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Part 1: BASIC CONCEPTS 

1. Univariate Uncertainty, H; Diversity, Information 
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In Thermodynamics, the change in entropy (ΔS)  

is equal to the change in heat (ΔQ) over  

Temperature (T). (See image at right.) 
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zwick
Note
Minor: should probably keep subscript as 'j', for consistency.

zwick
Note
Yes, this is the expression in statistical mechanics.

zwick
Note
The image is at the top of this page, not immediately to the right, since the image immediately to the right is not about heat transfer, i.e., not about entropy based on energy distribution, but rather is about the increase of an entropy based on matter distribution

zwick
Note
The vectors on the hot side should in general be longer than the vectors on the cold side to indicate the higher velocities.

zwick
Note
This is for a binary choice where probabilities of two outcomes are equal, namely 0.5.

zwick
Note
This is a picture of NOT overfitting. Overfitting would involve trying to thread a very complicated polynomial through most or all of the points. This diagram should go with the discussion of picking a 'best model.'

zwick
Note
H_final is 0 if we know the result with no residual uncertainty.



2. Measures & Models 

Notation: 

x, y variables (lower case letters) 

XY models (capital letters) 

For two variables: 

XY is the saturated model, or the data 

X:Y is the independence model 

For three variables, more intermediate models are possible: 

XYZ 

XY:YZ:XZ 

XY:YZ  XY:XZ  XZ:YZ 

XY:Z  XZ:Y  YZ:X 

X:Y:Z 

 

The model XZ:YZ can be depicted as this: 

X  Y  Z 
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YZ XZ 

H(x) H(y) 

H(x|y) H(y|x) 

H(x,y) 

T 

⏟ 

zwick
Note
Need to fix labels on lines. If the structure is XZ:YZ, then Z should be the middle line and Y should be the right-most line.

zwick
Note
The rest of the equation has been left out. This should read as a triple sum of 
- q log q, where q is q for XY:YZ.

zwick
Note
The curly brackets should be much bigger. H(x,y) is the union of both circles. Here it looks like H(x,y) is somehow related to the size of T, which it isn't.



3. Bivariate & Conditional Uncertainties 
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H(x|y) H(y|x) 

H(x,y) 
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H(x) H(y) 

H(z) 

zwick
Note
This inequality holds in general, but if x and y are actually independent of one another, then the bivariate probabilities is in fact equal to this product of univariate probabilities.

zwick
Note
The left hand side of this equation is just H(y|x_j), not the sum of this times p(x_j). 



4. Transmission, T (Mutual Information, Constraint) 

 

 

 

 

 

 

 

Transmission (T) = Mutual Information 

This is equal to constraint in the data, or XY, due to association between variables. 

Transmission is also equal to the error in X:Y, or the independence model 

' = ���� + ��<� − ���, <� 
= ��4: 5� − ��45� 
= ��4� + ��5� − ��45� 
'�/-HIJ� = ��/-HIJ� − ��H0�0� 
Example: 

'�45: 47: 57� = ��45: 47: 57� − ��457� 
Transmission of a model is equal to the entropy of the model minus the entropy of the data. 

  

XY 

X:Y 

T 

data 

model 

 

H(x) H(y) 

H(x|y) H(y|x) 

H(x,y) for XY 

T 

H(x) H(y) 

H(x,y) for X:Y 



5. Computations on Contingency Tables 

Observed probability distribution, for the model XY (or the data): 

 y1 y2  

x1 .1 .2 .3 

x2 .3 .4 .7 

 .4 .6  

 

If X and Y are independent, you should get this distribution, for the model X:Y. 

 y1 y2  

x1 .12 .18 .3 

x2 .28 .42 .7 

 .4 .6  

 

For the data (XY), ���, <� = Γ�. 1, .2, .3, .4� 
���� = Γ�. 3, .7� 
 

��<� = Γ�. 4, .6� 
'�/-HIJ� = 	��/-HIJ� − ��H0�0� 
' = ��4: 5� − ��45� 
' = ���� + ��<� − ���, <� 
 

T=Γ�. 3, .7� + 	Γ�. 4, .6� − 	Γ�. 1, .2, .3, .4� 
 

  

 y1 y2  

x1 .12 .18 .3 

x2 .28 .42 .7 

 .4 .6  



For Three Variables: 

The values in the table below indicate the observed probabilities for three variables, x,y,z. 

 z1 z2  

 y1 y2 y1 y2  

x1 a b c d  

x2 e f g h  

      

Three two-way projections can be derived from this dataset: 

 y1 y2   z1 z2   z1 z2  

x1 a+c b+d  x1 a+b c+d  y1 a+e c+g  

x2 e+g f+h  x2 e+f g+h  y2 b+f d+h  

            

Additionally, two-way projections can be made for individual variables: 

x1 a+b+c+d  y1 a+e+c+g  z1 a+b+e+f  

x2 e+f+g+h  y2 b+f+d+h  z2 c+d+g+h  
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zwick
Sticky Note
This may be a bit unclear. This continues the evaluation of H(z|x,y).



6. A State Decomposition of Univariate Uncertainty 

 

In the table below, x is a macrostate with n subsystems 

x1 x2 

y1 y2 y1 y2 

a b c d 

 

��\�() = �]��^��	_`X_a_�bc_ + �Xb�]bb�	_`X_a_�bc_ 
��<�is	within	subsystems	�micro�,���� is between subsystems (macro). 

���� is contained within ��<� 
 

 

 

 

 

 

��\�() = �0 + P�ΓU 0
0 + P ,

P
0 + PV + �Q + H�Γ U

Q
Q + H ,

H
Q + HV + Γ�0 + P, Q + H� 

 

�������<|���  ���T���<|�T� 
For Neutral Systems    For Directed Systems 

ABCD      ABCD…Z 

 

       ABC…:AZ 

A:B:C:D      ABC…:Z 

  

H(x) 

H(y) 

H(y|x) 

zwick
Sticky Note
x1 and x2 are the macrostates (n=2), each of which could be thought of as a subsystem consisting of 2 values of y.

zwick
Sticky Note
Actually, the 'within' terms are the H(y|x1) and H(y|x2). The total within term is H(y|x)

zwick
Sticky Note
The sum of these two terms is H(y|x).



7. T in ‘Transmission’ & ‘Sequential’ Situations 

Transmission (mutual information) includes 

 Transmission situation 

 Sequential Situation 

For the Transmission Situation: 

x = message sent 

y = message received 

 

 

 

 

 

' = ���� + ��<� − ���, <� 
= sent and received 

' = ��<� − ��<|�� 
= ���� − ���|<� 
For the Sequential Situation: 

 

 

 

 

 

H(x(t)) might also be called H(t), and H(x(t+1)) might also be called H(t+1). 

A system is deterministic if H(t+1) is contained within H(t). 

 

 

  

H(x) H(y) 

H(x|y) H(y|x) 

noise 

T 

equivocation 

H(x(t)) H(x(t+1)) 

T 

H(t) 

H(t+1) 



A system is stochastic if H(t+1) is not contained within H(t). 

 

 

 

 

 

 

Markov: 

p(x1)  a b c …  p(x1) 

p(x2)  …     p(x2) 

p(x3) =      p(x3) 

…       … 

p(xn)       p(xn) 

t+1       t 

(nx1)   (nxn)    (nx1) 

�������� = 0������ + P���T�� +⋯ 

0 = �	���� + 1�C������ 
P = �	���� + 1�C�T���� 

  

H(t) H(t+1) 



8. T as Likelihood Ratio; Relation to Uncertainty 

'�4: 5� =�����, <� logT� ���, <�89::��, <� 

���, <� = -PpI.qIH 

89::��, <� = Q0JQrJ0�IH 

89::��, <� = ������<� 
p y1 y2  q y1 y2  

x1 .1 .2 .3 x1 .12 .18 .3 

x2 .3 .4 .7 x2 .28 .42 .7 

 .4 .6   .4 .6  

 

' = ���� + ��<� − ���, <� 
= Γ�. 3, .7� + Γ�. 4, .6� − Γ�. 1, .2, .3, .4� 

= .1 logT . 1. 12 + . 2 logT
. 2
. 18 + . 3 logT

. 3
. 28 + . 4 logT

. 4
. 42 

tT = J1!IJ1ℎ--H	.0�1-	Qℎ1	p8r0.I = 2u��� logb �8 

= 1.3863u' 

 

Degrees of Freedom 

For the model, df = 0  

For the data, df = 2 

'�/-HIJ� = ��/-HIJ� − ��H0�0� 
= Γ�. 33, .33, .33� − Γ�. 4, .35, .25� 

=�� log �
8c\Yb) 

= .4 log . 4. 33 + .35 log
. 35
. 33 + .25 log

. 25

. 33 

tT = 1.3863u' 

−��
�


��
log �			0JJ	�w	I8r0Jxxxxxxxxxxxxxxxxxxxxxxxxy 			logT + 

.33 .33 .33 

.4 .35 .25 

zwick
Sticky Note
Here, the model is the uniform distribution.

zwick
Sticky Note
So this can be used to test the model, i.e., the hypothesis that the data is 'really' uniform.



XYZ 

 

XY:YZ 

 

X:Y:Z 

'�4: 5: 7� � ��4: 5: 7� � ��457� 

= ���� + ��<� + ��>� − ���, <, >� 
 

 

'�45: 57� � ��45: 57� � ��457� 

'�/-HIJ� = ��/-HIJ� − ��H0�0�   
��45: 57� � ��45�  ��57� � ��5� 

 

 

 

 

The dataset XYZ contains three two-way relations (XY, XZ, YZ), and three one-way relations (X, Y, Z) 

��45: 57: 47� D ��45�  ��57�  ��47� � ��4� � ��5� � ��7� 

It is not possible to calculate the entropy (or transmission) when the model has a loop! 

  

H H

H

H H

H

XYZ XY XZ YZ X Y Z 

zwick
Sticky Note
Technically, if one has just one variable, one doesn't really have a 'relation', but what is meant here is that the 3-way table contains three 2-way tables and 3 1-way tables.

zwick
Sticky Note
It is not possible to calculate the entropy algebraically, i.e., in 'closed form,' but one can get it by an iterative method.



9. T, H for Trivariate (& Higher) Relations 

'�4: 5: 7� = ��4: 5: 7� − ��457� 
'�45: 7� = ��45: 7� − ��457� 
'�/-HIJ� = ��/-HIJ� − ��H0�0� 
��45: 7� = ��45� + ��7� 
 

 

 

��45: 57� = ��45� + ��57� − ��5� 

8�45: 57� = ��45���57���5�  

Law of Uniform Subscripting: 

��4: 5� = ��4� + ��5� 
��4: 5|7� � �;�4: 5� � �;�4�  �;�5� 
Law of distribution for conditional T 

';�4: 5� = '�47: 75� 
';�4: 5� ⪌ '�47: 75� 

 

X  Y  Z 

  

H H

XY Z 

H(x) H(y) 

H(z) 

YZ XZ 

 

 

X 

Y 
Z 

zwick
Sticky Note
In order to match the factor-analysis type diagram right above it, Y and Z should be interchanged in the Krippendorff box diagram for the specific structure XZ:YZ.



10. A Variable Decomposition of Transmission 

 

 

 

 

 

 

'�{:|:4: 5� = '�{:|� + '�4: 5� + '�{|:45� 
'�{:|� + '�4: 5� =	within subsystems 

'�{|:45� = between subsystems 

'�{:|:4: 5� = ��{� + ��|� + ��4� + ��5� − ��{|45� 
'�4: 5� = ��4� + ��5� − ��45� 
'�{:|� = ��{� + ��|� − ��{|� 
'�{|:45� = ��{|� + ��45� − ��{|45� 
   {|45 

     '�{|:45� 
     '�{:|:4: 5� {|:45 

     '�{:|� + '�4: 5� 
   {:|: 4: 5 

 

  

VW 

      XY 



11. Other Information Theoretic Functions 

 

 

 

 

 

 

'�4: 5�
'c(?�4: 5� =

'�4: 5�
min}��4�, ��5�~ 

'�4: 5�
��5� = ,.0Q�1-+	-,	I+�.-�<	.IHrQIH 

'�4: 5�
��4� = "�.IH1Q�1qI	I,,1Q1I+Q<" 

'�4: 5�
�c(? = 1 − �

�c(? = .IHr+H0+Q< 

�c(? = ��4� + ��5� 
 

Quastler’s A Function  

Area “5” in the diagram at right. 

��4, 5, 7� = −��4� − ��5� − ��7� + ��45�
+ ��57� + ��47� − ��457� 

 

457 

  '�45: 47: 57� 
45: 47: 57 

'�45: 47: 57� ≠ ��4, 5, 7� 
��45: 47: 57� has no algebraic form! 

 

H(x) H(y) 

  T 

1 2 3 

4     5     6 

7 

zwick
Sticky Note
predictive efficiency of X



Quastler’s A Function can be positive or negative. 

 RHappy RUnhappy  

 Wmountain Wseashore Wmountain Wseashore  

Hmountain 10 0 0 10  

Hseashore 0 10 10 0  

      

Three two-way projections can be derived from this dataset: 

 Wmountain Wseashore   RHappy RUnhappy   RHappy RUnhappy  

Hmountain 10 10  Hmountain 10 10  Wmountain 10 10  

Hseashore 10 10  Hseashore 10 10  Wseashore 10 10  

            

 

'���:|� = �	��(��a�'�(��a��:|� + �	���^(��a�'��^(��a��:|� 
When RHappy 

 Wmountain Wseashore   Wmountain Wseashore  

Hmountain 10 0  Hmountain .5 0 .5 

Hseashore 0 10  Hseashore 0 .5 .5 

     .5 .5  

���rpP0+H� = 1 

��|1,I� = 1 

���rpP0+H,|1,I� = 1 

'�(��a��rpP0+H:|1,I� = 1 + 1 − 1 = 1 

���rpP0+H|1,I� = 2 = ���rpP0+H� + ��|1,I� 
 

HWR 

HW:HR:WR 

HW:HR  HW:WR HR:WR 

HW:R  HR:W  WR:H 

HWR 

 

  

zwick
Sticky Note
The point of this diagram was that all the constraint in HWR is lost when one goes down just one step to HW:HR:WR. So entropy of that structure is actually the same as the entropy of the bottom structure H:W:R.



 

 

 

 

 

 

 

 

'�4: 5: 7� = ��4: 5: 7� − ��457� 
1 + 2 + 4 + 5 + 2 + 3 + 5 + 6 + 4 + 5 + 6 + 7 

1 + 2 + 4 + 5 + 2 + 3 + 5 + 6 + 4 + 5 + 6 + 7 

= 2 + 4 + 6 + 5 + 5 

= 2 + 4 + 6 + 5 = %<p�I/	�+�.-�< 

= ��457� − �9:�7� − �9;�5� − �:;�4� 
 

noise 

unique variability 

1 2 3 

4     5     6 

7 

H(x) H(y) 

H(z) 

zwick
Sticky Note
This may be a little unclear. T is 2 + 4 + 6 + 5 + 5, i.e., the area 5 is counted twice.
There is an information theoretic function that counts it only once, proposed by Krippendorff. This is called 'systematic entropy'. This picks out 'shared entropy'; all the other terms -- the entropies of single variables conditioned on the other two -- are the unique variabilities of the single variables (this is like unique factors in factor analysis). The sum of single variable entropies not shared by other variables could be called 'noise', 'but this 'noise' is different from noise as opposed to equivocation. Two totally different uses of the word.



Structures  
 
1. Introduction             
 
Models and Structures.  
 
A structure is a composition of relations, specified by listing component relations, e.g. 
AC:BC, or by a diagram. A structure is data-free (except for the cardinality of its variables). 
It does not have error, but it does have complexity, measured by degrees of freedom. 
Specific structures include information about particular variables, but structures can be 
represented more generally. For example, the structures XY:YZ, XY:XZ, and XZ:YZ all 
have the same general structure.  
 

  
Specific Structure    General Structure 

 
A model is a structure applied to some data. Models 
have both error and complexity (degrees of freedom). 
The saturated model, the relation that includes all of the 
variables, is the data and thus has no error. The 
goodness of a model depends on its error (or, 
conversely, information captured) and its complexity, 
i.e., degrees of freedom (or, conversely, simplicity). The 
best model is the one that has the best trade-off 
between these two.  We want to minimize both error 
and complexity, and need to trade these off; or, 
conversely, we want to maximize both information and 
simplicity, and need to trade these off. 
 
Degrees of freedom (d.f.) is the number parameters 
needed to specify a structure and is highest in the data.  
 
Error is the transmission between the data and the model. Information captured is the 
distance between the model of interest and the independence model (which is equal to the 
transmission of the independence model minus the transmission of the model). 
Information captured is lowest (by typical convention, 0%) in the independence model and 
highest (100%) in the data.  (But one could use lower reference models than independence, 
e.g., the uniform distribution; in this case this distribution would be said to have 0% 
information captured.) 
 



Fitting and Overfitting.  
 
The goal in selecting a model selecting is to 
find the right balance between error and df so 
that the model most likely to be generalizable 
to other data of interest. It is possible to find a 
model that fits the data extremely well by 
increasing the complexity, or the number of 
parameters of a model. However, if the 
model fits particular data too well, the 
likelihood of the model fitting new data is 
low and it is not a very useful model.  
 
Ideally one would find a level of complexity for which the model is most likely to fit new 
data. The goal is then to find a “sweet spot” of complexity in which the model fits the data 
well but also generalizes well (indicated by the gray line in the figure below). 
 
 

 
The test data should not be used to choose a model, but should be used only to verify the 
model selected with training data, so one must try to guess which models have an ideal 
balance between error and complexity. Data may be split into training and test data or test 
data and training data may be different data sets. 
 
 



Methods of Selecting a Model. 
Since we cannot use test data to select a model, these methods can be used to try to predict 
which model is best. 
 

1. Use training data and statistical significance (p-value) 
2. Use training data and an integrated measure (e.g., AIC, BIC) 
3. Do 3-way splits of the data into training, pseudo-test, test: pick a model fit on 

training data based on how generalizable it is with pseudo test data  
 
Then subject the model to a real – and final!! -- test by applying it to test data. 
 
OCCAM gives percent correct, the percent of cases in which the outputs were correctly 
predicted by the model, as one of the measures of the goodness of the model. This is not an 
information theoretic measure so it can be used to compare RA to other techniques.  
 
 
2. Lattice of Relations, Ordinality          
 
Ordinality is the number of variables in a relation. In the 
lattice of relations of three variables, the top level, ABC, 
has ordinality 3. In the second level, AB AC and BC have 
ordinality 2 and A, B, and C have ordinality 1.  
 
Systemic relations are not just compositions of pair-wise 
relations. For example ABC is a three-way relation. This 
relation is not equivalent to three two-way relations, i.e., to 
the structure AB:AC:BC. On page 34, Krippendorf gives 
some examples of methods that assume pair-wise 
relationships, but in general, higher order relationships are possible. For, example network 
models usually only look at pair-wise relations, two nodes connected by one edge. 
However, three-way or higher relations can be represented by hypergraphs.  
 
Constraint in the whole (ABC for a three variable system) is greater than or equal to the 
sum of the constraint in parts (e.g. AB). Another way of saying this is that decomposition 
generally decreases the constraint. This is a more specific and completely rigorous way of 
describing holism or “a whole is greater than the sum of its parts”.  
 
 
3. Lattice of Structures, Structure Types        
 
A structure is a set of relations, and it can be represented as a cut 
through the lattice of relations, as shown at right. It includes the 
relations at the top of the cut plus all lower projected relations. For 



example, the structure AB:AC includes only the two-way relations AB and AC (and their 
embedded projections, A, B, and C) and excludes the relations ABC and BC. 
 
A structure can also be represented by a graph as described 
in the introduction. Since relations are of more importance 
than variables, relations are represented as boxes and the 
lines connecting them represent variables. 
The lattice of structures gives the ways in which a number 
of things can relate. Krippendorf gives several different 
lattices of structure, both general and specific, on p. 40. 
Specific structures are what need to be considered when 
fitting data 
 
For a system of three binary variables, each level has one 
less degree of freedom than the one above it. For ABC with 
binary variables, there are 8 entries in the contingency table. 
The last entry in the contingency table can be inferred from 
the other entries. (If the contingency table has probabilities in 
it, these have to sum to 1; if it has frequencies in it, these have 
the sum to the sample size, which is assumed to be known.)  
So degrees of freedom of ABC is 7.  df(AB:AC:BC) is 6, and so on down the lattice, 
decreasing by 1 at every level. (All this only for binary variables.) 
 
4. Directed Vs. Neutral Systems         
 
In a neutral system, any variable could be considered an 
input or output, for example in AB, A could affect (or 
predict) B and B could affect (or predict) A. In a directed 
system, the inputs and outputs are specified and the 
relations are one way.  
 
The lattice of structures for a directed system contains 
fewer structures than the neutral system with the same 
number of variables. The independence model for 
directed systems is the relation containing all of the 
inputs and each output as a separate relation (e.g. AB:C 
if A and B are input variables and C is an output 
variable). Directed system structures always have the 
relation containing all of the inputs to allow for interactions among the inputs. This also 
makes all the models hierarchically nested to allow for statistical tests. 
 
 
 
 



5. Generating the Lattice of Neutral Structures       
 
The algorithm for generating a descendent structure in the lattice of structures is.  
 

1. Remove a relation: 
There will be a unique descendent for each different relation that can be removed  
so the algorithm will be performed for each. When there are multiple symmetric  
relations, only one need be removed (if one is just interested in the general structure 
that results).  
 

2. Restore embedded relations not already present:  
When restoring relations, consider all of the relations that are embedded in the one 
removed, but restore only those that are not embedded in remaining relations.  

 
(See the example below.) 
 
This algorithm will generate all possible general structures. If one wants to search for only 
models without loops a different algorithm would be needed.  
 
6. Models With and Without Loops, Disjoint Models      
 
For three variables there are five general structures and only one has loops. For four 
variables there are twenty general structures and ten have loops. As the number of 
variables increases, there is a higher proportion of general structures that have loops. 
 
The Curse of the Lopsided Rectangle: Some 
models, especially those high complexity (df) 
require a lot of data, and in general 
information theory methods need much more 
data than, e.g., linear regression models. 
Ideally you would have many more cases 
than the number of variables, but 
unfortunately all too often you have many 
variables and not enough cases to test some 
of the most complex models (the wide 
rectangle).  

 
Algorithm for loop detection: 
 
1. Remove any variable that appears in only one relation.  
2. Remove relations imbedded in other relations  
3. Repeat 1 & 2. If you get to a null structure, there are no loops in the original structure; 
otherwise, there are loops in the structure.  Some examples are given in Krippendorf, p. 42.  



Example: Generating the first six structures for four variable neutral system. 
 
 
Start with the structure, ABCD, one relation 
among all four variables. 
 
 
1. Remove a relation: There is only one 

relation to remove, ABCD 
 
2. Restore embedded relations: All of the 

three variable relations need to be 
restored.  

 
 
 
 
1. Remove a relation: All of the relations 

here are equivalent, so we can choose any 
one to remove. ABD is removed here. 

 
2. Restore embedded relations: The relations 

AB, AD, and BD are embedded in ABD 
which was removed, so we need to make 
sure they are included in the new 
structure. It turns out they are all 
embedded in the remaining relations—AB 
is in ABC, AD is in ACD, and BD is in 
BCD.  

 
 
 
1. Remove a relation: Again we have a 

symmetric model, so we can remove any 
relation. We will remove ABC. 

 
2. Restore embedded relations: AB, AC, and 

BC are candidates for relations we need to 
restore, but AC is in ACD and BC is in 
BCD, so we only have to restore AB. 

 
 
 



Now, for the first time we have a structure that is not symmetric with respect to all of the 
relations. We will need to create two structures to show all possible types of general 
structure descendents. 
 
 
1. Remove a relation: One 

relation we could 
remove is AB. 

 
2. Restore embedded 

relations: Only A and B 
are embedded in AB, 
and we do not need to 
restore them because 
they are already 
included in the 
remaining relations. 

 
 
 
 
 
 
 
1. Remove a relation: ACD and BCD are symmetric, so we only need to show the 

descendent from removing one of them. BCD is removed. 
 
2. Restore embedded relations: BC, BD, and CD are embedded in BCD. Since CD is 

embedded in ACD, we do not restore it.  
 
 



 3. Lattice of Structures, Structure Types        
 
Nearest Common Ancestor, Nearest Common Descendent (Krippendorf p. 39) 
 
If two different structural models have high goodness measures, we may look either to the 
(a) nearest common ancestor or the (b) nearest common descendent to (a) merge the two 
models, and get what’s in both of them or (b) select only what they have in common that 
makes them good models. 
 
To find the nearest common ancestor of two structural models in the lattice of structures, 
take the union of the relations of the two models; that is, combine all component relations 
of each and eliminate redundancies. For example, the nearest common ancestor of the 
structural models m1 = AC:BCDE and m2 = ABD:CD:CE could be found as follows: 
 

m1 ∪ m2 = AC:BCDE ∪ ABD:CD:CE = AC:BCDE:ABD:CD:CE = AC:BDCE:ABD 
 
The relations CD and CE were eliminated because they are embedded in BCDE.  
 
To find the nearest common descendent, take the intersection of the two models. The 
intersection includes all relations that are either components or are embedded in the 
components of both models. For example  
 

m1 ∩ m2 = AC:BCDE ∩ ABD:CD:CE = A:BD:CD:CE 
 
A is in both models because it is embedded in both AC and ABD. BD is embedded in 
BCDE and ABD, and so on. A systematic method for determining the intersection of two 
structural models is as follows: 
 

1. List all relations and projections of m1 and m2 
2. Cross out any relation not present on both sides (double 

strike) 
3. Cross out any redundant relation (single strike) 

 
See the following table: 
 

AC BCDE ∩ ABD CD CE 
A BCD BDE | AB C C 
C BCE CDE | AD D E 
 BC CD | BD   
 BD CE | A   
 BE DE | B   
 B D | D   
 C E |    



6. Models With and Without Loops, Disjoint Models      
 
Disjoint Models 
 
Disjoint models are those that have no overlap in their components. We will make a 
distinction in the criteria for directed and neutral systems.  
 
In a neutral system, a disjoint model will have no overlap in any relations.  

Example: AB:CDE 
In a directed system, no independent variables overlap in predicting relations.  

Example: IV:AZ:BCZ, where IV is the relation of all independent variables 
 
It is important to distinguish between disjoint models and loopless models. In neutral 
systems, disjoint models are only a subset of loopless models, but in directed systems a 
disjoint model may contain loops as in the example above. Also unlike with disjoint 
models, the criteria for looped models is the same in directed and neutral systems.  
 
 
7. Degrees of Freedom            
 
Krippendorff Method for calculating df, p.48-53 
 
For ABC, df= |ABC| - 1, where |structure| = number of states in the structure 
Let cardinality of A be NA  

 
dfABC= NANBNC – 1 
For NA = NB = NC = 2, df = 2· 2· 2 – 1 = 7 

For models lower on the lattice of structure, e.g. AB:AC:BC, add 
the df of the components and subtract the overlap between 
components. 
 

df(AB:AC:BC) = df(AB) + df(AC) + df(BC) – df(A) – df(C) – df(B) 
 
For NA = NB = NC = 2, df(AB:AC:BC) = 3 + 3 + 3 – 1 – 1 – 1 = 6 

 
For ABC:ABD:ACD:BCD, add the df of the components, subtract the df of the overlap 
between each pair (double overlap) and add the df of the overlap among each set of three 
components (triple overlap). 
 



Double overlap: 
ABC ∩ ABD = AB 
ABC ∩ ACD = AC 
ABC ∩ BCD = BC 
ABD ∩ BCD = BD 
ABD ∩ ACD = AD 
ACD ∩ BCD = CD 

 
Triple overlap: 
ABC ∩ ABD ∩ ACD = A 
ABC ∩ ABD ∩ BCD = B 
ABC ∩ ACD ∩ BCD = C 
ABD ∩ ACD ∩ BCD = D 
 
 df(ABC:ABD:ACD:BCD) = df(ABC) + df(ABD) + df(ACD) + df(BCD)  

– df (AB) – df(AC) – df(BC) – df(BD) – df(AD) – df(CD) 
+ df(A) + df(B) + df(C) + df(D) 
 

For NA = NB = NC = ND = 2,  
df(ABC:ABD:ACD:BCD) = 4 x 7 – 6 x 3  + 4 x 1 = 14 

 
 

For AB:AC 
 df(AB:AC) = df(AB) + df(AC) – df(A) 

 
Note that you can replace df by H to get an entropy equation, except when there are loops 
in the structure. Remember that the algebra doesn’t work for entropy in these structures 
with loops, but it does work for df. For example the df of ABC:ABD:ACD:BCD was 
determined algebraically above, but since the structure has loops, H could not be 
calculated this way. 
 
Contingency table examples for df. 
 
The table example for ABC was given above. The 
data table for ABC where |A|=|B|=|C|= 2 has 
8 values. However only 7 need to be specified. 
The eighth can be determined by subtracting the 
other probability values from 1 (or the frequency 
values from the total sample size).  
For AB:BC, there are two tables, one for AB and 
one for BC. Three values need to be specified in 
AB and only two need to be specified in BC. In 
the figure, an x represents a specified value. And 



gray boxes represent values that can be determined from the information specified in the 
AB table. Both of the B margins are known in the BC table because they can be determined 
from the AB table. Now, only two more values need to be specified in BC, one in the B1 
column and one in the B2 column. The remaining values can be obtained by subtracting 
the specified values from the appropriate B margin value. Specifying both of the values in 
either column would not be enough since the two values in either column are not 
independent. 
 
Compare this with the Krippendorff method:  

df(AB:BC) = df(AB) + df(BC) – df(B) = 3 + 3 -1 = 5 
 
For AB:CD there are two tables, one for each relation, but for this structure there is no 
overlap (this is a disjoint structure). Three values need to be specified in each table.  

 
df(AB:CD) = df(AB) + df(CD) = 3 + 3 = 6 
 
Log-Linear method for calculating df Knoke and Burke p 36-37 
 
Write down all relations and their projections but do not duplicate projections. 
For each relation, multiply one less than the cardinalities of each variable. Add the values 
for each relation to get df of the structure. 
 
Example: MER:MV:EV, where|M| = |R| = |V| = 2, |E| = 3 
Log-linear method: 
 
Relations Product of cardinalities minus one  
MEV (2-1)(3-1)(2-1) = 2 
ME (2-1)(3-1) = 2 
MR (2-1)(2-1) = 1 
ER (3-1)(2-1) = 2 
M (2-1) = 1 
E (3-1) = 2 
R (2-1) = 1 
MV (2-1)(2-1) = 1 
V (2-1) = 1 
EV (3-1)(2-1) = 2 
 Total = 15 
 
 



Krippendorff Method: 
 
df(MER:MV:EV)  = df(MER) + df(MV) + df(EV) – df(M) – df(E) – df(V)  
   = (2· 3· 2 – 1) + (2· 2 – 1) + (3· 2 – 1) – (2 – 1) – (3 – 1) – (2 – 1) 
   = 11 + 3 + 5 – 1 – 2 – 1 = 15 
 
Log-Linear method is very good for calculating ∆df between two models, since the 
relations in common can be ignored. The Krippendorff and log-linear methods for 
calculating df do not apply to models with structural zeros. (e.g. pregnant males) 
 
 
8. State Based and Latent Variables         
 
State-Based Models 
State-based models specify particular values in the table.  
For example A1B1 is a state based model. It specifies the value of 
A1B1 in the AB table. In this table, p(A1B1) = .7  
 
A summary the independence model and a state-based model for 
AB is given below: 
 

AB (p table) q(A:B) q(A1B1) 

 

 

 

 

 

 

df = 3 (any three table 
values) 

df = 2 (one A margin, one 
B margin) df  = 1 (A1B1) 

 T ≠ 0 T = 0 
 
The state-based model, A1B1 has only one degree of freedom, because the only constraint is 
that p(A1B1) = .7. Entropy is maximized for the set of other probability values, i.e. 
probabilities or frequencies are uniformly distributed, so margins are irrelevant. Here, 
A1B1 is a simpler model than the independence model, but has no error. 
 



Latent Variable Models 
 
If you have data AB, find ABL such that AL:LB is a good model of ABL. This is a good 
idea if AL:LB is simpler, i.e., has smaller df, than AB. Latent class analysis is the nominal 
version of factor analysis 
 
e.g.  |A| = |B| = 4 
 |L| = 2 
 
 df(AB) = 15 
 df(AL:LB) = (4· 2 – 1) + ( 4· 2 – 1) – (2 – 1) = 13 
 

 
 
9. Discussion: Complexity and Decomposability      
 
In reconstructability analysis, complexity is the same as degrees of freedom.  However 
there is more than one way to quantify complexity. For example, consider the equations: 
 

 

z = ax + by  
 

 

z = tanh by( )int a( )( )int ax( )!
 

 
The second equation seems more complex, although each equation has the same number 
of variables. Function form could, in principal, enter into a complexity calculation.  
 
Another complexity measures --: minimum description length –makes use of functional 
form in calculating complexity 
 
vonBertalanffy’s progressive segregation, systematization 
(For ‘complexify’ in the diagram below, ‘compose’ might be a better word, since it’s the 
opposite of decompose.) 
 

 



10. Grouping Structure Types (R, C, P Structures)      
 
The lattice of all possible structures can be broken up into ρ, C and P structures 
 
ρ groupings are determined as follows. In ρ1 all variables are directly connected to all 
other variables; that is, they are separated in the structure graph by only one box. In ρ2, 
one pair of variable is not directly connected, i.e. those two variables are separated in the 
structure graph by 2 boxes.  
 
C structures are the most complex of each ρ group. For example in ρ1 group, the saturated 
model is the most complex, because the variables are the most interrelated.  
P structures are the simplest in each ρ group. In the ρ1 group for four variables, 
AB:AC:AD:BC:BD:CD is the simplest way for all variables share a relation with all other 
variables because this is the only ρ1 structure with only dyadic relationships.  
 
Search types: 

Hierarchical search using ρ, C and P structures: First search representatives of ρ 
groups by searching among only C or P structures; then, for some given C or P 
structure, search within its ρ group 
 
Beam search (what OCCAM does now): Find the best ‘width’ number of parent 
models, going up (or child models, going down); from these best models, then 
consider the best ‘width’ of their parents (or children), etc., as one goes up (or 
down) from level to level. 
Could do a beam search ‘breadth first’ by having a large ‘width’ parameter going 
up (or down) hopefully only a modest number of levels, or ‘depth first’ by having a 
small ‘width’ parameter but going up (or down) many levels. 



  
Information-Theoretic Reconstructability Analysis 

(Putting it all together) 
 
1. Preface: Goodness of a Model        
 
We have talked about the goodness of a model being a trade-off between error (or its 
‘opposite,’ information captured or effect size) and simplicity. We should also distinguish 
between effect size and statistical significance.  
 
We then also have to consider statistical significance, which is the believability of these 
quantities, in other words, how certain we are that the effect size is not just due to chance. 
It is useful to examine both the effect size and its statistical significance. It is possible to 
have a small effect size that is highly significant, but that would not likely be much use to 
us.  
 
 

 
 
 
2. Transmission and Information Distance        
 
Reminder: the following are equivalent: 
 

 

T x,y,z( )= H x( )+ H y( )+ H z( )− H x,y,z( )   variable notation 

 

T X :Y : Z( ) = H X( )+ H Y( )+ H Z( )− H XYZ( )  model notation 

 

T m j( )= H m j( )− H mo( )    Krippendorff notation where mj = model, m0 = data
 

 



 
The information distance between two models is the difference of their transmissions.  

 

 

I m j →mk( )= T mk( )− T m j( )
= H mk( )− H mo( )− H m j( )− H mo( )( )
= H mk( )− H m j( )  
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e.g. q(AB:BC) is calculated distribution for AB:BC 
  = p(AB)p(C|B) 
  = p(AB)p(BC)/p(B) 
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which is the weighted difference (weighted by the observed probabilities) of the difference 
between the logs of the two calculated probabilities 
 
T and I are effect sizes, always positive, and I is more general than T 
 

 

I mo →m j( )= T m j( )− T mo( )= T m j( )  
 
I(momj) is information lost in the model. (reference = top) 
I(mjmind) is information captured in a model. (reference = bottom) 
 
We can only compare Transmission of models that are nested in the lattice of structure, i.e. 
they must be ancestors or descendents of each other. 
 
OCCAM prints out information normalized by T(mind) so that information is between 0 
and 1. 
 

e.g. 

 

I m j →mk( )
T mind( )  

 



where 

 

I mo →mind( )
T mind( ) =1 

L2 is likelihood ratio, a measure of statistical significance of the effect size, (Kripendorff p. 87) 
 
 
 L2 = 1.3863 n I  For n = sample size 
 
 
Krippendorff p. 44-45 information is additive for chain models  
 
A chain model has a general structure that looks like a chain, with pairs of variables. 

 
 
I(m0mchain) = error in the chain model 
I(mchainmind) = information captured in the chain model 
 
I(momind) = I(m0mchain) + I(mchainmind) 
T(A:B:C:…) = T(AB:BC:…) + T(A:B) + T(B:C) + … 
 
OCCAM will let you search only for chain models. 
 
 
3 – 4. Calculating q and IPF; Maximizing H Subject to Constraint   
 
Algebraic Calculations 

 

T m j( )= p mo( )log
p mo( )
p m j( )
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There are 4 cases from simplest to most complex 
 
1. q(mind):  q(A:B:C:…) = p(A) p(B) p(C)… 
 
2. disjoint;  q(AB:CDE:…) = p(AB) p(CDE)… 
 
3. overlap, no loops 
 q(AB:BC) = p(AB) p(C|B) = p(AB) p(BC) / p(B) 
 q(AB:BC…) = p(AB) p(C|B) = p(AB) p(BC) / p(B) … 
 q(AB:BC:CDE) = p(AB) p(C|B) p(DE|C) 
 
4. loops  By IPF (no algebraic solutions) 



 
OCCAM always does IPF, which converges in one iteration when there are no loops. 
Iterative Proportional Fitting 
 
Consider the probability table for data AB 
 
AB p table  df = 3 

 B1 B2  

A1 .1 .2 .3 

A2 .3 .4 .7 

  .4 .6  

 
 
Calculating the q table for A:B, df = 2   

 B1 B2  

A1 q1 q2 .3 

A2 q3 q4 .7 

  .4 .6  

 B1 B2  

A1 .12 .18 .3 

A2 .28 .42 .7 

  .4 .6  

 



This method maximizes entropy subject to the constraints the margins, i.e. we want to 
maximize H(q) = – q1logq1 – q2logq2 – q3logq3 – q4logq4 [or Γ(q1, q2, q3, q4)], such that 

q1 + q2 = .3 
q3 + q4 = .7 
q1 + q3 = .4 
q2 + q4 = .6 
q1 + q2 + q3 + q4 = 1 
 

The last constraint is assumed, and the second and fourth are redundant. Therefore there 
are two constraints, and df = 2 
 
To satisfy the two constraints,  

q1 = .12 
q2 = .18  
q3 = .28  
q4 = .42 

 
Constraints could also be written as matrix-vector equation. For three constraints, α, β, γ 

α: q1 + q2 = .3 
β: q2 + q4 = .6 
γ: q1 + q2 + q3 + q4 = 1 

 
The matrix, M, is given by the following, where df = rank of M (# of rows) - 1 

 

α
β
γ

1
0
1

1
1
1

0
0
1

0
1
1

 
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 
 
 

 

 

 
 
 

q1 q2 q3 q4

 
 
In IPF, entropy is maximized subject to the following equation: 
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Mv q = Mv p  
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To do IPF: 
Start with uniform model. 
Impose constraints one at a time. 
If after posing all constraints, each constraint is still satisfied, IPF is done and the model 
does not contain loops. If some constraints are not satisfied, impose them again. 
 



State-based model example where df = 2: 
 

q1 + q2 = .3 
q3 = .3 
q1 + q2 + q3 + q4 = 1 

 
 
.1 .2 .3 

.3 .4 .7 

.4 .6  

 

 

M =
1
0
1

1
0
1

0
1
1

0
0
1
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Topic 3:  Calculating q and IPF 
 
Given the formula for Transmission of the model  below, the challenge covered here is how to 
calculate . 
 

  
 
There are 4 cases for covering how to calculate , and they are listed below, from the 
simplest case to the most complex. 

1. The independence model:  
  

 
Ex 2: (showing p(AB) as a 2x2 matrix to expose the underlying linear algebra) 
 

 Given p(AB) =  
 

Then by projection p(A) =  and p(B) =   
 

Then q(A:B) = p(A)p(B) =  
 

or q(AB) =  
 
where: 
q1 = p(A1)p(B1) = (a+b)(a+c) 
q2 = p(A1)p(B2) = (a+b)(b+d) 
q3 = p(A2)p(B1)= (c+d)(a+c) 
q4 = p(A2)p(B2)= (c+d)(b+d) 
 
Ex 2: Given p(ABC) =  
 C1 C2 
 B1 B2 B1 B2 
A1 a b c d 
A2 e f g h 
 
Because we are considering the independence model A:B:C, we project ABC down to the 
independent variables (skipping any intermediate projections such as AB or BC). 
 



So by projection p(A) =  
 
p(B) =   
 
p(C) =   
 
And q(A:B:C) = p(A)p(B)p(C) 
 
= 
 C1 C2 
 B1 B2 B1 B2 
A1 q1 q2 q3 q4 
A2 q5 q6 q7 q8 
 
= 
 C1 C2 
 B1 B2 B1 B2 

A1 
(a+b+c+d) 
(a+e+c+g) 
(a+b+e+f) 

(a+b+c+d) 
(b+f+d+h) 
(a+b+e+f) 

(a+b+c+d) 
(a+e+c+g) 
(c+d+g+h) 

(a+b+c+d) 
(b+f+d+h) 
(c+d+g+h) 

A2 
(e+f+g+h) 
(a+e+c+g) 
(a+b+e+f) 

(e+f+g+h) 
(b+f+d+h) 
(a+b+e+f) 

(e+f+g+h) 
(a+e+c+g) 
(c+d+g+h) 

(e+f+g+h) 
(b+f+d+h) 
(c+d+g+h) 

 
or: 
q1 = p(A1)p(B1) p(C1) 
q2 = p(A1)p(B2) p(C1) 
q3 = p(A1)p(B1) p(C2) 
… 

2. Model with no overlap:  
  

 
Ex 2: Given p(ABCD) =  
 D1 D2 
 C1 C2 C1 C1 
 B1 B2 B1 B2 B1 B2 B1 B2 
A1 a b c d e f g h 
A2 i j k l m n o p 
 
 
 
 
Here, we only project to the level of the relationships AB and CD to get q(AB:CD) 



P(AB) =  
 B1 B2 
A1 a+c+e+g b+d+f+h 
A2 i+k+m+o j+l+n+p 

 

P(CD) =  
 D1 D2 
C1 a+b+i+j e+f+m+n 
C2 c+d+k+l g+h+o+p 

 

 
 
q(AB:CD) = 
 D1 D2 
 C1 C2 C1 C1 
 B1 B2 B1 B2 B1 B2 B1 B2 
A1 q1 q2 q3 q4 q5 q6 q7 q8 
A2 q9 q10 q11 q12 q13 q14 q15 q16 
 
= 
 D1 D2 
 C1 C2 C1 C2 
 B1 B2 B1 B2 B1 B2 B1 B2 

A
1 

(a+c+e+g) 
(a+b+i+j) 

(b+d+f+h
) 

(a+b+i+j) 

(a+c+e+g) 
(c+d+k+l) 

(b+d+f+h
) 

(c+d+k+l) 

(a+c+e+g) 
(e+f+m+n

) 

(b+d+f+h) 
(e+f+m+n

) 

(a+c+e+g) 
(g+h+o+p

) 

(b+d+f+h) 
(g+h+o+p

) 

A
2 

(i+k+m+o
) 

(a+b+i+j) 

(j+l+n+p) 
(a+b+i+j) 

(i+k+m+o
) 

(c+d+k+l) 

(j+l+n+p) 
(c+d+k+l) 

(i+k+m+o) 
(e+f+m+n

) 

(j+l+n+p) 
(e+f+m+n

) 

(i+k+m+o
) 

(g+h+o+p
) 

(j+l+n+p) 
(g+h+o+p

) 

 

3. Model with overlap, but no loops:  
Ex 1: 

 
 

Given p(ABC) =  
 C1 C2 
 B1 B2 B1 B2 
A1 a b c d 
A2 e f g h 
 
Then by projection: 
P(AB) =  
 B1 B2 
A1 a+c b+d 
A2 e+g f+h 

 

P(BC) =  
 C1 C2 
B1 a+e c+g 
B2 b+f d+h 

 

P(B) =  
  
B1 a+c+e+g 
B2 b+d+f+h 

 



and q(AB:BC) =  
 C1 C2 
 B1 B2 B1 B2 

A1 
    

A2 
    

 
 
 
Ex 2:   
 

 
 

 
 
Ex 3:   
 

 
 

 
 

Ex 4:   
Here there are overlapping relations where the overlap portions also overlap each other, so 
continue a nested dividing by the residual overlap, which in effect gives you an alternating 
multiply-divide-multiply. (Dr. Zwick: If the overlaps had overlaps, one would have to multiply 
them, i.e., just like the Krip. method of alternating signs, one would have here alternating 
multiplication and division) 
 

 
 

 



 5. Choosing Models Statistically 
Let’s start out with some basic definitions… 

• Type I error: This is when I reject a null hypothesis and I shouldn’t have.  
o Let’s say two things are not different in reality (e.g., typing speed for men vs. women), but 

they happen to look different in my sample, just by chance, because of who I happened to 
sample. If I reject the null hypothesis, and say that there is a difference in typing speed 
between genders, I have done so incorrectly. This is a Type I error. 

• Type II error: This is when I fail to reject a null hypothesis and should have. 
o Let’s say two things really are different in reality (e.g., height for men vs. women), but it 

just so happens they don’t look very different in my sample, just by chance, because of who 
I happened to sample. If I don’t reject the null, and say “we didn’t find evidence of a height 
difference between genders,” this is a Type II error.  

• P-Value, or α: This is the probability of making a Type I error.  
o Usually you want this to be small, because you don’t want to go spouting off “I found a 

significant difference!” when it was just due to chance variations in your sample. You want 
to be confident that there’s only a very small likelihood that this difference could have been 
caused by chance variations. When p < .05, it means there’s less than a 5% chance that the 
difference you observed was due to chance alone. 

OK, now let’s talk about some DMM definitions… 

• “Good” Model: Qualitatively speaking, a model is good if it captures a lot of the information in 
your data. Technically speaking, a model is good when its probability distribution (q) is really 
similar to the probability distribution (p) in your original dataset.  

o Let’s say that you can exactly reproduce the values in the observed (p) probability 
distribution for AB by just knowing the probabilities of A being A1 or A2 (50/50 split) and 
probabilities of B being B1 or B2 (25/75 split). If a calculated distribution (q), using only 
those numbers is exactly the same as the probability distribution you observed, then the 
model of A:B is perfect. It captures all the information present in your data. 

p B1 B2  q B1 B2  

A1 .125 .375 .5 A1 .125 .375 .5 

A2 .125 .375 .5 A2 .125 .375 .5 

 .25 .75   .25 .75  

• “Good Enough” Model: You can measure how good a model is by calculating T (i.e., error) or I 
(information distance), but that doesn’t tell you whether or not the amount of error (or information 
captured) is significant. It doesn’t tell you whether your model is “good enough,” statistically 
speaking. Instead we look for the model that is better than all the others. 

• “Better” and “Worse” Model: When we use statistical approaches to determine which models are 
better and worse, we want to know two things: 

o Significance, or is this model significantly different? (or is the difference pretty likely to be 
due to chance), and  



o Relative to What? What are we comparing this model to, anyway?  
This will depend on whether you are using the independence model (bottom) as your 
reference, or the data (top) as your reference… 

 
Now we are ready to start building ideas on top of the definitions. Here are some rules of thumb… 

When the Independence Model is your Reference, Test if Models are Significantly Better 
Models may or may not be significantly better (at replicating the p distribution) when the independence 
model is your reference. Here you generally start at the bottom and work upward. 

Why go from the Bottom Up? 

• Sometimes we want to see how complex of a model is justified by our data. I have a bunch of 
variables measured, which I suspect are related. I want to know, 

o Which associations actually exist among these variables in the real world?  
o Are there simply 2-way associations among these variables?  
o Or more complex relations, such as 3-way and higher-way? 
o How confident am I that this complex model is significantly better than a simpler model? 

When the Data is your Reference, Test if Models are Significantly Worse 
Models may or may not be significantly worse (at replicating the p distribution) when the data is your 
reference. Here you generally start at the top and work downward. 

Why go from the Top Down? 

• Sometimes we want to see how simple of a model will still decently capture the important patterns 
we observed in our data. I might want to know, 

o Do we really need a 4-way relation, ABCD, to capture the probability distribution we 
observed?  

o Would information about the nature of four 3-way relations, ABC:ABD:ACD:BCD, capture 
the observed patterns just as well? 

o How confident am I that this simpler model is not significantly worse than a more complex 
model? 

Using Cake to Understand Type I and Type II Errors 
OK, look at the picture below. Imagine a ‘Type I Error Zone’ at the top of the lattice of structures, and a 
‘Type II Error Zone’ at the bottom of the lattice of structures. (This is just symbolic, to help you remember.) 
The ‘I’ in “Type I” is smaller than the ‘II’ in “Type II,” so you might imagine stacking the ‘I’ on top of the 
‘II’ to keep it straight. (And who doesn’t love cake?) 

OK, so let’s say the data is my reference. I’m starting from the top and working my way downward. I am 
going to see how far down I can go (how simple of a model I can get), but I want to make sure to stop before 
I get into the Type II Error Zone. (Cue the scary music.)  

Alternatively, let’s say the independence model is my reference. I’m starting 
from the bottom and working my way upward. I am going to see how far up I 
can go (seeing how complex of a model I can justify), but I want to make sure 
to stop before I get into the Type I Error Zone. (Again, cue scary music.) 

 

ABCD 

A : B : C : D 

I 

 II 

 



The moral of the story is this: Whichever way you’re going, you want to go as far as you can, but not too far. 
Going too far is like overstating findings that are not warranted. It’s worse to overstate your findings than to 
understate. When the bottom is your reference, don’t go too far up (you’ll get a Type I error, and be over 
fitting).  
When the top is your reference, don’t go too far down (you’ll get a Type II error, and be over simplifying).  

 
 



A Hypothetical Example when the Reference is the Top 
Here’s a more fine-grained look at what Type I and Type II errors mean for evaluating models when the 
reference is the top. Usually when the reference is the top, you work from the top down. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Note that here, if our Type I error rate is really small (p < .05), we have to be really confident a 
model is significantly worse before we’ll stop going down. We’ll probably have Type II errors, 
which are troublesome: We may be over confident that a simpler model is '’just as good.’

If we were wrong to say 
“yes,” this is a Type I error  

If we were wrong to say 
“no,” this is a Type II error  

My data for the variables A, B, C, and D can 
be described as a ‘saturated model,’ ABCD. 

 

Would the q distribution of a simpler model be 
significantly different (i.e., worse) than my saturated 

model?  

 

Yes No 

Bummer, 
ABC:ABD:ACD:BCD is 

significantly different 
from ABCD. I guess we 

better stick with the 
Saturated Model, ABCD. 

Looks like there is no 
simplification possible. 

Hey, cool, the simpler 
model is not significantly 
different. This means that 
ABC:ABD:ACD:BCD is 
just as good as the data. 

 

Let’s try going for an 
even simpler model. Is 
this one significantly 

different from ABCD? 

ABC:ABD:ACD 

 

Oops, looks like 
ABC:ABD:ACD is 

significantly different 
from ABCD. Guess we 

better go back to 
ABC:ABD:ACD:BCD. 

Hey, sweet. This model’s 
even simpler and it’s still 
not significantly worse 

than the data. How about 
an even simpler model? 

Yes 
No 



 

 
A Hypothetical Example when the Reference is the Bottom 
Here’s a more fine-grained look at what Type I and Type II errors mean for evaluating models when the 
reference is the bottom. Usually when the reference is the bottom, you work from the bottom up. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

My reference model for variables A, B, C, 
and D is the independence model, A:B:C:D 

Would the q distribution of a more complex model be 
significantly different (i.e., better) than my independence 

model?  

 

 Yes No 

Bummer, this model is 
not significantly 

different. Better stick 
with the independence 
model; it looks like the 

complexity of this 
model is not justified. 

Hey, cool, this more 
complex model, AB:C:D, is 
significantly better than the 

independence model.  

Let’s try going for an even 
more complex model. Is 

this one significantly 
different from AB:C:D? 

AB:CD 

 

Oops, looks like AB:CD is 
not significantly better than 
AB:C:D. Guess we better 

go back to AB:C:D. 

Hey, sweet. This model 
is better still, since it’s 
significantly different 

than AB:C:D.  

How about an even 
more complex model? 

Yes No 

If we were wrong to say 
“yes,” this is a Type I error  

If we were wrong to say 
“no,” this is a Type II error  



Note that here, the Type I error rate is more intuitive, because we do want to be really confident 
that a model is significantly better before we keep going up. A small p value, such as p < .05, will 
keep us from being over confident that a complex model is justified.  

 
Overall Patterns 
Note that regardless of your reference, rejection of the null always results in an upward focus. 

• If your reference is the top, rejecting the null means you will go back up to the previous 
level. 

• If your reference is the bottom, rejecting the null means you will at least stay there, and 
maybe even try to move up another level. 

Also note that regardless of your reference, failure to reject the null results in a downward focus. 

• If your reference is the top, failing to reject the null means that you will at least stay there, 
and maybe even try to move down another level. 

• If your reference is the bottom, failing to reject the null means you will go back down to the 
previous level. 

So remember: Rejection is upward (think of flipping the bird?), and non-rejection is downward. 

Incremental Alpha, but not Beta 
When you are going up the lattice, each additional model ought to be 
significantly different (i.e., significantly better) than the model below it. 
That is, if I go up from A:B:C:D to AB:C:D, and want to go up even further 
to AB:CD, I need to make sure that AB:CD is significantly better than 
AB:C:D (not only better than A:B:C:D). Why? Well, think of it this way: If 
the difference between A:B:C:D and AB:C:D is significant, then that 
significant difference will also be present in your test of whether A:B:C:D 
and AB:CD are significantly different. Finding a significant difference 
between A:B:C:D and AB:CD will be influenced (or “contaminated”) by the 
significant difference between AB:C:D and A:B:C:D. Testing incrementally 
helps to “purify” your tests of significance, so you can be sure that each step 

up the lattice is incrementally significant (not 
just cumulatively significant). It helps protect you from passing into the 
Type I Error Zone. 

When going down the lattice, things are a bit different. In this case you 
actually want to compare each model with the data (rather than 
comparing it with the model directly above). The reason is this: We are 
more worried about Type II errors here, and they are less likely if we 
compare models that are further away from each other. Imagine you are 
climbing onto your roof. The step ladder is not significantly far from 
the ground, and your roof is not significantly higher from the 

---------ABCD 

   … 

---------AB:CD 

          
Significant? 

 --------AB:C:D 

          
Significant? 

---------A:B:C:D 

-------ABCD 

 

 -------ABC: 
ABD:ACD:BCD 

          Significant? 

-------ABC:ABD:ACD 

… 

-------A:B:C:D 



stepladder. But falling off the roof onto the ground will be significant. In the same way, if I find that 
ABC:ABD:ACD:BCD is not significantly worse than ABCD, and that ABC:ABD:ACD is not 
significantly worse than ABC:ABD:ACD:BCD, it could still be the case that this lower model, 
ABC:ABD:ACD, is significantly worse than my data. I want to make sure I reject the null in this 
case, so that I won’t head into the Type II Error Zone.  
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