
DISCRETE MULTIVARIATE MODELING: BASIC CONCEPTS 
By Teresa Schmidt 

In a Nutshell 
At its core, Reconstructability Analysis (RA) is a data mining methodology that uses Information 
Theory and Graph Theory to detect deviations from mutual independence among a set of variables 
based on patterns in behavior.  

The gist of RA is testing to see whether a relatively simple model can still capture the essence of a 
system. If, say, three variables are present in a system (A, B, and C), RA can help you to determine if 
it would be possible to “reconstruct” the whole dataset by paying attention to simple relations 
among the variables (like the AB relation and the BC relation).  Since a model is always a simplified 
version of the data, a “good” model is one that doesn’t lose too much information. The crux is a 
tradeoff: Create the simplest model possible, and also retain as much information as possible. To 
help you with this, RA has three steps you can conduct to test any model of a given dataset.  

 

 

 

 

 

 

 

 

 

 

Why RA? 
Reconstructability analysis is a member of the class of graphical models which also includes log-
linear methods, Bayesian networks, and epsilon machines. It overlaps considerably with both, and 
where they overlap, they offer similar (if not identical) results. 

However, RA has features that make it uniquely useful in many situations. For example, RA does not 
assume linear relations among variables, which makes it ideal for studying systems with complex 
nonlinearities. RA can also apply Set Theory (instead of Information Theory) for applications that 
are not amenable to statistical analysis. An example of this is a logical proposition where 
probabilities are not relevant. 

Step 1: Projection 
Define a given model 
by identifying the 
relations that will be 
included in it. These 
might include the AB 
relation and the BC 
relation, for example.  

Step 2: Composition 
Create a calculated 
dataset that reflects the 
information retained in 
the model. (Here we 
“maximize entropy, 
subject to constraint.”) 

 

Step 3: Evaluation 
Compare the calculated 
dataset and the 
observed dataset, to 
determine the amount 
of error that your 
model allowed. 
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1. Univariate Uncertainty (H), Diversity, & Information 
Uncertainty, or entropy (abbreviated as H) is central in our evaluation of a “good” model. The error 
of a model is equal to the entropy of the model minus the entropy of the data. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

1.1. So What is Entropy? 
In the context of RA, Entropy (H) is a measure of univariate uncertainty. In other words, it’s a way 
to quantify the average surprise or unpredictability of an outcome. Larger values of H always 
indicate greater uncertainty. The formalization of this measure started with Ralph Hartley (hence 
the H) in his work on Set Theory, and was augmented by Claude Shannon to involve Information 
Theory. When we use H, we mean Shannon entropy, because we’re using Information Theory. 
Entropy (H) is a weighted measure of the probabilistic uncertainty of a set of outcomes. 

1.1.1. An Aside: Entropy in Thermodynamics 
The original notion of entropy comes from thermodynamics. The second law of thermodynamics 
suggests that entropy can only increase or stay constant in isolated systems; it can’t decrease. This 
means energy will tend to go from heterogeneous to homogeneous. The temperature of your cup of 
coffee will consistently approach room temperature, no matter how many times you microwave it. 
This means the heterogeneity of temperature (heat of coffee vs. coolness of room) moves toward 
homogeneity (same temperature). 
 
Why does this translate to uncertainty? Let’s say you have a 
container with a divider in the middle, so half of it is filled 
with red marbles and half of it is filled with blue marbles. 
Your removal of the divider will allow the two to mix. 
Before, you might have had a lot of confidence about what 
color marble you would get if you picked one from the left 
side of the container. But now, since they are mixed, there 
is more entropy. You’re not sure if you’ll get red or blue. 
 

Energy doesn’t tend toward heterogeneity. Maxwell’s Demon 
(pictured at left) is a thought experiment by James Maxwell 
where he imagined that a tiny door could possibly be used to 
increase entropy if someone (obviously with malicious 
intent) would let all the vectors with high velocity into one 
side, and all the vectors with low velocity into the other side. 
This would make one side get hotter, the other side cooler, 
and would decrease entropy. Without a demon, however, 
entropy is inclined to increase (or at least stay the same). 

 
Note that Shannon and Hartley’s entropy (H) are not restricted to energy transfer, and there is no 
rule in Information Theory that H will increase over time. For the purposes of RA, we will consider 
Entropy to be a measure of diversity: The fraction of something in one state vs. another state. 

HOT COLD 



1.2. Entropy Equation 
Below is the definition for the uncertainty of variable X: 

𝐻𝐻(𝑥𝑥) = −�𝑝𝑝�𝑥𝑥𝑗𝑗� log2 𝑝𝑝�𝑥𝑥𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

 

The entropy of a variable can be calculated from the probabilities of that variable having each 
possible state (e.g., probability that a coinflip results in heads or tails). You multiply the each 
probability by its log, and sum all the products together. This can be written more simply as  

= −�𝑝𝑝𝑗𝑗 log2 𝑝𝑝𝑗𝑗  

We can break this equation down to understand what’s inside of it. At the most basic level, we are 
interested in the probabilities of each state of a variable. If something has a 1 in 2 chance of 
happening (like heads v. tails), that is way less surprising than if something has a 1 in 100 chance of 
happening. We can express probabilities as fractions, such as 1/100 or 1/2. 

Next, we need to take the inverse of these probabilities. Why? Let’s compare the two fractions 
1/100 and 1/2. When we just look at these, very surprising outcomes have very small numbers 
(.01), and less surprising outcomes have larger numbers (.50). For a measure of uncertainty, we 
want larger numbers to reflect more uncertainty. This will happen if we take 1 over the probability. 
Like 1

1
100

 or 11
2

. 

OK, so what about the logs? Having log2 in the equation ensures that whenever we have a 50-50 
chance of two states (say heads vs. tails), the uncertainty value will be 1. When H = 1, we can say 
that 1 bit of information is needed. Bits and Information will be discussed more later. But for now 
trust that we’ll take the log2 of 1 over the probability of a given state: log2

1
𝑝𝑝𝑗𝑗

.  And it turns out, by 

the miracle of algebra,1 that this is equivalent to the log2 of that same probability. So we can rewrite 
log2

1
𝑝𝑝𝑗𝑗

 as:  log2 𝑝𝑝𝑗𝑗  

Now, we are going to want to sum the uncertainty values of each state (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … 𝑥𝑥𝑗𝑗). But before 
we do that, we want to weigh each uncertainty factor by the probability of that state. Imagine that 
you have a loaded coin, so that heads appears 90% of the time. Even though the uncertainty of tails 
is really high, the overall uncertainty of the coin flip is low: it’s usually heads. We want the 
probability of heads to be weighted more heavily than the probability of tails when we figure out 
the overall uncertainty in the coin flip. This means we’ll take 𝑝𝑝𝑗𝑗 log2 𝑝𝑝𝑗𝑗  instead of using only log2 𝑝𝑝𝑗𝑗 .  

Finally, we can sum all of the weighted uncertainty factors as a way to calculate the uncertainty (H) 
for our variable. We take the negative of this sum because logs of a fraction (like our probabilities) 
are always negative. Taking the negative of this sum gives us a positive value for H. 

1 the log of a fraction is equal to the log of the numerator minus the log of the denominator. For example, 
log2

1

1/2
 can be solved as 1, or can be rewritten as log2 1 − log2

1

2
, which equals 0 − (−1). 

                                                           



If you want to list the different probabilities to be logged, weighted, summed, and made negative, 
Zwick’s shorthand is illustrated by: 

= 𝛤𝛤(𝑝𝑝1, 𝑝𝑝2, … ) 

With this shorthand, you can write = 𝛤𝛤(. 15, .32, .21 … ), instead of writing 
−∑(.15 log. 15, .32 log. 32, .21 log. 21, …), 

1.3. Nominal Variables 
This is a good time to mention that standard RA uses only nominal variables, which means the 
order of states is assumed not to matter. A good example of a nominal variable is color, because 
there’s no natural order in a set of colors. By contrast, an example of an ordinal variable would be 
height, where there is a natural order in the variables short, medium, and tall. 

Here’s why this is relevant now: If I have a bag filled with different colored marbles, I can calculate 
the uncertainty of my pulling a marble of any given color. If I were to calculate the uncertainty of 
my (randomly) picking a short, medium, or tall person, I do not have any regard for the natural 
order of those states. In RA, it is possible to use ordinal variables, but the calculations do not retain 
information about the order of states in those variables. It treats them as nominal. 

1.4. Factors influencing Uncertainty 
Uncertainty, or entropy (H) is assumed to increase with  

• A larger cardinality (i.e., the number of states or values in a set of x) 
In a bag filled with marbles, more colors means more uncertainty about what color you 
will randomly choose. 
 

• With uniformity of probability 
There is more uncertainty in an even split between states than a lopsided split between 
states. There’s less uncertainty in the result of a coin flip when using a loaded coin.  

Entropy is also assumed to be decomposable. For example, uncertainty should be the same in both 
of the situations shown below: 

 

 

 

 

 

The entropy on the left would be calculated as 𝛤𝛤 �1
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1.5. Uncertainty and Information 
Information is the reduction of uncertainty. Our definition for uncertainty was: 

𝐻𝐻(𝑥𝑥) = −�𝑝𝑝�𝑥𝑥𝑗𝑗� log 𝑝𝑝�𝑥𝑥𝑗𝑗� 

So our definition for Information will be  
𝐼𝐼 = −∆𝐻𝐻 

This can also be written as 
𝐼𝐼 = −(𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), or 

𝐼𝐼 = 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 will be 0 if we know the result with no residual uncertainty. This means that Information is 
equal to the total amount of initial uncertainty if it removes all uncertainty. Let’s use coin flipping as 
an example. This is a binary variable, where each outcome has a probability of .5, or ½.  

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −
1
2

log
1
2
−

1
2

log
1
2

= 1 

Now, we said that 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  −∆𝐻𝐻 

So if you tell me that the result was Heads, I have no residual uncertainty. I know the probability of 
it being Heads is 1, and the probability of it being Tails is 0. Hence, 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 will equal zero:  

𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = −1 log 1 − 0 log 0 = 0 

Compare that equation with the 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 equation above. If we subtract 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 from 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, we know 
that the information provided was 1 unit. 

𝐼𝐼 = 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
= 1 − 0 

1.5.1. Bits as Units of Information  
Units of Information are called Bits. A bit is the amount of information you could gain from the 
(truthful) answer of a yes-or-no question. For example, say you have a playing card, and I want to 
know what suit it is. I can first ask, “Is it red?” If you answer “Yes, it’s red” I can ask whether it’s a 
heart or a diamond. If you answer “No, it’s not red” I can ask whether it’s a club or a spade. Either 
way, I only need to ask two questions to know the card suit. So there are two bits of information 
necessary for me to remove all uncertainty.  

2. Measures & Models 
When we discuss measures (i.e., variables) and models, one notation is that lower case letters (x, y) 
represent variables and upper case letters XY represent models. Colons between upper case letters 
(e.g., X:Y) indicate independence between variables.  



2.1. Two Variable Models 
For two variables, there is only the saturated model XY (equivalent to the data), and an 
independence model X:Y. So in this situation you can only explore whether or not the two variables 
(x and y) are associated with each other. The independence model only includes the marginal 
probabilities of each variable. Say variable x is the season, and it’s Winter (Sep-Feb) or Summer 
(Mar-Aug). The probability of each will be .5. Then say variable y is whether it’s sunny or rainy, and 
the probability of that is also .5. Our independence model will be based on calculations from these 
marginal probabilities. We would guess rain and season are independent (model X:Y) and the 
arrangement of joint probabilities would look like this: 

 y=0 
(Sun) 

y=1 
(Rain) 

 

x=0 (Summer) .25 .25 .5 
x=1 (Winter) .25 .25 .5 

 .5 .5  

We could compare the above probabilities with data from the real world. If our independence 
model accurately matches real data, then we can conclude that the two variables are not associated. 
However, what if the real data might look more like this? 

 y=0 
(Sun) 

y=1 
(Rain) 

 

x=0 (Summer) .33 .17 .5 
x=1 (Winter) .17 .33 .5 

 .5 .5  

Here, we would say that there is a relationship between x and y. Our independence model did not 
match the observed probabilities, so we’d better go with the model XY. Model XY includes more 
information than X:Y. It means that the probabilities for each combination of variable states (e.g., 
summer + rain) cannot be accurately captured with only the marginal probabilities of each variable. 

2.2. Three Variable Models 
For three variables, more intermediate models are possible. The saturated model XYZ (the data), 
might contain a three-way association (XYZ), or the system might contain three two-way 
associations (XY:YZ:XZ), two two-way associations (XY:YZ), etc. The possible combinations are 
shown below, in what is known as a lattice of structures:  

XYZ 

XY:YZ:XZ 

XY:YZ  XY:XZ  XZ:YZ 

XY:Z  XZ:Y  YZ:X 

X:Y:Z 



Three-way and higher-way associations are difficult to depict with normal graph theory, because 
graphs typically use only dyadic relations.  Another way to depict a model is to emphasize the 
relations as boxes, with lines representing the variables involved in them.  

The model XZ:YZ can also be depicted as this: 

 
We can calculate the entropy of the model XZ:YZ and compare it to the entropy of the saturated 
model XYZ (i.e., the data) to determine if this model accurately captures information or has error. 
This is just like the previous equation for H, only now we are doing it for a calculated distribution, q, 
which was generated from the relations we retained for our model, XY:YZ. 

𝐻𝐻(𝑋𝑋𝑋𝑋: 𝑌𝑌𝑌𝑌) = −���𝑞𝑞𝑋𝑋𝑋𝑋:𝑌𝑌𝑌𝑌�𝑥𝑥𝑗𝑗, 𝑦𝑦𝑘𝑘, 𝑧𝑧𝑙𝑙� log 𝑞𝑞𝑋𝑋𝑋𝑋:𝑌𝑌𝑌𝑌( … ) 

YZ XZ 
X  Z  Y 



DMM notes by Teresa Schmidt 

Choosing Models Statistically 

1. Definitions 
• Type I error: This is when I reject a null hypothesis and I shouldn’t have.  

o Let’s say two things are not different in reality (e.g., typing speed for men vs. women), 
but they happen to look different in my sample. If I reject the null hypothesis, claiming 
there is a difference in typing speed, I have done so incorrectly. This is a Type I error. 
 

• Type II error: This is when I fail to reject a null hypothesis and should have. 
o Let’s say two things really are different in reality (e.g., height for men vs. women), but it 

just so happens they don’t look very different in my sample. If I don’t reject the null, and 
say “we didn’t find evidence of a height difference,” this is a Type II error.  
 

• P-Value, or α (alpha): This is the probability of making a Type I error.  
o Usually you want this to be small, because you don’t want to go spouting off “I found a 

significant difference!” when it was just due to chance variations in your sample. You 
want to be confident that there’s only a very small likelihood that this difference could 
have been caused by chance variations. When p < .05, it means there’s less than a 5% 
chance that the difference you observed was due to chance alone. 
 

• Power, or β (beta): This is your probability of being able to reject a false null hypothesis. 
o Alpha and beta are linearly related – the higher your statistical power, the better your 

chance at being able to reject a false null hypothesis (i.e., the more likely your p value 
will be less than .05).  
 

•  “Good” Model: Qualitatively speaking, a model is good if it captures a lot of the information in 
your data. Technically speaking, a model is good when its probability distribution (q) is really 
similar to the probability distribution (p) in your original dataset.  

o Let’s say that you can exactly reproduce the values in the observed (p) probability 
distribution for AB by just knowing the marginal probabilities of A and B. That means 
that the calculated distribution (q) for the model A:B is a perfect fit for the probability 
distribution you observed. A:B captures all the information present in your data. Great! 
 

• “Good Enough” Model: Usually the (q) distribution will not match your data perfectly, so when 
is it close enough? We’ll need to test whether a model is significantly better than other models. 
 

• “Better” and “Worse” Models: When we use statistical approaches to determine which models 
are better and worse, we need to know two things: 

o Significance, or is this model statistically different from the other model? (Is the 
difference unlikely to be due to chance alone?), and  



o Relative to what? Our reference point and starting point might be either the 
independence model (bottom) or the data (top). 
 

2. Basic Ideas 

When the Independence Model is your Reference, Test if Models are Significantly Better 
When the independence model is your reference, you test each model to see if it’s significantly better (at 
replicating the p distribution) than the models below. You start at the bottom and work upward, and each 
time models are significantly different it means the higher model is significantly better.  

Why go from the Bottom Up? 

• This focuses on how complex of a model is justified by our data. It can tell me, 
o Which associations actually exist among these variables?  
o Are there simply 2-way associations among these variables?  
o Or more complex relations, such as 3-way and higher-way? 
o Can I be confident that this complex model is significantly better than a simpler model? 

When the Data is your Reference, Test if Models are Significantly Worse 
When the data is your reference, you test each model to see if it’s significantly worse (at replicating the p 
distribution) than the models above it. You start at the top and work downward, and as soon as you find a 
significant difference it means that lower model is significantly worse.  

Why go from the Top Down? 

• This focuses on how simple a model can still decently capture the patterns in our data. It can tell 
me, 

o Do we really need a 4-way relation, ABCD, to capture the patterns we observed?  
o Would information about the nature of four 3-way relations, ABC:ABD:ACD:BCD, 

capture the patterns just as well? 
o Can I be confident that any simpler model would be a significantly worse representation 

of my data?  

Using Cake to Understand Type I and Type II Errors 
OK, look at the picture below. Imagine a ‘Type I Error Zone’ at the top of the lattice of structures, and a 
‘Type II Error Zone’ at the bottom of the lattice of structures. (This is just symbolic, to help you 
remember.) The ‘I’ in “Type I” is smaller than the ‘II’ in “Type II,” so you might imagine stacking the ‘I’ 
on top of the ‘II’ to keep it straight. Each time you cut the cake, pretend you only want to cut one layer. 
(Be polite.) 

OK, so let’s say the data is my reference. I’m starting from the top and working my way downward. I am 
going to see how far down I can go (how simple of a model I can get), but I want to make sure to stop 
before I get into the Type II Layer.  

Alternatively, let’s say the independence model is my reference. I’m starting 
from the bottom and working my way upward. I am going to see how far up I 
can go (seeing how complex of a model I can justify), but I want to make sure 
to stop before I get into the Type I Layer.  

The principle is this: Whichever way you’re going, you want to go as far as 
you can, but not too far. Going too far is like overstating findings that are not 

 

ABCD 

A : B : C : D 

I 

II 



warranted. And it’s worse to overstate your findings than to understate. So when the bottom is your 
reference, don’t go too far up (you’ll get a Type I error, and be over fitting).  
When the top is your reference, don’t go too far down (you’ll get a Type II error, and be over simplifying).  

3. When the Reference is the Top 
Here’s a flow chart example for evaluating models when the reference is the top. Usually when the 
reference is the top, you work from the top down. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

My data for the variables A, B, C, and D can be 
described as the ‘saturated model,’ ABCD. 

 

Would the q distribution of a simpler model be significantly 
different (i.e., worse) than my saturated model?  

ABC:ABD:ACD:BCD 

Yes No 

Bummer, 
ABC:ABD:ACD:BCD is 

significantly different 
from ABCD. I guess we 

better stick with the 
Saturated Model, ABCD. 

Looks like there is no 
simplification possible. 

Hey, cool, the simpler 
model is not significantly 
different. This means that 
ABC:ABD:ACD:BCD is 
just as good as the data. 

Let’s try going for an 
even simpler model. Is 
this one significantly 

different from ABCD? 

ABC:ABD:ACD 

Oops, looks like 
ABC:ABD:ACD is 

significantly different 
from ABCD. Guess we 

better go back to 
ABC:ABD:ACD:BCD. 

Hey, sweet. This model’s 
even simpler and it’s still 
not significantly worse 

than the data. How about 
an even simpler model? 

Yes 
No 

If we were wrong to say 
“yes,” this is a Type I error 

If we were wrong to say 
“no,” this is a Type II error  



*Note that here, if our Type I error rate were really small (p < .05), we’d have to be really 
confident a model is significantly worse before we’d stop going down. We’ll probably have Type 
II errors, which are very troublesome: We may be over confident that a simpler model is '’just as 
good.’ To protect us from this, we should use a larger Type I error rate (like .3).  



4. When the Reference is the Bottom 
Here’s a flow chart example for evaluating models when the reference is the bottom. Usually when the 
reference is the bottom, you work from the bottom up. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Note that here, the Type I error rate is more intuitive, because we do want to be really confident 
that a model is significantly better before we keep going up. A small p value, such as p < .05, 
will keep us from being over confident that a complex model is justified.  

My reference model for variables A, B, C, and D 
is the independence model, A:B:C:D 

Would the q distribution of a more complex model be 
significantly different (i.e., better) than my independence model?  

AB:C:D 

 
Yes No 

Bummer, this model is not 
significantly different. 
Better stick with the 

independence model; it 
looks like the complexity 

of this model is not 
justified. 

Hey, cool, this more 
complex model, AB:C:D, 
is significantly better than 
the independence model.  

Let’s try going for an 
even more complex 
model. Is this one 

significantly different 
from AB:C:D? 

AB:CD 

 

Oops, looks like AB:CD 
is not significantly better 
than AB:C:D. Guess we 

better go back to AB:C:D. 

Hey, sweet. This model is 
better still, since it’s 

significantly different 
than AB:C:D.  

How about an even more 
complex model? 

Yes No 

If we were wrong to say 
“yes,” this is a Type I error  

If we were wrong to say 
“no,” this is a Type II error  



 
Overall Patterns 
Regardless of your reference model, rejection of the null always results in an “upward focus”. 

• If your reference is the top, rejecting the null means you will go back up to the previous 
level. 

• If your reference is the bottom, rejecting the null means you will at least stay there, and 
maybe even try to move up another level. 

Also, regardless of your reference model, failure to reject the null results in a “downward focus”. 

• If your reference is the top, failing to reject the null means that you will at least stay 
there, and maybe even try to move down another level. 

• If your reference is the bottom, failing to reject the null means you will go back down to 
the previous level. 

So remember: Rejection is upward (think of flipping the bird?), and non-rejection is downward. 

Incremental Alpha, but not Beta 
When you are going up the lattice, each additional model ought to be 
significantly different (i.e., significantly better) than the model below it. 
That is, if I go up from A:B:C:D to AB:C:D, and want to go up even further 
to AB:CD, I need to make sure that AB:CD is significantly better than 
AB:C:D (not only better than A:B:C:D). Why? Well, think of it this way: If 
the difference between A:B:C:D and AB:C:D is significant, then that 
significant difference will also be present in your test of whether A:B:C:D 
and AB:CD are significantly different. Finding a significant difference 
between A:B:C:D and AB:CD will be influenced (or “contaminated”) by the 
significant difference between AB:C:D and A:B:C:D. Testing incrementally 
helps to “purify” your tests of significance, so you can be sure that each step 
up the lattice is incrementally significant (not just cumulatively significant). 
It helps protect you from committing a Type I error.   

When going down the lattice, you actually want to compare each 
model with the data (rather than comparing it with the model directly 
above). The reason is this: We are more worried about Type II errors 
here, and they are less likely if we compare models that are further 
away from each other. Imagine you are climbing onto your roof. The 
step ladder is not significantly far from the ground, and your roof is 
not significantly higher from the stepladder. But falling off the roof 
onto the ground will be significant. In the same way, if I find that 
ABC:ABD:ACD:BCD is not significantly worse than ABCD, and 
that ABC:ABD:ACD is not significantly worse than 
ABC:ABD:ACD:BCD, it could still be the case that this lower 
model, ABC:ABD:ACD, is significantly worse than my data. I want 

to make sure I reject the null in this case, so that I won’t commit a Type II error.  

---------ABCD 

   … 

---------AB:CD 

          Significant? 

 --------AB:C:D 

          Significant? 

---------A:B:C:D 

-------ABCD 

 

 -------ABC: ABD:ACD:BCD 

          Significant? 

-------ABC:ABD:ACD 

… 

-------A:B:C:D 
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