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Table 1. Aspects of RA. (Prototypical RA task shown in bold.) 

1. VARIABLE TYPE nominal (discrete) [binary/multi-valued] 
 ordinal (discrete) 
 quantitative (typically continuous) 
2. SYSTEM TYPE directed system (has inputs & outputs) 
    deterministic vs. non-deterministic 
 neutral system (no input/output distinction) 
3. DATA TYPE information theoretic RA (freq./prob. distribution) 
 set-theoretic RA (set-theoretic relation/function) 
4. PROBLEM TYPE reconstruction (decomposition) 
    confirmatory vs. exploratory (data analysis/mining) 
 identification (composition) 
5. METHOD TYPE variable-based modeling (VBM) 
 state-based modeling (SBM) 
 latent variable-based modeling (LVBM) 
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ABSTRACT 
 
This paper is an overview of reconstructability analysis 
(RA), an approach to discrete multivariate modeling 
developed in the systems community.  RA includes set-
theoretic modeling of relations and information-theoretic 
modeling of frequency and probability distributions.  It thus 
encompasses both statistical and non-statistical problems.  It 
overlaps with logic design and machine learning in 
engineering and with log-linear modeling in the social 
sciences.  Its generality gives it considerable potential for 
knowledge representation and data mining. 
 
I. INTRODUCTION 
 
This paper is an overview of reconstructability analysis 
(RA), a discrete multivariate modeling methodology 
developed in the systems literature; an earlier version of this 
tutorial is (Zwick 2001).  RA derives from Ashby (1964), 
and was developed by Broekstra, Cavallo, Cellier, Conant, 
Jones, Klir, Krippendorff, and others (Klir 1986, 1996).  RA 
resembles and partially overlaps log-linear (LL) statistical 
methods used in the social sciences (Bishop et al 1978; 
Knoke & Burke 1980).  RA also resembles and overlaps 
methods used in logic design and machine learning (LDL) 

in electrical and computer engineering (e.g., Perkowski 
1997).  Applications of RA, like those of LL and LDL 
modeling, are diverse, including time-series analysis, 
classification, decomposition, compression, pattern 
recognition, prediction, control, and decision analysis. 
 
RA involves the set-theoretic modeling of relations and 
mappings and the information-theoretic modeling of 
probability/frequency distributions.  Its different uses can be 
categorized using the dimensions of variable, system, data, 
problem, and method-types shown in Table 1.  These will 
now be briefly discussed.  Section II explains RA in more 
detail.  Section III gives examples, Section IV discusses 
software, and Section V offers a concluding discussion. 
 
1. Variable-type: Nominal, ordinal, and quantitative 
 
RA applies to multivariate data involving nominal variables 
or quantitative variables which are converted into nominal 
variables by being discretized.  Variables need not be binary 
(dichotomous) but can be multi-valued.  Nominal variables, 
whose states are discrete and unordered, are the most 
general type of variable, and so methods which apply to 
them encompass ordinal and quantitative variables as well.  
Continuous quantitative variables can be discretized either 
by quantization (non-overlapping binning intervals) or by 
fuzzification (Zadeh, 1965; Cellier et al, 1995), which is less 
sensitive to the boundaries of the bins.  Although 
discretization loses information, this loss is offset by the fact 
that RA can detect nonlinearities and interaction effects 

which might be missed by standard 
methods.  Moreover, it is not necessary 
to hypothesize specific nonlinear and 
interaction effects to detect their 
existence.  The subject of discretization 
is mentioned only to emphasize the 
generality of nominal variable methods; 
it is outside the scope of this paper. 
 
2. System-type: directed vs. neutral  
 
To relate RA to a familiar LDL problem, 
consider the task of decomposing a logic 
function Z=g(A, B, C), where variables 
are either binary or multivalued.  In RA 
terminology this is a directed system, 
since inputs and outputs (“independent 
variables” and “dependent variables”) 
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are distinguished.  Directed systems are further classified as 
deterministic or stochastic.  While most RA applications 
involve predictive, dynamic, or causal (hence directed) 
relationships between variables, sometimes variables have 
equal status; these systems are called neutral. 
 
RA can be applied to directed -- both deterministic and 
stochastic -- and neutral systems.  By contrast, in LL 
modeling, stochastic systems are usually the focus.  In LDL 
modeling, deterministic directed systems are the rule, and 
neutral systems are rarely considered. 
 
3. Data-type: Information-theoretic and set-theoretic RA 
 
RA has two versions: a set-theoretic (here called SRA), or 
more precisely, a “crisp possibilistic,” version which applies 
to set-theoretic relations and mappings, and an information-
theoretic (here called IRA) “probabilistic” version which 
applies to frequency (and probability) distributions (Conant, 
1981; Klir, 1985; Krippendorff, 1986).  IRA can also be 
applied to quantitative functions of nominal variables by 
rescaling these functions so that they can be treated as 
probability distributions (Jones, 1985a).  SRA and IRA are 
similar in many respects, and together constitute a coherent 
framework.  Moreover, probabilistic and crisp possibilistic 
analyses are encompassed within a “generalized information 
theory” (Klir & Wierman, 1998), which includes also fuzzy 
possibilistic and probabilistic distributions. 
 
The same model structures are considered in both IRA and 
SRA.  Let ABC represent a set-theoretic relation or mapping 
or a probability or frequency distribution for a three-variable 
system, with projections AB, AC, and BC, and A, B, and C.  
Define a structure as a non-redundant set of projections.  If 
ABC is the data, the possible model structures shown in 
Figure 1.  At the top of the lattice is the data, also called the 
“saturated model.”  At the bottom is A:B:C, called the 
“independence model.”  (In IRA, the bottom model may 
alternatively chosen to be the uniform distribution.) 

Figure 1. Lattice of Specific Structures for a 3-variable 
neutral system.  The shaded sublattice is for a directed 
system, with inputs A & B and output C. 

 ABC  

 AB:AC:BC  
   

AB:AC AB:BC BC:AC 
   

AB:C AC:B BC:A 
   

 A:B:C  

The figure shows that the lattice of structures for a directed 
three variable system (with two inputs and one output) is a 
sublattice of the lattice for neutral systems.  For directed 
systems with output C, the independence model is AB:C, 
not A:B:C, and only the 5 shaded structures need to be 
considered.  Each of these 5 structures contains an AB 
component (relation or distribution).  A directed system 
model always has one component which collects together all 
inputs, allowing for but ignoring the possible presence of 
constraint among them.  Every other component includes at 
least one output.  Directed system models can thus be 
characterized by their number of predicting components.  
For inputs A, B, and output C, model AB:AC has one 
predicting component, AC.  (We do not here employ a 
notation which explicitly shows directedness, e.g., A → C, 
any relation or distribution written as a string of letters may 
be either neutral or directed.)  Model AB:AC:BC has two 
predicting components, which are “independent” in a 
“maximum uncertainty” sense, to be described later.  Only 
in model ABC do A and B interact in their joint effect on C. 
 
The most commonly used version of RA is IRA.  Here the 
problem is typically the decomposition of frequency or 
probability distributions, where RA does statistical analysis.  
This is the main subject of this paper.  Consider a frequency 
distribution f(A, B, C, Z) for a directed system, where A, B, 
and C are inputs and Z is an output.  RA decomposes such 
distributions into projections, such as f1(A, B, Z) and f2(B, 
C, Z), and models are assessed for statistical significance, 
usually with the Chi-square distribution.  This use of RA 
overlaps considerably with LL modeling but has no parallel 
in LDL, where “statistical” considerations can arise in that 
functions or relations may be partially specified, e.g., due to 
sparse sampling. 
 
Where IRA and LL overlap, they are equivalent, but each 
has distinctive strengths.  The LL literature is more 
advanced statistically, includes latent variable techniques 
(discussed below), and offers methods to analyze ordinal 
variables.  Well tested LL software exists (e.g., in SPSS and 
SAS).  On the other hand, in IRA, graph-theoretic methods 
are used to define explicitly various lattices of possible 
models and to suggest heuristic techniques to search these 
lattices.  RA makes extensive use of the uncertainty 
(Shannon entropy) measure, which is conceptually 
transparent because of its similarity to variance, and 
includes innovations like state-based modeling (discussed 
below), absent in the LL literature.  However, the RA and 
LL communities have been only dimly aware of -- and have 
not benefitted much from -- each other’s existence, despite 
early work which linked the two (Kullback, 1959; Ku & 
Kullback, 1968). 
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While IRA is statistical in its overlap with LL, it includes 
also non-statistical applications.  For example, the k-
systems methodology of Jones (1985a) is used primarily for 
function approximation and compression.  IRA can also be 
used to analyze set-theoretic relations and functions (this is 
done, for example, in the analyses of cellular automata 
reported below).  SRA, in contrast, is completely and 
inherently non-statistical.  It is the natural RA approach to 
set-theoretic relations and functions.  SRA here overlaps 
with LDL.  While it appears to be different from any 
particular LDL technique, it resembles LDL methods which 
decompose functions into generalized (arbitrary) as opposed 
to specific components (like ‘and’ and ‘or’ gates). 
 
RA thus bridges two very disparate fields: log linear 
modeling in the social sciences and logic design and 
machine learning in electrical and computer engineering.. 
 
4. Problem-type: Reconstruction vs. identification 
 
RA includes reconstruction and identification (Klir, 1985).  
In reconstruction ABC (see Figure 1) is the data, and one 
goes down the lattice until decomposition losses are 
unacceptable.  Or, one can start at the bottom with A:B:C 
(the independence model for neutral systems) or AB:C (the 
independence model for a directed system with output C), 
and ascend until model error relative to the data is too great 
or the model is unacceptably complex.  Descending the 
lattice is especially natural for neutral systems, while 
ascending the lattice is more natural for directed systems. 
 
Thus, in reconstruction, a distribution or relation is 
decomposed (compressed, simplified) into projected 
distributions (also called “margins”) or relations.  ABC 
might, for example, be decomposed into AB and BC, 
written as structure, AB:BC.  Taken together, the two linked 
bivariate projections would constitute a model of the data 
which is less complex (has fewer degrees of freedom) than 
the data.  By maximum-entropy (uncertainty) composition 
of these projections, the model yields a calculated trivariate 
ABCAB:BC distribution or relation which may differ from the 
observed ABC data.  The difference (error) represents loss 
of information in the model.  By definition, the data itself 
has 100% information (0% error).  Models are also assessed 
in complexity, where complexity for IRA is df, degrees of 
freedom, the number of parameters needed to specify a 
model.  For convenience df values may be normalized so 
that the data is 100% complex and the independence model 
0% complex.  Reconstruction decomposes data by finding 
less complex models which preserve either all of its 
information (lossless decomposition) or a sufficient amount 
of its information (lossy decomposition), where sufficiency 
is assessed either statistically or by other standards. 
 

Reconstruction is done in either a confirmatory or 
exploratory mode.  In the confirmatory mode for IRA, a 
specific model or a small number of models, proposed a 
priori on the basis of theoretical considerations, are tested 
statistically.  In the exploratory mode, one has no prior idea 
about what model might be suitable, and one examines 
many structures to find a best model or a family of best 
models.  LL modeling is normally done in the confirmatory 
mode and, indeed, in the social sciences, exploratory 
modeling is normally frowned upon.  The situation is quite 
different in machine learning, a field explicitly devoted to 
exploratory modeling. 
 
Identification is pure composition.  For example, the 
observed data might be the two distributions AB and BC.  
Because they are not derived from a single ABC, AB and 
BC can be inconsistent if they disagree in their common B 
projection.  If such an inconsistency can be resolved, a 
calculated ABC can be generated.  Identification methods 
exist which resolve such inconsistencies and make possible 
the integration of multiple data sets (as in a data-base 
merge) coming from different sources.  The LL and LDL 
literatures have not articulated the identification problem 
and are focused exclusively on reconstruction. 
 
Reconstruction in the exploratory mode is the typical RA 
problem.  For convenience, call modeling with “few” 
variables data analysis and modeling with “many” variables 
data mining.  This paper discusses both, but is motivated by 
the task of data mining, for which adequate RA software is 
not yet available.  (LDL techniques have been used for data 
mining, but LL methods, not typically implemented for 
many variables or for exploratory searching, are rarely 
mentioned in the data-mining literature.)  “Few” variables 
here means that exhaustive evaluation of all possible RA 
models can be done.  This allows us to be certain of the 
choice of a best single model or it might be done for a very 
different purpose, namely to characterize the data by the set 
of errors for all possible decompositions.  The limit of 
exhaustive search is roughly about 7 or 8 variables, in round 
numbers, 10.  Data mining here means exploratory modeling 
beyond this threshold, i.e., with 10’s, 100’s, perhaps even 
1,000’s of variables.  Exhaustive search is then no longer 
possible, and heuristic techniques, which consider only a 
subset of possible models, must be used instead. 
 
This threshold of somewhat less than 10 variables marks the 
limit of exhaustive analysis of all models, but there is a 
second threshold involving the number of possible states of 
the system (as opposed to the number of states observed in 
the data), which poses limits even for heuristic search.  This 
2nd threshold presently precludes the use of multi-
predictive-component RA models for more than about 20 
variables, but single-predictive component models can still 
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Table 2. Example of IRA variable-based reconstruction of a neutral system (the 
number of shaded cells is the degrees of freedom of each model) 

 data(df=7): observed ABC   model: calculated ABCAB:BC   
  B0  B1     B0  B1   
 C0 C1 C0 C1    C0 C1 C0 C1   

A0 143 253 77 182   A0 142 254 72 188   
A1 227 411 46 139   A1 227 409 52 134   

     1478         
              
              
        model (df=5): AB:BC   
       B0 B1   B0 B1  
      A0 396 259 655 C0 370 123 493 
      A1 638 185 823 C1 664 321 985 
       1034 444   1034 444  

 

be used.  For single-predicting-component models, one can 
treat 10’s, 100’s, and perhaps even 1000’s of variables, with 
computing time and space requirements depending on the 
size of the data, not the size of the state space.  However, 
multi-predicting-component models for directed systems are 
cyclic (have “loops”), and at present cyclic models in IRA 
need computation on the entire state space, without regard 
to how sparse the data is.  For 20 binary variables, the state 
space is about 24 Mbytes.  Adding many variables beyond 
20 is impractical, though approximate RA computation, 
which varies with the data and not the state space, might 
extend this range.  Two possible approximation approaches 
are mentioned at the end of this paper. 
 
5. Method-type: Variable-based, state-based, and latent 
variable-based RA 
 
Reconstruction as explained above illustrates variable-based 
modeling (VBM), which decomposes data into subsets of 
variables.  This is the most common situation.  Two other 
method-types are available: state-based modeling (SBM) 
and latent variable-based modeling (LVBM). 
 
SBM is less developed than LVBM.  Originally an aspect of 
the “k-systems analysis” of Jones (1985a,b, 1986), SBM is 
now being more integrated into the standard RA framework 
(Johnson & Zwick 2000; Zwick & Johnson 2003).  VBM 
reveals information-rich sets of variables, and a variable-
based model is a set of complete projections.  By contrast, 
SBM selects information-rich states, i.e., salient conditions 
(e.g., Shaffer, 1987, 1988).  A state-based model is a set of 
frequency values selected from the original data and its 
projections, but complete projections do not have to be 
included.  For example, for f(A,B,C) data, the SB model 
could be the frequencies, f(A2,B1,C3), f(A1,B2), and f(C2).  
SBM resembles rule-based methods in logic programming 
and fuzzy control.  It also 
resembles Crutchfield’s ε-
machines (Feldman & 
Crutchfield, 1998). 
 
Even though log-linear 
methods overlap with IRA, 
there is nothing equivalent 
to SBM in the LL literature.  
Something like SBM seems 
standard in LDL, where 
decompositions involving 
sums of products having 
varying numbers of 
variables are widely used. 
 
In latent variable models 
complexity is reduced or 

new constructs are introduced by adding additional, 
unmeasured, variables.  For example, an AB distribution 
might be modeled by the simpler AQ and QB projections of 
an AQ:QB model.  LV models are absent in the RA 
literature but widely used in the log-linear field (Hagenaars, 
1993; Vermunt, 1997).  However, latent variable LL 
software which is usable for exploratory data mining is not 
available.  In LDL, latent variables are standard, functions 
being typically decomposed using both “free” (observed) 
and “bound” (latent) variables (Grygiel, 2000; Grygiel, 
Zwick, & Perkowski, 2003). 
 
Since the objective of this paper is to explain RA (especially 
IRA) methodology, no survey is offered of RA applications, 
and comparisons with other methods are not undertaken.  
Section II provides details mostly on IRA reconstruction.  
Section III gives a few applications of RA to data analysis 
and mining.  Section IV is a summary and discussion. 
 
II. More Detailed Explanation 
 
The “prototypical” RA analysis is IRA variable-based 
reconstruction, which will now be explained.  Brief 
explanations will be provided for SRA, identification, and 
LVBM and SBM. 
 
1. Information-theoretic variable-based reconstruction 
(& identification) 

Basic reconstruction steps 
Table 2 illustrates variable-based information-theoretic 
reconstruction. The data, ABC, is shown on the left.  The 
best RA model, AB:BC, judged by its information and 
complexity, is shown on the lower right; its calculated 
frequencies are on the upper right. Reconstruction is done in 
3 steps: (1) projection, (2) composition, and (3) evaluation. 

1.projection
2.composition 

3.evaluation
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Table 3. Iterative Proportional Fitting for model AB:BC:AC   

The algorithm starts with 
   q(0)

AB:BC:AC(A,B,C) = 1/ (|A| |B| |C|), where | | means cardinality 
and then loops over iterations from j=0 until convergence: 
   For all A,B q(3j+1)

AB:BC:AC(A,B,C) = q(3j+0)
AB:BC:AC(A,B,C)    p(A,B)  /  q(3j+0)

AB:BC:AC(A,B)  
   For all B,C q(3j+2)

AB:BC:AC(A,B,C) = q(3j+1)
AB:BC:AC(A,B,C)    p(B,C)  /  q(3j+1)

AB:BC:AC(B,C)  
   For all A,C q(3j+3)

AB:BC:AC(A,B,C) = q(3j+2)
AB:BC:AC(A,B,C)    p(A,C)  /  q(3j+2)

AB:BC:AC(A,C)  
   j=j+1 

Projection 
The ABC data is projected into the two contingency tables, 
AB and BC which define the model AB:BC (lower right). 
This step is straightforward, and is given by  f(A0,B1) = 
f(A0,B1,C0) + f(A0,B1,C1). 

Composition 
These two tables together yield the calculated ABCAB:BC 
table (upper right), where frequencies are rounded to the 
nearest integer. 
 
Shift from frequencies to probabilities (frequencies divided 
by the sample size). Let p and q denote observed and 
calculated probabilities, respectively.  The IRA composition 
step is a “maximum entropy” procedure (Miller & Madow, 
1954; Good, 1963), where entropy is Shannon entropy, 
referred to here as uncertainty.  For model AB:BC, the 
calculated probability distribution, qAB:BC(A,B,C), is the 
distribution which maximizes the uncertainty, 
 
U(AB:BC) = -∑∑∑qAB:BC(A,B,C) log qAB:BC(A,B,C) 
 
subject to the AB and BC projections of the data, i.e., to 
linear constraints qAB:BC(A,B) = p(A,B) and qAB:BC(B,C) = 
p(B,C). Since AB:BC has no cycles, the solution can be 
written algebraically: 
 
qAB:BC(A,B,C) = p(A,B) p(B,C) / p(B). 
 
Calculated distributions for cyclic structures, like 
AB:BC:AC, need to be evaluated iteratively by the Iterative 
Proportional Fitting (IPF) algorithm.  As shown in Table 3, 
calculation of qAB:BC:AC(A,B,C) starts with a uniform 
distribution.  IPF then imposes upon it iteratively the 
observed projections specified by the model.  At iteration 
#1, first AB is imposed, then BC is imposed, and then AC is 
imposed.  At iteration #2, AB is reimposed because 
agreement with AB was destroyed when the other 
projections were imposed at the previous iteration.  Then 
BC is reimposed, then AC.  And so on.  IPF iterates until 
qAB:BC:AC(A,B,C) converges.   

 

The IPF algorithm requires that the entire distribution be 
computed, not merely the set of observed states, because as 
each projection is imposed on the working qAB:BC:AC(A,B,C), 
non-observed states will in general contribute to other 
calculated projections.  Thus computer time and space 
requirements for cyclic models vary with the state space of 
the problem, and not with the sample size. 
 
In log-linear modeling, calculations often go beyond the 
generation of qmodel.  The individual frequencies of specific 
states, e.g., fAB:BC(A0,B1,C0), can be decomposed into the 
contributions from all the separate “effects,” i.e., A, B, C, 
AB, and BC.  This can be useful if one is particularly 
interested in one or a few states.  Such decomposition is not 
prominent (perhaps even absent) in the RA literature. 

Evaluation 
The calculated ABCAB:BC is compared to the observed ABC.  
The calculated distribution approximates the data, which is 
always more constrained.  The error is the constraint lost in 
the model (Figure 2), called transmission T(AB:BC), which 
is the difference between the uncertainty of the model and 
the uncertainty of the data. 
   
T(AB:BC) = ∑∑∑ p(A,B,C) log[ p(A,B,C)/qAB:BC(A,B,C) ] 

 
   = U(AB:BC) - U(ABC) 

 

Figure 2. Constraint lost and retained in models 

                  ---------- ABC (the data) 
 
                T(AB:BC) = error in model AB:BC 

  = constraint lost in AB:BC 
 
                        ------ AB:BC 
      T(A:B:C) 
                             T(A:B:C)-T(AB:BC) = constraint  

 captured  in AB:BC 
 
                   ---------- A:B:C  (or other reference structure)  
 

Information, i.e., constraint 
captured in the model, is 
normalized to [0,1] with 
respect to the 
independence model, 
A:B:C (or to AB:C, for 
directed systems where C 
is the output), as follows: 
 
Information = 1 -  
[T(AB:BC) / T(A:B:C) ] 
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Table 4. IRA results for the data of Table 2. (Information, α, df) for 
ABCmodel.  The reference model for calculation of α is ABC.  Shading 
shows models to be considered if the system were directed, with C being 
the dependent variable. 

 ABC (1.,1., 7)  
 AB:AC:BC (.987,.382, 6)  
AB:AC (.827,.005,5) AB:BC (.978. .518, 5) BC:AC (.153,.000,5) 
AB:C (.826, .014, 4) AC:B (.000, .000, 4) BC:A (.152,.000,4) 
 A:B:C (0., .000, 3)  

In addition to model error, model complexity is also of 
interest. It is desirable to minimize both, but there is a 
tradeoff between the two.  Decisions on model acceptance 
are made either by optimizing one subject to the other as a 
constraint, or by merging the two via Chi-square or other 
approaches. 
 
Complexity of the model is defined as its degrees of 
freedom, df, the number of parameters needed to specify it.  
Reconstruction is compression; it reduces complexity.  For 
the data and model, df is shown in Table 2 by the count of 
shaded cells.  Knowing the sample size subtracts 1 from the 
number of cells (states) in a table; thus for data ABC (the 
“saturated model”), df = 7.  In AB:BC, df(AB) = 3 but once 
AB is specified, only 2 more numbers are needed to specify 
BC, because the B margins of the tables must agree.  
Algebraically, df(AB:BC) = df(AB) + df(BC) - df(B) = 3+3- 
1 = 5.  Normalizing df to the [0,1] ranges gives a normalized 
complexity, 
 
Complexity( AB:BC ) = [ df( AB:BC ) - df( A:B:C ) /  
                                       [ df( ABC ) - df( A:B:C ) ]. 
 
In confirmatory analysis, AB:BC might be a hypothesized 
model.  Its error would be assessed by calculating the 
Likelihood-ratio Chi-square, L2(AB:BC) = 1.3863 N 
T(AB:BC), where N is sample size.  L2(AB:BC) and 
df(AB:BC) are then used to obtain α, the probability of 
making a Type-I error by rejecting the null hypothesis that 
the calculated ABCAB:BC is statistically the same as the 
observed ABC.  There are also other ways of integrating 
model error (or information) and complexity to decide on 
model acceptability. 

Exhaustive analysis 
Table 2 illustrated confirmatory RA, where one model is 
assessed.  The exhaustive evaluation of all models for this 
data is given in Table 4 which gives (information, α, df) for 
every model.  This complete RA characterizes the data more 
fully than merely stating that the best model is AB:BC. 
ABC has 100% information.  The probability of error in 
rejecting its agreement with the data is 1, since it is the data.  
A:B:C is the baseline for analysis, and thus has no 

information.  The probability of error in rejecting its 
agreement with the data in this case is 0.  A good model has 
high information and low df.  If models are compared to the 
data (as is done in Table 4), a good model has high α, 
because the probability of error in rejecting the equivalence 
of model and data should be high.  The more familiar 
preference for low α holds if the model is compared not to 
ABC but to A:B:C. 
 
If the Table 2 data were for a directed system, with output C 
and inputs A and B, only the shaded models in Table 4 need 
be considered.  For directed systems it is useful to state 
results in terms of reductions in the output uncertainty, 
knowing the inputs, rather than in terms of information.  If 
the uncertainty reduction, ΔU(C|B) ≡ U(C)-U(C|B) = 
T(B:C) = U(C)-U(B,C)+U(B) is positive and statistically 
significant, model AB:BC is acceptable, i.e., B is a predictor 
of C. 
 
Because Shannon entropy involves a log term, even small 
ΔU may indicate high predictability.  For example, if the 
odds of rain vs. no rain is 2:1 in winter and 1:2 in summer 
and 1:1 over the year (for equal seasons), then knowing the 
season makes a big change in the odds, but reduces U(rain 
vs. no-rain) by only 8%.  For the Table 2 data, the results 
are shown in Table 5.  For this data, A and B reduce the 
uncertainty of C by only very small amounts, less than 1%.  
The last column of the table also shows that quantitative RA 
measures (such as U or T) can be thought of equivalently as 
assessing models. 

Table 5. Uncertainty reductions (output C; inputs A & B) 

 %ΔU Δdf α Associated model 
U(C|A,B) 0.56 3 .013 ABC 
U(C|A,B) 0.52 2 .007 AB:AC:BC 
U(C|A) 0.49 1 .002 AB:AC 
U(C|B) 0.00 1 .866 AB:BC 
U(C) - - 1.000 AB:C 
 
Note that there are two ways that A and B can both predict 
C.  In AB:AC:BC they do so separately, but in ABC there is 
an interaction effect (Zwick, 1996). Here α is computed 
relative to the independence model, not the saturated (top) 

model; it is small if results are statistically 
significant.  The table shows that A is a better 
predictor of C than is B; and that ΔU(C) using 
both inputs, either in ABC or in AB:AC:BC, is 
very small but still statistically significant at the 
0.05 level. 

Identification 
Table 2 can be used also to explain 
identification.  If the data is not the ABC on the 
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left but the two distributions on the lower right, 
identification derives the calculated ABCAB:BC on the upper 
right.  This is trivial when AB and BC are derived by 
projection from a single ABC distribution.  Suppose, 
however, that AB and BC came from different sources, and 
that the BC table had a B margin of [1024, 454] while the 
AB table still had the B margin of [1034, 444].  AB and BC 
would be inconsistent in their common B margin; this could 
arise from sampling or other errors.  When data sets are 
obtained from different sources inconsistency is the norm, 
and resolution of inconsistency is required before 
composition can be done (Klir, 1985). 
 
Mariano (1984, 1987), Pittarelli (1990) and Anderson 
(1996) have shown how inconsistencies among distributed 
data sets may be resolved.  Anderson also showed how 
“nuisance” variables can be exploited in the composition of 
disparate data sets.  To find a relation between A and C 
from inconsistent AB and BC distributions, the 
inconsistencies are first resolved, after which the adjusted 
AB′ and BC′ distributions are composed into ABC and 
projected onto AC. 
 
2. Information-theoretic state-based & latent variable-
based reconstruction 
 
Variable-based modeling (VBM) requires the complete 
specification of its components (e.g., the full AB and BC 
tables in Table 2).  It is possible, alternatively, to define a 
model in terms of the probabilities of any set of non-
redundant states selected from ABC and its projections 
(Jones, 1985a,b).  Thus SBM encompasses VBM as a 
special case.  SBM selects states with unexpectedly high or 
low probabilities (relative to some prior); these are the facts 
prominent in the data, and qmodel(A,B,C) has maximum 
uncertainty, constrained by these values.  This approach is 
more powerful than VBM, and Chen (1997) has discussed 
its possible use for data mining.  The penalty is that there 
are many more SB models, so SBM might be most useful 
for data mining if it were used as a follow-on to VBM.  The 
essence of SBM is illustrated in Table 6. 

Table 6. State-based decomposition 

 B0 B1         
A0 .1 .1 .2  .04 .16 .2  .1 .1 
A1 .1 .7 .8  .16 .64 .8  .1 .7 

 .2 .8   .2 .8     
model AB   A:B   [A1,B1] 

df  3    2    1 
error, T  -    .087    0 
 
The AB model has df=3, shown by the shading of 3 cells 
(arbitrarily chosen).  The A:B model has df=2, i.e., it needs 

two specified probability values, one (arbitrarily chosen and 
shaded) from each margin.  A:B, with probabilities  
p(A) p(B), is not identical to AB and exhibits error.  A state-
based model specifying the single probability value, 
p(A1,B1)=.7 (shown shaded) forces the remaining (A0,B0), 
(A0,B1), and (A1,B0) probabilities, by the maximum 
uncertainty principle, to be .1.  These values are correct and 
this model has zero error even though it is simpler than A:B. 
 
This example was constructed to show that a one-parameter 
SB model can be superior to a two-parameter VB model.  
SB analysis of the distribution of Table 2 reveals that a 4-
parameter model, p(A1,B0), p(A0,B1), p(B0,C1), and p(B1,C0) 
captures virtually the same amount of information as the 5-
parameter AB:BC model (note that the four states come 
from AB and BC).  In more complex distributions the 
economy of SBM is more dramatic. 
 
Latent variable modeling (LVBM) is not developed within 
RA, though it is in the log-linear literature.  It is also widely 
used for set-theoretic mappings in the LDL literature.  It will 
be discussed here only briefly. 
 
To illustrate latent variable reconstruction, consider BA:BC, 
where B is an input and A and C are outputs.  By attributing 
directionality to the relations in the structure, we model 
A ← B → C.  If variables were quantitative instead of 
nominal and relations were linear, this would be “factor 
analysis” (Kim & Mueller, 1978) and B would be a 
common factor, which explains (away) the relation between 
A and C.  B may be a new construct, implicit in AC, which 
LVBM makes explicit. 
 
If B mediates between A and C, this is “path analysis” 
(Davis, 1985).  The structure might be written AB:BC to 
suggest the causal sequence A → B → C.  What factor and 
path analyses are for quantitative variables “latent class 
analysis” is for nominal variables (McCutcheon, 1987).  In 
latent class analysis, a distribution AC might be explained 
by invoking a latent variable B and a calculated distribution 
ABC which is decomposable into BA:BC (equivalently, 
AB:BC).  The generation of the calculated ABC is not as 
straightforward as it is in VBM, and a different algorithm is 
used in place of IPF (Hagenaars, 1993). 
 
IRA or log-linear modeling with latent variables thus offers 
a nominal variable generalization of path analysis, factor 
analysis, and covariance structure modeling (Long, 1983), 
which are restricted in application only to linear relations 
among quantitative variables. Latent variables can also be 
used for compression.  If given AC, a latent variable B 
yields a calculated ABC with structure BA:BC, and if 
|A|=|C|= 4 and |B|=2, then df(AC) = 15, while df(BA:BC) = 
13, so BA:BC is less complex than AC. 
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Table 7. SRA variable-based reconstruction (neutral system) 

data: observed ABC  model: calculated ABCAB:BC 

{000, 010, 011, 110, 111}  {000, 010, 011, 110, 111} 
   
   
  model: AB:BC 

  AB = {00•,01•,11•}, BC ={•00,•10,•11} 

3. Set-theoretic reconstruction 
 
In SRA, data is a set-theoretic relation -- a subset of a 
Cartesian product -- the set of states actually observed, 
without regard to frequency.  Set-theoretic reconstruction is 
similar to information-theoretic reconstruction, as can be 
seen by comparing Table 2 to Table 7. In Table 7, the two 
values of A, B, and C are indicated as 0 and 1, but these are 
only arbitrary labels. 

As in IRA, ABCAB:BC is the maximum uncertainty relation, 
given the model constraints, i.e., the model-specified 
projections.  U(ABCAB:BC) is now the Hartley (rather than 
the Shannon) entropy, U(R) = log2 |R|, where | | is 
cardinality.  This maximization is achieved in composition 
by (1) expanding the projections by Cartesian products with 
variables omitted in them (maximizing uncertainty), and  
(2) taking the intersection of the expanded relations 
(imposing the model constraints). Specifically,  
ABCAB:BC = (AB ⊗ C) ∩ (BC ⊗ A), namely, 
 
ABCAB:BC =[{00•,01•,11•}⊗{••0, ••1}] 

    ∩ [{•00,•10,•11}⊗{0••,1••}] 
 = {00*,01*,11*}∩{*00,*10,*11} 
 = {000,010,011,110,111} = ABC 
 
(• is a place-holder for absent variable(s); * means “don’t 
care”).  The second line of this equation shows that SRA 
resembles a product of sums of products.  Generalizing the 
above equation, for model P1:P2:...Pn, where Pj is a 
projection of relation R (the data), and where Mj is the 
Cartesian product of variables absent (projected on) in Pj, 
the calculated reconstructed R is given by 
 
RP1:P2:...Pn = (P1 ⊗ M1) ∩ (P2 ⊗ M2) ∩ ... ∩ (Pn ⊗ Mn) 
 
Relations for cyclic models are calculated in the same way; 
no iterative procedure is needed.  In the present case, 
ABCAB:BC has no error.  Imperfect decomposition can, 
however, be allowed, and again transmission (error) is 
defined as T(AB:BC) = U(ABCAB:BC) - U(ABC).  
No model simpler than AB:BC agrees fully with the data, as 
shown below in Table 8. 

Table 8. SRA results for the data of Table 7. in 
parentheses: (number of tuples in model) 

 ABC (5)  
 AB:AC:BC (5)  
AB:AC (6) AB:BC (5) BC:AC (6) 
AB:C (6) AC:B (8) BC:A (6) 
 A:B:C (8)  
 

Note that SRA decomposition of 
ABC here uses complete projections 
and only observed variables.  No 
latent (bound) variables are 
introduced as is commonly done in 
LDL techniques.  The above 
relation could have been 
decomposed much more simply as 
{000,*1*} or logically as 
(A′∧B′∧C′) ∨ B, where prime 
means negation.  Such a 

decomposition might be considered a “state based RA 
model,” in that specific states of subsets of variables are 
selected, were it not for the fact that in SRA SB models, 
states are always connected with an ∧, as indicated in the 
intersect operations in the equation for RP1:P2:...Pn. 
 
The precise relationship between SRA and LDL methods 
has not yet been fully elucidated.  Of particular interest 
would be a comparison of SRA to LDL multi-valued 
functional decomposition (Perkowski et al, 1997; Files & 
Perkowski, 1998).  An initial examination of an enhanced 
version of SRA shows that it is superior for 3-variable 
binary functions to Ashenhurst-Curtis decomposition, a 
well-known and widely used LDL technique which utilizes 
latent variables (Al-Rabadi, Zwick, & Perkowski, 2003; Al-
Rabadi & Zwick, 2003). 
 
IRA problems can be approximated by SRA.  In Table 2, if 
frequency is discretized into ranges (Chen, 1994; Grygiel, 
2000; Grygiel, Zwick, & Perkowski, 2003), it becomes a 
nominal variable and the mapping A ⊗ B ⊗ C → F can be 
decomposed by SRA.  In doing so, the different frequency 
bins become nominal states and their order cannot be 
exploited.  This also precludes the assessment of statistical 
significance.  Discretization of frequencies is qualitatively 
different from discretization of variables, and the error 
consequences of this approach, in comparison to IRA/LL 
statistical analyses, is under investigation. 
 
Conversely, SRA problems can be treated by IRA by giving 
equal probability to observed tuples; IRA then generates 
results equivalent to SRA but in a different form.  Just as a 
Fourier transform of a function may illuminate particular 
properties of the function previously obscure, even though 
the transform is fundamentally equivalent to the function, so 

1.projection 
2.composition 

3.evaluation 
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Figure 4. Lattice of General 
Structures (4-variables).  A 
box is a relation; a line, with 
branches, uninterrupted by a 
box, is a variable.  Arrows 
indicate decomposition.  The 
top structure is ABCD; the 
bottom is A:B:C:D.  The 10 
acyclic structures have 
relations in bold.  For 1 
output, D, and 3 inputs, D is 
in bold for the 9 structures in 
the simplified lattice. 

IRA computation may be informative in ways not directly 
achievable by set-theoretic analysis (Zwick & Shu, 2003). 
 
4. Evaluating many models 
 
In Figure 1, AB:AC, AB:BC, and AC:BC permute the three 
variables, as do AB:C, AC:B, and BC:A.  There are 5 
different general structures and 9 specific structures, where 
specific structures exemplifying the same general structure 
merely permute the variables.  (Note: this nomenclature is 
not standard in RA.)  For example, AB:BC and AC:CB are 
the same general structure.  Structures are disjoint (AB:C), 
acyclic (AB:BC), or cyclic (AB:AC:BC). 
 
A specific (acyclic) structure is exemplified in Figure 3, 
along with the general structure obtained from it by omitting 
the labels for specific variables (lines) and relations (boxes). 
 

Figure 3. Specific structure AB:BC & general structure 

 
 
 
For four variables, there are 20 general structures and 114 
specific structures.  As the number of variables increases, 
the numbers of general and specific structures increase 
sharply (Table 9). 

Table 9. Numbers of structures. The bottom line is for 
directed systems. 

# variables 3 4 5 6 
# general structures 5 20 180 16,143 
# specific structures 9 114 6,894 7,785,062 

# specific structures,1 output 5 19 167 7,580 
 
The table indicates that directed system lattices are simpler 
than neutral system lattices because we are not interested in 
the presence or absence of relations among the inputs.  
(Recall the shaded portions of Figure 1 and Table 4.)  Table 
9 also shows that exhaustive evaluation of all models ceases 
to be practical around 7 or 8 variables.  Intelligent heuristics 
and sophisticated search techniques are required to sample 
the Lattice of Structures efficiently, and Klir (1985), 
Krippendorff (1986), Conant (1988), and others have made 
suggestions along these lines.  The lattice can be pruned as a 
search procedure descends or ascends so that consideration 
is restricted only to promising candidates.  Or, the search 
can be done roughly between groups of structures and then 
finely within these groups (Klir, 1985).  The combinatorial 
explosion in models can also be mitigated by aggregating 
variables, but this poses difficulties of interpretation.  It also 
does not reduce the number of possible states (the size of the 
contingency table) for the system, unless state aggregation, 

another compression 
technique, also accompanies 
variable aggregation. 
 
Figure 4 shows the lattice of 
general structures for a four-
variable system.  If variables 
are all dichotomous, the 
degrees of freedom of the 
structures range from 15 at 
the top (ABCD) to 4 at the 
bottom (A:B:C:D) and 
decrease by 1 at every level.  
The figure also shows the 
acyclic structures, indicated 
with boxes in bold (10 of the 
20).  The simplified lattice 
which obtains if D is an 
output and A,B,C are inputs 
has 9 structures whose 
bottom is ABC:D; these are 
indicated by structures 
where one line (representing 
D) is bold.  In this simplified 
lattice, 4 of the structures are 
also acyclic.  These 
correspond to single-
predicting-component 
models in which the 
predicting component has 0, 
1, 2, or 3 predictors of D. 
 
Model complexity for IRA 
was defined above as the 
number of parameters 
needed to specify the model.  
The figure suggests another 
type of complexity, namely 
the number of components 
in the model.  For three 
variables, this is at most 3, 
for four variables at most 6; 
in the medical sociology 
example discussed below it 
reaches 12.  Multi-
component models pose a 
challenge to interpretation.  
Beyond the mere number of 
components, there is also the 
complexity inherent in the 
connectedness of the 
components. 
 
 

AB BC 
A B C 
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III. Examples of Variable-based Reconstruction 
 
This section illustrates the exhaustive consideration of 
models in data analysis, and the heuristic use of RA in many 
variable data mining.  To reiterate, “many” variables means 
that all possible models cannot be examined by brute force.  
The examples are restricted to information theoretic 
variable-based reconstruction. 
 
1. IRA Example 

Exhaustive Analysis (4 variables) 
Figure  shows a exhaustive analysis of a small subset of the 
OPUS data obtained from Dr. Clyde Pope of the Kaiser 
Permanente Center for Health Research in Portland, Oregon 
(Zwick & Pope, 2003).  This data concerns health care 
utilization in the Kaiser member population.  The figure 
summarizes the relationships between 4 variables in the data 
set, plotting the (Complexity, Information) for all 114 
specific structures.  The best models in this graph are its 
“northeastern frontier” where models are not dominated by 
(inferior in both complexity and information to) any other 
model.  From this “solution set,” one might pick out the 
simplest model having information greater than some 
minimum, the most information-rich model having 
complexity less than some maximum, or some other single 
model. 

Figure 5. Decomposition Spectrum. (Complexity, 
Information) for 114 four-variable structures; data from 
Kaiser Permanente Center for Health Research 
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2. Heuristic search (24 variables) 
Basic results 
 
From the OPUS data (subset) with sample size of 2100, 
twenty four possible predictors (inputs) of self-reported 
health status (output) were selected.  The inputs include sex, 
age, family and work information, socioeconomic, 
behavioral, and psychological measures, health-related 

attitudes and activities, and other variables.  Quantitative 
input variables were discretized, and some nominal 
variables were also rebinned.  The cardinalities of the 
variables as analyzed range from 2 to 6, and the product of 
the 25 cardinalities was 1.16 x 1013.  After analysis, the best 
model, involving 8 variables (7 inputs, BHLNORU, and 1 
output, X), with a state space of 32,400 states, explains 
65.4% of U(X).  This model is complex, having 11 
predictive components, each of which represents a high 
ordinality interaction effect between four or five inputs and 
the output.  The model, stated here without identifying the 
specific nature of the input variables, is: 
 
BHLNORU:BHNRX:LORUX:LNOUX:HLOUX:HLNOR
X:LNRUX:HLRUX:NORUX:HORUX:HNOUX:HNRUX. 
 
If this model had been proposed for confirmatory testing, its 
α, relative to a null hypothesis of no association between the 
24 inputs and the 1 output, would be 0.03.  (Rigorously 
speaking, one cannot simply say that the statistical 
significance of this model is 0.03 because the statistical 
significance of the results of a exploratory search depends 
upon how many models are looked at.  However, reporting 
the significance which would have obtained had this model 
been subjected to a confirmatory test can motivate a follow-
on study which explicitly tests the model.  U(X) may be 
capable of being even further reduced but if additional work 
is undertaken on this data set, simplifying the model to 
facilitate interpretation would be more critical. 
 
Search strategy 
 
The strategy used to obtain this model was a 2-step process: 
 
ABCDEFGHIJKLMNOPQRSTUVWXY (the initial set 
of [24] inputs and the output [X] under consideration) 
 
 Step #1: Input set reduction, using only one 

predicting-component models: 
 
BHLNORUX (a reduced set of [7] inputs and the output) 
 
 Step #2: Search through the lattice of multi- 

component-predicting models 
 
BHLNORU:BHNRX:LORUX:LNOUX:HLOUX:HLNORX: 
LNRUX:HLRUX:NORUX:HORUX:HNOUX:HNRUX 
 
In the first step, the 24 inputs were reduced to 12 and then to 
7.  This is “feature selection.”  The subset of 7 inputs were 
selected by examining the uncertainty reductions achieved 
in single-predicting-component models.  For 7 inputs, the 
best model is BHLNORUX.  The uncertainty reduction of X 
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from the 7 inputs in this model is 81.7%, but this reduction 
is not statistically significant (α = 1.0).  
 
The 7 input model was chosen even though it was not 
significant because of the expectation that by decomposition 
the model could be simplified without major loss of 
predictive power.  This was indeed possible.  Step two 
yielded an 11-predicting-component model, reducing the 
uncertainty of the output by 65.4%, a reduction which is 
statistically significant (α = 0.03).  The model utilizes all 7 
inputs, but in components each having 4 or 5 inputs.  This 
decomposition preserved 80% (65.4/81.7) of the predictive 
information in the single-predicting-component model (α = 
1.0) obtained in the first step, BHLNORUX.  This second 
step, unlike the first step, does require operations on the full 
state space, which here has cardinality 32,400. 
 
Only 7 rather than a greater number of inputs were used 
because of the combinatorial limits of the program, which 
examined all single-predicting-component (SPC) models by 
brute force.  (The program generated all models with one, 
two, three, etc. predicting inputs.)  However, in more recent 
versions of the program, this brute force approach has been 
replaced by a breadth-first fixed width search, which allows 
the rapid examination of an arbitrary number of inputs.  
Also a related RA method exists, known as “Extended 
Dependency Analysis” (EDA), which allows heuristic 
search in single-predicting component models with 10’s or 
100’s of variables (Conant, 1988; Lendaris, Shannon, & 
Zwick, 1999; Shannon & Zwick, 2003).  EDA merges the 
inputs of several good components to produce a single-
component model, without evaluating all models with this 
number of total inputs.  Recently, in an RA study looking 
only at SPC models, 150 variables were reduced to 46 for 
subsequent use by neural net modeling (Chambless & 
Scarborough, 2001).  To repeat a point made earlier: these 
calculations, involving SPC models, do not require 
operations on a complete state space and scale with the size 
of the data, which for the subset of OPUS data we used is 
quite modest, namely N=2100. 
 
Model utilization 
 
The 11-component model indicated above can be used in at 
least three ways.  First, each predicting component, e.g., 
BHNRX or LORUX, represents a high ordinality interaction 
effect involving several inputs and the output (health status, 
X).  If the inputs were originally quantitative variables, 
these effects are likely also to be nonlinear.  Ideally, each of 
these components should be given a substantive 
interpretation of how the input variables combine to affect 
X.  This requires extensive subject-specific knowledge, and 
has not yet been attempted for this study. 

 
Second, it is possible to asess the multiple components 
relative to one another, to identify which are the most 
important.  For the 7 inputs used, this 11-component model 
was maximally predictive (under the requirement that the 
model would have been statistically significant if it had been 
proposed for confirmatory test), but a simpler though less 
predictive model might be preferred.  Further analysis of the 
model might allow such simplification. 
 
Third, the eleven-component model yields a calculated 
BHLNORUX distribution, which can be converted to  
p(X | B,H,L,N,O,R,U), a distribution on X conditioned on 
the input variables.  Thus, given the values of all the 7 input 
variables, RA yields predicted probabilities for all the 
different possible output states.  These can be compared to 
p(X), the probabilities of the output without any knowledge 
of the inputs. 
 
Finally, it should be reiterated that exploratory searches are 
precisely that: exploratory.  Resulting models should ideally 
be tested in a confirmatory mode with new data. 
 
The selected inputs and/or the specific multi-component 
model can be used in conjunction with methods which retain 
the quantitative character of variables which have been 
discretized.  With SPC RA modeling, feature selection can 
be done from a large set of variables, as noted above, and 
the selected features fed into a neural net (NN).  The NN  
part of such a RA-NN strategy may sometimes not be 
necessary.  In the pattern-recognition study of Lendaris, 
Shannon, and Zwick (1999), RA on discretized variables 
essentially solved the problem by itself. 
 
Multi-predicting-component RA modeling can also be used 
to prestructure neural nets, so that all-to-all connectivity is 
not required (Lendaris, Zwick, Mathia, 1993; Lendaris & 
Mathia, 1994; Lendaris, 1995; Lendaris, Rest, & Misley, 
1997); this speeds NN training times and improves 
generalization capacity.  RA may also have promise for the 
prestructuring of genetic algorithms, more specifically for 
determining the optimal order of the variables on the GA 
genome (Zwick & Shervais, 2003). 
 
2. SRA Example 
 
SRA reconstruction is exemplified by a study which 
attempted to predict whether discrete dynamic systems -- 
specifically, elementary cellular automata (ECA) -- are 
chaotic or not. 
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Table 12. Structures for ECA rules.  The σ identifier for the 6 structural levels is given, 
and the 9 different specific structures are shown in bold. 

σ Structures   SRA 
6 ABCD   mapping 
5 ABC:ABD:ACD:BCD   3 relations (→ mapping) 
4 ABC:ABD:ACD ABC:ABD:BCD ABC:ACD:BCD 2 relations (→ mapping) 
3 ABC:ABD ABC:ACD ABC:BCD mapping 
2 ABC:AD ABC:BD ABC:CD mapping 
1 ABC:D constant

Table 10. An example of 
an ECA rule (#150).  
The rule is indexed by 
considering the D column 
as a binary number, 
whose top-most value is 
its least significant bit. 

 t  t+1 
s(i-1) s(i) s(i+1) s(i) 

A B C D 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

 

An ECA is a one-dimensional array 
of cells, s(1)...s(n), governed by a 
mapping, st(i-1) ⊗ st(i) ⊗ st(i+1) → 
st+1(i), which specifies how the state 
of each cell at time t+1 depends 
upon its state and the state of its 
two adjacent neighbors at time t.  
The three cells at time t and the 
center cell at time t+1 will be 
labelled A, B, C, and D.  This is a 
deterministic directed system which 
illustrates the use of RA for time 
series analysis (see also Zwick, 
Shu, & Koch, 1996 for an IRA time 
series example). 
 
An example of an ECA mapping or 
“rule” is given in Table 10.  There 
are 256 mappings which preserve 
the identity of the 3 inputs, but in 
the ECA context these group into 
88 equivalence classes, analyzed by 
SRA.  Every mapping can also be 
converted in probability distribution 
by setting p(A,B,C,D) to 1/8 if an 
(A, B, C, D) tuple appears in the 
mapping and 0 if it does not.  The 
resulting probability distributions 
were also analyzed by IRA. 
 
Table 11 illustrates how a rule 
governs ECA dynamics. Eight 
cells are arranged in a toroid, so 
s(9) = s(1).  For every cell, the 
rule produces its next state, st+1(i), given its present state, 
st(i), and the present state of its left and right neighbors, st(i-
1) and st(i+1).  Eventually the system reaches either a fixed 
point or limit cycle attractor.  Such discrete dynamics can be 
considered “chaotic” if the time to reach the attractor goes 
up rapidly with the number of cells.  Assignments of 
chaoticity or non-chaoticity were taken from Li and Packard 
(1990). 

Table 11. Three time steps for ECA #150.  The enclosed 
four cells illustrate the mapping A ⊗ B ⊗ C → D for one 
time step. The array at time t is arbitrary. 

t 0 1 0 1 1 0 1 0 
t+1 1 1 0 0 0 0 1 1 
t+2 1 0 1 0 0 1 0 1 
 
Two “standard” parameters used to predict chaoticity were 
employed for comparison purposes: λ (Langton, 1992) and 
Z (Wuensche, 1992).  The parameter λ was actually first 

proposed by Walker and Ashby (1966), who called it 
“homogeneity.”  
 
SRA or IRA decomposition properties of the rules 
were also used (Zwick & Shu, 1997; Zwick & Shu, 
2001) to predict chaoticity or non-chaoticity.  It can be 
shown that the specific structures for this 3-input, 1-
output problem can be reduced to the 12 specific 
structures shown in Table 12.  These group into 6 
levels of complexity, indexed by parameter, σ.  
Structures whose variables are permuted have the 
same complexity, but for ECAs not all permutations 
are equivalent, because the neighbors A and C are 
different from B, so there are 9 general structural types 
(shown in bold). 
 
Table 12 indicates that while all single-predicting 
component models are themselves mappings, the σ = 4 
and 5 models decompose the rule mapping into 
(stochastic) relations whose intersection yields the 
correct mapping.  Such an approach to decomposition 
is quite different than what is encountered in LDL 
decomposition. 

 
By doing SRA on each rule, a σ is assigned to the rule, 
which indicates how decomposable without loss the rule is.  
Also, a vector parameter, τ, characterize each rule by the 
full set of decomposition losses (transmissions) for all 12 
possible specific structures.  IRA decomposition was also 
done on the rules, and two measures, f′′ and f′, were 
calculated, which are closely related to the fluency measure 
of Walker and Ashby (1966).  These measures involve the 
transmissions for the 2 of the 3 models (shown italicized in 
Table 12) at level σ = 3. The first measure, f′, is a vector 
measures which preserves information about the separate 
losses in the models; the second, f′′, is a scalar measure 
which sums the decomposition losses of these two models. 
 
f′ = {T(ABC:BCD),    T(ABC:ABD)} 
f′′ =  T(ABC:BCD) + T(ABC:ABD) 
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Table 13 indicates the predictability of chaoticity or non-
chaoticity of ECA dynamics using RA measures (σ, f′, f′′, 
and τ) as compared to using standard ECA parameters (λ 
and Z).  The table shows that RA measures predict better 
than standard parameters.  Predictability is assessed 
information-theoretically as uncertainty reduction in 
attractor variable, a, which has two states, {chaotic, non-
chaotic}.  For rule parameter, r, which is either an RA 
measure or a standard parameter, the table lists ΔUa and 
ΔUr, which are large for good predictors, where 
 
ΔUa = fractional reduction of U(a) knowing r 
  = [U(a)-U(a | r)]/U(a) 
 
ΔUr = reduction of U(a) per bit of predictor 
  = [U(a)-U(a | r)] / U(r) 

Table 13. Predicting cellular automata dynamics. 
Reduction of uncertainty of attractor & uncertainty 
reduction normalized by information of predictor, r. The 
best uncertainty reductions for criteria are shown in bold. 

 r U(a | r) ΔUa ΔUr 
 - .679   
Standard ECA parameters     

Walker-Ashby, Langton λ .600 11.6 .044 
Wuensche Z .458 32.6 .114 

RA measures     
lossless complexity σ .553 18.6 .069 
info.-theor. fluency f′ .355 47.7 .124 
2nd fluency measure f′′ .447 34.2 .151 
complete RA spectrum τ .263 61.3 .102 

 
Not only do RA measures predict chaoticity or non-
chaoticity better than the standard parameters of λ and Z, 
the RA framework actually subsumes these standard 
measures in τ, the complete vector of RA losses.  
Specifically, U(λ | τ) = U(Z | τ) = 0, i.e., τ specifies also λ 
and Z.  In fact, λ turns out to be isomorphic with U(D). 
 
No SRA measure comparable to fluency was apparent, and 
this illustrates the point made earlier that IRA analysis can 
be useful even for set-theoretic functions and relations, 
because it presents the analytical results in a form different 
from SRA.  Analysis using the complete loss vector τ is, 
however, equivalent in SRA and IRA. 
 
IV. Software 
 
Computations were done using a software package being 
developed at Portland State University named OCCAM (for 
the principle of parsimony and as an acronym for 
“Organizational Complexity Computation And Modeling”).  
OCCAM is intended eventually to include all data, problem, 

and method types.  Other RA software packages do exist, 
e.g., CONSTRUCT and SPECTRAL by Krippendorff 
(1981), SAPS by Uyttenhove (1984) and Cellier (1987), 
GSPS by Klir (1976), Elias (1988), and coworkers, EDA by 
Conant (1988), Jones’ k-systems analysis (Jones, 1989) and 
a recent program by Dobransky and Wierman (1995).  
However, no package fully encompasses RA as shown in 
Table 1.  Some programs are not easily used by researchers 
outside the systems field; others do not incorporate 
statistical tests.  These existing packages are in limited use. 
 
OCCAM is the result of a software development program 
under my direction in the Systems Science Ph.D. Program at 
PSU beginning in 1985.  The first program, written by the 
author, did single-predicting component modeling.  This 
was improved upon by Jamshid Hosseini (Hosseini, 
Harmon, & Zwick, 1986, 1991; Hosseini, 1987), and then 
by Doug Anderson who also wrote a program for multi-
predicting component modeling, and another program for 
inconsistency resolution for IRA identification (Anderson, 
1996).  Hui Shu wrote SRA reconstruction and structure 
lattice programs.  For convenience, the whole set of these 
earliest RA programs will be called OCCAM0.  In this 
period, Klaus Krippendorff generously provided to us his 
programs mentioned above and these assisted our research 
and informed our development efforts.  We also utilized 
GSPS obtained from Elias (1988).  Marcus Daniels 
combined many functionalities of the Hosseini and 
Anderson reconstruction programs and Shu’s lattice 
program by rewriting them and adding heuristic search in 
the multi-predicting component modeling, to produce 
OCCAM1.  Stan Grygiel made innovations and 
improvements in the single-prediction-component 
calculations, in search heuristics, and general research 
usability; this produced OCCAM2.  Calculations reported in 
this paper were done with OCCAM2 and occasionally with 
earlier separate programs mentioned above. 
 
A new program (OCCAM3) has now been written by Ken 
Willett, which is a more effective research and applications 
platform (Willett & Zwick, 2003; Zwick, 2003a) and can be 
accessed over the web. Willett is also specifically exploring 
heuristic search and approximate computation approaches.  
Michael Johnson is programming SBM for future 
incorporation into the package, integrating it theoretically 
into the RA framework, and exploring its implications for 
decision analysis (Johnson & Zwick 2000; Zwick & 
Johnson 2003).  Bjorn Chambless has written a stand-alone 
single-predicting-component information-theoretic program 
which includes binning and aggregation preprocessing 
capacities.  Binning for OCCAM is being developed by 
Michael Johnson and Steve Shervais.  Tad Shannon has 
programmed an updated version of Conant's EDA (Shannon 
& Zwick, 2003) and also a time-series preprocessing utility. 
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V. Discussion 
 
In the example discussed above of IRA heuristic search, the 
first step can in principle be extended to much larger 
problems without difficulty, because single-predicting-
component models do not require operations on the full state 
space, but depend rather on the size of the data.  The second 
step, however, does require such operations, which as noted 
earlier limits the number of variables which can be analyzed 
to of order 20. 
 
This limitation does not preclude the use of RA for data 
mining applications involving many more than 20 variables, 
in that the first step can always be used to select a smaller 
subset for lattice searches.  Still, it would clearly be 
desirable if the second step could be implemented for a 
greater number of variables.  The barrier here is the current 
requirement for cyclic models of an IPF operation which 
operates on the entire state space.  If models could be 
generated with a procedure that operated only on observed 
states and scaled with the data, larger problems could be 
addressed, since usually data is sparse.  At present, it is not 
apparent how to assess multi-predicting-component models 
in an alternative way, but two approaches which use 
approximate assessment and do not require the full state 
space will now be briefly mentioned. 
 
The first involves the use of binary decision diagrams 
(Mishchenko, 2000).  BDD make possible major economies 
of space and computing time by storing states not explicitly 
but implicitly in the paths of the diagram.  So, while the size 
of the state space increases exponentially with the number 
of variables, the size of the graph does not, but the number 
of paths in the graph does, which allows the graph to 
represent the exponential dependence of the number of 
states on the number of variables.  It is likely that to use 
BDD to analyze distributions the distribution frequencies 
will need to be binned, i.e., IRA problems have to be 
converted to SRA problems.  If the resulting information 
loss is not severe, and if BDD can be applied to such SRA 
approximations, the size of the state space may become 
much less limiting.  This approach is under investigation 
(Zwick & Mishchenko, 2003). 
 
A second idea is to employ methods used in 3-dimensional 
image reconstruction (Zwick & Zeitler, 1973), and Fourier 
methods in particular.  These methods allow the 
composition of multiple projections in a single step, 
regardless of cyclicity.  They compute an approximation to 
IPF which may or may not suffice for practical purposes.  
Most critically, these methods scale with the data and not 
the state space.  This approach is also under current 
investigation (Zwick, 2003b). The use of Fourier methods in 

RA would bring RA into proximity to LDL methods which 
use wavelets, Walsh functions, Haar transforms, and similar 
global or local function-based decompositions. 
 
In summary, RA methods are general, being applicable to 
set-theoretic relations as well as probability distributions.  
Both SRA and IRA may be of interest to the machine 
learning and logic design community.  SRA offers another 
approach to decomposition of relations and mappings, and 
IRA can be used for these purposes as well.  The LDL 
community might profitably examine the use of log-linear 
latent variable modeling and state-based RA techniques.  It 
might also consider extension of its techniques to 
distributions, where statistical considerations are necessary.  
The RA community and the social science log-linear 
community, on the other hand, can gain from a deeper 
familiarity with the LDL literature.  RA methodology is 
potentially a valuable new approach to data mining.  Current 
techniques can be applied to 10’s or 100’s of variables, and 
heuristic and approximate methods may substantially 
expand the range of RA modeling. 
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