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1. UNIVARIATE UNCERTAINTY, H; DIVERSITY, INFORMATION

1. Univariate focus initially
We’re considering only one variable, not a system (defined as involving >1 variable.)

2. Probabilistic uncertainty = Shannon entropy
H(x) = — 2 p(x;) logz p(x;) ; for simplicity, H = — 2 pj logz p;=T'(p1, p2, -.)

2 is 1 to n, #number states (cardinality) of x, not sample size, N. Kripp reverses n &N.
H goes up with (i) n, the number of possible x states, & (ii) uniformity of p; distribution

H is average surprise (assume repeated x measurements). Surprise is log (1/p); then
weight by p, then sum.

Units of H is “bits” which are non-physical, using base-2 logarithm.

3. Assumptions in derivation of uncertainty (Shannon & Weaver, p. 45)
H = log, n for equal probabilities; univariate decomposability (discussed later)

4. No necessary relation to 2nd Law
H(x(t+1)) need not be > H(x(t)); comment on Markovian doubly stochastic systems.

5. Uncertainty & diversity

Uncertainty is a measure of diversity: economic diversity or ecological (species)
diversity or population diversity (e.g., within a species as evolution progresses).

Related to Ginni coefficient (often quantifies income inequality). Entropy nice since it’s
decomposable.

Attaran’s 1984 dissertation: relation of economic diversity & per capita income or
unemployment in Oregon counties. Found statistically significant relation, but weak.
Note difference between statistical significance and size of effect. Articles widely cited.

6. Uncertainty & information

1. Information is a change (decrease) in uncertainty
Now we need 2 probability distributions, one initial & other final, both for one variable: x

information(x) = — AH= — (Hfinar — Hinitia1) = Hinitiar — Hfinal

2. Dangers of sign confusion
Information and uncertainty have connotation of being opposites,

But note that if Hfiny = 0, information = Hjyjitiar - iInformation & Hipitial are opposites.
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2. MEASURES & MODELS
Now consider systems. Initially assume 2 variables: x & y.

Notation: XY is model; X, y are variables. For 2 variables only two models need to be
considered: XY and X:Y; these are the only models in the Lattice of Structures. XY is
the data, the top of the lattice, “saturated model,” and X:Y is the model that says that
variables are independent, the bottom of the lattice, “independence model.”

A model is a hypothesis, and actually there are possible hypotheses that are not models in
the Lattice of Structures, so even with 2 variables, there are other possible models, but we
won’t consider them here. (We will later.)

For 3 or more variables there are more than two models, i.e., models in-between top and
bottom; we will not consider them now.

You can think about information theory methodology as
() giving you measures, like uncertainty (H), Transmission (T), or
(b) letting you assess models.

When you talk about measures without specifying any model, the model=data is
assumed. But one could calculate measures for particular models as well.

Notation: probability, p, for a particular model will be called gmoger (SO g does not mean
not 1 — p), e.g., probabilities for independence model are written as qx:y(X,y).
p(x,y) will be probabilities from the data; it would be same as gxy(X,y) .

Shannon entropy, H, can be calculated for the data (p) or for a particular model (q).

Notation: In the past, I’ve used u instead of H, because u goes with uncertainty, and H
meant heap, i.e., independence model, but I’ve decided now to use the same notation that
Krippendorff uses (also Shannon and nearly everyone else!).

Full notation: Hxy(X, y), but sometimes will write H(XY) and sometimes H(X, y); in latter
case XY assumed; Hx-v(X, y) is the uncertainty (about x, y) for the independence model.

Can also condition entropy on one or more variables. Can be written in two ways:
H(y|x) or Hx(y). Again, conditional uncertainties are for data or for some model.

H( z | x,y ) would be for data, (not bothering to subscript the XYZ data)

Hxv-xz:vz( Z | X,y ) is conditional distribution for z, given x & y, for model XY:XZ:YZ.
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3. BIVARIATE & CONDITIONAL UNCERTAINTIES

1. Visualization with uncertainty circles
Not a Venn diagram (since in diagrams of this sort, areas can be negative!)

H(x) H(y)

H(x,y)

2. Algebraic derivation
H(XY) = H(x, y) = H(x) + H(ylx) = H(y) + H(xly)

DERIVATION from joint probabilities into conditional probabilities
H(X, y) = =2 2 p(%j, Y ) 1092 p(x;, Yi)
=— 22 p(x)) p(yk| %;) logz [ p(x;) Py« | X;) ]

=—2 2 p(X)) p(yk | X;) [logz p(x;) + log [ p(yx|X;) ]

== 2 2 p(x)) p(yk | X;) [logz p(xj) 1 = 2 2 p(x)) p(Yk | X;) log [ p(yk|X;) ]

== 2% P(X)) 1092 p(Xj) 2y P(Yk | %) — 2 2 (X)) p(yk | %) log [ p(y|X;) ]

= = 2x P(x)) logz p(x)) — 2 X p(x)) p(yk | x;) log [ p(yx|x;) ]
= H(X) — 2 X p(x) p(yx | %;) log [ p(yx|xi)]
= H(X) — Zx p(x)) Zy p(yx| ) log [ p(y«|xi) ]
= H(x) + 2x p(x)) H(Y | %)

- H(X) + H(y| X)

For XY, i.e., x &y independent, H(y | x) = H(y), so H(x,y) = H(x) + H(y)
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4. TRANSMISSION, T (MUTUAL INFORMATION, CONSTRAINT)

H(XY) = H(x) + H(y)

DERIVATION from joint probabilities (above), since p(x, y) = p(X) p(y).

Constraintinthedata=T  =H(X:Y)-H(XY) Also called “mutual information”
=H(X) + H(y) - H(x, y) = H(x) - H(xly) = H(y) - H(ylx)

H(X) H(y)

H(x,y) H(x,y)
XY (data) X:Y (model)

If T =0, variables independent, heap, H(XY) = H(X:Y), circles separate, so H increases.
Transmission is a measure of association. It is like correlation, but T >0, i.e., T is only
positive or zero, not negative. T is for nominal (categorical, qualitative, symbolic)
variables, while correlation is for (quantitative) interval or ratio variables.

If you had two variables that are correlated either positively or negatively, and you
binned them appropriately, T would be positive. But you could have an association
between quantitative variables but zero correlation. T could detect this association.
Two meanings of T:

1. constraint in XY

2. error in X:Y

In lattice, constraint goes up from X:Y to XY; error goes down from XY to X:Y.

Which is more general, if go to more than two variables? How should we define T if
we have XYZ at top, X:Y:Z at bottom, and some model in between, like XY:YZ?

T will be defined as error, so write T(X:Y) which may/may not be zero, but T(XY) = 0.
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5. COMPUTATIONS on CONTINGENCY TABLES

5.1 Two variables

To illustrate how these uncertainty measures are actually computed, consider the
following table of data (these are referred to as ""contingency tables"):

Y1 Y2
X1 a b atb
X2 c d c+d

a+tc b+d N=atb+c+d

Y1 Yo
X1 A 2 3

X2 .3 4 T
4 6 1
These tables are normalized to obtain probabilities:

Y1 Y2
X1 [ P(XnYy1) [ P(XuY2) | p(Xa)
X2 | P(X2,y1) | p(X2,¥2) | p(X2)
p(y1) p(y2) 1

Uncertainties are given by

H(x) = — 2. p(xi) log p(xi)
H(y) = — 2. p(y;) log p(y;)
H(x,y) = =222, p(xi, yj) log p(xi.y;)

Conditional uncertainties can be calculated two ways:

1. H(x]y) = p(y1) H(X]y1) + p(y2) H(Xly2), where

H(x]y1) = — p(xaly1) log p(xaly1) - p(X2ly1) log p(X2|y1) where
P(X1ly1) = p(X1,y1)/p(y1) = a/(a+c)
P(X2ly1) = p(X2,y1)/p(ys) = c/(a+c)

2. H(xly) = H(x,y) — H(y) = T(&/N, b/N, ¢/N, d/N) — T((a+c)/N, (b+d)/N)

Do this for the above numerical distribution.
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5.2 More than 2 variables
For > 2 variables & for non-dichotomous variables, the procedure is essentially the same:

Z1 Z3
Y1 Y2 Y1 Y2
X1 a b C d
X2 e f g h

N=a+b+...+h. So a, b, ...h are frequencies
The entropy (uncertainty) of the overall system, H(x,y,z) is just
H(x,y,2) =—a/N log a/N — b/N log b/N ... — h/N log h/N

=T (a/N, b/N, ..., h/N)
Redefine a, b, ...h as probabilities, not frequencies, so don’t need to divide by N.
The entropy of any single variable is gotten by an appropriate aggregation:
H(x) = =2 p(x1) log p(x1) - p(x2) log p(x2)
where p(x;) =(@a+b+c+d) andp(x))=(e +f+g+h)
Hx)=T'(a+b+c+d, e+f+g+h)
Hly)=T(a+e+c+g, b+f+d+h)
H(z)=T (a+b+e+f, c+d+g+h)
Show the entropy of all three pairs of variables H(x,y), H(x,z), H(y,z).
H(x,y)=F(a+c, b+d, e+g f+h)
H(x,z)=T(a+b, c+d, e+f g+h)

H(y,z)=T'(a+e, b+f c+g, d+h)
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Conditional uncertainties for more than one variable are easily calculated in 2 ways:
1. H(xlyz) = H(x|y1,z1) p(y1.z0)*H(X[y1,22) p(y1.z2)+*H(X]y2,21) p(Y2,z1)+H(X|y2,22) p(Y2.z2)

where H(x|y1,z1) = — a/(a+e) log a/(a+e) — e/(a+e) log e/(ate); p(y1,21) = (ate)
2. also 2" way, easier: H(X|yz) = H(xyz) — H(yz)

5.3 Testing association directly from probabilities
Independence model, X:Y. what are its probabilities? Give example with .1,.2,.3,.4
AIx:v(X,y) = p(x) p(y).

In general, for >2 variables, when all multivariate probabilities are simply the products of
marginals, i.e., if p(X;, yj, z«, ...) = p(Xi) * p(y;) * p(z«) ..., then there is no association,

5.4 Calculated probabilities maximize entropy subject to constraints

This model g distribution is the solution to maximizing entropy, Hx.y(X,y), subject to
constraint, gx.y(x) = p(X) & qx:v(y) = p(y). (Can be proven using LaGrange multipliers)

Consider the following data, p(x,y)

Y1 Yo Y1 Yo
Xp1.11.21].3 X1|P1| P2
X2 |.31.41].7 X2 | P3| Pa

4 6 1 1

The independence model distribution qx.v(X,y) gotten by multiplying p(x) by p(y)

Y1 Yo
X1 A2 .18 3

Xo .28 | .42 T
4 .6 1

This distribution is the solution to following optimization subject to constraints:
maximize I'(q1, 02, 03, g4) subject to gx:v(x) = p(x) & gx:v(y) = p(y).
Y1 Y2
Xt |01 Q2 3
X2 | Qs Q4 A
A4 .6 1

A model tells us constraints, i.e., what we know. Otherwise the calculated
distribution is maximally uniform. How many constraints? 2.

Linear algebra form (“structure matrix) 2 independent rows (rank = 2):

1100 q 1100 1
0101 q| =[010 1] 2
111 1| g 111 1| 3

04| _4
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6. A STATE DECOMPQOSITION of UNIVARIATE UNCERTAINTY
Information theory is nice because information measures are decomposable.

Decomposability here has 2 meanings (now considering only first meaning):
subsets of states (macro, micro); subsystems of variables (subsystems)

Uncertainties are decomposable: let x = macro-state, y = micro-state

Consider values y; and y, to be subset of x; and values y; and y, to be subset of x,. Note
here subsets are of possible values of one variable, as opposed to subsets of variables.

X1 X2

Y1 | Y2 Y3 | Y4

3 A

1 | 2 3 | 4

Let within = within subsets; between = between subsets. Like analysis of variance in a
population divided into groups; like diversity within groups and between groups. One
could have a lot of diversity in every group but there wouldn’t be much difference
between group averages or very little diversity in every group but great differences
between group averages, or anything in between.

H = Huithint Hoetween
Derivation:

The overall uncertainty in X,y is no bigger and indeed is the same as uncertainty in just y.
CIRCLES: x circle within y circle

H(x, y)=H(y) = T'(.1, .2, .3, 4) H(y)

= H(x) + H(ylx)

= H(x) + 2 p(xi) H(y[x)

= H(x) + X p(xi) Z p(yjixi) log p(y;lxi)
where p(yj[xi) = p(xi, ¥;) / p(xi)

=T1(3,.7)+.3I'(.1/.3,.2/.3) + .71'(.3/.7, .41.7)

= H[ between ] + H[ weighted within ]

= H[ between ] + X p(x;) H[ within i ]
Examples: Attaran’s economic decomposition of macro-sectors of economy, Shirazi's
analysis of trade between/within geographic regions. ALife paper where decompose
diversity of behavioral actions of a population into diversity of the population under

identical environmental conditions plus the diversity of the population under differing
environmental conditions.
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7. Tin ‘TRANSMISSION’ & ‘SEQUENTIAL’ SITUATIONS

7.1 Transmission situation
Sent and received; T (“transmission”) is what is sent and is received.

Equivocation = H(x|y); Noise = H(y|x)

H(x) H(y)
SENT RECEIVED

H(xly)

Equivocation

H(x.y)

K, p.21 explains m:1 for equivocation and 1:m for noise. Also see K, p.25, Figure 12,

7.2 Sequential situation
(G. A. Miller) x & y are NOT sent & received, but rather x = z(t), y=z(t+1) or z(t")

Sequential situation: temporal linkage. Redundancy in natural language is illustrated by
uncertainty of a second letter in a word, given the first, as in TV show, Wheel of
Fortune. Statistical approach used in machine translation (calculate, instead of
understand word sequences), Google searches, ChatGPT, etc. See my paper on
information, constraint, & meaning (ICM).

Here dynamic relations are viewed information-theoretically. T measures temporal
order: T(z(t),z(t")) measures the constraint between values of a variable at two times.

For deterministic systems initial time circle includes later time circle, which is smaller.
(In 1:1 mappings, circles are identical.) If one knows initial state then one knows
absolutely the final state. Even if one doesn’t know initial state (initial H is not zero),
then final uncertainty must be same or smaller.

Ashby, in Introduction to Cybernetics, talks about decay of variety in deterministic
systems. Ashby speculates that this relates to Second Law, but it’s the opposite! His
“Law of experience”: in (deterministic) machines with input, changes in input parameters
only preserves or reduces variety; one always loses information about initial state.

In stochastic systems, T measures degree of hon-stochasticity.

Can of course have more than one variable changing in time. op
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8. T as LIKELIHOOD RATIO; RELATION to UNCERTAINTY

8.1 Likelihood Ratio form of T; T is for a particular model
T(X:Y) = H(x) — H(xly) = H(y) — H(y[x) = H(x) + H(y) — H(x,y)

Another way to represent T is T(X:Y) = 22 p(X,y) log [p(X,y)/ax:v(X,y)], where

q(x, y) are expected probabilities based on some hypothesis. Here, for gx.y, the
hypothesis is independence. Krippendorff uses = for q (p.24).

Note that if g = p, then log p/g = log 1 = 0. then T=0. T measures the gap between p &
g distributions, the difference log p — log g weighted by observed probabilities, p.

T is directly related to likelihood-ratio Chi-square.

Note in conventional statistics, there are (at least) two Chi-square ways of indicating the
gap between 2 distributions: see K, p.87 for ordinary and likelihood-ratio forms.

T(X:Y) = XX p(x.y) log [p(x.y)/ax:v(x.y)]

=22 p(xy) log p(x,y) — XX p(x,y) log gx:v(X,y)
Under hypothesis of independence, gx.v(X,y) = p(X) p(y). Hence

= X2 p(xy) log p(x,y) — X% p(xy) log p(x) — 22 p(x.y) log p(y)

= 22 p(x.y) log p(x,y) -2 p(x) p(ylx) log p(x) — 22 p(y) p(x]y) log p(y)
==H(x,y) — 2x p(x) log p(x) ZypyX) — 2 p(y) log p(y) Zy p(xly)
=-H(x,y) — 2. p(x) log p(x) — 2 p(y) log p(y)
=-H(x,y) +H(X) +H(y)

Hypothesis of independence is hypothesis that model X:Y has no error. For simplicity, T
can be written as T(X:Y) without reference to variables, x & y. When arguments are
given, it should be clear whether they’re model arguments or variable arguments. The
most complete convention would be to write Tx.v(X, ), i.e., the transmission for model
X:Y, which depends on variables x and y.

For 2 variables the saturated model, XY, and independence model, X:Y, are only models
possible, but with more than 2 variables, the lattice of structures has other models
possible, e.g., we could have Txy:yz(X, Y, 2).

T =2 plog [p/q] is actually a more general expression than the earliest expression
introduced just in terms of H’s, which applies only to the independence model.

T same as | in K, p.87, where I is information distance from top to some model, i.e., the
information loss (error) in the model. I'is NOT the information captured in the model.
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LR = L?=2n Y p loge [p/n] where n is sample size (my N) & 7 is my g.
But logex=1Inx=1n 2 * log, X derived below

So shifting to N for sample size,

L?=2N Y pIn2log,[p/n] =2NIn2 T=(2IN2) NT=1.3863N T

T is a sample size independent measure of information loss

L?is a sample size dependent measure of information loss, so can get statistical
significance (a p-value) for it.

Proof that In x = log,x * In 2

y=Inx sox=¢” z =log; X sox =2
e =2 s0 e¥?= 2 soy/z=1In2 y=zIn2=logyx In 2

Inx=1log,x*In2

8.2 Application to Univariate Uncertainty

For single variable, g(x) can’t be the expected probability distribution for some different
structural model, since there is no other model, [for 1 variable, no lattice!] but under
some hypothesis. For example, hypothesis might be that prob. distribution is uniform.

So hypothesis is more general than model. A hypothesis could be that a particular
model (topological connectedness of variables) holds, but one could have some other
type (non-structural) of hypothesis.

Consider the hypothesis of uniform distribution, a null hypothesis, what we expect if
we know nothing about a distribution, i.e., the least biased distribution, the maximum
uncertainty distribution. (the Laplace criterion, Laplace’s principle of insufficient reason
says that we should assume uniform distribution, maximum ignorance or uncertainty, in
absence of information about the distribution.)

T =2 plog p/q, where q(x) = 1/n
T=Xplog(pn)=2plogp+2plogn=-H(X)+logn=Hmnax(X) — H(X)

So T measures difference from uniform distribution. All we have to do is multiply T by
the constant above to get a L? that we can use, with appropriate degrees of freedom (just
n-1 because p’s sum to 1), to test the null hypothesis that distribution is uniform.
What is Hyax(X)? It is entropy of uniform distribution model. What is H(x)? It is data.

*x&x*x** |In general, T(model) = H(model) — H(data) = error in mode| *******

Krippendorff incorrectly says that this equation not true for models with loops.

What is correct is that cannot write H(model) algebraically for models with loops.

For 3 variables, that means we can’t write algebraic expression for H(XY:YZ:XZ)
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9. T, H for TRIVARIATE (& HIGHER) RELATIONS

Now shift to model notation with capital letters. H(X) H(Y)
Repeat: T(model) = H(model) — H(data)
TX:Y:Z)  =HX:Y:2) —H(XYZ) A
= H(X) + H(Y) + H(2) - H(XYZ2)
=1254 2356 4567 -1234567 &
=246 55
Consider a more complex model, XY:Z
T(XY:2) = H(XY:2) —H(XYZ) )
=123456 4567 -1234567
=456

H(XY:Z) = H(XY) + H(2)
q(XY:2) = p(XY) p(2)
Entropies add/substract, probabilities multiply/divide

Consider a still more complex model: one with overlapping components, XY:YZ

T(XY:YZ) =H(XY:YZ)-H(XYZ)

HXY:YZ) =H(XY)+H(YZ)-H(XYNnYZ) thirdterm is XY intersect YZ.
= H(XY) + H(YZ) — H(Y)

a(xXy:Yz)  =p(XY)p(¥YZ)/p(Y)

A slightly more complex model, XY:YZ:ZA

T(XY:YZ:ZA) = H(XY:YZ:ZA) - H(XYZA)
H(XY:YZ:ZA) = H(XY) + H(YZ) + H(ZA) - HXYN YZ) - H(YZN ZA)

= H(XY) + H(YZ) + H(ZA) - H(Y) —H(2)
q(XY:YZ:ZA) =p(XY) p(YZ) p(ZA) I [ p(Y) * p(2) ]

Still more complex model: with overlapping components AND LOOPS, XY:YZ:XZ
T(XY:YZ:XZ) = H(XY:YZ:XZ) - H(XYZ)

But cannot expand H or g expressions since XY:YZ:XZ has a_loop, so
H(XY:YZ:XZ) # H(XY) + H(YZ) + H(XZ) -H(X) -H(Y) -H(2)

q(XY:YZ:XZ) # p(XY) p(YZ) p(XZ) / [p(X) p(Y) p(2)]
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TWO ALGEBRAIC LAWS

Law of Uniform Subscripting: applies to both H& T
H(X:Y|Z) = H(X|Z) + H(Y|Z2) (or, other notation:) Hz(X:Y) = Hz(X) + Hz(Y)

Hz(XY) = Hz(X) + Hz(Y|X) = Hz(X) + sz(Y)

Law of Distribution for conditional measures: applies to T but not H

T(A:C) illustrates INDEPENDENCE
T(A:C|B) illustrates CONDITIONAL INDEPENDENCE

T(A:C|B) = T(AB:BC)
move B into each argument
T(A:C|B) =H(A:C|B) —H(AC|B) Uniform Subscripting for T
= H(A|B) +H(C|B) —H(AC|B) Uniform Subscripting for H
= H(AB)-H(B) + H(BC)-H(B) —[H(ABC) -H(B)]
= H(AB) + H(BC) - H(B) = H(ABC)
Simpler derivation
T(AB:BC) = H(AB:BC) - H(ABC) = H(AB) + H(BC) - H(B) - H(ABC)

BUT this Law of Distribution does NOT apply to H.

So H(A:C|B) =/= H(AB:BC)

Left Hand Side: H(A:C|B) = H(A|B)+H(C|B) = H(AB) - H(B) + H(BC) — H(B)
Right Hand Side: H(AB:BC) = H(AB) + H(BC) - H(B)
LHS =/=RHS;, i.e., H(A:C|B) and H(AB:BC) are NOT the same
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10. A VARIABLE DECOMPOSITION of TRANSMISSION

The transmission measure lets us speak about organization of the system. One simple
type of organization is division into disjoint subsystems.

Consider a system with variables v, w, X, y, divided into two subsystems v, w and X, y.
The transmission of the total system can be broken up into terms giving the transmission

within each of the subsystems taken separately plus a transmission between one
subsystem and the other. Shift to model notation.

T(V:W:X:Y) = Tuithin subsystems *+ Thetween subsystems
=T(V:W) + T(XY) + T(VW:XY)

(This is mentioned in Conant’s article, Laws of Information That Govern Systems.)

Derivation:

LHS: T(V:W:X:Y) = H(V) + H(W) +H(X) + H(Y) - H(VWXY)
RHS: T(V:W) =H(V) + HW) -H(VW)

RHS: T(X:Y) = +H(X) + H(Y) - H(XY)

RHS: T(VW:XY) = +H(VW)+ H(XY) - H(VWXY)

Add up last three terms in RHS & get overall T of the LHS.

Since transmission is a measure of organization, this decomposability is fundamental
to idea of system. That is, a system has parts, with some internal order, but the parts are
organized into a larger whole.

Related to Simon's notion of nearly decomposable systems: in most cases

Tbetween << Twithin
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11. OTHER INFORMATION THEORETIC FUNCTIONS

1. (K, p.24) normalized T
T(A:B) / Tmax (A:B) = T(A:B) / min{ H(A), H(B) } @

2. (McGill & Quastler) fraction of uncertainty explained H(A)

D function of M&Q who call it “coefficient of constraint” H(B)
This measure is for predicting B (the DV) from A (the IV)
D = T(A:B)/H(B) = [H(B) - H(B|A) ]/ H(B)

3. Predictive power (efficiency of prediction)
T(A:B)/H(A)

Hmax
4. (M&A) Redundancy
C=1-H/Hmnax=[Hmax—H]/Hmax =T / Hmax

. . H(X) H(Y)
5. Interaction, A (sometimes called Q)

A =TX:Y)-T(XY|Z)=2+5 -2 =5
=TX:Z)-T(X:Z]Y)= 4+5 -4 =5 ‘
=T(Y:2)-T(Y:Z)X)= 6+5 -6 =5 v
=5, the inherently triadic interaction AA
A = T(X:Y) ~T(X:Y|2)
= H(X) + H(Y) = H(XY) = T(XZ:YZ) H(2)
= H(X) + H(Y) - H(XY) = H(XZ:YZ2) +H(XYZ)

=H(X) + H(Y) - H(XY) = [ H(XZ) + H(YZ) - H(Z) ] + H(XYZ)
= H(X) + H(Y) + H(Z) - H(XY) —=H(XZ) - H(YZ) + H(XYZ)
Note the alternating signs. One could also define A as the negation of this.
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Natural to assume that region 5 is positive, i.e., that T(X:Y) =2 +52>T(X:Y|Z) = 2.
What X tells me about Y is reduced by knowing Z, i.e., expect that T(X:Y|Z) < T(X:Y).

In the limit, T(X:Y|Z) = 0. What would this mean, if T(X:Y) > 07?

It could mean that X-Y association might be due to (explained away by) either

a prior effect or an indirect effect.
X
7 < X—>Z Y
Y

Prior effect is like Factor Analysis: if X and Y are associated (correlated), knowing
(controlling for) a common (prior) factor, Z, which explains both of them & explains
away the association (e.g., sibling correlation, given parents). For nominal variables this
is Latent Class Analysis.

Indirect effect comes from Path Analysis: if X and Y are associated, then knowing an
intermediate (mediating) variable, Z, explains away the association.

But is it always the case that T(X:Y) > T(X:Y|2)?
NO! Can get ‘reverse’ latent class analysis: consider following

Al Z Given z;

Yi Y2 Y1 Yo Yi Y2 L, Zp 2, 7 Yi Y2

X, | 1/4| 0 0 | 1/4 X, | /4 1/4 X, | /4 1/4 y, | 1/4 1/4 X1 |12 0
X | 0 [1/4]1/4] 0 X, | 1/4  1/4 X, | /4 1/4 y, | 1/4  1/4 X, | 0 1/2

Borromean Rings: triadic constraint; dyadic projections uniform (no constraint!!)

H(XYZ) =2, H(XY) =2, H(XZ) =2. H(YZ) =2, H(X) = H(Y) =H(2) =1
TECY) =H(X) + H(Y)-H(XY)=1+1-2=0  Not surprising: uniform
TOXY|Z) = 5* T(X:Y|z1) + .5* T(X:Y]zp)

T(X:Y]|zy) = H(X|z1) + H(Y|z1) = H(XY|z1)) =1+ 1-1=1=T(X:Y|zp)
TXY[Z)=5*1+5*1=1

So T(X:Y[Z)=1>T(X:Y)=0

A=TXY)-T(XY|Z)=0-1=-1.

So T(X:Y|Z) is not always less than or equal to T(X:Y),
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But H(X|Z) is always less than or equal to H(X)

Negative interactions. Hence not a Venn diagram. A can be negative (or positive)!!
In this case, knowing Z makes association stronger rather than weaker.
Give interpretation of this table for the couples example.

Borromean Rings: triadic constraint, but no dyadic constraints !!
T(X:Y:Z) = H(X:Y:Z) -H(XYZ)=3-2=1,
But T(X:Y) =T(X:Z2) =T(Y:Z) =0.

A looks like the inherently triadic interaction. We might think A = T(XY:XZ:YZ),
error in 3 dyadic interactions w/o the triadic interaction. What is this T?

T(XY:XZ:YZ) = H(XY:XZ:YZ) - H(XYZ)
We might think INCORRECTLY that
H(XY:XZ:YZ) = H(XY) + H(XZ) + H(YZ) = H(X) = H(Y) - H(2)

This looks like it might be —A, but this H expression is INCORRECT because of loop.
If A were positive, entropy would decrease going down the lattice, which can’t be.

An OPPOSITE (more conventional) example from Latent Class Analysis book, p.16,
where T(X:Y|Z) =0 < T(X:Y). This is opposite of Borromean rings.

Z3 Z3
Yi Y2 Y1 Y2 Y1 Y2
X180 (20|15 |35 X195 55
X140 (110(30|70 X | 70 80

T(X:Y)isnot 0, but T(X:Y|Z) = 5T(X:Y]|zy) + 5T(X:Y|z2)=0+0
5. Systematic entropy

Shift back to variable notation.
Useful to define quantity similar to uncertainty called systematic entropy (Krippendorff):

Sy, 2) = H(xy...2) —H(x | y.z) - H(y | x.z) -H(Z | xy) =246 5
Systematic entropy does not count region 5 twice, as does transmission. HX) H(y)

Systematic entropy, S, measures joint variability, uncertainty of
system associated with (that exists despite) organization of system:

it excludes uncertainties of each variable taken singly,
unaffected by knowledge of other variables, which could be A

considered monadic noise (like unique variance in Factor Analysis).

H(z)
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