs. identification

RA includes reconstruction and identification (Klir, 1985).
In reconstruction ABC (see Figure 1) is the data, and one
goes down the lattice until decomposition losses are
unacceptable. Or, one can start at the bottom with A:B:C
(the independence model for neutral systems) or AB:C (the
independence model for a directed system with output C),
and ascend until model error relative to the data is too great
or the model is unacceptably complex. Descending the
lattice is especially natural for neutral systems, while
ascending the lattice is more natural for directed systems.

Thus, in reconstruction, a distribution or relation is
decomposed (compressed, simplified) into projected
distributions (also called “margins™) or relations. ABC
might, for example, be decomposed into AB and BC,
written as structure, AB:BC. Taken together, the two linked
bivariate projections would constitute a model of the data
which is less complex (has fewer degrees of freedom) than
the data. By maximum-entropy (uncertainty) composition
of these projections, the model yields a calculated trivariate
ABCaggc distribution or relation which may differ from the
observed ABC data. The difference (error) represents loss
of information in the model. By definition, the data itself
has 100% information (0% error). Models are also assessed
in complexity, where complexity for IRA is df, degrees of
freedom, the number of parameters needed to specify a
model. For convenience df values may be normalized so
that the data is 100% complex and the independence model
0% complex. Reconstruction decomposes data by finding
less complex models which preserve either all of its
information (lossless decomposition) or a sufficient amount
of its information (lossy decomposition), where sufficiency
is assessed either statistically or by other standards.

Reconstruction is done in either a confirmatory or
exploratory mode. In the confirmatory mode for IRA, a
specific model or a small number of models, proposed a
priori on the basis of theoretical considerations, are tested
statistically. In the exploratory mode, one has no prior idea
about what model might be suitable, and one examines
many structures to find a best model or a family of best
models. LL modeling is normally done in the confirmatory
mode and, indeed, in the social sciences, exploratory
modeling is normally frowned upon. The situation is quite
different in machine learning, a field explicitly devoted to
exploratory modeling.

Identification is pure composition. For example, the
observed data might be the two distributions AB and BC.
Because they are not derived from a single ABC, AB and
BC can be inconsistent if they disagree in their common B
projection. If such an inconsistency can be resolved, a
calculated ABC can be generated. Identification methods
exist which resolve such inconsistencies and make possible
the integration of multiple data sets (as in a data-base
merge) coming from different sources. The LL and LDL
literatures have not articulated the identification problem
and are focused exclusively on reconstruction.

Reconstruction in the exploratory mode is the typical RA
problem. For convenience, call modeling with “few”
variables data analysis and modeling with “many” variables
data mining. This paper discusses both, but is motivated by
the task of data mining, for which adequate RA software is
not yet available. (LDL techniques have been used for data
mining, but LL methods, not typically implemented for
many variables or for exploratory searching, are rarely
mentioned in the data-mining literature.) “Few” variables
here means that exhaustive evaluation of all possible RA
models can be done. This allows us to be certain of the
choice of a best single model or it might be done for a very
different purpose, namely to characterize the data by the set
of errors for all possible decompositions. The limit of
exhaustive search is roughly about 7 or 8 variables, in round
numbers, 10. Data mining here means exploratory modeling
beyond this threshold, i.e., with 10’s, 100’s, perhaps even
1,000’s of variables. Exhaustive search is then no longer
possible, and heuristic techniques, which consider only a
subset of possible models, must be used instead.

This threshold of somewhat less than 10 variables marks the
limit of exhaustive analysis of all models, but there is a
second threshold involving the number of possible states of
the system (as opposed to the number of states observed in
the data), which poses limits even for heuristic search. This
2nd threshold presently precludes the use of multi-
predictive-component RA models for more than about 20
variables, but single-predictive component models can still
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be used. For single-predicting-component models, one can
treat 10’s, 100’s, and perhaps even 1000’s of variables, with
computing time and space requirements depending on the
size of the data, not the size of the state space. However,
multi-predicting-component models for directed systems are
cyclic (have “loops™), and at present cyclic models in IRA
need computation on the entire state space, without regard
to how sparse the data is. For 20 binary variables, the state
space is about 24 Mbytes. Adding many variables beyond
20 is impractical, though approximate RA computation,
which varies with the data and not the state space, might
extend this range. Two possible approximation approaches
are mentioned at the end of this paper.

5. Method-type: Variable-based, state-based, and latent
variable-based RA

Reconstruction as explained above illustrates variable-based
modeling (VBM), which decomposes data into subsets of
variables. This is the most common situation. Two other
method-types are available: state-based modeling (SBM)
and latent variable-based modeling (LVBM).

SBM is less developed than LVBM. Originally an aspect of
the “k-systems analysis” of Jones (1985a,b, 1986), SBM is
now being more integrated into the standard RA framework
(Johnson & Zwick 2000; Zwick & Johnson 2003). VBM
reveals information-rich sets of variables, and a variable-
based model is a set of complete projections. By contrast,
SBM selects information-rich states, i.e., salient conditions
(e.g., Shaffer, 1987, 1988). A state-based model is a set of
frequency values selected from the original data and its
projections, but complete projections do not have to be
included. For example, for f(A,B,C) data, the SB model
could be the frequencies, f(A;,B1,C3), f(A1,B>), and f(C,).
SBM resembles rule-based methods in logic programming
and fuzzy control. It also

new constructs are introduced by adding additional,
unmeasured, variables. For example, an AB distribution
might be modeled by the simpler AQ and QB projections of
an AQ:QB model. LV models are absent in the RA
literature but widely used in the log-linear field (Hagenaars,
1993; Vermunt, 1997). However, latent variable LL
software which is usable for exploratory data mining is not
available. In LDL, latent variables are standard, functions
being typically decomposed using both “free” (observed)
and “bound” (latent) variables (Grygiel, 2000; Grygiel,
Zwick, & Perkowski, 2003).

Since the objective of this paper is to explain RA (especially
IRA) methodology, no survey is offered of RA applications,
and comparisons with other methods are not undertaken.
Section 11 provides details mostly on IRA reconstruction.
Section 111 gives a few applications of RA to data analysis
and mining. Section IV is a summary and discussion.

I1. More Detailed Explanation

The “prototypical” RA analysis is IRA variable-based
reconstruction, which will now be explained. Brief
explanations will be provided for SRA, identification, and
LVBM and SBM.

1. Information-theoretic variable-based reconstruction
(& identification)

Basic reconstruction steps

Table 2 illustrates variable-based information-theoretic
reconstruction. The data, ABC, is shown on the left. The
best RA model, AB:BC, judged by its information and
complexity, is shown on the lower right; its calculated
frequencies are on the upper right. Reconstruction is done in
3 steps: (1) projection, (2) composition, and (3) evaluation.

resembles Crutchfield’s - Table 2. Example of IRA variable-based reconstruction of a neutral system (the
machines (Feldman & number of shaded cells is the degrees of freedom of each model)
Crutchfield, 1998).

data(df=7): observed ABC model: calculated ABCag:sc
Even though log-linear Bo B, Bo B
methods overlap with IRA, Co C,| Co C; Co C |Gy C,

there is nothing equivalent A [ 143 253 77 182
to SBM in the LL literature. A | 227 411 46 139

3<|—t_> Ao | 142 254 |72 188
.evaluation A; | 227 409 |52 134

Something like SBM seems
standard in LDL, where
decompositions involving 1.pro
sums of products having

varying numbers of

variables are widely used.

In latent variable models
complexity is reduced or

1478
o 2.composition
iection

model (df=5): AB:BC
Bo Bl BO B1
Ao | 396 259|655 C,| 370 123|493

A;| 638 185|823 C;| 664 321|985
1034 444 1034 444
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Projection

The ABC data is projected into the two contingency tables,
AB and BC which define the model AB:BC (lower right).
This step is straightforward, and is given by f(Aq,B,) =
f(A0,B1,Co) + f(Ao,B1,Cy).

Composition
These two tables together yield the calculated ABCag.sc
table (upper right), where frequencies are rounded to the
nearest integer.

Shift from frequencies to probabilities (frequencies divided
by the sample size). Let p and g denote observed and
calculated probabilities, respectively. The IRA composition
step is a “maximum entropy” procedure (Miller & Madow,
1954; Good, 1963), where entropy is Shannon entropy,
referred to here as uncertainty. For model AB:BC, the
calculated probability distribution, qag:sc(A,B,C), is the
distribution which maximizes the uncertainty,

U(AB:BC) = -22.2.das:ac(A,B,C) log gags:sc(A,B,C)

subject to the AB and BC projections of the data, i.e., to
linear constraints gag:c(A,B) = p(A,B) and gag:sc(B,C) =
p(B,C). Since AB:BC has no cycles, the solution can be
written algebraically:

Gas:ec(A,B,C) = p(A,B) p(B.,C) / p(B).

Calculated distributions for cyclic structures, like
AB:BC:AC, need to be evaluated iteratively by the Iterative
Proportional Fitting (IPF) algorithm. As shown in Table 3,
calculation of qag:sc:ac(A,B,C) starts with a uniform
distribution. IPF then imposes upon it iteratively the
observed projections specified by the model. At iteration
#1, first AB is imposed, then BC is imposed, and then AC is
imposed. At iteration #2, AB is reimposed because
agreement with AB was destroyed when the other
projections were imposed at the previous iteration. Then
BC is reimposed, then AC. And so on. IPF iterates until
gas:ac:ac(A,B,C) converges.

Table 3. Iterative Proportional Fitting for model AB:BC:AC

The algorithm starts with

q9ag:zc:ac(A,B,C) = 1/ (JA] |B| |C|), where | | means cardinality

and then loops over iterations from j=0 until convergence:
Forall AB
For all B,C
Forall A,C
j=itl

q(zj::;)AB:BCIAC(A!BIC) = q(zj::g)AB:BC:AC(AiBIC) p(A,B) / q(j_j:f)ABIBCIAC(AiB)
q(sj_+3)AB:BC:AC(AuB|C) = q(sj,+2)AB:Bc:AC(A,B,C) p(B,C) / q(31,+2)AB:Bc:Ac(B|C)
099 agmcac(AB,C) = 0¥ pgecac(AB,C) P(AC) / ¥ pgacac(A,C)

The IPF algorithm requires that the entire distribution be
computed, not merely the set of observed states, because as
each projection is imposed on the working qag:ec:ac(A,B,C),
non-observed states will in general contribute to other
calculated projections. Thus computer time and space
requirements for cyclic models vary with the state space of
the problem, and not with the sample size.

In log-linear modeling, calculations often go beyond the
generation of gmeqer. The individual frequencies of specific
states, e.9., fag:sc(Ao,B1,Co), can be decomposed into the
contributions from all the separate “effects,” i.e., A, B, C,
AB, and BC. This can be useful if one is particularly
interested in one or a few states. Such decomposition is not
prominent (perhaps even absent) in the RA literature.

Evaluation

The calculated ABCag:sc is compared to the observed ABC.
The calculated distribution approximates the data, which is
always more constrained. The error is the constraint lost in
the model (Figure 2), called transmission T(AB:BC), which
is the difference between the uncertainty of the model and
the uncertainty of the data.

T(AB:BC) = ¥ p(A,B,C) log[ p(A,B,C)/qas:ac(AB,C) |
= U(AB:BC) - U(ABC)

Figure 2. Constraint lost and retained in models
ABC (the data)

T(AB:BC) = error in model AB:BC
= constraint lost in AB:BC

——-*—-- AB:BC

T(A:B:C)

T(A:B:C)-T(AB:BC) = constraint
captured in AB:BC

XY A:B:C (or other reference structure)

Information, i.e., constraint
captured in the model, is
normalized to [0,1] with
respect to the
independence model,
A:B:C (or to AB:C, for
directed systems where C
is the output), as follows:

Information =1 -
[T(AB:BC) / T(A:B:C) ]
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In addition to model error, model complexity is also of
interest. It is desirable to minimize both, but there is a
tradeoff between the two. Decisions on model acceptance
are made either by optimizing one subject to the other as a
constraint, or by merging the two via Chi-square or other
approaches.

Complexity of the model is defined as its degrees of
freedom, df, the number of parameters needed to specify it.
Reconstruction is compression; it reduces complexity. For
the data and model, df is shown in Table 2 by the count of
shaded cells. Knowing the sample size subtracts 1 from the
number of cells (states) in a table; thus for data ABC (the
“saturated model”), df = 7. In AB:BC, df(AB) = 3 but once
AB is specified, only 2 more numbers are needed to specify
BC, because the B margins of the tables must agree.
Algebraically, df(AB:BC) = df(AB) + df(BC) - df(B) = 3+3-
1 =5. Normalizing df to the [0,1] ranges gives a normalized
complexity,

Complexity( AB:BC) =[ df( AB:BC) - df(A:B:C) /
[df(ABC) - df( A:B:C) 1.

In confirmatory analysis, AB:BC might be a hypothesized
model. Its error would be assessed by calculating the
Likelihood-ratio Chi-square, L?(AB:BC) = 1.3863 N
T(AB:BC), where N is sample size. L*(AB:BC) and
df(AB:BC) are then used to obtain o, the probability of
making a Type-I error by rejecting the null hypothesis that
the calculated ABCag.gc is statistically the same as the
observed ABC. There are also other ways of integrating
model error (or information) and complexity to decide on
model acceptability.

Exhaustive analysis

Table 2 illustrated confirmatory RA, where one model is
assessed. The exhaustive evaluation of all models for this
data is given in Table 4 which gives (information, a, df) for
every model. This complete RA characterizes the data more
fully than merely stating that the best model is AB:BC.
ABC has 100% information. The probability of error in
rejecting its agreement with the data is 1, since it is the data.
A:B:C is the baseline for analysis, and thus has no

Table 4. IRA results for the data of Table 2. (Information, a, df) for
ABC .. The reference model for calculation of o is ABC. Shading
shows models to be considered if the system were directed, with C being

the dependent variable.

ABC (1.1, 7)
AB:AC:BC (.987,.382, 6)
AB:BC (.978. 518, 5)
AC:B (.000, .000, 4)
A:B:C (0., .000, 3)

AB:AC (.827,.005,5)
AB:C (.826, .014, 4)

BC:AC (.153,.000,5)
BC:A (.152,.000,4)

information. The probability of error in rejecting its
agreement with the data in this case is 0. A good model has
high information and low df. If models are compared to the
data (as is done in Table 4), a good model has high a,
because the probability of error in rejecting the equivalence
of model and data should be high. The more familiar
preference for low o holds if the model is compared not to
ABC but to A:B:C.

If the Table 2 data were for a directed system, with output C
and inputs A and B, only the shaded models in Table 4 need
be considered. For directed systems it is useful to state
results in terms of reductions in the output uncertainty,
knowing the inputs, rather than in terms of information. If
the uncertainty reduction, AU(C|B) = U(C)-U(C|B) =
T(B:C) = U(C)-U(B,C)+U(B) is positive and statistically
significant, model AB:BC is acceptable, i.e., B is a predictor
of C.

Because Shannon entropy involves a log term, even small
AU may indicate high predictability. For example, if the
odds of rain vs. no rain is 2:1 in winter and 1:2 in summer
and 1:1 over the year (for equal seasons), then knowing the
season makes a big change in the odds, but reduces U(rain
vs. no-rain) by only 8%. For the Table 2 data, the results
are shown in Table 5. For this data, A and B reduce the
uncertainty of C by only very small amounts, less than 1%.
The last column of the table also shows that quantitative RA
measures (such as U or T) can be thought of equivalently as
assessing models.

Table 5. Uncertainty reductions (output C; inputs A & B)

%AU  Adf « Associated model
U(CIA,B) 056 3 .013 ABC
U(CIAB) 052 2 .007 AB:AC:BC
U(CIA) 049 1 .002 AB:AC
u(C|B) 0.00 1 .866 AB:BC
U(C) - - 1.000 AB:C

Note that there are two ways that A and B can both predict
C. In AB:AC:BC they do so separately, but in ABC there is
an interaction effect (Zwick, 1996). Here a. is computed
relative to the independence model, not the saturated (top)
model; it is small if results are statistically
significant. The table shows that A is a better
predictor of C than is B; and that AU(C) using
both inputs, either in ABC or in AB:AC:BC, is
very small but still statistically significant at the
0.05 level.

Identification

Table 2 can be used also to explain
identification. If the data is not the ABC on the
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left but the two distributions on the lower right,
identification derives the calculated ABCag.gc 0n the upper
right. This is trivial when AB and BC are derived by
projection from a single ABC distribution. Suppose,
however, that AB and BC came from different sources, and
that the BC table had a B margin of [1024, 454] while the
AB table still had the B margin of [1034, 444]. AB and BC
would be inconsistent in their common B margin; this could
arise from sampling or other errors. When data sets are
obtained from different sources inconsistency is the norm,
and resolution of inconsistency is required before
composition can be done (Klir, 1985).

Mariano (1984, 1987), Pittarelli (1990) and Anderson
(1996) have shown how inconsistencies among distributed
data sets may be resolved. Anderson also showed how
“nuisance” variables can be exploited in the composition of
disparate data sets. To find a relation between A and C
from inconsistent AB and BC distributions, the
inconsistencies are first resolved, after which the adjusted
AB'’ and BC’ distributions are composed into ABC and
projected onto AC.

2. Information-theoretic state-based & latent variable-
based reconstruction

Variable-based modeling (VBM) requires the complete
specification of its components (e.g., the full AB and BC
tables in Table 2). It is possible, alternatively, to define a
model in terms of the probabilities of any set of non-
redundant states selected from ABC and its projections
(Jones, 1985a,b). Thus SBM encompasses VBM as a
special case. SBM selects states with unexpectedly high or
low probabilities (relative to some prior); these are the facts
prominent in the data, and gmegel(A,B,C) has maximum
uncertainty, constrained by these values. This approach is
more powerful than VBM, and Chen (1997) has discussed
its possible use for data mining. The penalty is that there
are many more SB models, so SBM might be most useful
for data mining if it were used as a follow-on to VBM. The
essence of SBM is illustrated in Table 6.

Table 6. State-based decomposition

By B,
Al .1 (.2 .04 16| .2 d 1
Al .1 7.8 A6 64| .8 A7
2 .8 2 .8
model AB AB [A1,B1]
df 3 2 1
error, T - .087 0

The AB model has df=3, shown by the shading of 3 cells
(arbitrarily chosen). The A:B model has df=2, i.e., it needs

two specified probability values, one (arbitrarily chosen and
shaded) from each margin. A:B, with probabilities

p(A) p(B), is not identical to AB and exhibits error. A state-
based model specifying the single probability value,
p(A1,B1)=.7 (shown shaded) forces the remaining (Ay,By),
(Ao,B1), and (A4,Bo) probabilities, by the maximum
uncertainty principle, to be .1. These values are correct and
this model has zero error even though it is simpler than A:B.

This example was constructed to show that a one-parameter
SB model can be superior to a two-parameter VB model.
SB analysis of the distribution of Table 2 reveals that a 4-
parameter model, p(A1,Bo), p(Ao,B1), p(Bo,C1), and p(B;,Co)
captures virtually the same amount of information as the 5-
parameter AB:BC model (note that the four states come
from AB and BC). In more complex distributions the
economy of SBM is more dramatic.

Latent variable modeling (LVVBM) is not developed within
RA, though it is in the log-linear literature. It is also widely
used for set-theoretic mappings in the LDL literature. It will
be discussed here only briefly.

To illustrate latent variable reconstruction, consider BA:BC,
where B is an input and A and C are outputs. By attributing
directionality to the relations in the structure, we model

A <« B — C. If variables were quantitative instead of
nominal and relations were linear, this would be “factor
analysis” (Kim & Mueller, 1978) and B would be a
common factor, which explains (away) the relation between
Aand C. B may be a new construct, implicit in AC, which
LVBM makes explicit.

If B mediates between A and C, this is “path analysis”
(Davis, 1985). The structure might be written AB:BC to
suggest the causal sequence A — B — C. What factor and
path analyses are for quantitative variables “latent class
analysis” is for nominal variables (McCutcheon, 1987). In
latent class analysis, a distribution AC might be explained
by invoking a latent variable B and a calculated distribution
ABC which is decomposable into BA:BC (equivalently,
AB:BC). The generation of the calculated ABC is not as
straightforward as it is in VBM, and a different algorithm is
used in place of IPF (Hagenaars, 1993).

IRA or log-linear modeling with latent variables thus offers
a nominal variable generalization of path analysis, factor
analysis, and covariance structure modeling (Long, 1983),
which are restricted in application only to linear relations
among quantitative variables. Latent variables can also be
used for compression. If given AC, a latent variable B
yields a calculated ABC with structure BA:BC, and if
|AI=|C|= 4 and |B|=2, then df(AC) = 15, while df(BA:BC) =
13, so BA:BC is less complex than AC.
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3. Set-theoretic reconstruction

In SRA, data is a set-theoretic relation -- a subset of a
Cartesian product -- the set of states actually observed,
without regard to frequency. Set-theoretic reconstruction is
similar to information-theoretic reconstruction, as can be
seen by comparing Table 2 to Table 7. In Table 7, the two
values of A, B, and C are indicated as 0 and 1, but these are
only arbitrary labels.

Table 7. SRA variable-based reconstruction (neutral system)
data: observed ABC -<«——» model: calculated ABCag.gc
{000, 010, 011, 110, 111}

3.evaluation
{000, 010, 011, 110, 111}

2.composition

1.projection
orol model: AB:BC

AB = {00e,01e,11¢}, BC ={#00,010,011}

As in IRA, ABCxg.gc is the maximum uncertainty relation,
given the model constraints, i.e., the model-specified
projections. U(ABCag:sc) is now the Hartley (rather than
the Shannon) entropy, U(R) = log, |R|, where | | is
cardinality. This maximization is achieved in composition
by (1) expanding the projections by Cartesian products with
variables omitted in them (maximizing uncertainty), and
(2) taking the intersection of the expanded relations
(imposing the model constraints). Specifically,

ABCag:pc = (AB ® C) n (BC ® A), namely,

ABCag:sc =[{000,01-,110}®{000, ul}]

M [{OOO,.l0,0ll}@{O..,10.}]
{00*,01*,11*}~{*00,*10,*11}
{000,010,011,110,111} = ABC

(e is a place-holder for absent variable(s); * means “don’t
care”). The second line of this equation shows that SRA
resembles a product of sums of products. Generalizing the
above equation, for model P;:P,:...P,, where P;is a
projection of relation R (the data), and where M; is the
Cartesian product of variables absent (projected on) in P;,
the calculated reconstructed R is given by

Rppz..pn = (P ® Mp) N (P2 ® M) N ... n (P ® M)

Relations for cyclic models are calculated in the same way;
no iterative procedure is needed. In the present case,
ABCag.sc has no error. Imperfect decomposition can,
however, be allowed, and again transmission (error) is
defined as T(AB:BC) = U(ABCag:sc) - U(ABC).

No model simpler than AB:BC agrees fully with the data, as
shown below in Table 8.

Table 8. SRA results for the data of Table 7. in
parentheses: (number of tuples in model)

ABC (5)
AB:AC:BC (5)
AB:AC (6) AB:BC (5) BC:AC (6)
AB:C(6) AC:B(8) BC:A (6)
A:B:C (8)

Note that SRA decomposition of
ABC here uses complete projections
and only observed variables. No
latent (bound) variables are
introduced as is commonly done in
LDL techniques. The above
relation could have been
decomposed much more simply as
{000,*1*} or logically as
(A'AB’AC") v B, where prime
means negation. Such a
decomposition might be considered a “state based RA
model,” in that specific states of subsets of variables are
selected, were it not for the fact that in SRA SB models,
states are always connected with an A, as indicated in the

The precise relationship between SRA and LDL methods
has not yet been fully elucidated. Of particular interest
would be a comparison of SRA to LDL multi-valued
functional decomposition (Perkowski et al, 1997; Files &
Perkowski, 1998). An initial examination of an enhanced
version of SRA shows that it is superior for 3-variable
binary functions to Ashenhurst-Curtis decomposition, a
well-known and widely used LDL technique which utilizes
latent variables (Al-Rabadi, Zwick, & Perkowski, 2003; Al-
Rabadi & Zwick, 2003).

IRA problems can be approximated by SRA. In Table 2, if
frequency is discretized into ranges (Chen, 1994; Grygiel,
2000; Grygiel, Zwick, & Perkowski, 2003), it becomes a
nominal variable and the mapping A ® B ® C — F can be
decomposed by SRA. In doing so, the different frequency
bins become nominal states and their order cannot be
exploited. This also precludes the assessment of statistical
significance. Discretization of frequencies is qualitatively
different from discretization of variables, and the error
consequences of this approach, in comparison to IRA/LL
statistical analyses, is under investigation.

Conversely, SRA problems can be treated by IRA by giving
equal probability to observed tuples; IRA then generates
results equivalent to SRA but in a different form. Just as a
Fourier transform of a function may illuminate particular
properties of the function previously obscure, even though
the transform is fundamentally equivalent to the function, so



Overview of Reconstructability Analysis M.Zwick

IRA computation may be informative in ways not directly
achievable by set-theoretic analysis (Zwick & Shu, 2003).

4. Evaluating many models

In Figure 1, AB:AC, AB:BC, and AC:BC permute the three
variables, as do AB:C, AC:B, and BC:A. There are 5
different general structures and 9 specific structures, where
specific structures exemplifying the same general structure
merely permute the variables. (Note: this nomenclature is
not standard in RA.) For example, AB:BC and AC:CB are
the same general structure. Structures are disjoint (AB:C),
acyclic (AB:BC), or cyclic (AB:AC:BC).

A specific (acyclic) structure is exemplified in Figure 3,

along with the general structure obtained from it by omitting
the labels for specific variables (lines) and relations (boxes).

Figure 3. Specific structure AB:BC & general structure

A B C
— AB BC

For four variables, there are 20 general structures and 114
specific structures. As the number of variables increases,
the numbers of general and specific structures increase
sharply (Table 9).

Table 9. Numbers of structures. The bottom line is for
directed systems.

# variables | 3 4 5 6

# general structures | 5 20 180 16,143

# specific structures | 9 114 6,894 7,785,062

# specific structures,1 output | 5 19 167 7,580

The table indicates that directed system lattices are simpler
than neutral system lattices because we are not interested in
the presence or absence of relations among the inputs.
(Recall the shaded portions of Figure 1 and Table 4.) Table
9 also shows that exhaustive evaluation of all models ceases
to be practical around 7 or 8 variables. Intelligent heuristics
and sophisticated search techniques are required to sample
the Lattice of Structures efficiently, and Klir (1985),
Krippendorff (1986), Conant (1988), and others have made
suggestions along these lines. The lattice can be pruned as a
search procedure descends or ascends so that consideration
is restricted only to promising candidates. Or, the search
can be done roughly between groups of structures and then
finely within these groups (Klir, 1985). The combinatorial
explosion in models can also be mitigated by aggregating
variables, but this poses difficulties of interpretation. It also
does not reduce the number of possible states (the size of the
contingency table) for the system, unless state aggregation,

Figure 4. Lattice of General
Structures (4-variables). A
box is a relation; a line, with
branches, uninterrupted by a
box, is a variable. Arrows
indicate decomposition. The
top structure is ABCD; the
bottom is A:B:C:D. The 10
acyclic structures have
relations in bold. For 1
output, D, and 3 inputs, D is
in bold for the 9 structures in
the simplified lattice.

another compression
technique, also accompanies
variable aggregation.

Figure 4 shows the lattice of
general structures for a four-
variable system. If variables
are all dichotomous, the
degrees of freedom of the
structures range from 15 at
the top (ABCD) to 4 at the
bottom (A:B:C:D) and
decrease by 1 at every level.
The figure also shows the
acyclic structures, indicated
with boxes in bold (10 of the
20). The simplified lattice
which obtains if D is an
output and A,B,C are inputs
has 9 structures whose
bottom is ABC:D; these are
indicated by structures
where one line (representing
D) is bold. In this simplified
lattice, 4 of the structures are
also acyclic. These
correspond to single-
predicting-component
models in which the
predicting component has 0,
1, 2, or 3 predictors of D.

Model complexity for IRA
was defined above as the
number of parameters
needed to specify the model.
The figure suggests another
type of complexity, namely
the number of components
in the model. For three
variables, this is at most 3,
for four variables at most 6;
in the medical sociology
example discussed below it
reaches 12. Multi-
component models pose a
challenge to interpretation.
Beyond the mere number of
components, there is also the
complexity inherent in the
connectedness of the
components.
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I11. Examples of Variable-based Reconstruction

This section illustrates the exhaustive consideration of
models in data analysis, and the heuristic use of RA in many
variable data mining. To reiterate, “many” variables means
that all possible models cannot be examined by brute force.
The examples are restricted to information theoretic
variable-based reconstruction.

1. IRA Example

Exhaustive Analysis (4 variables)

Figure shows a exhaustive analysis of a small subset of the
OPUS data obtained from Dr. Clyde Pope of the Kaiser
Permanente Center for Health Research in Portland, Oregon
(Zwick & Pope, 2003). This data concerns health care
utilization in the Kaiser member population. The figure
summarizes the relationships between 4 variables in the data
set, plotting the (Complexity, Information) for all 114
specific structures. The best models in this graph are its
“northeastern frontier” where models are not dominated by
(inferior in both complexity and information to) any other
model. From this “solution set,” one might pick out the
simplest model having information greater than some
minimum, the most information-rich model having
complexity less than some maximum, or some other single
model.

Figure 5. Decomposition Spectrum. (Complexity,
Information) for 114 four-variable structures; data from
Kaiser Permanente Center for Health Research
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2. Heuristic search (24 variables)
Basic results

From the OPUS data (subset) with sample size of 2100,
twenty four possible predictors (inputs) of self-reported
health status (output) were selected. The inputs include sex,
age, family and work information, socioeconomic,
behavioral, and psychological measures, health-related
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attitudes and activities, and other variables. Quantitative
input variables were discretized, and some nominal
variables were also rebinned. The cardinalities of the
variables as analyzed range from 2 to 6, and the product of
the 25 cardinalities was 1.16 x 10*. After analysis, the best
model, involving 8 variables (7 inputs, BHLNORU, and 1
output, X), with a state space of 32,400 states, explains
65.4% of U(X). This model is complex, having 11
predictive components, each of which represents a high
ordinality interaction effect between four or five inputs and
the output. The model, stated here without identifying the
specific nature of the input variables, is:

BHLNORU:BHNRX:LORUX:LNOUX:HLOUX:HLNOR
X:LNRUX:HLRUX:NORUX:HORUX:HNOUX:HNRUX.

If this model had been proposed for confirmatory testing, its
a, relative to a null hypothesis of no association between the
24 inputs and the 1 output, would be 0.03. (Rigorously
speaking, one cannot simply say that the statistical
significance of this model is 0.03 because the statistical
significance of the results of a exploratory search depends
upon how many models are looked at. However, reporting
the significance which would have obtained had this model
been subjected to a confirmatory test can motivate a follow-
on study which explicitly tests the model. U(X) may be
capable of being even further reduced but if additional work
is undertaken on this data set, simplifying the model to
facilitate interpretation would be more critical.

Search strategy
The strategy used to obtain this model was a 2-step process:

ABCDEFGHIJKLMNOPQRSTUVWXY  (the initial set
of [24] inputs and the output [X] under consideration)

Step #1: Input set reduction, using only one
predicting-component models:
BHLNORUX  (areduced set of [7] inputs and the output)

Step #2: Search through the lattice of multi-
Y component-predicting models

BHLNORU:BHNRX:LORUX:LNOUX:HLOUX:HLNORX:
LNRUX:HLRUX:NORUX:HORUX:HNOUX:HNRUX

In the first step, the 24 inputs were reduced to 12 and then to
7. This is “feature selection.” The subset of 7 inputs were
selected by examining the uncertainty reductions achieved
in single-predicting-component models. For 7 inputs, the
best model is BHLNORUX. The uncertainty reduction of X
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from the 7 inputs in this model is 81.7%, but this reduction
is not statistically significant (o = 1.0).

The 7 input model was chosen even though it was not
significant because of the expectation that by decomposition
the model could be simplified without major loss of
predictive power. This was indeed possible. Step two
yielded an 11-predicting-component model, reducing the
uncertainty of the output by 65.4%, a reduction which is
statistically significant (o = 0.03). The model utilizes all 7
inputs, but in components each having 4 or 5 inputs. This
decomposition preserved 80% (65.4/81.7) of the predictive
information in the single-predicting-component model (o =
1.0) obtained in the first step, BHLNORUX. This second
step, unlike the first step, does require operations on the full
state space, which here has cardinality 32,400.

Only 7 rather than a greater number of inputs were used
because of the combinatorial limits of the program, which
examined all single-predicting-component (SPC) models by
brute force. (The program generated all models with one,
two, three, etc. predicting inputs.) However, in more recent
versions of the program, this brute force approach has been
replaced by a breadth-first fixed width search, which allows
the rapid examination of an arbitrary number of inputs.
Also a related RA method exists, known as “Extended
Dependency Analysis” (EDA), which allows heuristic
search in single-predicting component models with 10’s or
100’s of variables (Conant, 1988; Lendaris, Shannon, &
Zwick, 1999; Shannon & Zwick, 2003). EDA merges the
inputs of several good components to produce a single-
component model, without evaluating all models with this
number of total inputs. Recently, in an RA study looking
only at SPC models, 150 variables were reduced to 46 for
subsequent use by neural net modeling (Chambless &
Scarborough, 2001). To repeat a point made earlier: these
calculations, involving SPC models, do not require
operations on a complete state space and scale with the size
of the data, which for the subset of OPUS data we used is
quite modest, namely N=2100.

Model utilization

The 11-component model indicated above can be used in at
least three ways. First, each predicting component, e.g.,
BHNRX or LORUX, represents a high ordinality interaction
effect involving several inputs and the output (health status,
X). If the inputs were originally quantitative variables,
these effects are likely also to be nonlinear. ldeally, each of
these components should be given a substantive
interpretation of how the input variables combine to affect
X. This requires extensive subject-specific knowledge, and
has not yet been attempted for this study.
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Second, it is possible to asess the multiple components
relative to one another, to identify which are the most
important. For the 7 inputs used, this 11-component model
was maximally predictive (under the requirement that the
model would have been statistically significant if it had been
proposed for confirmatory test), but a simpler though less
predictive model might be preferred. Further analysis of the
model might allow such simplification.

Third, the eleven-component model yields a calculated
BHLNORUX distribution, which can be converted to

p(X | B,H,L,N,O,R,U), a distribution on X conditioned on
the input variables. Thus, given the values of all the 7 input
variables, RA yields predicted probabilities for all the
different possible output states. These can be compared to
p(X), the probabilities of the output without any knowledge
of the inputs.

Finally, it should be reiterated that exploratory searches are
precisely that: exploratory. Resulting models should ideally
be tested in a confirmatory mode with new data.

The selected inputs and/or the specific multi-component
model can be used in conjunction with methods which retain
the quantitative character of variables which have been
discretized. With SPC RA modeling, feature selection can
be done from a large set of variables, as noted above, and
the selected features fed into a neural net (NN). The NN
part of such a RA-NN strategy may sometimes not be
necessary. In the pattern-recognition study of Lendaris,
Shannon, and Zwick (1999), RA on discretized variables
essentially solved the problem by itself.

Multi-predicting-component RA modeling can also be used
to prestructure neural nets, so that all-to-all connectivity is
not required (Lendaris, Zwick, Mathia, 1993; Lendaris &
Mathia, 1994; Lendaris, 1995; Lendaris, Rest, & Misley,
1997); this speeds NN training times and improves
generalization capacity. RA may also have promise for the
prestructuring of genetic algorithms, more specifically for
determining the optimal order of the variables on the GA
genome (Zwick & Shervais, 2003).

2. SRA Example

SRA reconstruction is exemplified by a study which
attempted to predict whether discrete dynamic systems --
specifically, elementary cellular automata (ECA) -- are
chaotic or not.
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An ECA is a one-dimensional array

mapping, si(i-1) ® s(i) ® s(i+1) >
Sw+1(i), which specifies how the state
of each cell at time t+1 depends
upon its state and the state of its
two adjacent neighbors at time t.
The three cells at time t and the
center cell at time t+1 will be t

labelled A, B, C, and D. Thisis a s(i-1) s(i) s(i+1)
deterministic directed system which A C

as a binary number,

Table 10. An example of
of cells, s(1)...s(n), governed by a an ECA rule (#150)?

The rule is indexed by
considering the D column

whose top-most value is
its least significant bit.
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proposed by Walker and Ashby (1966), who called it
“homogeneity.”

SRA or IRA decomposition properties of the rules
were also used (Zwick & Shu, 1997; Zwick & Shu,
2001) to predict chaoticity or non-chaoticity. It can be
shown that the specific structures for this 3-input, 1-
output problem can be reduced to the 12 specific

t+1  structures shown in Table 12. These group into 6

s(i)  levels of complexity, indexed by parameter, .
Structures whose variables are permuted have the

illustrates the use of RA for time
series analysis (see also Zwick,
Shu, & Koch, 1996 for an IRA time
series example).

An example of an ECA mapping or
“rule” is given in Table 10. There
are 256 mappings which preserve
the identity of the 3 inputs, but in
the ECA context these group into
88 equivalence classes, analyzed by
SRA. Every mapping can also be
converted in probability distribution
by setting p(A,B,C,D) to 1/8 if an
(A, B, C, D) tuple appears in the
mapping and O if it does not. The

PRPPPOOOO
PRPRPOORFRRFROO|IT
POPFPOPRFPOPRFRO

same complexity, but for ECAs not all permutations
are equivalent, because the neighbors A and C are
different from B, so there are 9 general structural types
(shown in bold).

Table 12 indicates that while all single-predicting
component models are themselves mappings, the c =4
and 5 models decompose the rule mapping into
(stochastic) relations whose intersection yields the
correct mapping. Such an approach to decomposition
is quite different than what is encountered in LDL
decomposition.

Rroororr ol

Table 12. Structures for ECA rules. The o identifier for the 6 structural levels is given,
and the 9 different specific structures are shown in bold.

resulting probability distributions o | Structures SRA_
were also analyzed by IRA. 6 | ABCD mapping
5| ABC:ABD:ACD:BCD 3 relations (— mapping)
Table 11 illustrates how a rule 4 | ABC:ABD:ACD ABC:ABD:BCD  ABC:ACD:BCD | 2 relations (— mapping)
; i 3 | ABC:ABD ABC:ACD ABC:BCD mapping
governs ECA dynamics. Eight " : . .
cells are arranged in a toroid, so i ABC:AD ABC:BD ABC:CD mapping
ABC:D constant

s(9) =s(1). For every cell, the
rule produces its next state, s..1(i), given its present state,
si(i), and the present state of its left and right neighbors, s(i-
1) and s(i+1). Eventually the system reaches either a fixed
point or limit cycle attractor. Such discrete dynamics can be
considered “chaotic” if the time to reach the attractor goes
up rapidly with the number of cells. Assignments of
chaoticity or non-chaoticity were taken from Li and Packard
(1990).

Table 11. Three time steps for ECA #150. The enclosed
four cells illustrate the mapping A ® B ® C — D for one
time step. The array at time t is arbitrary.

t 0 1 010
t+1 1 1 0 0 0 1 1
t+2 1 0 1 0 0 1 0 1
Two “standard” parameters used to predict chaoticity were

employed for comparison purposes: A (Langton, 1992) and
Z (Wuensche, 1992). The parameter A was actually first

By doing SRA on each rule, a ¢ is assigned to the rule,
which indicates how decomposable without loss the rule is.
Also, a vector parameter, t, characterize each rule by the
full set of decomposition losses (transmissions) for all 12
possible specific structures. IRA decomposition was also
done on the rules, and two measures, f'’ and ', were
calculated, which are closely related to the fluency measure
of Walker and Ashby (1966). These measures involve the
transmissions for the 2 of the 3 models (shown italicized in
Table 12) at level o = 3. The first measure, f', is a vector
measures which preserves information about the separate
losses in the models; the second, f”, is a scalar measure
which sums the decomposition losses of these two models.

f = {T(ABC:BCD), T(ABC:ABD)}
f = T(ABC:BCD) + T(ABC:ABD)
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Table 13 indicates the predictability of chaoticity or non-
chaoticity of ECA dynamics using RA measures (o, f', ',
and t) as compared to using standard ECA parameters (4
and Z). The table shows that RA measures predict better
than standard parameters. Predictability is assessed
information-theoretically as uncertainty reduction in
attractor variable, a, which has two states, {chaotic, non-
chaotic}. For rule parameter, r, which is either an RA
measure or a standard parameter, the table lists AU, and
AU, which are large for good predictors, where

AU, = fractional reduction of U(a) knowing r
= [U(a)-U(a[n}u(a)

AU, = reduction of U(a) per bit of predictor
=[U@-U@|n]/u)

Table 13. Predicting cellular automata dynamics.
Reduction of uncertainty of attractor & uncertainty
reduction normalized by information of predictor, r. The
best uncertainty reductions for criteria are shown in bold.

r U@l AU, AU
- | 679

Standard ECA parameters

Walker-Ashby, Langton 2 | .600 116 .044

Wuensche Z | .458 326 .114
RA measures

lossless complexity c | .b53 18.6 .069

info.-theor. fluency f | .355 477 124

2nd fluency measure frr | 447 342 151
complete RA spectrum ¢ | .263 61.3 .102

Not only do RA measures predict chaoticity or non-
chaoticity better than the standard parameters of A and Z,
the RA framework actually subsumes these standard
measures in t, the complete vector of RA losses.
Specifically, UL | 1) = U(Z | ©) =0, i.e., T specifies also A
and Z. In fact, A turns out to be isomorphic with U(D).

No SRA measure comparable to fluency was apparent, and
this illustrates the point made earlier that IRA analysis can
be useful even for set-theoretic functions and relations,
because it presents the analytical results in a form different
from SRA. Analysis using the complete loss vector t is,
however, equivalent in SRA and IRA.

1V. Software

Computations were done using a software package being
developed at Portland State University named OCCAM (for
the principle of parsimony and as an acronym for
“Qrganizational Complexity Computation And Modeling”).
OCCAM is intended eventually to include all data, problem,
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and method types. Other RA software packages do exist,
e.g., CONSTRUCT and SPECTRAL by Krippendorff
(1981), SAPS by Uyttenhove (1984) and Cellier (1987),
GSPS by Klir (1976), Elias (1988), and coworkers, EDA by
Conant (1988), Jones’ k-systems analysis (Jones, 1989) and
a recent program by Dobransky and Wierman (1995).
However, no package fully encompasses RA as shown in
Table 1. Some programs are not easily used by researchers
outside the systems field; others do not incorporate
statistical tests. These existing packages are in limited use.

OCCAM is the result of a software development program
under my direction in the Systems Science Ph.D. Program at
PSU beginning in 1985. The first program, written by the
author, did single-predicting component modeling. This
was improved upon by Jamshid Hosseini (Hosseini,
Harmon, & Zwick, 1986, 1991; Hosseini, 1987), and then
by Doug Anderson who also wrote a program for multi-
predicting component modeling, and another program for
inconsistency resolution for IRA identification (Anderson,
1996). Hui Shu wrote SRA reconstruction and structure
lattice programs. For convenience, the whole set of these
earliest RA programs will be called OCCAMO. In this
period, Klaus Krippendorff generously provided to us his
programs mentioned above and these assisted our research
and informed our development efforts. We also utilized
GSPS obtained from Elias (1988). Marcus Daniels
combined many functionalities of the Hosseini and
Anderson reconstruction programs and Shu’s lattice
program by rewriting them and adding heuristic search in
the multi-predicting component modeling, to produce
OCCAML. Stan Grygiel made innovations and
improvements in the single-prediction-component
calculations, in search heuristics, and general research
usability; this produced OCCAM?2. Calculations reported in
this paper were done with OCCAM2 and occasionally with
earlier separate programs mentioned above.

A new program (OCCAMS3) has now been written by Ken
Willett, which is a more effective research and applications
platform (Willett & Zwick, 2003; Zwick, 2003a) and can be
accessed over the web. Willett is also specifically exploring
heuristic search and approximate computation approaches.
Michael Johnson is programming SBM for future
incorporation into the package, integrating it theoretically
into the RA framework, and exploring its implications for
decision analysis (Johnson & Zwick 2000; Zwick &
Johnson 2003). Bjorn Chambless has written a stand-alone
single-predicting-component information-theoretic program
which includes binning and aggregation preprocessing
capacities. Binning for OCCAM is being developed by
Michael Johnson and Steve Shervais. Tad Shannon has
programmed an updated version of Conant's EDA (Shannon
& Zwick, 2003) and also a time-series preprocessing utility.
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V. Discussion

In the example discussed above of IRA heuristic search, the
first step can in principle be extended to much larger
problems without difficulty, because single-predicting-
component models do not require operations on the full state
space, but depend rather on the size of the data. The second
step, however, does require such operations, which as noted
earlier limits the number of variables which can be analyzed
to of order 20.

This limitation does not preclude the use of RA for data
mining applications involving many more than 20 variables,
in that the first step can always be used to select a smaller
subset for lattice searches. Still, it would clearly be
desirable if the second step could be implemented for a
greater number of variables. The barrier here is the current
requirement for cyclic models of an IPF operation which
operates on the entire state space. If models could be
generated with a procedure that operated only on observed
states and scaled with the data, larger problems could be
addressed, since usually data is sparse. At present, it is not
apparent how to assess multi-predicting-component models
in an alternative way, but two approaches which use
approximate assessment and do not require the full state
space will now be briefly mentioned.

The first involves the use of binary decision diagrams
(Mishchenko, 2000). BDD make possible major economies
of space and computing time by storing states not explicitly
but implicitly in the paths of the diagram. So, while the size
of the state space increases exponentially with the number
of variables, the size of the graph does not, but the number
of paths in the graph does, which allows the graph to
represent the exponential dependence of the number of
states on the number of variables. It is likely that to use
BDD to analyze distributions the distribution frequencies
will need to be binned, i.e., IRA problems have to be
converted to SRA problems. If the resulting information
loss is not severe, and if BDD can be applied to such SRA
approximations, the size of the state space may become
much less limiting. This approach is under investigation
(Zwick & Mishchenko, 2003).

A second idea is to employ methods used in 3-dimensional
image reconstruction (Zwick & Zeitler, 1973), and Fourier
methods in particular. These methods allow the
composition of multiple projections in a single step,
regardless of cyclicity. They compute an approximation to
IPF which may or may not suffice for practical purposes.
Most critically, these methods scale with the data and not
the state space. This approach is also under current
investigation (Zwick, 2003b). The use of Fourier methods in
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RA would bring RA into proximity to LDL methods which
use wavelets, Walsh functions, Haar transforms, and similar
global or local function-based decompositions.

In summary, RA methods are general, being applicable to
set-theoretic relations as well as probability distributions.
Both SRA and IRA may be of interest to the machine
learning and logic design community. SRA offers another
approach to decomposition of relations and mappings, and
IRA can be used for these purposes as well. The LDL
community might profitably examine the use of log-linear
latent variable modeling and state-based RA techniques. It
might also consider extension of its techniques to
distributions, where statistical considerations are necessary.
The RA community and the social science log-linear
community, on the other hand, can gain from a deeper
familiarity with the LDL literature. RA methodology is
potentially a valuable new approach to data mining. Current
techniques can be applied to 10°s or 100’s of variables, and
heuristic and approximate methods may substantially
expand the range of RA modeling.
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