SYSC 551: Discrete Multivariate Modeling

Course Notes - Winter 2012
Professor Martin Zwick
Notes taken by Juliana Arrighi & checked by MZ



Part 1: BASIC CONCEPTS

1. Univariate Uncertainty, H; Diversity, Information

n

HG) = = ) p(x)logn(s)

Jj=1

= —ZPiIngi @

=T (pl,p2,..)
H increases with the number of states (n)
H increases with uniformity of probability

H = average weighted surprise

= ij log(1/p;)

{p(),}~HO

{p(xj)tﬂ} > H(t+1)
H is a measure of diversity.
Physical entropy = —k ¥ p; logp; @

In Thermodynamics, the change in entropy (AS)
is equal to the change in heat (AQ) over
Temperature (T). (See image at right.) @
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zwick
Note
Minor: should probably keep subscript as 'j', for consistency.

zwick
Note
Yes, this is the expression in statistical mechanics.

zwick
Note
The image is at the top of this page, not immediately to the right, since the image immediately to the right is not about heat transfer, i.e., not about entropy based on energy distribution, but rather is about the increase of an entropy based on matter distribution

zwick
Note
The vectors on the hot side should in general be longer than the vectors on the cold side to indicate the higher velocities.

zwick
Note
This is for a binary choice where probabilities of two outcomes are equal, namely 0.5.

zwick
Note
This is a picture of NOT overfitting. Overfitting would involve trying to thread a very complicated polynomial through most or all of the points. This diagram should go with the discussion of picking a 'best model.'

zwick
Note
H_final is 0 if we know the result with no residual uncertainty.


2. Measures & Models

Notation:

X,y variables (lower case letters)
XY models (capital letters)

For two variables:
XY is the saturated model, or the data
X:Y is the independence model

For three variables, more intermediate models are possible:

XYZ
XY:YZ:XZ
XY:YZ XY:XZ XZ:YZ
XY:Z XZ:Y YZ:X
X:Y:Z

The model XZ:YZ can be depicted as this:
X Y Z
XZ YZ =
HOXY:YZ) == > Gy (3,0 %) =

= logqxy.yz(...)

Hy(y) = Hy|x)

H(x) H(y)

-
Hixy) &


zwick
Note
Need to fix labels on lines. If the structure is XZ:YZ, then Z should be the middle line and Y should be the right-most line.

zwick
Note
The rest of the equation has been left out. This should read as a triple sum of 
- q log q, where q is q for XY:YZ.

zwick
Note
The curly brackets should be much bigger. H(x,y) is the union of both circles. Here it looks like H(x,y) is somehow related to the size of T, which it isn't.


3. Bivariate & Conditional Uncertainties

Hx)  H(y) H(x)  H(y)

-0~

H(x,y)

H(z)

P(xj'yk) = P(xj)l’(yk|xj)
= pp(xi|yx)
# pip(x)) @

H(x,y) = Hx) + H(y[x)

= H(y) + H(x|y)

=— 2 z p(%), 1) logp (%), 1)
- Z Z P(%)p(ve|x;) log p (x;)p (i|x;)
- 2 z p(x)p(ye|x) logp(x;) — z z ()P (i) logp (i)

Zp(xj)logp(x,)Zp(yklxj) Zp(xj)Zp(mxj)logp(mxj)

J

Note that % p(vie|x;) log p(vi %) = Zp(x)H(v|x;) =

HOW = ) p()HOT)

J


zwick
Note
This inequality holds in general, but if x and y are actually independent of one another, then the bivariate probabilities is in fact equal to this product of univariate probabilities.

zwick
Note
The left hand side of this equation is just H(y|x_j), not the sum of this times p(x_j). 


4. Transmission, T (Mutual Information, Constraint)

H‘X) H(y) fo) H(y)
\ ] l J

1 |
H(x,y) for XY H(x,y) for X:Y

Transmission (T) = Mutual Information

This is equal to constraint in the data, or XY, due to association between variables.
Transmission is also equal to the error in X:Y, or the independence model
T=Hx)+H()—H(x,y)

XY data
=H(X:Y) — H(XY) S -

= H(X) + H(Y) — H(XY)

| =

, XY , model

|/

T (model) = H(model) — H(data)

Example:
T(XY:XZ:YZ) =H(XY:XZ:YZ) — H(XYZ)

Transmission of a model is equal to the entropy of the model minus the entropy of the data.



5. Computations on Contingency Tables
Observed probability distribution, for the model XY (or the data):

X1
X2

W[ S
ESENS
W

If X and Y are independent, you should get this distribution, for the

yi y2
X1 | .12 18 | .3
X2 | .28 42 7
A4 .6

For the data (XY), H(x,y) =T(.1,.2,.3,.4)

H(x) =T(.3,.7)

H(y) =T(.4,.6)

T(model) = H(model) — H(data)

model X:Y.

X1

Vi3
12 | .18

T =HX:Y)—H(XY) /

T =H(x +H(yL;H(x,y)

T=I'(.3,.7) + T(.4,.6) — T(.1,.2,.3,.4)




For Three Variables:

The values in the table below indicate the observed probabilities for three variables, x,y,z.

Z1 7?2
Y1 y2 Y1 Y2
X1 a b c d
X2 e f g h

Three two-way projections can be derived from this dataset:

V1 y2 Z1 Z2 Z1 Z2
X1 | a+c b+d X1 | atb | c+d yi | ate | c+g
Xy | e+g f+h x2 | e+f | g+h y2 | b+f | d+h

Additionally, two-way projections can be made for individual variables:

x1 | atb+c+d y1 | ate+c+g Z1 | a+b+e+f
X2 | e+f+g+h y2 | b+f+d+h Z; | c+d+g+h

H(z|x,y) = H(x,y,z) — H(x,y)
H(xlyJZ) = F(anJCldllejg:h)

H(x,y)=T(a+cb+d,..)
HGlxy) = ) p(ovi) HEl 5,0

u —F( b d )
Glwya) = T30+ a

(O] =pCeydr( )+ p(x%yz)r (o) +

b+d


zwick
Sticky Note
This may be a bit unclear. This continues the evaluation of H(z|x,y).


6. A State Decomposition of Univariate Uncertainty

In the table below, x is a macrostate with n subsystems @

X1 X2

Htotal = Hwithin subsystems + Hbetween subsystems
H(y)is within subsyst@ (micro), H(x) is between subsystems (macro).
H(x) is contained within H(y)

H(x)

H(y|x)

Hygper = (@ + b)r(L L) +(c+ d)r(L L) +T(a+b,c+d)

a+b'a+b c+d’'c+d
\ J | J
| |
p(x1)H(y|x;) @ p(xz)H(y|x2)
For Neutral Systems For Directed Systems
ABCD ABCD...Z

ABC...:AZ :‘:
| A:B:C:D ABC....Z


zwick
Sticky Note
x1 and x2 are the macrostates (n=2), each of which could be thought of as a subsystem consisting of 2 values of y.

zwick
Sticky Note
Actually, the 'within' terms are the H(y|x1) and H(y|x2). The total within term is H(y|x)

zwick
Sticky Note
The sum of these two terms is H(y|x).


7. Tin ‘Transmission’ & ‘Sequential’ Situations
Transmission (mutual information) includes

Transmission situation

Sequential Situation

For the Transmission Situation:
X = message sent

y = message received

equivo

H(x)

H(y)

T =H(x)+H(y) —H(x,y)

= sent and received

T=H()—-HQylx)

= H(x) — H(x|y)

For the Sequential Situation:

H(x(t)) might also be called H(t), and H(x(t+1)) might also be called H(t+1).

A system is deterministic if H(t+1) is contained within H(t).

H(x(t))

H(x(t+1))

Ty

S1 o
OR

Tz T,

(-] Sl

soo—" o

\_\, °
oo | NOT| 5, oo

H(t)



A system is stochastic if H(t+1) is not contained within H(t).

H(t H(t+1)
Markov:
p(x1) a b C p(x1)
p(xz) p(xz)
p(xs) | = p(x3)
p(;n) p(;n)

t+1 t

(nx1) (nxn) (nx1)

P(x1)e+1 = ap(x1)e + bp(xz) + -
a= p(xl(t + 1)|x1(t))

b =p(x,(t + D]|x, (1))



8. T as Likelihood Ratio; Relation to Uncertainty

P(%y)
TORY) = ) ) pGy)loga (s

p(x,y) = observed

qx.y(x,¥) = calculated

qx.y(x,y) = p()p ()

p yi y2 q yi y2
X1 1 2 3 x; | .12 18 | .3
X2 3 A4 7 X2 | .28 42 7

A4 .6 4 .6

T=H()+H(®)—H(x,y)

=TI(3,.7)+T1(4,.6)-T(1.2,.3,.4)

— 1logy s+ . 210852 +. 3 logy - +. 4log,
T 0BTy T AI0B2 g 2082 g T 1082 g
L? = likelihood ratio chi square = ZNZ Z p logeg

= 1.3863NT

Degrees of Freedom

For the model, df = 0 | .33 | .33 | 33 | @

For the data, df = 2 |4 |35 |.25 |

T(model) = H(model) — H(data)

=T(.33,.33,.33) — ['(.4,.35,.25)

2 plog P
Qmodel

=41 4+351 35+251 25
- *l08733 08733 T 410833

L? = 1.3863NT @

—Eplogp all p, equal log,n
j=1


zwick
Sticky Note
Here, the model is the uniform distribution.

zwick
Sticky Note
So this can be used to test the model, i.e., the hypothesis that the data is 'really' uniform.


XYZ

—r— XY:YZ

X:Y:Z
T(X:Y:Z)=HX:Y:Z)—H(XYZ)

=Hx)+H(y)+H(z) —H(x,y,2)

T(XY:YZ) = H(XY:YZ) — H(XYZ)
T (model) = H(model) — H(data)

H(XY:YZ) = HXY) + H(YZ) — H(Y)

AN

ilifli

XYZ XY XZ YZ X Y Z

The dataset XYZ contains three two-way relations (XY, XZ, YZ), and three one-way relations (X, Y, Z@
H(XY:YZ:XZ) #HXY)+ H(YZ)+ HXZ)—-HX)—H(Y)—-H(Z)

It is not possible to calculate the entropy (or transmission) when the model has a loop!@


zwick
Sticky Note
Technically, if one has just one variable, one doesn't really have a 'relation', but what is meant here is that the 3-way table contains three 2-way tables and 3 1-way tables.

zwick
Sticky Note
It is not possible to calculate the entropy algebraically, i.e., in 'closed form,' but one can get it by an iterative method.


9. T,H for Trivariate (& Higher) Relations
T(X:Y:Z) = H(X:Y:Z) — H(XYZ)

T(XY:Z) = H(XY:Z) — H(XYZ)
T(model) = H(model) — H(data)

H(XY:Z) = H(XY) + H(Z)

QO

XY 7.

H(XY:YZ) = H(XY) + H(YZ) — H(Y)

p(XY)p(YZ)
p(Y)

q(XY:YZ) =
Law of Uniform Subscripting:
HX:Y)=HX)+ H(Y)

H(X:Y|Z) = H;(X:Y) = H;(X) + Hz(Y)
Law of distribution for conditional T

T,(X:Y) = T(XZ: ZY)

T;(X:Y) 2 T(XZ: ZY)

H(x)

H(y)

1 Xz

YZ



zwick
Sticky Note
In order to match the factor-analysis type diagram right above it, Y and Z should be interchanged in the Krippendorff box diagram for the specific structure XZ:YZ.


10. A Variable Decomposition of Transmission

T(WV:W:X:Y) =T(V:W) +T(X:Y) + T(VW: XY)
T(V:W) + T(X:Y) = within subsystems
T(VW:XY) = between subsystems
T(V:W:X:Y) =HWV)+HW) + H(X) + HYY) — HYWXY)
T(X:Y) = H(X) + H(Y) — H(XY)
T(V:W)=HWV)+HW)—-HVW)
T(VW:XY) = HYW) + H(XY) — H(VWXY)
T VWXY T

T(VW: XY)

le.
<

TWV:W:X:Y) VW:XY

T(V:W) +T(X:Y)

e
<
(P2
<

L V:W: XY



11. Other Information Theoretic Functions

H(x) H(y)

T(X:Y) T(X:Y)
T (X:Y)  min{H(X),H(Y)}

TX:Y
IS(Y)) = fraction of entropy reduced
TX:Y
fI(X)) = "predictive ef ficiency" @
T(X:Y) H
=1- = redundancy
Hmax Hmax

Hpax = HX) + H(Y)

Quastler’s A Function
Area “5” in the diagram at right.

AX,Y,Z) = —H(X) — H(Y) — H(Z) + H(XY)
+H(YZ) + H(XZ) — H(XYZ)

XYz
T(XY:XZ:YZ)

XY:XZ:YZ

T(XY:XZ:YZ) # A(X,Y,Z)

H(XY:XZ:YZ) has no algebraic form!


zwick
Sticky Note
predictive efficiency of X


Quastler’s A Function can be positive or negative.

RHappy RUnhappy
Winountain  Wseashore | Wmountain ~ Wiseashore
Hmountain 10 0 0 10
Hseashore 0 10 10 0

Three two-way projections can be derived from this dataset:

Wmountain Wseashore
Hmountain 1 0 1 0
Hseashore 10 10

Tr(H:W) = p(RHappy)THappy(H: w)+ p(RUnhappy)TUnhappy(H: w)

When R]—[appy

Wmountain Wseashore
Hmountain 1 0 0
Hseashore 0 10

H(Husband) = 1

H(Wife) =1

H(Husband,Wife) = 1

Hmountain

Hseashore

Hmountain

Hseashore

Tyappy (Husband: Wife) =1+1—-1=1

RHappy RUnhappy
10 10
10 10

Wmountain Wseashore
.5 0
0 .5
.5 .5

H(HusbandWife) = 2 = H(Husband) + H(Wife)

HW:HR

HW:R

HW:HR:WR

HWR

HW:WR

HR:W

HWR

le
| )

| )

=

HR:WR

WR:H

Wmountain

Wseashore

RHappy RUnhappy
10 10
10 10



zwick
Sticky Note
The point of this diagram was that all the constraint in HWR is lost when one goes down just one step to HW:HR:WR. So entropy of that structure is actually the same as the entropy of the bottom structure H:W:R.


H(x) H(y)

(NN

H(z)

T(X:Y:Z)=H(X:Y:Z)-H(XYZ)
1+2+44+54+24+3+5+6+4+54+6+7
+4+24+4+5+2+3+54+6+4+5+6+%
=24+4+6+5+5 @
=2+4+6+5 = System Entropy

= H(XYZ) — Hyy(Z) — Hxz(Y) — Hyz(X)

\ J
|

noise
unique variability



zwick
Sticky Note
This may be a little unclear. T is 2 + 4 + 6 + 5 + 5, i.e., the area 5 is counted twice.
There is an information theoretic function that counts it only once, proposed by Krippendorff. This is called 'systematic entropy'. This picks out 'shared entropy'; all the other terms -- the entropies of single variables conditioned on the other two -- are the unique variabilities of the single variables (this is like unique factors in factor analysis). The sum of single variable entropies not shared by other variables could be called 'noise', 'but this 'noise' is different from noise as opposed to equivocation. Two totally different uses of the word.


Structures

1. Introduction

Models and Structures.

A structure is a composition of relations, specified by listing component relations, e.g.
AC:BC, or by a diagram. A structure is data-free (except for the cardinality of its variables).
It does not have error, but it does have complexity, measured by degrees of freedom.
Specific structures include information about particular variables, but structures can be
represented more generally. For example, the structures XY:YZ, XY:XZ, and XZ:YZ all
have the same general structure.

XXYYYZL —

Specific Structure General Structure

A model is a structure applied to some data. Models
have both error and complexity (degrees of freedom).
The saturated model, the relation that includes all of the
variables, is the data and thus has no error. The
goodness of a model depends on its error (or,
conversely, information captured) and its complexity,
i.e., degrees of freedom (or, conversely, simplicity). The
best model is the one that has the best trade-off
between these two. We want to minimize both error
and complexity, and need to trade these off; or, Information
conversely, we want to maximize both information and Captured
simplicity, and need to trade these off.

Data

Error

=~ Model

A\ Vi

Degrees of freedom (d.f.) is the number parameters Independence
needed to specify a structure and is highest in the data.

Error is the transmission between the data and the model. Information captured is the
distance between the model of interest and the independence model (which is equal to the
transmission of the independence model minus the transmission of the model).
Information captured is lowest (by typical convention, 0%) in the independence model and
highest (100%) in the data. (But one could use lower reference models than independence,
e.g., the uniform distribution; in this case this distribution would be said to have 0%
information captured.)



Fitting and Ouverfitting.

The goal in selecting a model selecting is to
find the right balance between error and df so
that the model most likely to be generalizable
to other data of interest. It is possible to find a
model that fits the data extremely well by
increasing the complexity, or the number of
parameters of a model. However, if the
model fits particular data too well, the
likelihood of the model fitting new data is
low and it is not a very useful model.

Variable y

e

-7

p7E
/ new data

Variable x

Ideally one would find a level of complexity for which the model is most likely to fit new
data. The goal is then to find a “sweet spot” of complexity in which the model fits the data
well but also generalizes well (indicated by the gray line in the figure below).

training data
Information

Captured

test data

/
\ Error

Complexity, # parameters, d.f

The test data should not be used to choose a model, but should be used only to verify the
model selected with training data, so one must try to guess which models have an ideal
balance between error and complexity. Data may be split into training and test data or test
data and training data may be different data sets.



Methods of Selecting a Model.
Since we cannot use test data to select a model, these methods can be used to try to predict
which model is best.

=

Use training data and statistical significance (p-value)

Use training data and an integrated measure (e.g., AIC, BIC)

3. Do 3-way splits of the data into training, pseudo-test, test: pick a model fit on
training data based on how generalizable it is with pseudo test data

N

Then subject the model to a real - and final!! -- test by applying it to test data.
OCCAM gives percent correct, the percent of cases in which the outputs were correctly

predicted by the model, as one of the measures of the goodness of the model. This is not an
information theoretic measure so it can be used to compare RA to other techniques.

2. Lattice of Relations, Ordinality

ABC

Ordinality is the number of variables in a relation. In the
lattice of relations of three variables, the top level, ABC,
has .ord.inality 3. In the second level, AB AC and BC have AB AC BC
ordinality 2 and A, B, and C have ordinality 1.

Systemic relations are not just compositions of pair-wise A B C
relations. For example ABC is a three-way relation. This

relation is not equivalent to three two-way relations, i.e., to

the structure AB:AC:BC. On page 34, Krippendorf gives uniform

some examples of methods that assume pair-wise

relationships, but in general, higher order relationships are possible. For, example network
models usually only look at pair-wise relations, two nodes connected by one edge.
However, three-way or higher relations can be represented by hypergraphs.

Constraint in the whole (ABC for a three variable system) is greater than or equal to the
sum of the constraint in parts (e.g. AB). Another way of saying this is that decomposition
generally decreases the constraint. This is a more specific and completely rigorous way of
describing holism or “a whole is greater than the sum of its parts”.

3. Lattice of Structures, Structure Types

ABC
A structure is a set of relations, and it can be represented as a cut

through the lattice of relations, as shown at right. It includes the A | Aac | BC
relations at the top of the cut plus all lower projected relations. For

A B C

uniform



example, the structure AB:AC includes only the two-way relations AB and AC (and their
embedded projections, A, B, and C) and excludes the relations ABC and BC.

A structure can also be represented by a graph as described
in the introduction. Since relations are of more importance
than variables, relations are represented as boxes and the
lines connecting them represent variables.

The lattice of structures gives the ways in which a number
of things can relate. Krippendorf gives several different
lattices of structure, both general and specific, on p. 40.
Specific structures are what need to be considered when
fitting data

For a system of three binary variables, each level has one

less degree of freedom than the one above it. For ABC with
binary variables, there are 8 entries in the contingency table.
The last entry in the contingency table can be inferred from
the other entries. (If the contingency table has probabilities in
it, these have to sum to 1; if it has frequencies in it, these have
the sum to the sample size, which is assumed to be known.)

ABC

AB:AC:BC

| e

AB:AC AB:BC

> ><

AB:C AC:B

BC:AC

\ | /

A:B:C

B:1, B:| B:

—

B>

A

A

So degrees of freedom of ABCis 7. df(AB:AC:BC) is 6, and so on down the lattice,
decreasing by 1 at every level. (All this only for binary variables.)

4. Directed Vs. Neutral Systems

In a neutral system, any variable could be considered an
input or output, for example in AB, A could affect (or
predict) B and B could affect (or predict) A. In a directed
system, the inputs and outputs are specified and the
relations are one way.

The lattice of structures for a directed system contains
fewer structures than the neutral system with the same
number of variables. The independence model for
directed systems is the relation containing all of the
inputs and each output as a separate relation (e.g. AB:C
if A and B are input variables and C is an output
variable). Directed system structures always have the

ABC

AB:AC:BC

=== |

AB:AC AB:BC

"

AB:C

relation containing all of the inputs to allow for interactions among the inputs. This also
makes all the models hierarchically nested to allow for statistical tests.



5. Generating the Lattice of Neutral Structures

The algorithm for generating a descendent structure in the lattice of structures is.

1. Remove a relation:
There will be a unique descendent for each different relation that can be removed
so the algorithm will be performed for each. When there are multiple symmetric
relations, only one need be removed (if one is just interested in the general structure
that results).

2. Restore embedded relations not already present:
When restoring relations, consider all of the relations that are embedded in the one
removed, but restore only those that are not embedded in remaining relations.

(See the example below.)

This algorithm will generate all possible general structures. If one wants to search for only
models without loops a different algorithm would be needed.

6. Models With and Without Loops, Disjoint Models

For three variables there are five general structures and only one has loops. For four
variables there are twenty general structures and ten have loops. As the number of
variables increases, there is a higher proportion of general structures that have loops.

The Curse of the Lopsided Rectangle: Some Variables Variables

models, especially those high complexity (df)
require a lot of data, and in general
information theory methods need much more
data than, e.g., linear regression models.

Cases

Have

Cases

Ideally you would have many more cases
than the number of variables, but
unfortunately all too often you have many
variables and not enough cases to test some Want
of the most complex models (the wide

rectangle).

Algorithm for loop detection:

1. Remove any variable that appears in only one relation.

2. Remove relations imbedded in other relations

3. Repeat 1 & 2. If you get to a null structure, there are no loops in the original structure;
otherwise, there are loops in the structure. Some examples are given in Krippendorf, p. 42.



Example: Generating the first six structures for four variable neutral system.

A_ ABCD

- ABCD + ABC + ABD

+ ACD + BCD
NV
A ABC :
C
ACD BCD
D
ABD
- ABD + A€ + AD +BD

A— ABC [—
iy il
ACD . BCD
- ABC + AB + AC + BZ
N/

ACD

AB
]
BCD

Start with the structure, ABCD, one relation
among all four variables.

1. Remove a relation: There is only one
relation to remove, ABCD

2. Restore embedded relations: All of the
three variable relations need to be
restored.

1. Remove a relation: All of the relations
here are equivalent, so we can choose any
one to remove. ABD is removed here.

2. Restore embedded relations: The relations
AB, AD, and BD are embedded in ABD
which was removed, so we need to make
sure they are included in the new
structure. It turns out they are all
embedded in the remaining relations— AB
isin ABC, AD isin ACD, and BD is in
BCD.

1. Remove a relation: Again we have a
symmetric model, so we can remove any
relation. We will remove ABC.

2. Restore embedded relations: AB, AC, and
BC are candidates for relations we need to
restore, but AC is in ACD and BC is in
BCD, so we only have to restore AB.



Now, for the first time we have a structure that is not symmetric with respect to all of the
relations. We will need to create two structures to show all possible types of general
structure descendents.

1. Remove a relation: One A AB B
relation we could
remove is AB. C
ACD = BCD

2. Restore embedded
relations: Only A and B
are embedded in AB, - AB + K +.K
and we do not need to
restore them because
they are already ACD
included in the
remaining relations.

- BCD + BC + BD + D

—|ACD BCD[——

1. Remove a relation: ACD and BCD are symmetric, so we only need to show the
descendent from removing one of them. BCD is removed.

2. Restore embedded relations: BC, BD, and CD are embedded in BCD. Since CD is
embedded in ACD, we do not restore it.



3. Lattice of Structures, Structure Types

Nearest Common Ancestor, Nearest Common Descendent (Krippendorf p. 39)

If two different structural models have high goodness measures, we may look either to the
(a) nearest common ancestor or the (b) nearest common descendent to (a) merge the two
models, and get what’s in both of them or (b) select only what they have in common that
makes them good models.

To find the nearest common ancestor of two structural models in the lattice of structures,
take the union of the relations of the two models; that is, combine all component relations
of each and eliminate redundancies. For example, the nearest common ancestor of the
structural models m; = AC:BCDE and my = ABD:CD:CE could be found as follows:

m; U my = AC:BCDE U ABD:CD:CE = AC:BCDE:ABD:CD:CE = AC:BDCE:ABD
The relations CD and CE were eliminated because they are embedded in BCDE.
To find the nearest common descendent, take the intersection of the two models. The
intersection includes all relations that are either components or are embedded in the
components of both models. For example
m1 N m2 = AC:BCDE n ABD:CD:CE = A:BD:CD:CE
A is in both models because it is embedded in both AC and ABD. BD is embedded in

BCDE and ABD, and so on. A systematic method for determining the intersection of two
structural models is as follows:

1. List all relations and projections of m; and m>

2. Cross out any relation not present on both sides (double

strike)

3. Cross out any redundant relation (single strike)

See the following table:

AC BCEbE N ABD CD CE
A BEB BBE | AB c c
c BCE cbE | AD b E

BC CD | BD

BD CE | A

BE DE | B

B b | b

c E |




6. Models With and Without Loops, Disjoint Models

Disjoint Models

Disjoint models are those that have no overlap in their components. We will make a
distinction in the criteria for directed and neutral systems.

In a neutral system, a disjoint model will have no overlap in any relations.
Example: AB:CDE

In a directed system, no independent variables overlap in predicting relations.
Example: IV:AZ:BCZ, where 1V is the relation of all independent variables

It is important to distinguish between disjoint models and loopless models. In neutral
systems, disjoint models are only a subset of loopless models, but in directed systems a
disjoint model may contain loops as in the example above. Also unlike with disjoint
models, the criteria for looped models is the same in directed and neutral systems.

7. Degrees of Freedom

Krippendorff Method for calculating df, p.48-53

For ABC, df= | ABC| - 1, where |structure | = number of states in the structure

Let cardinality of A be Na
G C

Bi, B2| B, B:

dfasc= NaNpNc -1

For NA=Np=Nc=2,df=2-2-2-1=7
For models lower on the lattice of structure, e.g. AB:AC:BC, add Az
the df of the components and subtract the overlap between
components.

A

df(AB:AC:BC) = df(AB) + df(AC) + df(BC) - df(A) - df(C) - df(B)
For Na =Np =Nc =2, df(AB:AC:BC)=3+3+3-1-1-1=6
For ABC:ABD:ACD:BCD, add the df of the components, subtract the df of the overlap

between each pair (double overlap) and add the df of the overlap among each set of three
components (triple overlap).



Double overlap:
ABC n ABD = AB
ABC N ACD = AC
ABC n BCD =BC
ABD n BCD = BD
ABD n ACD = AD
ACD nBCD =CD

Triple overlap:

ABCNABDNACD=A
ABCNABDNBCD=B
ABCNACDNBCD=C
ABD nACDNBCD=D

df(ABC:ABD:ACD:BCD) = df(ABC) + df(ABD) + df(ACD) + df(BCD)
- df (AB) - df(AC) - df(BC) - df(BD) - df(AD) - df(CD)
+ df(A) + df(B) + df(C) + df(D)

For Na=Ng=Nc=Np=2,
df(ABC:ABD:ACD:BCD)=4x7-6x3 +4x1=14

For AB:AC
df(AB:AC) = df(AB) + df(AC) - df(A)

Note that you can replace df by H to get an entropy equation, except when there are loops
in the structure. Remember that the algebra doesn’t work for entropy in these structures
with loops, but it does work for df. For example the df of ABC:ABD:ACD:BCD was
determined algebraically above, but since the structure has loops, H could not be
calculated this way.

AB BC

Contingency table examples for df. B . B B . B,
GIX X | G

The table example for ABC was given above. The C Co| x [ x
data table for ABC where |A|=|B|=|C|=2has
8 values. However only 7 need to be specified. B, B, B, . B B: . B,
The eighth can be determined by subtracting the Al x [ x Cf x &) X
other probability values from 1 (or the frequency Al x Ca x | G x
values from the total sample size).
For AB:BC, there are two tables, one for AB and B, . B, B . B,
one for BC. Three values need to be specified in Ci[ X Gl |x
AB and only two need to be specified in BC. In czﬁ | CT [x
the figure, an x represents a specified value. And 1 g




gray boxes represent values that can be determined from the information specified in the
AB table. Both of the B margins are known in the BC table because they can be determined
from the AB table. Now, only two more values need to be specified in BC, one in the B,
column and one in the Bz column. The remaining values can be obtained by subtracting
the specified values from the appropriate B margin value. Specifying both of the values in
either column would not be enough since the two values in either column are not
independent.

Compare this with the Krippendorff method:
df(AB:BC) = df(AB) + df(BC) - df(B)=3+3-1=5

For AB:CD there are two tables, one for each relation, but for this structure there is no
overlap (this is a disjoint structure). Three values need to be specified in each table.

AB CD

Bi, B: D:, Dz

A x | X Ci| x| x
A X Ca| x

df(AB:CD) = df(AB) + df(CD)=3+3=6
Log-Linear method for calculating df Knoke and Burke p 36-37

Write down all relations and their projections but do not duplicate projections.
For each relation, multiply one less than the cardinalities of each variable. Add the values
for each relation to get df of the structure.

Example: MER:IMV:EV, where | M| = |[R| = |V| =2, |E| =3
Log-linear method:

Relations Product of cardinalities minus one

MEV (2-1)(3-1)(2-1) =2
ME (2-1)(3-1) =
MR (2-1)(2-1) =
ER (3-1)(2-1) =2
M (2-1) =1
E (3-1) =
R (2-1) =
MV (2-1)(2-1) =1
A% (2-1) =1
EV (3-1)(2-1) =2

Total | =15




Krippendorff Method:

df(MER'MV:EV) = df(MER) + df(MV) + df(EV) - df(M) - df(E) - df(V)
=(2:32-1)+(2:2-1)+(32-1)-2-1)-(3-1)-(2-1)
=11+3+5-1-2-1=15

Log-Linear method is very good for calculating Adf between two models, since the
relations in common can be ignored. The Krippendorff and log-linear methods for
calculating df do not apply to models with structural zeros. (e.g. pregnant males)

8. State Based and Latent Variables

State-Based Models B
State-based models specify particular values in the table. 0 1
For example A1B; is a state based model. It specifies the value of 0
A1B1 in the AB table. In this table, p(A1B1) = .7 A

1 V4

A summary the independence model and a state-based model for
AB is given below:

AB (p table) q(A:B) q(A1B1)
B B B
0 ( 1 0 1 0 4 1
of.1].1/.2 01.041.16|.2 of.1].
A A A .
11.11.7].8 11.16| .7 |.8 11.11].7
2 .8 2 .8
df = 3 (any three table df = 2 (one A margin, one _
values) B margin) df =1 (ABy)
T=0 T=0

The state-based model, A1B1 has only one degree of freedom, because the only constraint is
that p(A1B1) =.7. Entropy is maximized for the set of other probability values, i.e.
probabilities or frequencies are uniformly distributed, so margins are irrelevant. Here,
A1Bs is a simpler model than the independence model, but has no error.



Latent Variable Models
If you have data AB, find ABL such that AL:LB is a good model of ABL. This is a good
idea if AL:LB is simpler, i.e., has smaller df, than AB. Latent class analysis is the nominal
version of factor analysis
eg. |A|=|B|=4

|IL| =2

df(AL:LB)=(4-2-1)+(4-2-1)-(2-1)=13

AB AL BL

— A

L< .

9. Discussion: Complexity and Decomposability

In reconstructability analysis, complexity is the same as degrees of freedom. However
there is more than one way to quantify complexity. For example, consider the equations:

z = ax +by

7 = (nt(m)int(ax)!

The second equation seems more complex, although each equation has the same number
of variables. Function form could, in principal, enter into a complexity calculation.

Another complexity measures --: minimum description length -makes use of functional
form in calculating complexity

vonBertalanffy’s progressive segregation, systematization
(For “‘complexify” in the diagram below, ‘compose” might be a better word, since it’s the
opposite of decompose.)

segregation
systematization (decompose)
(complexify)



10. Grouping Structure Types (R, C, P Structures)

The lattice of all possible structures can be broken up into p, C and P structures

p groupings are determined as follows. In p; all variables are directly connected to all
other variables; that is, they are separated in the structure graph by only one box. In pa,
one pair of variable is not directly connected, i.e. those two variables are separated in the
structure graph by 2 boxes.

C structures are the most complex of each p group. For example in p1 group, the saturated
model is the most complex, because the variables are the most interrelated.

P structures are the simplest in each p group. In the p1 group for four variables,
AB:AC:AD:BC:BD:CD is the simplest way for all variables share a relation with all other
variables because this is the only p1 structure with only dyadic relationships.

Search types:
Hierarchical search using p, C and P structures: First search representatives of p
groups by searching among only C or P structures; then, for some given C or P
structure, search within its p group

Beam search (what OCCAM does now): Find the best “width” number of parent
models, going up (or child models, going down); from these best models, then
consider the best “width” of their parents (or children), etc., as one goes up (or
down) from level to level.

Could do a beam search ‘breadth first” by having a large “‘width’” parameter going
up (or down) hopefully only a modest number of levels, or ‘“depth first’ by having a
small ‘width” parameter but going up (or down) many levels.



Information-Theoretic Reconstructability Analysis
(Putting it all together)

1. Preface: Goodness of a Model

We have talked about the goodness of a model being a trade-off between error (or its
‘opposite,” information captured or effect size) and simplicity. We should also distinguish
between effect size and statistical significance.

We then also have to consider statistical significance, which is the believability of these
quantities, in other words, how certain we are that the effect size is not just due to chance.
It is useful to examine both the effect size and its statistical significance. It is possible to

have a small effect size that is highly significant, but that would not likely be much use to
us.

closeness to data information captured in model
error (-) &> constraint (in the relations of the model)
reference = top (data) reference = bottom (independence or uniform)

I "effect size"

statistical significance
(dependent on sample size)

believability of "effect size"

2. Transmission and Information Distance

Reminder: the following are equivalent:

T(X' y,Z): H(X)+ H(y)+ H(Z)_ H(X’ y,z) variable notation
T(X 'Y Z): H(X)+ H(Y)+ H(Z)— H(XYZ)

T(mj)z H(mj)— H(mo)

model notation

Krippendorff notation where m; = model, mo = data



The information distance between two models is the difference of their transmissions.

I(mj —m ):T(mk)—T(m.)
— H(m,)-H(m,)- (H(m )-H(m, ]
:H(mk)—H(mj)

rlm,)- 5 ol e 2

e.g. q(AB:BC) is calculated distribution for AB:BC
= P(AB)p(C|B)
= p(AB)p(BC)/p(B)

)=t o 25, o 57
-Somod )

which is the weighted difference (weighted by the observed probabilities) of the difference
between the logs of the two calculated probabilities

T and I are effect sizes, always positive, and I is more general than T
I(m0 amj)zT(mj)—T(mo):T(mj)

I(mo=>m;) is information lost in the model. (reference = top)
I(mj=>mind) is information captured in a model. (reference = bottom)

We can only compare Transmission of models that are nested in the lattice of structure, i.e.
they must be ancestors or descendents of each other.

OCCAM prints out information normalized by T(mind) so that information is between 0
and 1.

I(m —>m)

e.g. T(mmd)



I(m, >m,) _
T(mind )
L2 is likelihood ratio, a measure of statistical significance of the effect size, (Kripendorff p. 87)

where 1

[2=1.3863nl For n = sample size

Krippendorff p. 44-45 information is additive for chain models

A chain model has a general structure that looks like a chain, with pairs of variables.

AB BC CD

I(mo=> mMchain) = error in the chain model
I(mMchain2mind) = information captured in the chain model

I(moemind) = I(moemchain) + I(mchainemind)
T(A:B:C:...) = T(AB:BC:...) + T(A:B) + T(B:C) + ...

OCCAM will let you search only for chain models.

3 - 4. Calculating g and IPF; Maximizing H Subject to Constraint

Algebraic Calculations

T(m J. ): > p(mo)log{ Eg%}

There are 4 cases from simplest to most complex

1. q(mind): q(A:B:C:...) = p(A) p(B) p(C)...
2. disjoint; q(AB:CDE.-...) = p(AB) p(CDE)...

3. overlap, no loops
q(AB:BC) = p(AB) p(C|B) = p(AB) p(BC) / p(B)

q(AB:BC...) =p(AB) p(C|B) = p(AB) p(BC) / p(B) ...
q(AB:BC:CDE) = p(AB) p(C| B) p(DE | C)

4. loops By IPF (no algebraic solutions)



OCCAM always does IPF, which converges in one iteration when there are no loops.
Iterative Proportional Fitting

Consider the probability table for data AB

AB p table df =3
B1 | B2

A 11 2 3

Calculating the q table for A:B, df =2
B1 | B2

At g |q2 |3

A gz fgs |7

4 6

B:1 | B2

A |12 .18 }.3




This method maximizes entropy subject to the constraints the margins, i.e. we want to
maximize H(q) = - qulogq: - q2logq2 - qslogqs - qalogqa [or I'(q1, q2, g3, q4)], such that

qut =23
PBrgu=.7
qtq=4
Q+qs=.6

Qtetgptq=1

The last constraint is assumed, and the second and fourth are redundant. Therefore there
are two constraints, and df = 2

To satisfy the two constraints,

qr=.12
qQz=.18
qs = .28
qs = 42
Constraints could also be written as matrix-vector equation. For three constraints, o, 3, v
ovqtq=.3
B:qz+qs=.6

y;q1+q2+q3+q4=1

The matrix, M, is given by the following, where df = rank of M (# of rows) - 1

9 92 Q93 Qg4

all 1 0 0
A0 1 0 1
yl1 11 1

In IPF, entropy is maximized subject to the following equation:

i = Mp

1
110 0ql 110 o2 3
01 01q2=01 0 1 |=|.6
05 3
111 1 111 1 1
d, A4
To do IPF:

Start with uniform model.

Impose constraints one at a time.

If after posing all constraints, each constraint is still satisfied, IPF is done and the model
does not contain loops. If some constraints are not satisfied, impose them again.



State-based model example where df = 2:

qtq=.3
Qs =.3
Qtetgptq=1

1 12 3
3 14 7
4 6

<

Il
=
=
=)
=)



Topic 3: Calculating q and IPF

Given the formula for Transmission of the model ™ below, the challenge covered here is how to
calculate (m; )|

p{m,})

T(m;) = Y plmglog( s
J

There are 4 cases for covering how to calculate q{mj }, and they are listed below, from the
simplest case to the most complex.

1. The independence model: qmng)

glA:B:C: ...} = plA)p(B}p(C)..

Ex 2: (showing p(AB) as a 2x2 matrix to expose the underlying linear algebra)

Given p(AB) = [i ﬂ

[a +b
Then by projection p(A)=lc + dl and p(B)= [a + ¢ b +d]

fa+bila+c) (a+b)b+d)

a+b =
][‘1“ b+dl= [Lr +dife+c) (c+dib+d)

Then q(A:B) = p(A)p(B) = [c +d

q1 ri!':]
orq(AB) =192 94

where:

a1 = p(A1)p(B1) = (a+b)(a+c)
a2 = p(A1)p(B,) = (a+b)(b+d)
a3 = p(A2)p(B1)= (c+d)(a+c)

da = p(A2)p(B2)= (c+d)(b+d)

Ex 2: Given p(ABC) =
C C
B B, B, B,
Aq a b c d
A, e f g h

Because we are considering the independence model A:B:C, we project ABC down to the
independent variables (skipping any intermediate projections such as AB or BC).



[cx+b+c+d
So by projection p(A)=le +f +g + h

pB)=la+e+c+g b+f+d+hl
p(C)=la+bt+e+f c+d+g+hl
And q(A:B:C) = p(A)p(B)p(C)
C, )
B:| B, | By | B,

A1 | Q1|02 | 03| Qs
Ay | Qs | ds | 07| Q8

C G
B1 B, B1 B,
(a+b+c+d) | (a+b+c+d) | (a+b+c+d) | (a+b+c+d)
A; | (a+e+c+g) | (b+f+d+h) | (a+e+c+g) | (b+f+d+h)
(a+b+e+f) | (a+b+e+f) | (c+d+g+h) | (c+d+g+h)
(e+f+g+h) | (e+f+g+h) | (e+f+g+h) | (e+f+g+h)
A, | (a+e+c+g) | (b+f+d+h) | (a+e+c+g) | (b+f+d+h)
(a+b+e+f) | (a+b+e+f) | (c+d+g+h) | (c+d+g+h)

or:

g1 = p(A1)p(B1) p(C1)
a2 = p(A1)p(Bz) p(Cy)
a3 = p(A1)p(B1) p(Cy)

2. Model with no overlap: 9(4B:CD)
q(AB:CD) = p(AB}p(CD)

Ex 2: Given p(ABCD) =
D1 D2

B1 B, B1 B, B1 B, B1 B,
A a b c d e f g h
A, i j k I m n 0

Here, we only project to the level of the relationships AB and CD to get q(AB:CD)



P(AB) = P(CD) =
Bl Bz Dl DZ
A, | a+tcte+g | b+d+f+h C, | atb+i+j | e+f+m+n
A, | i+k+m+o | j+l+n+p C, | c+d+k+l | gth+o+p
g(AB:CD) =
D D>
G G G G
B1 B> B1 B B1 B B1 B
Ar| a1 92 a3 4 gs ds q7 Js
Ay | 99 d1o Ju1 Ji12 di3 Ju4 dis d16
D D>
C1 G C G
B1 B, B: B2 B1 B, B1 B,
(a+ct+e+g) | (b+d+f+h | (a+ct+e+g) | (b+d+f+h | (a+ct+e+g) | (b+d+f+h) | (a+cte+g) | (b+d+f+h)
A .
(a+b+i+j) ) (c+d+k+l) ) (e+f+m+n | (e+f+m+n | (g+h+o+p | (g+h+o+p
! (a+b+i+j) (c+d+k+l) ) ) ) )
(i+k+m+o | (j+l+n+p) | (i+k+m+o | (j+l+n+p) | (i+k+m+0) | (j+l+n+p) | (i+k+m+o | (j+I+n+p)
A ) (a+b+i+)) ) (c+d+k+l) | (e+f+m+n | (e+f+rm+n ) (g+h+o+p
2 | (a+b+itj) (c+d+k+) ) ) (g+h+o+p )
)
3. Model with overlap, but no loops: q(AB:BC)
Ex 1:
p(ABY(BC)
q(AB:BC) = p(ABp(CIB) = )
Given p(ABC) =
C]_ Cz
B]_ Bz B]_ Bz
A a b c d
A, f g h
Then by projection:
P(AB) = P(BC) = P(B) =
Bl Bz Cl Cz
Ai | a+c | b+d B, | ate | c+g Bi | atcte+g
A, | e+g | f+h B, | b+f | d+h B, | b+d+f+h




and g(AB:BC) =

A

A;

Cl CZ
Bl Bz Bl BZ
|:a + C:Il:ﬂ_— e:| ||} + dll]_‘l— fl |:3 + C:Il:f —g) ||} + dll{l —]1:|
fatcte+gi|(b+d+f+h) |(atctet+g | (b+d+f+h)
I:E + g:ll:ﬂ— e:| |f—|— ]1:||:l_1— fl I:E + g:H:c —g) |f—|— hll[l —]1:|
fatcte+gi|(b+d+f+h |(atctet+g |[(b+d+f+h)

Ex 2: g{AB:BC:CDE) = p(AB(C|E}(DEIC)

o 1p PBC)_p(CDE)
=PUB) Ty * 2O

_ pABp(BC)p(CDE)
- p(B)p(C)

Ex 3: 9(AB: BC: CDE: DEF) = p(ABYp(C|BYp(DEIC)p(FIDE)

_ 1z PBC)_p(CDE) p(DEF)
=PUB T E o T pOE)

_ p(ABYp(BCYp(CDE)p(DEF)
T pBPCPOE)

Ex 4: {ABC: BCD:CDE) = p{ABC)p(DIEC}p(EICD)

Here there are overlapping relations where the overlap portions also overlap each other, so
continue a nested dividing by the residual overlap, which in effect gives you an alternating
multiply-divide-multiply. (Dr. Zwick: If the overlaps had overlaps, one would have to multiply
them, i.e., just like the Krip. method of alternating signs, one would have here alternating
multiplication and division)

_ p(ABCYp(BCDW(CDE) _ p(ABC)p(BCDYD(CDE)D(C)

p(EC(CD) p(BC)p(CD)
p(C)




5. Choosing Models Statistically
Let’s start out with some basic definitions...

e Type | error: This is when I reject a null hypothesis and I shouldn’t have.

0 Let’s say two things are not different in reality (e.g., typing speed for men vs. women), but
they happen to look different in my sample, just by chance, because of who I happened to
sample. If I reject the null hypothesis, and say that there is a difference in typing speed
between genders, | have done so incorrectly. This is a Type | error.

o Type Il error: This is when | fail to reject a null hypothesis and should have.

0 Let’s say two things really are different in reality (e.g., height for men vs. women), but it
just so happens they don’t look very different in my sample, just by chance, because of who
I happened to sample. If I don’t reject the null, and say “we didn’t find evidence of a height
difference between genders,” this is a Type Il error.

o P-Value, or a: This is the probability of making a Type | error.

0 Usually you want this to be small, because you don’t want to go spouting off “I found a
significant difference!” when it was just due to chance variations in your sample. You want
to be confident that there’s only a very small likelihood that this difference could have been
caused by chance variations. When p < .05, it means there’s less than a 5% chance that the
difference you observed was due to chance alone.

OK, now let’s talk about some DMM definitions...

e “Good” Model: Qualitatively speaking, a model is good if it captures a lot of the information in
your data. Technically speaking, a model is good when its probability distribution (q) is really
similar to the probability distribution (p) in your original dataset.

0 Let’s say that you can exactly reproduce the values in the observed (p) probability
distribution for AB by just knowing the probabilities of A being A; or A, (50/50 split) and
probabilities of B being B, or B, (25/75 split). If a calculated distribution (g), using only
those numbers is exactly the same as the probability distribution you observed, then the
model of A:B is perfect. It captures all the information present in your data.

p B B, q Bi B
A [ 125 [ 375 |5 A [ 125 [ 375 | 5
A;| 125 | 375 |5 A, | 125 | 375 | 5
25 .75 25 .75

o “Good Enough” Model: You can measure how good a model is by calculating T (i.e., error) or |
(information distance), but that doesn’t tell you whether or not the amount of error (or information
captured) is significant. It doesn’t tell you whether your model is “good enough,” statistically
speaking. Instead we look for the model that is better than all the others.

o “Better” and “Worse” Model: When we use statistical approaches to determine which models are
better and worse, we want to know two things:

o0 Significance, or is this model significantly different? (or is the difference pretty likely to be
due to chance), and



0 Relative to What? What are we comparing this model to, anyway?
This will depend on whether you are using the independence model (bottom) as your
reference, or the data (top) as your reference...

Now we are ready to start building ideas on top of the definitions. Here are some rules of thumb...

When the Independence Model is your Reference, Test if Models are Significantly Better

Models may or may not be significantly better (at replicating the p distribution) when the independence
model is your reference. Here you generally start at the bottom and work upward.

Why go from the Bottom Up?

e Sometimes we want to see how complex of a model is justified by our data. | have a bunch of
variables measured, which | suspect are related. | want to know,
0 Which associations actually exist among these variables in the real world?
0 Are there simply 2-way associations among these variables?
o Or more complex relations, such as 3-way and higher-way?
0 How confident am | that this complex maodel is significantly better than a simpler model?
When the Data is your Reference, Test if Models are Significantly Worse

Models may or may not be significantly worse (at replicating the p distribution) when the data is your
reference. Here you generally start at the top and work downward.

Why go from the Top Down?

e Sometimes we want to see how simple of a model will still decently capture the important patterns
we observed in our data. | might want to know,
o0 Do we really need a 4-way relation, ABCD, to capture the probability distribution we
observed?
o0 Would information about the nature of four 3-way relations, ABC:ABD:ACD:BCD, capture
the observed patterns just as well?
0 How confident am | that this simpler model is not significantly worse than a more complex
model?
Using Cake to Understand Type I and Type Il Errors
OK, look at the picture below. Imagine a ‘Type | Error Zone’ at the top of the lattice of structures, and a
“Type Il Error Zone’ at the bottom of the lattice of structures. (This is just symbolic, to help you remember.)
The ‘I’ in “Type I” is smaller than the “II” in “Type Il,” so you might imagine stacking the ‘I’ on top of the
“‘II” to keep it straight. (And who doesn’t love cake?)

OK, so let’s say the data is my reference. I’m starting from the top and working my way downward. | am
going to see how far down I can go (how simple of a model | can get), but | want to make sure to stop before

I get into the Type Il Error Zone. (Cue the scary music.)
ABCD

Alternatively, let’s say the independence model is my reference. I’m starting

from the bottom and working my way upward. | am going to see how far up | I
can go (seeing how complex of a model | can justify), but | want to make sure

to stop before | get into the Type | Error Zone. (Again, cue scary music.)
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The moral of the story is this: Whichever way you’re going, you want to go as far as you can, but not too far.
Going too far is like overstating findings that are not warranted. It’s worse to overstate your findings than to
understate. When the bottom is your reference, don’t go too far up (you’ll get a Type I error, and be over
fitting).

When the top is your reference, don’t go too far down (you’ll get a Type Il error, and be over simplifying).



A Hypothetical Example when the Reference is the Top
Here’s a more fine-grained look at what Type | and Type Il errors mean for evaluating models when the
reference is the top. Usually when the reference is the top, you work from the top down.

My data for the variables A, B, C, and D can
be described as a ‘saturated model,” ABCD.

Would the g distribution of a simpler model be
significantly different (i.e., worse) than my saturated

model?
Ye NO
Bummer, Hey, cool, the simpler
ABC:ABD:ACD:BCD is model is not significantly
significantly different different. This means that
from ABCD. I guess we ABC:ABD:ACD:BCD is
better stick with the just as good as the data.
Saturated Model, ABCD. !
I'_ooﬁ_llkte_z there 'S.QIO If we were wrong to say
simplification possible. “no,” this is a Type Il error
If we were wrong to say Let’s try going for an
“yes,” this is a Type | error even simpler model. Is
this one significantly
different from ABCD?
ABC:ABD:ACD
Yes l
No
Oops, looks like Hey, sweet. This model’s
ABC:ABD:ACD is even simpler and it’s still
significantly different not significantly worse
from ABCD. Guess we than the data. How about
better go back to an even simpler model?
ABC:ABD:ACD:BCD. ”

*Note that here, if our Type | error rate is really small (p <.05), we have to be really confident a
model is significantly worse before we’ll stop going down. We’ll probably have Type Il errors,
which are troublesome: We may be over confident that a simpler model is "’just as good.’



A Hypothetical Example when the Reference is the Bottom
Here’s a more fine-grained look at what Type | and Type Il errors mean for evaluating models when the
reference is the bottom. Usually when the reference is the bottom, you work from the bottom up.

My reference model for variables A, B, C,
and D is the independence model, A:B:C:D

A

Would the g distribution of a more complex model be
significantly different (i.e., better) than my independence

model?
Yes No
Hey, cool, this more
complex model, AB:C:D, is Bummer, this model is
significantly better than the not significantly
independence model. different. Better stick
with the independence
If we were wrong to say model; it looks like the
“yes,” this is a Type | error complexity of this
model is not justified.
Let’s try going for an even
more complex model. Is
this one significantly If we were wrong to say
different from AB:C:D? “no,” this is a Type Il error
AB:CD
Yes No

Hey, sweet. This model : A
is better still, since it’s Oops, looks like ABICD is

significantly different not significantly better than
than AB:C:D. AB:C:D. Guess we better
go back to AB:C:D.

How about an even
more complex model?

¥




Note that here, the Type | error rate is more intuitive, because we do want to be really confident
that a model is significantly better before we keep going up. A small p value, such as p < .05, will
keep us from being over confident that a complex model is justified.

Overall Patterns
Note that regardless of your reference, rejection of the null always results in an upward focus.

e If your reference is the top, rejecting the null means you will go back up to the previous
level.
e If your reference is the bottom, rejecting the null means you will at least stay there, and
maybe even try to move up another level.
Also note that regardless of your reference, failure to reject the null results in a downward focus.

e If your reference is the top, failing to reject the null means that you will at least stay there,
and maybe even try to move down another level.
e If your reference is the bottom, failing to reject the null means you will go back down to the
previous level.
So remember: Rejection is upward (think of flipping the bird?), and non-rejection is downward.

Incremental Alpha, but not Beta

--------- ABCD
When you are going up the lattice, each additional model ought to be
significantly different (i.e., significantly better) than the model below it.
That is, if 1 go up from A:B:C:D to AB:C:D, and want to go up even further | AB:CD

to AB:CD, I need to make sure that AB:CD is significantly better than
AB:C:D (not only better than A:B:C:D). Why? Well, think of it this way: If \
the difference between A:B:C:D and AB:C:D is significant, then that .;i:cj;ificant?
significant difference will also be present in your test of whether A:B:C:D =
and AB:CD are significantly different. Finding a significant difference
between A:B:C:D and AB:CD will be influenced (or “contaminated”) by the
significant difference between AB:C:D and A:B:C:D. Testing incrementally | $ignificant?
helps to “purify” your tests of significance, so you can be sure that each step
up the lattice is incrementally significant (not
-------ABCD just cumulatively significant). It helps protect you from passing into the

Type | Error Zone.
—--l--ABC: When going down the lattice, things are a bit different. In this case you
ABD:ACD:BCD actually want to compare each model with the data (rather than
- comparing it with the model directly above). The reason is this: We are
Significant? more worried about Type Il errors here, and they are less likely if we
w-:--- ABC:ABD:ACD compare models that are further away from each other. Imagine you are

climbing onto your roof. The step ladder is not significantly far from
the ground, and your roof is not significantly higher from the




stepladder. But falling off the roof onto the ground will be significant. In the same way, if | find that
ABC:ABD:ACD:BCD is not significantly worse than ABCD, and that ABC:ABD:ACD is not
significantly worse than ABC:ABD:ACD:BCD, it could still be the case that this lower model,
ABC:ABD:ACD, is significantly worse than my data. | want to make sure | reject the null in this
case, so that | won’t head into the Type Il Error Zone.



	Zwick - DMM Notes - Winter 2012_mz
	totalnotes
	Topic 3:  Calculating q and IPF
	1. The independence model:
	2. Model with no overlap:
	3. Model with overlap, but no loops:
	When the Independence Model is your Reference, Test if Models are Significantly Better
	When the Data is your Reference, Test if Models are Significantly Worse
	Using Cake to Understand Type I and Type II Errors
	A Hypothetical Example when the Reference is the Top
	A Hypothetical Example when the Reference is the Bottom
	Overall Patterns
	Incremental Alpha, but not Beta





