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1. Preface: information in/error of models

The task: given data, find the simplest model which satisfactorily fits the data.
“Satisfactorily fits” = information high or error low enough, relative to complexity
Implied Reference = data (top)

Or: find the most complex model whose posited relations are justifiable
Want information high enough relative to complexity.
Implied Reference = independence (bottom)

We assess information/error with Transmission or Information Distance
T(m;), transmission of model m;: the distance of m; to the data (mo), the error, &
I(m; &> m;) = T(m;) - T(m;), information distance, a difference between
transmissions of two models, one of which is a descendant of the other.

When m; = my, the data, and m; is some model, I(m; — m;) is T(m;) = error of model.
When m; is model & m; is independence, it is information (captured) in model.

Note the difference in arrow convention for Adf.

Adf(m; > m;) = df(m;) — df(m;)

Arrows in both cases always go from higher to lower models.

Note that 1(mo — m;) = T(m;) = T(mo ) = T(m;), since T(mp) =0

With the p log p/q expression for transmission, the transmission of the data is

T(mo) = X p(mo) log [ p(Mo)/p(Mo) ] =2 p(Mo) log 1 =0
so | is general, and encompasses T. I, T Adf are always positive.

I and T measures evaluate how good model is in terms of information or error.

Adding N & Adf lets us say if this "goodness™ is believable, i.e., reliable statistically.

Information & error measured by T are non-statistical measures, dependent only on
probabilities, but not on the sample size or degrees of freedom.

The believability of the information/error is a significance question which depends on
sample size and degrees of freedom.
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2. Transmission & information distance

Transmission for independence model
With respect to T, consider the definition we've previously used:

T(X:Y:Z2) =H(x) + H(y) + H(z) — H(x,y,2)
= H(X:Y:2) -H(XY2)
T(X:Y:2) =2 2 2k P(Xi, Yj, Zk) log [ p(Xi, ¥i» Zk) / Ox:v:z(Xi, Y Zk) |

Where qx-v:z(X,Y,2) = p(X)*p(y)*p(z) = expected (calculated, not observed) probabilities
UNDER ASSUMPTION (hypothesis) OF INDEPENDENCE.

=Y. p(XYZ) log [ p(XYZ) / q(X:Y:2)]

For convenience, will only show one 2., intended to be over all cells.

In log-linear notation, independence model is usually written {X}{Y}Z}.
The full data, also called the saturated model, is written as {XYZ}.

In some papers, instead of a colon, there is a slash: X/Y/Z.

To generalize, where q = q(model),
T(q) =XZplog[p/q] =Xplogp -XZplog q
=-H(p) -2 plog g
Non-obvious lemma: 2 plog g =2 qlog q)
=-H(p) +H(q)
In Krippendorff notation (p.44),
T(mj) =X p(mo) log [ p(mo) / p(m;) ] = H(m;) — H(mo)

LEAVE FOR LATER (a) how generate q(m;), and (b) statistical significance issue.
Krippendorff says (8.3, p.44) T(m;) = H(m;) — H(mo) for models with loops.

Not correct; T is difference of entropies always: for models without or with loops.
What is true is that one can’t algebraically simplify H(q) for models with loops.
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Information distance

Information distance is defined as a difference between transmissions; this is useful as a
kind of bookkeeping convenience, to be able to compare any two models.

I(mi > m;) = amount of information modeled in (captured by) m;, lost in m;
Arrow always goes towards lower models

=T(m) — T(m;)

=[H(my) -H(mo) ] - [H(mi) - H(mo) ]

= H(my) = H(m)
If we start from data, go to a model, and then to independence model, we have
(Mo —> M) = amount of information lost in m;.

= T(m;) — T(mo)

=T(m))
I(Mj = Ming) = amount of information modeled (captured) in m;.

= T(Ming) = T(M;)

Accounting is thus convenient, using Gokhale & Kullback (K, p.44) partitioning identity:

(Mg > Ming) = I(mg —> m;) + I(mj = Ming)
Information Information Information
in data lost (error) in m; modeled (captured) in m;

WE WANT A MODEL WHERE LITTLE IS LOST FROM THE DATA, |L.E., WHERE
MUCH IS MODELED/PRESERVED/CAPTURED/RETAINED IN THE MODEL.
Could normalize information captured by the maximum that could be captured:
Normalized information captured = I(mj = Ming) / 1(Mo = Minq)
= 1(Mj > Ming) / T(Ming)

(This is what Occam outputs)
Information distance doesn't really add any new concept, but it introduces a slightly more
complicated form of the p*log[p/q] expression (specifically, p*log[qgi/qz]), as above:
[(mi—m;)  =T(m;) - T(mi),

=2 p(mo) log [ p(mo) / q(my) ] - 2 p(mo) log [ p(mo) / q(m) ]

=2 p(mo) log [ p(mo) / q(my) * a(mi) / p(mo) ]

=2 p(mo) log [ q(mi) / q(my) ]
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[(Mo—Ming) = [(Mo—>Mchain) + 1(Mchain—>M ing)

information information information

in data lost in chain modeled in chain model

[(Mo—>Ming) = T(Ming) — T(MO) = T(mind)
=T(A:B:C.....2) = information total

I(mO—)mchain) = T(mchain) - T(mo) = T(mchain)
=T(AB:BC.CD.....YZ2) = information lost

|(mchain—)mind) = T(mind) - T(mchain)
=T(A:B) + T(B:C) +... + T(Y:Z) = information modeled

Second example: K, p.46.
m; = ABCD:CDEF
m, = AC:BC:CD:DE:DF

show K structures

I(Mo = Ming) = 1(Mg — my) + 1(my — my) +1(M2— Ming)
1.8301 =0.4011 + 1.3843 + 0.0446

= 1(mg — my) + 1(My — Mig)

=0.4011 (22%) + 1.4289 (78%)

=lost in m; modeled in m;

= 1( mg—>my) + (M2 — Ming)

=1.7854 (98%) 0.0446 (2%)

= lost in m, modeled in my

Simpler model (my) is inadequate.
More complex model (m;) captures most of data and may be acceptable.
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3. Calculating q algebraically

1. Maximum uncertainty q’s

Idea of maximum entropy: maximizing soaks up any extra degrees of freedom not
specified by constraints of model.

Maximize H(q) = -2.q log g subject to constraints of model. e.g., model = AB:CD has
(for dichotomous variables) df = 3 + 3 = 6 constraint equations, while df(ABCD) = 15.

Maximization soaks up extra degrees of freedom.

q(ABCD) is a 4-way distribution, just like p(ABCD), so one might think that it has the
same df as p(ABCD), i.e., df=15, but it really has only 6 for this model. Uncertainty
maximization fills out the specification of the distribution.

Will not prove that methods below which describe how g is actually calculated achieve
this maximum uncertainty result.

2. How @’s actually calculated
Four cases from simplest to most complex

(1) Independence of all variables (mjng)

(2) No overlap of variables in components, i.e., disjoint model (neutral systems)
(3) Overlap but no loops

(4) Overlap and loops (and structural zeros): Iterative Proportional Fitting

3. Algebraic calculation of g’s (cases 1-3)

Simplest case (1): for g(m(ing)), is product of marginals. For example, q(A:B:C) =
p(A)p(B)p(C).This gives maximum entropy.

Slightly more complex case (2): variables not shared by components: AB:CD. Then q is
‘essentially’ the same as mjny. q(AB:CD) = p(AB)p(CD)

Next most complex case (3): variables shared, but no loops. See K, p.52.

q(XY:YZ)= p(XY) p(YZ)/ p(Y) = p(x.y) p(zly)

How get it? Consider p(XY) p(YZ). It’s dimensionally wrong. p(Y) appears twice. So:
q(XY:YZ) = p(x,y) [ p(y.2) / p(y) 1 = p(x.y) p(zly) = p(y.x) [ p(x,y)/p(y) 1 = p(y.z) p(x|y)
More complete notation: gdxy:vz(Xi, Yj» Z) = P(Xi, ) P(zk| ¥i) = p(¥i, Z&) p(Xi| ;).

Go on to equations on K, p.55. In general, multiply probabilities of all relations, divide
by probabilities of pair overlaps, multiply by triplet overlaps, etc.
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Show an XYZ table, with parameters a...h, and calculate q(x1,y2,z2) in terms of
parameters, for model XY:YZ.

Z1 2 Z1 2
Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

X1 a b e f X1 J1 gz ds Qs

Xo Cc d g h X2 Os Js gz Js
q(XY:Y2) = p(XY) p(YZ2)/ p(Y) model notation
axv:yz(X,Y,2) =p(x,y) p(y,z) / p(y) variable notation
Specifically, for some particular values of x,y,z (an example):
Oxv:vz (X1,Y2,22) = p(X1,Y2) p(y2,22) ! p(y2)

= (b+f) (f+h) / (b+d+f+h)
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4. Calculating g maximizes entropy subject to constraints
Discuss how calculating g’s for X:Y maximizes entropy subject to constraints.

Do linear algebra, showing matrix-vector equation, where |X|=|Y|=2, so |X||Y|=4, with
data as p1...pjx|y| vector & model probabilities as s ...qxy| vector.

Only need df(X:Y) = 2 rows filled in for matrices, as long as independent

q Y1 ¥ P Y1 ¥
Xt | Q1| Q2 | Qut0p Xy | a| b |ath
X2 | O3 Ja X2 | C d
Q2+0s b+d
11 01 1)1 a
gz b
1 1 (o 1 1 c
da | = d
11|11 111111

Note that the number of constraint, not counting the last row that imposes the sum of
probabilities to be 1, is df(X:Y). This is also the “rank” of the above matrix.

Imposing the constraints of the margins defined by the model is an underdetermined
problem. Have 2 equations here to get 3 numbers. One gets a unique solution by
maximizing —2.g log g subject to these constraints. This maximization “soaks up” the
extra degrees of freedom.
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(Reversing left and right tables,) now consider matrix-vector equation also for XY:YZ
df(XY:YZ) = df(XY) + df(YZ) - df(Y)=3+3-1=5

1 Zy 1 Zy
Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

X1 a C d X1 o] 02 Qs 04

X2 f h Xo | 95 | G | U7 | G
XY constraints:

Y1 | Y2 Y1 Y2

x, | atc | b¥d X1 | QutQs | O2¥0d |
Xy | e+g | f+h X2 | Os5+07 | J6*0s
G2+ da=b+d
QstQ7=€+g
Qs+ gs=f+h Don’t need since probabilities add up to 1

YZ constraints:

71 | 22 7, 2
y1|are | c+g Y1 | O1tGs | Ostqr
yz | b+f | R Y2 | G2+ 0 | Gute |
Q2+ de=b+f Don’t need since know that g, + g4 + g+ Qs =q(y2) =b+d +f+h
Qs+ Qz=Cc+g Don’t need since know that gq; + g3 + gs+ gz =q(y1) =a+c+e+g
Gt Qg=d+h
gl g2 93 g4 95 96 q7 g8 o
1 1 01 a
I I 02 b
1 1 03 c
04 = M d
1 1 Os e
I [ Js f
Q7 g
0 h
1]1)j1]1]1|1]1]1
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5. Calculating q with IPF
General description of IPF: Deming-Stephan algorithm (K, p.58-9)

Simplest example of IPF to get q(X:Y)
Original XY distribution with its X and Y marginals

p(XY) Y1 Y, aXxX:Y) Yi Y
X1 41 3.7 X11.42 (.28 .7
et T ez la ] ]
6 4 6 4

1. Want to find q(X:Y) by IPF. Start with uniform distribution

Y1 Yo
X, [25].25| B
X, |25 .25 | B

S5 5

2. Impose X margin, which are {.7, .3}: fit to X by dividing each row by calculated
margin, then multiply by correct margins:

Y1 Yo
X1 25*7/5=.35|.25*7/5=.35|.7
Xy | .25 *3/5=.15|.25*3/§=.15| .3
5 5

It now agrees with X margins.

3. Impose Y margin of {.6, .4}: fit to Y by dividing each column by calculated margins,
then multiply by correct margins:

Y1 Yo
X1 |.35*6/5=.42|.35*4/5=.28|.7
Xy |.15*6/5=.18|.15*4/5=.12 | .3
.6 4

It now agrees with Y marginals.
It agrees now with both margins, and thus with q(X:Y), so we’re done.

In a model with loops, e.g., XY:YZ:XZ, we’d impose XY, then impose YZ, then impose
XZ, which would mess up the XY agreement, so we’d repeat this until it converged,
which it is guaranteed to do.
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IPF for state-based models.
Structural constants: K, p.48: Structural zeros (or structural constants that are not zero)
complicate: (1) maximum entropy calculation of g’s; (2) calculation of df.

For (1), could add it as another IPF step, OR if it is in data table (but not projections), just
remove it from list of q’s to be adjusted and fix it in the q list.

For (2), just subtract the number of these known values from df.

Original XY distribution

p(XY) Y; Y, a(X2Y2) Y1 Y
X1 41 3.7 X113 1.3 |.6
X,[ 2123 X2 |3 [ 1] .4

6 4 6 4

1. Want to find q(X,Y>) by IPF. Start with uniform distribution

Y1 Yo
X, [25].25] 5
X, | .25 125 | .5

5 5

2. Impose XY, by dividing by current calculated value and multiplying by known
value that model specifies, where [ 1-p(X2Y2) ] / 3 = .3 is specified by model for the 3
remaining cells

Y1 Yo
X1 1.25 *3/25=3|.25*3/125=3| .6
Xo1.25 *3/25=3|.25*1/125=.1| 4
.6 4

We’re done.
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6. Choosing models based on information content
Two criteria for good model: (1) high information (low error), (2) low complexity.

When one has two criteria in an optimization problem, one can:

(a) Maximize / minimize one criterion subject to the other as a constraint
(a.1) Minimize complexity subject to information constraint:
Find simplest model that has information greater than some %
This is non-statistical. This is this Topic 6.

(a.2) Find best model by information/error subject to p-value constraint
This is statistical. This is Topic 8.
(b) Maximize some weighted sum of the two criteria
Using BIC or AIC to weight information/error and complexity.
This is Topic 7.

Thinking ahead to (a.2) to justify (a.1):

Information/error is assessed by some information distance.

This gets multiplied by 1.3863 N (Krip, p.87) to get likelihood ratio Chi-square, L?.
L*=LR

From L? one assesses statistical significance (a.2).

When N is very large, L?will be large.

Then, if one goes down lattice, immediately we get a rejection of the null hypothesis,
i.e., immediately we will find that our model differs significantly from the data, i.e.,
has differences with the data not attributable to chance.

We couldn't accept any simplifying model if we insist that it not differ from the data.
So we can adopt a different perspective: we accept a model which accounts for some
specified minimum % of information in the data.

For large samples and for reference=top searches, % information captured is only
possible criterion if simplified models are to be considered.
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7. Choosing models with AIC & BIC (criterion (b))

Models are selected from the one of the measures that OCCAM outputs for different
models applied to the training set data, namely the Bayesian Information Criterion
(BIC) also known as the Schwartz Criterion (Schwartz 1978).

BIC is a way of linearly integrating the error of a model and its complexity (df) which
differs from the Akaike Information Criterion (AIC) (Akaike 1994) by its inclusion of
a factor which depends on the sample size, N:

AIC=-2N2Xpling+2dF.
BIC=-2NXplnqg+In(N)dF

These measure are unaffected by adding the constant N X p In p, which gives

AIC'=2N X pIn(p/q) + 2 dF.
BIC'=2NX pIn(p/q) + In(N) dF

The equation inherently takes the reference to be the top.

The first term of AIC 'and BIC ’ is L%(model), scaled model error; we want it small.
Good models also have low values of dF, model complexity.

So, good models have low (if negative, maximally negative) values of AIC " and BIC’.
We thus want these minimized.

In OCCAM, , AIC and BIC are given relative to a reference model, usually the bottom
(independence) model:

AAIC = AIC(ref) — AIC(model) = AIC '(ref) — AIC '(model)
= [ LR(ref) — LR(model) ] + 2 [ df(ref) — df(model) ]
=ALR + 2 * Adf Note that Adf <0

ABIC = BIC(ref) — BIC(model)
= ALR + In(N) * Adf

For reference=bottom, AAIC and ABIC have high (positive) values for good models,
since ALR is always positive & is the information captured in the model, and since Adf
is always negative, and thus it diminishes the measure the more complex the model is
(for more complex models, Adf is more negative), and we don’t want complex models.
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The In(N) factor in ABIC penalizes more complex models, as long as N is equal to or
greater than 7.4 (see below table). BIC is more conservative than AIC in recommending
departures from the reference independence model. In our experience, models picked by

ABIC do better on generalization (test or recall data) than the more complex models
picked by AAIC.

N In(N)
5 1.609438
6 1.791759
7 194591
7.4  2.00148
7.5 2.014903
8 2.079442
9 2.197225
10 2.302585
15  2.70805

If reference=top, then

AAIC =[ LR(ref) — LR(model) ] + 2 [ df(ref) — df(model) ]
=[ O — LR(model)] + 2 Adf

Want LR(model) to be as small as possible, since it’s error of the model, so 1% bracketed
term should be as large as possible.

We also want df(model) to be as small as possible, because we want a simple model, so
the 2" bracketed terms should be as large as possible.

So, we want AAIC to be as large as possible.

So, for reference being the bottom or the top, we want AAIC and ABIC to be as large
(positive) as possible.

Akaike, H. (1994). “Implications of Informational Point of View on the Development of
Statistical Science.” In Proceedings of the First US/Japan Conference on the Frontiers of
Statistical Modeling: An Informational Approach, H. Bozdogan, ed., pp. 27-38, Kluwer
Academic Publishers, the Netherlands.

Schwartz, G. (1978). Ann. Stat. 6, pp. 461-464.
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8. Choosing models statistically

Choosing models

Confirmatory vs exploratory data modeling (a.k.a. data mining, knowledge discovery,
machine learning)

Confirmatory modeling:

Could fit model to data and evaluate (validate) it with same data
(e.g., %correct for directed system)
But then don’t know how well model would do on new data that it wasn’t fit on.
So could do a 2-way data split: training / test
Fit model on training data
Validate model on test data
Or, more elaborately, could do N-fold validation (N =5 or 10 typically)
Divide data into training/test N ways, e.g.,
(i) N blocks with N-1 train & Nth test, or
(i) Randomly with replacement

Exploratory modeling:

Find a good model & fit model on training data
Validate model on test data

If one plots information vs complexity (df), on training & test data, one typically gets
(Not always; sometimes test performance tracks with training performance)

Information (1)

100% Training data

Test data

under-fit sweet over-fit Complexity (df)

spot
Can always get better performance (high I) in training data with models more complex
But when apply a too complex model to test data, it doesn’t generalize well.
Question: how to find the sweet spot with training data?
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Try to find sweet spot by searching down or up

Data

Data = reference & starting point

Search down to find simplest model
that adequately agrees with data

Minimize complexity subject to
Constraint of error / information

Optimize information / error subject to
Constraint of complexity

Search up to find most complex model
that is statistically justified

Independence = reference & starting point

Independence

But reference & starting model for search don’t have to be the same.
Could have reference = top & search up or reference = bottom & search down,
But taking reference & starting models as the same is more typical.

Searches up / down might use one of approaches mentioned earlier to find sweet spot:
(a.1) Minimize complexity subject to information constraint:
(a.2) Find best model by information/error subject to p-value constraint
l.e., find best model considering statistical significance of information / error

(b) Maximize some weighted sum of the two criteria
I discussed (a.1) and (a.2) earlier; now discussing (a.2)

But there is yet another way of picking a best model:

3-way training/test/validation (really, training/pseudo-test/test) splits
Pick the model fit on training data that generalizes best to test data.
Validate it with hold-out sample, 3" part of data.

Could do this N-fold.
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FOR BOTH CONFIRMATORY & EXPLORATORY MODELING, one needs to
get statistical significance of information captured or lost (error) in a model,
generate Likelihood-Ratio Chi-square from Information distance, as follows:
Reference =top
L?(mo—m;) =1.3863 N I(mp— my;) ERROR

=1.3863 N T(m;)

=2NZplin[p/qg(m)]
K, p.87; N is sample size, K uses n; also K uses = instead of g for expected probabilities.

Note this is different from ordinary Chi-square =N = (p — q)*/ q

Reference = bottom

Lz(m,- — Ming ) =1.3863 N I(mj = Minq) INFORMATION CAPTURED
=1.3863 N [ T(Mina) = T(M) ]
=2NZpin[p/dming) ]-2NZpIn[p/q(m)]
=2NZpin[q(m;)/q(Ming)]

Note different forms in sum:
For Reference = top plog[p/q] form

Difference between p & g, weighted by p
For Reference = bottom p log [g2/q1] form

Difference between g; & gz, weighted by p

This difference in forms will cause these two situations to not be fully symmetric.

L?is used here to test hypotheses where the reference is top or bottom, but actually, the
reference can be any model.

Moreover, a model might be tested not only against a fixed reference of top or bottom, a
“cumulative” test; we could also insist that it be satisfactory in every “incremental” test
for every step down or up from the top or bottom reference. This would be a more
stringent requirement of satisfactoriness.

To understand how to use L2 to assess statistical significance of error or information
captured, now discuss reference models, null hypotheses, and Types I, 11 errors.
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REFERENCE MODELS, NULL HYPOTHESES, & TYPE |, Il ERRORS

Reference =top; exploratory search usually (not necessarily) going top-down

NULL HYPOTHESIS (Ho): the model is indistinguishable from the data.

Note (K & B, p.30) that for some model, we DO NOT WANT TO REJECT this
hypothesis since we want model to agree with data. More exactly, we want the simplest
structure, lowest on lattice, where null hypothesis is not rejected.

In wanting to not reject the null hypothesis, this contrasts with common applications
where we want to reject a null hypothesis and hence want L? to be large.

We REJECT the null hypothesis if the L? is large (for particular df, to be discussed later),
i.e., if a lot of information is lost.

We DO NOT REJECT (speaking loosely, not rigorously, ACCEPT) the null hypothesis if
L? is small, i.e., if very little information is lost.

Since we have a lattice of models, we have a lattice of hypotheses. We take a series of
steps that go down the lattice until null hypothesis is rejected, and then back up one step.

Reference = bottom (exploratory search usually (not necessarily) bottom-up)
Or choose a different null hypothesis which we DO want to reject: independence model.

NULL HYPOTHESIS (Ho): the model is indistinguishable from independence.

(For some model,) we DO WANT TO REJECT this hypothesis.

We can continue to go up the lattice searching for the most complex structure that is
statistically justified. It is statistically justified if L? is large, so we can reject the null.

For each model in this ascent, we’ll ask if the model is both cumulatively significant
relative to the fixed reference of independence and incrementally significant relative to
the immediately lower model that we’re going up from.

Type land Il errors
Possible errors in rejecting or not rejecting a model hypothesis:

TYPE | ERROR: rejecting the null hypothesis when it should be not rejected

TYPE Il ERROR: not rejecting the null hypothesis when it should be rejected
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TO DECIDE TO REJECT/NOT REJECT HYPOTHESIS, ONE USES L? & df &
CHI-SQUARE TABLE. Table gives statistical significance of L%

K, p.62: consider calculating some L? value for df = 7. This df is really Adf.

Top row is p-value, probability(type I error). Assume that want significance level of .005.
That means we are willing to accept a probability of .005 of making a type I error.

p-values
Adf 0.200 | 0.100 |0.075 |0.050 |0.025 |0.010 |0.005 |0.001 | 0.0005
5 7.289 |9.236 | 10.008 | 11.070 | 12.833 | 15.086 | 16.750 | 20.516 | 22.106
6 8.558 | 10.645 | 11.466 | 12.592 | 14.449 | 16.812 | 18.548 | 22.458 | 24.104
il 9.803 | 12.017 | 12.883 | 14.067 | 16.013 | 18.475 | 20.278 | 24.322 | 26.019

Table shows that for Adf=7, p=.005, critical value of Chi-square = 20.3. This means that
one will get L? > 20.3 with probability = .005 if the null hypothesis is true (or L* < 20.3
with probability = .995 if the null hypothesis is true).

We will reject null whenever L? exceeds L% (critical value of Chi-square).

input to table output decision re null hypothesis
Adf  pc L% L?< L% L% L2
7 .005 20.3 don’treject  reject (difference is real)

If we reject the null hypothesis whenever L? > 20.3, then .005 of the time Chi-square will
be bigger than 20.3 even under the null hypothesis, so we will be in error .005 of the
time in rejecting the null hypothesis, i.e., we have prob. of .005 of making a type | error.

If we were willing to tolerate a higher probability of a type I error, then we could reject
null whenever 2 3¥815. This would produce a probability of type I error of 04, i.e., a
higher probability of error, because we are rejecting null more readily.

What if our acceptable type I error was between .1 — .35, which Log-linear book (K&B)
recommends for ref=top, say at .20. We will reject identity with a smaller difference.

input output decision
Adf  pe L% L?< L% L% L%
7 .20 9.80 don’treject  reject (difference is real)

Alternative way of using table: go into table with df & L? get p, then make decision by
comparing p to pc. Say pc = .01:

input output decision re null hypothesis
Adf L2 P P <Ppc P> pe.
7 20.3 .005 reject

7 9.80 .20 do not reject
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When p>p., then probability of error in rejecting null is greater than what I’m willing to
tolerate, so | don’t reject. if p<p., then my probability of error in rejecting null is less than
what | tolerate, so | can go ahead and reject null confidently, without fear.

CONSEQUENCES IN EXPLORATORY SEARCH OF ERRORS WHEN USING
DIFFERENT REFERENCE MODELS

Reference =top

If Chi-square test resulted in rejecting the null hypothesis, i.e., rejecting identity of
model and data, saying that the error is real, i.e., statistically significant, one would go
up the lattice to a more complex structure.

One wants to go as low as possible (compress maximally) without rejecting the null.

Data = reference

If Type Il error, If Type I error,
should have gone up too this model unnecessarily complex

Reject null: Go up.

Do not reject null: Stay If Type I error,
If Type I1 error, Model  shouid have stayed

model disagrees with data

Independence

If this rejection is in error, it is a Type | error

If one made a type | error, one would be adopting a model which was
UNNECESSARILY COMPLEX, i.e., one which includes unnecessary relations, is not as
simple as one can get.

IF ONE WANTS TO AVOID A TYPE | ERROR, i.e., require that p-value =
probability of Type I error is very low, ONE CAN CHOOSE A VERY SIMPLE
STRUCTURE. We’d then be unlikely to be wrong in rejecting the null.

Thus, if we want the p-value (OCCAM calls this alpha) to be less than .05, i.e., very low
probability of Type I error, we should go very far down.

IN THE LIMIT, if one chooses independence (!!), one is extremely unlikely to be
wrong in rejecting the hypothesis that it fits the data.

BUT THIS IS ABSURD!
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A low p-value model is one that we’re virtually certain (low probability of error)
disagrees with the data. WE DON’T WANT A MODEL WE’RE CERTAIN
DOESN’T FIT THE DATA!

THUS, WE DON’T WANT A MODEL WITH A SMALL P-VALUES (e.g.,< 0.05)

Type Il error

But if one had made a type Il error, one should have rejected this hypothesis and gone
up the lattice to get closer to the data.

But since one is in error, one stays put and is using a model that is TOO SIMPLE to
represent the data adequately, i.e., which omits some necessary relations, & thus is in
error with respect to the data.

TO AVOID ATYPE Il ERROR, CHOOSE A MORE COMPLEX STRUCTURE.

IN THE LIMIT, if one chooses a model which is the data itself, the possibility of
incorrectly accepting (not rejecting) it is nil.

BUT WE DON’T WANT A VERY LOW P(TYPE Il ERROR) THAT FORCES US TO
CHOOSE THE DATA, WHICH IS OVERFITTING.

Which error is worse? Type | or 11?

There’s a tradeoff between type | and 1l errors.

If one allows only a very low probability of a type | error, e.g., .05 or .01, then one will
have chosen so simple a structure that it is unlikely that we'll reject it wrongly.

But probability of type Il error is then high since model is too simple.

Up to user, but most users would say that Type Il error here is worse, more serious.

It’s worse to choose a model that doesn’t fit the data than a model that does and is
just more complex than necessary.

This values information/error criterion over complexity criterion.

What to do? Log-linear book, probably psychologically wedded to old p = 0.05
criterion says to relax this and maybe allow p to be between .1 and .35. See K&B,
p.64.

To me, this isn’t satisfactory. To be honest, we want p-value to be high!




Information Theoretic Reconstruction SySc 551/651, Winter 2024 22

Reference = bottom

If Chi-square test resulted in rejecting the null hypothesis, i.e., rejecting identity of
model and independence, one would stay, since one is happy that our model is different
from independence (OR one could try going up further).

Data
If Type 11 error, Reject null: stay.
should have stayed | Mmodel If Type I error,
Don’t reject null: Go down: posit unjustified relations
If Type Il error, — — =If Type I error,
model is unnecessarily simple should have gone down to this

Independence = reference

Type | error

If one made a type | error, one would be adopting a model which was TOO COMPLEX,
i.e., NOT STATISTICALLY JUSTIFIED, one that includes unjustified relations.
Its big difference from independence is not believable, given the data.

IF ONE WANT TO AVOID UNJUSTIFIED RELATIONS, ONE WOULD CHOOSE A
SIMPLER STRUCTURE. We’d then be unlikely to be wrong in rejecting the null. The
smaller difference from independence_is believable, given the data.

WE DO WANT A MODEL WITH A SMALL P-VALUES (e.g.,< 0.05) BECAUSE
WE WANT TO AVOID ASSERTING UNJUSTIFIED RELATIONS.
TYPE | ERROR OVER-FITS

If chi-squared test resulted in not rejecting the null hypothesis, one would go down
since difference from independence is not believable.

Type Il error
But if one had made a type Il error, one should have rejected this hypothesis and stayed.

But since one is in error, one has gone down and is using a model that is
UNNECESSARILY SIMPLE, that omits real (statistically justified) relations.

TYPE Il ERROR UNDER-FITS.

Which error is worse? Type | or 11?

Overfitting usually considered worse than underfitting. Type I is more serious here.
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Implications

For directed systems, | strongly favor reference = bottom for three reasons:
1. Usual p-value expectations apply to reference = bottom but not reference = top.

2. Calculation of p(Type I error) more straightforward than p(Type Il error); fewer
assumptions needed

3. Computationally, for directed systems, computations are faster at the bottom of
the lattice.

But for neutral systems, one sometimes encounters computational difficulties
precisely at the bottom of the lattice, so | have no general recommendation for
neutral systems. (I haven’t done neutral system analysis that often.)
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