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1. Preface: information in/error of models 
 
The task: given data, find the simplest model which satisfactorily fits the data. 
“Satisfactorily fits” = information high or error low enough, relative to complexity 

Implied Reference = data (top) 

 

Or: find the most complex model whose posited relations are justifiable 
Want information high enough relative to complexity. 

Implied Reference = independence (bottom) 

 
We assess information/error with Transmission or Information Distance 

T(mi), transmission of model mi: the distance of mi to the data (m0), the error, & 

I(mi → mj) = T(mj) - T(mi), information distance, a difference between 
transmissions of two models, one of which is a descendant of the other. 

 
When mi = m0, the data, and mj is some model, I(mi → mj) is T(mj) = error of model. 

When mi is model & mj is independence, it is information (captured) in model. 

Note the difference in arrow convention for ∆df. 

∆df(mi → mj) = df(mi) – df(mj) 
 
Arrows in both cases always go from higher to lower models. 
 
Note that I(m0 → mj) = T( mj) – T(m0 ) = T(mj), since T(m0 ) = 0 
With the p log p/q expression for transmission, the transmission of the data is  

T(m0) = ∑ p(m0) log [ p(m0)/p(m0) ] = ∑ p(m0) log 1 = 0 

so I is general, and encompasses T.  I, T ∆df are always positive. 

I and T measures evaluate how good model is in terms of information or error. 

Adding N & ∆df lets us say if this "goodness" is believable, i.e., reliable statistically. 
 
Information & error measured by T are non-statistical measures, dependent only on 
probabilities, but not on the sample size or degrees of freedom. 
 
The believability of the information/error is a significance question which depends on 
sample size and degrees of freedom. 
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2. Transmission & information distance 

Transmission for independence model 
With respect to T, consider the definition we've previously used: 
 
T(X:Y:Z)  = H(x) + H(y) + H(z)  – H(x,y,z)  
 

= H(X:Y:Z)   – H(XYZ) 
 
T(X:Y:Z)  = ∑i ∑j ∑k  p(xi, yj, zk) log [ p(xi, yj, zk) / qX:Y:Z(xi, yj, zk) ] 
 
Where qX:Y:Z(x,y,z) = p(x)*p(y)*p(z) = expected (calculated, not observed) probabilities 

 UNDER ASSUMPTION (hypothesis) OF INDEPENDENCE.  

 
= ∑ p(XYZ) log [ p(XYZ) / q(X:Y:Z) ] 

 
For convenience, will only show one ∑, intended to be over all cells. 

In log-linear notation, independence model is usually written {X}{Y}{Z}.  

The full data, also called the saturated model, is written as {XYZ}.  

In some papers, instead of a colon, there is a slash: X/Y/Z. 

To generalize, where q = q(model), 

T(q)  = ∑ p log [ p / q ]    = ∑ p log p  - ∑ p log  q 

= – H(p)  - ∑ p log  q 

Non-obvious lemma: ∑ p log q = ∑ q log q) 

= – H(p)  + H(q) 
In Krippendorff notation (p.44), 

T(mj) = ∑ p(m0) log [ p(m0) / ρ(mj) ] = H(mj) – H(m0) 
 
LEAVE FOR LATER (a) how generate q(mj), and (b) statistical significance issue.  
 
 
Krippendorff says (8.3, p.44) T(mj) ≠ H(mj) – H(m0) for models with loops. 
Not correct; T is difference of entropies always: for models without or with loops. 
What is true is that one can’t algebraically simplify H(q) for models with loops. 
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Information distance 
Information distance is defined as a difference between transmissions; this is useful as a 
kind of bookkeeping convenience, to be able to compare any two models. 
 
I(mi → mj)  = amount of information modeled in (captured by) mi, lost in mj  
Arrow always goes towards lower models  

= T(mj)   – T(mi) 
   = [ H(mj) – H(m0) ]  – [ H(mi) – H(m0) ] 

   = H(mj)   – H(mi) 
If we start from data, go to a model, and then to independence model, we have 

I(m0 → mj)  = amount of information lost in mj. 

   = T(mj) – T(m0) 

   = T(mj) 
 
I(mj → mind)  = amount of information modeled (captured) in mj. 

   = T(mind) – T(mj) 
 
Accounting is thus convenient, using Gokhale & Kullback (K, p.44) partitioning identity: 
 
I(m0 → mind) = I(m0 → mj) +  I(mj → mind) 
 
Information  Information  Information 
in data   lost (error) in mj modeled (captured) in mj 
 
WE WANT A MODEL WHERE LITTLE IS LOST FROM THE DATA, I.E., WHERE 
MUCH IS MODELED/PRESERVED/CAPTURED/RETAINED IN THE MODEL. 
 
Could normalize information captured by the maximum that could be captured: 

Normalized information captured  = I(mj → mind) / I(m0 → mind)  

= I(mj → mind) / T(mind) 
(This is what Occam outputs)  
Information distance doesn't really add any new concept, but it introduces a slightly more 
complicated form of the p*log[p/q] expression (specifically, p*log[q1/q2]), as above: 
 
I(mi → mj) = T(mj) – T(mi), 

  = ∑ p(m0) log [ p(m0) / q(mj) ] – ∑ p(m0) log [ p(m0) / q(mi) ] 

  = ∑ p(m0) log [ p(m0) / q(mj) * q(mi) / p(m0) ] 

  = ∑ p(m0) log [ q(mi) / q(mj) ]  
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An example: model = AB:BC:CD:...:YZ, chain model. 
 
I(m0→mind) =  I(m0→mchain)   + I(mchain→m ind) 
 
information  information  information 
in data   lost in chain  modeled in chain model 
 
I(m0→mind)   = T(mind) – T(m0)   = T(mind)  

= T(A:B:C:...:Z)   = information total 
 
I(m0→mchain)  = T(mchain) – T(m0)   = T(mchain)   

= T(AB:BC:CD:...:YZ)  = information lost 
 
I(mchain→mind)  = T(mind) – T(mchain)  

= T(A:B) + T(B:C) + ... + T(Y:Z) = information modeled 
 
 
Second example: K, p.46.  
m1 = ABCD:CDEF 
m2 = AC:BC:CD:DE:DF 
 
show K structures 
 
I(m0 → mind)  = I(m0 → m1)  + I(m1 → m2)  +I(m2→ mind) 
1.8301      = 0.4011  + 1.3843  + 0.0446 
               

= I(m0 → m1)  + I(m1 → mind)  
= 0.4011 (22%)       + 1.4289 (78%)  

              = lost in m1        modeled in m1 
 
             = I( m0→m2)      + I(m2 → mind) 
                        = 1.7854  (98%)         0.0446 (2%) 
                        = lost in m2        modeled in m2 
 
Simpler model (m2) is inadequate.  

More complex model (m1) captures most of data and may be acceptable. 
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3. Calculating q algebraically 

1. Maximum uncertainty q’s 
Idea of maximum entropy:  maximizing soaks up any extra degrees of freedom not 
specified by constraints of model. 
 
Maximize H(q) = –∑q log q subject to constraints of model. e.g., model = AB:CD has 
(for dichotomous variables) df = 3 + 3 = 6 constraint equations, while df(ABCD) = 15.  

Maximization soaks up extra degrees of freedom.  

q(ABCD) is a 4-way distribution, just like p(ABCD), so one might think that it has the 
same df as p(ABCD), i.e., df=15, but it really has only 6 for this model.  Uncertainty 
maximization fills out the specification of the distribution. 

 
Will not prove that methods below which describe how q is actually calculated achieve 
this maximum uncertainty result. 

2. How q’s actually calculated 
Four cases from simplest to most complex 

(1) Independence of all variables (mind) 

(2) No overlap of variables in components, i.e., disjoint model (neutral systems) 

(3) Overlap but no loops 
(4) Overlap and loops (and structural zeros): Iterative Proportional Fitting 

3. Algebraic calculation of q’s (cases 1-3) 
Simplest case (1): for q(m(ind)), is product of marginals. For example, q(A:B:C) = 
p(A)p(B)p(C).This gives maximum entropy.  
 
Slightly more complex case (2): variables not shared by components: AB:CD. Then q is 
‘essentially’ the same as mind. q(AB:CD) = p(AB)p(CD) 
 
Next most complex case (3): variables shared, but no loops. See K, p.52. 
 
q(XY:YZ)= p(XY) p(YZ)/ p(Y) = p(x,y) p(z|y) 

How get it? Consider p(XY) p(YZ). It’s dimensionally wrong. p(Y) appears twice. So: 

q(XY:YZ) = p(x,y) [ p(y,z) / p(y) ] = p(x,y) p(z|y) = p(y,x) [ p(x,y)/p(y) ] = p(y,z) p(x|y) 

More complete notation: qXY:YZ(xi, yj, zk) = p(xi, yj) p(zk | yj) = p(yj, zk) p(xi | yj). 

Go on to equations on K, p.55. In general, multiply probabilities of all relations, divide 
by probabilities of pair overlaps, multiply by triplet overlaps, etc.  
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Show an XYZ table, with parameters a…h, and calculate q(x1,y2,z2) in terms of 
parameters, for model XY:YZ. 
 

 z1 z2   z1 z2 
 y1 y2 y1 y2   y1 y2 y1 y2 

x1 a b e f  x1 q1 q2 q3 q4 
x2 c d g h  x2 q5 q6 q7 q8 

 

q(XY:YZ)  = p(XY) p(YZ)/ p(Y)  model notation 

qXY:YZ(x,y,z)   = p(x,y) p(y,z) / p(y)  variable notation 

Specifically, for some particular values of x,y,z (an example): 

qXY:YZ (x1,y2,z2) = p(x1,y2)  p(y2,z2)  / p(y2) 

   = (b+f)  (f+h)  / (b+d+f+h) 
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4. Calculating q maximizes entropy subject to constraints 
Discuss how calculating q’s for X:Y maximizes entropy subject to constraints.  

Do linear algebra, showing matrix-vector equation, where |X|=|Y|=2, so |X||Y|=4, with 
data as p1…p|X||Y| vector & model probabilities as q1…q|X||Y| vector. 

Only need df(X:Y) = 2 rows filled in for matrices, as long as independent   

q y1 y2   p y1 y2   
x1 q1 q2 q1+q2  x1 a b a+b  
x2 q3 q4   x2 c d   
  q2+q4     b+d   
 

1 1    q1   1 1    a 
     q2        b 
 1  1  q3    1  1  c 
     q4 =       d 
1 1 1 1     1 1 1 1   
 
Note that the number of constraint, not counting the last row that imposes the sum of 
probabilities to be 1, is df(X:Y). This is also the “rank” of the above matrix. 
 
Imposing the constraints of the margins defined by the model is an underdetermined 
problem. Have 2 equations here to get 3 numbers. One gets a unique solution by 
maximizing –∑q log q subject to these constraints. This maximization “soaks up” the 
extra degrees of freedom. 
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(Reversing left and right tables,) now consider matrix-vector equation also for XY:YZ 

df(XY:YZ) = df(XY) + df(YZ) – df(Y) = 3 + 3 – 1 = 5 

 z1 z2   z1 z2 
 y1 y2 y1 y2   y1 y2 y1 y2 

x1 a b c d  x1 q1 q2 q3 q4 
x2 e f g h  x2 q5 q6 q7 q8 

 

XY constraints: 

 y1 y2               y1 y2 
x1 a+c b+d              x1 q1+q3 q2+q4 
x2 e+g f+h              x2 q5+q7 q6+q8 

q1 + q3 = a + c 

q2 + q4 = b + d 

q5 + q7 = e + g 

q6 + q8 = f + h  Don’t need since probabilities add up to 1 

 

YZ constraints: 

 z1 z2               z1 z2 
y1 a+e c+g              y1 q1+q5 q3+q7 
y2 b+f d+h              y2 q2+q6 q4+q8 

q1 + q5 = a + e 

q2 + q6 = b + f  Don’t need since know that q2 + q4 + q6 + q8 = q(y2) = b + d + f + h 

q3 + q7 = c + g  Don’t need since know that q1 + q3 + q5 + q7 = q(y1) = a + c + e + g 

q4 + q8 = d + h 

 
q1 q2 q3 q4 q5 q6 q7 q8        
1  1       q1     a 
 1  1      q2     b 
    1  1   q3     c 
         q4  = M  d 
1    1     q5     e 
   1    1  q6     f 
         q7     g 
         q8     h 
1 1 1 1 1 1 1 1        
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5. Calculating q with IPF 
General description of IPF: Deming-Stephan algorithm (K, p.58-9) 

Simplest example of IPF to get q(X:Y) 
Original XY distribution with its X and Y marginals 
 
p(XY) Y1 Y2        q(X:Y) Y1 Y2       

X1 .4 .3 .7       X1 .42 .28 .7      
X2 .2 .1 .3       X2 .18 .12 .3      

 .6 .4         .6 .4       
 
1. Want to find q(X:Y) by IPF. Start with uniform distribution 
 

 Y1 Y2  
X1 .25 .25 .5 
X2 .25 .25 .5 

 .5 .5  
 
2. Impose X margin, which are {.7, .3}: fit to X by dividing each row by calculated 
margin, then multiply by correct margins: 
 

 Y1 Y2  
X1 .25 *.7/.5 = .35 .25 *.7/.5 = .35 .7 
X2 .25 *.3/.5 = .15 .25 *.3/.5 = .15 .3 

 .5 .5  
 
It now agrees with X margins. 
 
3. Impose Y margin of {.6, .4}: fit to Y by dividing each column by calculated margins, 
then multiply by correct margins: 
 

 Y1 Y2  
X1 .35 *.6/.5 = .42 .35 *.4/.5 = .28 .7 
X2 .15 *.6/.5 = .18 .15 *.4/.5 = .12 .3 

 .6 .4  
 
It now agrees with Y marginals.  

It agrees now with both margins, and thus with q(X:Y), so we’re done. 
 
In a model with loops, e.g., XY:YZ:XZ, we’d impose XY, then impose YZ, then impose 
XZ, which would mess up the XY agreement, so we’d repeat this until it converged, 
which it is guaranteed to do. 
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IPF for state-based models. 
Structural constants: K, p.48: Structural zeros (or structural constants that are not zero) 
complicate: (1) maximum entropy calculation of q’s; (2) calculation of df.   

For (1), could add it as another IPF step, OR if it is in data table (but not projections), just 
remove it from list of q’s to be adjusted and fix it in the q list. 
 
For (2), just subtract the number of these known values from df. 
 
Original XY distribution  
 
p(XY) Y1 Y2        q(X2Y2) Y1 Y2   

X1 .4 .3 .7       X1 .3 .3 .6  
X2 .2 .1 .3       X2 .3 .1 .4  

 .6 .4         .6 .4   
 
1. Want to find q(X2Y2) by IPF. Start with uniform distribution 
 

 Y1 Y2  
X1 .25 .25 .5 
X2 .25 .25 .5 

 .5 .5  
 
2. Impose X2Y2 by dividing by current calculated value and multiplying by known 
value that model specifies, where [ 1-p(X2Y2) ] / 3 = .3 is specified by model for the 3 
remaining cells 
 

 Y1 Y2  
X1 .25 *.3/.25 = .3 .25 *.3/.25 = .3 .6 
X2 .25 *.3/.25 = .3 .25 *.1/.25 = .1 .4 

 .6 .4  
 
We’re done. 
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6. Choosing models based on information content 
Two criteria for good model: (1) high information (low error), (2) low complexity. 
 

When one has two criteria in an optimization problem, one can: 

(a) Maximize / minimize one criterion subject to the other as a constraint 

(a.1)  Minimize complexity subject to information constraint:  

Find simplest model that has information greater than some % 

This is non-statistical. This is this Topic 6. 

(a.2) Find best model by information/error subject to p-value constraint 

This is statistical. This is Topic 8. 

(b) Maximize some weighted sum of the two criteria 

 Using BIC or AIC to weight information/error and complexity.  

This is Topic 7. 
 
 
Thinking ahead to (a.2) to justify (a.1): 
Information/error is assessed by some information distance.  

This gets multiplied by 1.3863 N (Krip, p.87) to get likelihood ratio Chi-square, L2.  

L2 = LR 

From L2 one assesses statistical significance (a.2).   

When N is very large, L2 will be large. 

Then, if one goes down lattice, immediately we get a rejection of the null hypothesis, 
i.e., immediately we will find that our model differs significantly from the data, i.e., 
has differences with the data not attributable to chance.  

We couldn't accept any simplifying model if we insist that it not differ from the data. 

So we can adopt a different perspective: we accept a model which accounts for some 
specified minimum % of information in the data. 

For large samples and for reference=top searches, % information captured is only 
possible criterion if simplified models are to be considered. 
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7. Choosing models with AIC & BIC (criterion (b)) 
Models are selected from the one of the measures that OCCAM outputs for different 
models applied to the training set data, namely the Bayesian Information Criterion 
(BIC) also known as the Schwartz Criterion (Schwartz 1978). 

BIC is a way of linearly integrating the error of a model and its complexity (df) which 
differs from the Akaike Information Criterion (AIC) (Akaike 1994) by its inclusion of 
a factor which depends on the sample size, N: 

 
AIC = – 2 N ∑ p ln q + 2 dF. 

BIC = – 2 N ∑ p ln q + ln(N) dF 

 
These measure are unaffected by adding the constant N ∑ p ln p, which gives  
 

AIC ′ = 2 N ∑ p ln (p/q) + 2 dF. 

BIC ′ = 2 N ∑ p ln (p/q) + ln(N) dF 

The equation inherently takes the reference to be the top. 

The first term of AIC ′and BIC ′ is L2(model), scaled model error; we want it small. 
Good models also have low values of dF, model complexity. 

So, good models have low (if negative, maximally negative) values of AIC ′ and BIC ′. 
We thus want these minimized. 

 
In OCCAM, , AIC and BIC are given relative to a reference model, usually the bottom 
(independence) model: 

ΔAIC  = AIC(ref) – AIC(model)  = AIC ′(ref) – AIC ′(model)  

= [ LR(ref) – LR(model) ] + 2 [ df(ref) – df(model) ] 

= ΔLR  + 2 * Δdf    Note that Δdf ≤ 0 
 

ΔBIC  = BIC(ref) – BIC(model)  

= ΔLR  + ln(N) * Δdf 
 
For reference=bottom, ΔAIC and ΔBIC have high (positive) values for good models, 
since ΔLR is always positive & is the information captured in the model, and since Δdf 
is always negative, and thus it diminishes the measure the more complex the model is 
(for more complex models, Δdf is more negative), and we don’t want complex models.   
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The ln(N) factor in ΔBIC penalizes more complex models, as long as N is equal to or 
greater than 7.4 (see below table).  BIC is more conservative than AIC in recommending 
departures from the reference independence model.  In our experience, models picked by 
ΔBIC do better on generalization (test or recall data) than the more complex models 
picked by ΔAIC. 
 

N ln(N) 
5 1.609438 
6 1.791759 
7 1.94591 

7.4 2.00148 
7.5 2.014903 

8 2.079442 
9 2.197225 

10 2.302585 
15 2.70805 

 
If reference=top, then 
 

ΔAIC  = [ LR(ref) – LR(model) ] + 2 [ df(ref) – df(model) ] 

 = [   0         – LR(model)] + 2  Δdf 

 
Want LR(model) to be as small as possible, since it’s error of the model, so 1st bracketed 
term should be as large as possible.   

We also want df(model) to be as small as possible, because we want a simple model, so 
the 2nd bracketed terms should be as large as possible.  

So, we want ΔAIC to be as large as possible. 

 
So, for reference being the bottom or the top, we want ΔAIC and ΔBIC to be as large 
(positive) as possible. 
 
 
Akaike, H. (1994). “Implications of Informational Point of View on the Development of 
Statistical Science.” In Proceedings of the First US/Japan Conference on the Frontiers of 
Statistical Modeling: An Informational Approach, H. Bozdogan, ed., pp. 27-38, Kluwer 
Academic Publishers, the Netherlands. 
 
Schwartz, G. (1978). Ann. Stat. 6, pp. 461-464. 
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8. Choosing models statistically 

Choosing models 
Confirmatory vs exploratory data modeling (a.k.a. data mining, knowledge discovery, 
machine learning)  

Confirmatory modeling: 
Could fit model to data and evaluate (validate) it with same data  

(e.g., %correct for directed system) 

But then don’t know how well model would do on new data that it wasn’t fit on. 
So could do a 2-way data split: training / test  

Fit model on training data 

Validate model on test data 

Or, more elaborately, could do N-fold validation (N = 5 or 10 typically) 

 Divide data into training/test N ways, e.g.,   

(i) N blocks with N-1 train & Nth test, or  

(ii) Randomly with replacement 

Exploratory modeling: 
Find a good model & fit model on training data 
Validate model on test data 

If one plots information vs complexity (df), on training & test data, one typically gets 

(Not always; sometimes test performance tracks with training performance) 

 
 
 
 
 
 
 
 
 
 
 
 
Can always get better performance (high I) in training data with models more complex 

But when apply a too complex model to test data, it doesn’t generalize well. 
Question: how to find the sweet spot with training data? 

Complexity (df) over-fit sweet 
spot 

under-fit 

Test data 

Training data 
Information (I) 
100% 
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Try to find sweet spot by searching down or up 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

But reference & starting model for search don’t have to be the same. 

Could have reference = top & search up  or  reference = bottom & search down,  

But taking reference & starting models as the same is more typical. 

 

Searches up / down might use one of approaches mentioned earlier to find sweet spot:  
(a.1)  Minimize complexity subject to information constraint: 

 (a.2) Find best model by information/error subject to p-value constraint 

I.e., find best model considering statistical significance of information / error 
(b) Maximize some weighted sum of the two criteria 

I discussed (a.1) and (a.2) earlier; now discussing (a.2) 
 
But there is yet another way of picking a best model: 
3-way training/test/validation (really, training/pseudo-test/test) splits 

Pick the model fit on training data that generalizes best to test data. 

Validate it with hold-out sample, 3rd part of data. 

Could do this N-fold. 

 

 

 

Data = reference & starting point 

Search down to find simplest model 
that adequately agrees with data 

Minimize complexity subject to 
Constraint of error / information 

Data 

Independence 

Optimize information / error subject to 
Constraint of complexity  

Search up to find most complex model 
that is statistically justified 

Independence = reference & starting point 
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FOR BOTH CONFIRMATORY & EXPLORATORY MODELING, one needs to 
get statistical significance of information captured or lost (error) in a model, 
generate Likelihood-Ratio Chi-square from Information distance, as follows: 
 

Reference = top  

L2(m0 →mj)   = 1.3863 N I(m0 → mj)  ERROR   
 
   = 1.3863 N T(mj) 
 

= 2 N Σ p ln [ p / q(mj) ] 
 
K, p.87; N is sample size, K uses n; also K uses π instead of q for expected probabilities. 
 
Note this is different from ordinary Chi-square = N Σ (p – q)2 / q 
 

Reference = bottom  

L2(mj → mind ) = 1.3863 N I(mj → mind)  INFORMATION CAPTURED  
    
   = 1.3863 N [ T(mind) – T(mj) ] 
 

= 2 N Σ p ln [ p / q(mind) ] - 2 N Σ p ln [ p / q(mj) ] 
 

= 2 N Σ p ln [ q(mj) / q(mind) ]  
 
Note different forms in sum: 

For Reference = top  p log [p/q]  form 

      Difference between p & q, weighted by p 

For Reference = bottom p log [q2/q1]  form 

Difference between q1 & q2, weighted by p 

This difference in forms will cause these two situations to not be fully symmetric. 
 
L2 is used here to test hypotheses where the reference is top or bottom, but actually, the 
reference can be any model.   
 
Moreover, a model might be tested not only against a fixed reference of top or bottom, a 
“cumulative” test; we could also insist that it be satisfactory in every “incremental” test 
for every step down or up from the top or bottom reference. This would be a more 
stringent requirement of satisfactoriness. 
 
To understand how to use L2 to assess statistical significance of error or information 
captured, now discuss reference models, null hypotheses, and Types I, II errors.  
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REFERENCE MODELS, NULL HYPOTHESES, & TYPE I, II ERRORS 

Reference = top; exploratory search usually (not necessarily) going top-down 

NULL HYPOTHESIS (H0): the model is indistinguishable from the data. 
 
Note (K & B, p.30) that for some model, we DO NOT WANT TO REJECT this 
hypothesis since we want model to agree with data. More exactly, we want the simplest 
structure, lowest on lattice, where null hypothesis is not rejected.  
 
In wanting to not reject the null hypothesis, this contrasts with common applications 
where we want to reject a null hypothesis and hence want L2 to be large. 
 

We REJECT the null hypothesis if the L2 is large (for particular df, to be discussed later), 
i.e., if a lot of information is lost. 
 
We DO NOT REJECT (speaking loosely, not rigorously, ACCEPT) the null hypothesis if 
L2 is small, i.e., if very little information is lost. 
 
Since we have a lattice of models, we have a lattice of hypotheses. We take a series of 
steps that go down the lattice until null hypothesis is rejected, and then back up one step. 

Reference = bottom (exploratory search usually (not necessarily) bottom-up) 
Or choose a different null hypothesis which we DO want to reject: independence model.   

NULL HYPOTHESIS (H0): the model is indistinguishable from independence. 
 
(For some model,) we DO WANT TO REJECT this hypothesis. 
 
We can continue to go up the lattice searching for the most complex structure that is 
statistically justified.  It is statistically justified if L2 is large, so we can reject the null. 
 
For each model in this ascent, we’ll ask if the model is both cumulatively significant 
relative to the fixed reference of independence and incrementally significant relative to 
the immediately lower model that we’re going up from. 

Type I and II errors 
Possible errors in rejecting or not rejecting a model hypothesis: 
 
TYPE I ERROR: rejecting the null hypothesis when it should be not rejected 
 
TYPE II ERROR: not rejecting the null hypothesis when it should be rejected 
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TO DECIDE TO REJECT/NOT REJECT HYPOTHESIS, ONE USES L2 & df & 
CHI-SQUARE TABLE. Table gives statistical significance of L2:  
K, p.62: consider calculating some L2 value for df = 7. This df is really Δdf. 
 
Top row is p-value, probability(type I error). Assume that want significance level of .005. 
That means we are willing to accept a probability of .005 of making a type I error. 

 p-values 
Δdf 0.200 0.100 0.075 0.050 0.025 0.010 0.005 0.001 0.0005 
5 7.289  9.236 10.008 11.070 12.833 15.086 16.750 20.516 22.106 
6 8.558 10.645 11.466 12.592 14.449 16.812 18.548 22.458 24.104 
7 9.803 12.017 12.883 14.067 16.013 18.475 20.278 24.322 26.019 
 
Table shows that for Δdf=7, p=.005, critical value of Chi-square = 20.3. This means that 
one will get L2 > 20.3 with probability = .005 if the null hypothesis is true (or L2 < 20.3 
with probability = .995 if the null hypothesis is true). 

We will reject null whenever L2 exceeds L2
c (critical value of Chi-square). 

 
input to table  output   decision re null hypothesis 
Δdf pc  L2

c   L2 < L2
c L2> L2

c 
7 .005  20.3   don’t reject reject (difference is real) 
 
If we reject the null hypothesis whenever L2 > 20.3, then .005 of the time Chi-square will 
be bigger than 20.3 even under the null hypothesis, so we will be in error .005 of the 
time in rejecting the null hypothesis, i.e., we have prob. of .005 of making a type I error. 
 
If we were willing to tolerate a higher probability of a type I error, then we could reject 
null whenever L2 > 18.5. This would produce a probability of type I error of .01, i.e., a 
higher probability of error, because we are rejecting null more readily. 
 
What if our acceptable type I error was between .1 – .35, which Log-linear book (K&B) 
recommends for ref=top, say at .20. We will reject identity with a smaller difference. 
 
input   output   decision 
Δdf pc  L2

c    L2 < L2
c  L2> L2

c  
7 .20  9.80   don’t reject reject (difference is real) 
 
Alternative way of using table: go into table with df & L2, get p, then make decision by 
comparing p to pc. Say pc = .01: 
 
input   output   decision re null hypothesis 
Δdf L2  p   p < pc  p> pc  
7 20.3  .005   reject   
7 9.80  .20     do not reject 
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When p>pc, then probability of error in rejecting null is greater than what I’m willing to 
tolerate, so I don’t reject. if p<pc, then my probability of error in rejecting null is less than 
what I tolerate, so I can go ahead and reject null confidently, without fear. 
 

CONSEQUENCES IN EXPLORATORY SEARCH OF ERRORS WHEN USING 
DIFFERENT REFERENCE MODELS 

Reference = top 
If Chi-square test resulted in rejecting the null hypothesis, i.e., rejecting identity of 
model and data, saying that the error is real, i.e., statistically significant, one would go 
up the lattice to a more complex structure.  

One wants to go as low as possible (compress maximally) without rejecting the null. 
   
 
 
 
 
 
 
 
 
 
 
 
If this rejection is in error, it is a Type I error 
If one made a type I error, one would be adopting a model which was 
UNNECESSARILY COMPLEX, i.e., one which includes unnecessary relations, is not as 
simple as one can get. 
 
IF ONE WANTS TO AVOID A TYPE I ERROR, i.e., require that p-value = 
probability of Type I error is very low, ONE CAN CHOOSE A VERY SIMPLE 
STRUCTURE. We’d then be unlikely to be wrong in rejecting the null.   
 
Thus, if we want the p-value (OCCAM calls this alpha) to be less than .05, i.e., very low 
probability of Type I error, we should go very far down. 
 
IN THE LIMIT, if one chooses independence (!!), one is extremely unlikely to be 
wrong in rejecting the hypothesis that it fits the data. 
 
BUT THIS IS ABSURD!! 

Do not reject null: Stay  

Data = reference 

Model 

Independence 

Reject null: Go up.  

If Type I error,  
model unnecessarily  complex 

If Type I error,  
should have stayed If Type II error,  

model disagrees with data 

If Type II error,  
should have gone up too this  
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A low p-value model is one that we’re virtually certain (low probability of error) 
disagrees with the data. WE DON’T WANT A MODEL WE’RE CERTAIN 
DOESN’T FIT THE DATA! 
 
THUS, WE DON’T WANT A MODEL WITH A SMALL P-VALUES (e.g.,< 0.05) 
 
Type II error 
But if one had made a type II error, one should have rejected this hypothesis and gone 
up the lattice to get closer to the data. 

But since one is in error, one stays put and is using a model that is TOO SIMPLE to 
represent the data adequately, i.e., which omits some necessary relations, & thus is in 
error with respect to the data. 

TO AVOID A TYPE II ERROR, CHOOSE A MORE COMPLEX STRUCTURE.   
 
IN THE LIMIT, if one chooses a model which is the data itself, the possibility of 
incorrectly accepting (not rejecting) it is nil.   

BUT WE DON’T WANT A VERY LOW P(TYPE II ERROR) THAT FORCES US TO 
CHOOSE THE DATA, WHICH IS OVERFITTING.  

 
Which error is worse? Type I or II? 
There’s a tradeoff between type I and II errors. 

If one allows only a very low probability of a type I error, e.g., .05 or .01, then one will 
have chosen so simple a structure that it is unlikely that we'll reject it wrongly. 

But probability of type II error is then high since model is too simple. 

 

Up to user, but most users would say that Type II error here is worse, more serious. 

It’s worse to choose a model that doesn’t fit the data than a model that does and is 
just more complex than necessary. 
This values information/error criterion over complexity criterion. 
 
What to do? Log-linear book, probably psychologically wedded to old p = 0.05 
criterion says to relax this and maybe allow p to be between .1 and .35. See K&B, 
p.64. 
 
To me, this isn’t satisfactory. To be honest, we want p-value to be high! 
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Reference = bottom 
If Chi-square test resulted in rejecting the null hypothesis, i.e., rejecting identity of 
model and independence, one would stay, since one is happy that our model is different 
from independence (OR one could try going up further). 
   
 
 
 
 
 
 
 
 
 
Type I error 
If one made a type I error, one would be adopting a model which was TOO COMPLEX, 
i.e., NOT STATISTICALLY JUSTIFIED, one that includes unjustified relations. 
Its big difference from independence is not believable, given the data. 
 
IF ONE WANT TO AVOID UNJUSTIFIED RELATIONS, ONE WOULD CHOOSE A 
SIMPLER STRUCTURE. We’d then be unlikely to be wrong in rejecting the null. The 
smaller difference from independence is believable, given the data.  
 
WE DO WANT A MODEL WITH A SMALL P-VALUES (e.g.,< 0.05) BECAUSE 
WE WANT TO AVOID ASSERTING UNJUSTIFIED RELATIONS. 

TYPE I ERROR OVER-FITS 
 

If chi-squared test resulted in not rejecting the null hypothesis, one would go down 
since difference from independence is not believable.  

Type II error 
But if one had made a type II error, one should have rejected this hypothesis and stayed. 

But since one is in error, one has gone down and is using a model that is 
UNNECESSARILY SIMPLE, that omits real (statistically justified) relations. 

TYPE II ERROR UNDER-FITS.  
 

Which error is worse? Type I or II? 
Overfitting usually considered worse than underfitting. Type I is more serious here. 

Don’t reject null: Go down: 

Data 

Model 

Independence = reference 

Reject null: stay.  

If Type II error, 
model is unnecessarily simple 

If Type II error,  
should have stayed If Type I error,  

posit unjustified relations 

If Type I error,  
should have gone down to this 
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Implications 

For directed systems, I strongly favor reference = bottom for three reasons: 

1. Usual p-value expectations apply to reference = bottom but not reference = top.  

2. Calculation of p(Type I error) more straightforward than p(Type II error); fewer 
assumptions needed 

3. Computationally, for directed systems, computations are faster at the bottom of 
the lattice.  

But for neutral systems, one sometimes encounters computational difficulties 
precisely at the bottom of the lattice, so I have no general recommendation for 
neutral systems. (I haven’t done neutral system analysis that often.) 
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