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Abstract—Reconstructability Analysis (RA) is a data mining 
method that searches for relations in data, especially non-linear 
and higher order relations. This study shows that RA can 
provide useful predictions of complications in knee replacement 
surgery.  
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I. INTRODUCTION  
Legislative reforms aimed at slowing growth of US 

healthcare costs are focused on achieving greater value per 
dollar. To increase value while payments are diminishing and 
tied to individual outcomes, healthcare providers must do 
better at predicting risks and outcomes. One way to improve 
predictions is through enhanced modeling methods. Current 
modeling is predominantly done with logistic regression (LR). 
This project applied Reconstructability Analysis (RA) to data 
on hip and knee replacement surgery to predict complications 
in patient outcomes, and this paper reports a few of the results 
of the knee study. RA is partially similar to LR, but has some 
unique features. 

RA is a data mining method that searches for relations in 
data, especially non-linear and higher ordinality relations, by 
decomposing the frequency distribution of the data into 
projections, several of which taken together define a model, 
which is then assessed for statistical significance. The 
predictive power of the model is expressed as the percent 
reduction of uncertainty (Shannon entropy) of the dependent 
variable (the DV) gained by knowing the values of the 
predictive independent variables (the IVs).  Here we report the 
prediction of complications (DV), given a set of patient 
comorbidities (IVs).  Prediction is done with the conditional 
probability distribution of the DV given the IVs specified by 
an RA model of the data. Complex interaction effects between 
the IVs and the DV may allow better predictions than 
predictive IVs used separately. Exploratory modeling with RA 
may even detect novel and surprising predictors. The main 
virtue of exploratory modeling is that relations between the 
IVs and the DV do not have to be specified up front, and thus 
their form does not need to be known or hypothesized. 
Relations can be discovered. For example, in a study applying 
RA to genomic data, researchers found that RA can detect 
gene-gene interactions that other methods could not detect [1]. 

II. METHODS 

A. Reconstructability Analysis 
RA developed from the early works of Ross Ashby [1] 

who defined a process for systematically testing whether a 
complex constraint could first be decomposed into several 
simpler constraints and then, using the maximum entropy 
principle, recomposed without suffering serious information 
loss. RA assesses the goodness of models that are hyper-
graphs either using set theoretic (SRA) or information 
theoretic (IRA) measures. IRA, the approach used in this 
project, resembles log-linear statistical methods in the social 
sciences, and has had diverse applications including time-
series analysis, classification, decomposition, compression, 
pattern recognition, prediction, control, and decision analysis 
[3]. Several RA software applications exist such as GSPS [4], 
Construct and Spectral [5], SAPS [6], EDA [7] and Occam [8 
9]. For this project, the Occam software was used. 

Although it is designed for nominal multivariate data, RA 
can also handle continuous data by binning values into 
discrete binary or multi-valued states. The more states of an 
IV the better it can predict the outcome, but as the number of 
states of a variable increases the sample size required also 
increases, so the number of bins used for variables is a scarce 
resource that must be allotted judiciously.  

To illustrate the IRA method, consider data on four 
variables, three IVs (A, B, C) and one DV (Z).  For these four 
variables, multiple relations are possible, and each set of non-
redundant relations is a graph or hypergraph structure that is a 
candidate model of the data. There are 19 such structures for 
three IVs and one DV, and for such a small number of 
variables, exhaustive search of all models is possible. In the 
current project, there are 188 IVs, which generate a massive 
lattice of structures which cannot be examined exhaustively 
but must instead be searched with intelligent heuristics.  

Search for predictive models that are statistically 
significant begins with the independence model, which for our 
illustrative example is ABC:Z. This model says that there may 
or may not be a relation among the IVs (A, B, C), but none of 
the IVs predict Z. An ascending search then examines 
increasingly complex – and more predictive – models until 
difference from independence and gains in uncertainty 
reduction due to increases of complexity are no longer 
statistically significant. For example, one possible model that 
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the search might yield is ABC:ABZ:CZ; this model contains 
an ABZ component that represents a predictive interaction 
effect of two IVs, A and B, and the DV, plus an additional 
predictive relation of C with the DV. Model search is done at 
two levels of refinement: variable-based model without loops 
(a “coarse” search) and variable-based models with loops (a 
“fine” search), the refined search yielding more predictive and 
typically more complex models.  

To avoid overfitting, i.e., choosing an overly complex 
model that does poorly when confronted with new data, a 
good model should capture maximum information (constraint) 
in the data while being as simple as possible.  A simple model 
is one whose degrees of freedom are not much greater than the 
independence model. In Occam, the tradeoff between 
information-captured and simplicity is done using three 
different criteria: the Bayesian Information Criterion (BIC), 
the Akaike Information Criterion (AIC), and the Incremental-p 
Chi-square criterion (IncrP).  BIC and AIC aggregate 
information-captured and simplicity linearly, with BIC 
penalizing models for complexity more than AIC. The third 
criterion, IncrP, selects the model with the highest reduction 
of DV uncertainty, where the difference between the model 
and independence is statistically significant and where, in 
addition, there is a path from independence where each 
incremental step to the model is also significant. (A p-value of 
0.05 was used as the cutoff for significance.)  IncrP is 
sometimes more conservative than AIC, sometimes less 
conservative, but BIC is always the most conservative of the 
three, and in this study, was the criterion used to select the 
“best” model.  BIC is reported below in TABLE 1 as the 
difference between BIC for independence and BIC for the 
model. The table also reports the percent reduction of 
uncertainty of the DV achieved by the model, % H(DV), 
which is the actual predictive power of the model.  Calculation 
of uncertainty does not involve the sample size and is non-
statistical [10]; its significance is assessed by its p-value or by 
the BIC/AIC measure. The reduction in uncertainty, a central 
measure of RA not generally available with other methods, is 
more sensitive to the predictive strength of a model than 
%correct and related measures.  Because of the logarithm term 
in the expression for uncertainty, even small reductions of 
uncertainty can correspond to big effect sizes. For example, an 
8% reduction of uncertainty can correspond to a shift in the 
odds of possible outcomes as big as a change from 1:1 to 2:1. 

After the best model is obtained, its actual contents – what 
predictions it makes for the DV for all the different IV states – 
is examined in detail. In Occam, this detailed examination is 
called “fit,” to be distinguished from the first step which is 
called “search.” Search results below are shown in TABLE 1, fit 
results in TABLE 2. For more information about RA, see [3] 
and [11]. For more information about this study, see [12], 
which also includes a demonstration that RA provides 
predictive results not available from logistic regression. 

B. The Data 
Data used in this study derives from patients who 

underwent an inpatient surgical procedure of a total knee 
replacement at one of seven inpatient hospitals within an 

integrated healthcare system in a single state. Participant data 
consists of both hospital billing data and electronic health 
record system clinical data. Clinical and cost data were 
matched on the patient’s episode identifier, then de-identified 
and transformed into the variables used in this research 
project. Because the administrative claims database includes 
variables that are collected in diverse health systems across 
the nation, the resulting predictive model developed in this 
project have the potential for wide-spread use. 

There are 4,336 cases in the knee data set. ICD-9 codes 
were used to classify the procedure of an elective total knee 
replacement procedure (81.54) and to classify the comorbidity 
IVs and the DV Complication occurring for each knee 
procedure.  The independent variables age (Age), surgeon 
volume (Sv), and number of risks (Nr) were continuous 
variables that were discretized into the binned variables Ageb, 
Svb, and Nrb. These IVs were divided into 3 bins, with equal 
sample sizes to allow optimal predictive capacity. The DV 
Complication (Cp) was created by looking at the ICD-9 
diagnosis codes with a Present On Arrival indicator of 0, 
indicating the diagnosis was acquired after admission to the 
hospital. The knee data set contained 913 complications in 205 
cases. The complication rate for the knee data set is thus 
205/4336 or 4.7%. 

Preliminary analyses indicated the need to reduce the set 
of IVs. This was done with a level = 1 loopless search which 
assessed the predictive strengths, expressed in % H reduction, 
of the 188 IVs. An IV was retained if its p value was .05. 
Sorting IVs by % H showed the single IVs with the greatest 
predictive strength. 

Initially analyses were conducted with training/ test splits, 
but these resulted in %correct measures that were small and 
misleading. While training/test splits is common in machine 
learning research, it is often done with larger sample sizes and 
fewer variables.  This project’s primary objective was 
exploratory modeling, whose results need to be subjected to 
subsequent confirmatory testing. Training/test splits were thus 
not considered to be necessary. 

III. RESULTS 

A. Model Search 
 A model in TABLE 1 specifies the IVs (e.g., Nrb, Rku) that 
predict the DV (Cp), followed by Δdf = df(model) – 
df(reference), the difference in degrees of freedom of the 
model and independence; then ΔBIC = BIC(reference) – 
BIC(model), for which improvements in the model compared 
to the reference are reflected in larger positive values; then 
%ΔH = 100 ( H(DV)–H(DV|IV) ) / H(DV), the %reduction of 
uncertainty of the DV given the IVs. The reduction of 
uncertainty measure indicates how predictive the IVs are, while 
the BIC measure indicates how efficient the prediction is, i.e., 
how predictive the IVs are, given their complexity (df). Best 
models are chosen based on their ΔBIC values, which results in 
a highly conservative model choice.  
 TABLE 1 summarizes the results of single and multiple 
predictors in loopless and all-model (with loops) searches. The 
best coarse model shows that, for this data set, simply knowing 
the total number of comorbidities a patient had (Nrb) along 
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with chronic kidney disease (Rku) reduces the uncertainty in 
predicting if Complication (Cp) occurred by 7.58%. Knowing 
the surgeon who performed the surgery (S) reduces uncertainty 
by 6.45%. Likewise, knowing only if the patient had 
unspecified hypertensive renal disease (Rrd) reduces 
uncertainty by 3.11%. 

The next type of search considers models with loops which 
allows for multiple components predicting the DV. Within 
each component, there may be interaction effects among the 
IVs in their prediction of the DV, just as interaction effects 
were observed in the best loopless BIC and AIC/IncrP models, 
Nrb Rku Cp and Nrb Rhd Rku Cp, shown in TABLE 1.  

Note that some single predicting variables do not show up 
in the best coarse or fine models, indicating that the IVs are 
not independent from each other. There are 6 single predicting 
variables in the best BIC fine-grained model, Ageb Cp : Nrb 
Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp. Five of these 
variables – Ageb, Nrb, Ruh, Rhd, and Rku – also appear in the 

top 10 single predicting components, while Rro is the 18th  in 
the list of single predicting components. This apparently low-
value variable was included when the RA search methodology 
sought to improve a model already containing the better 
individual predictors Ageb, Nrb, Ruh, Rhd, and Rku. Rro was 
found to be the variable that added more additional 
information to that model than any of the better single-
predicting IVs above it.  

The best single predictor, S (surgeon) does not appear in 
the best fine-grained model, presumably in part because S has 
high cardinality and the information added by S is not worth 
the complexity of including it in the model and perhaps in part 
also because the predictive effect of S is already provided by 
the Ageb, Nrb, Ruh, Rhd, and/or Rku predictors. Similarly, 
Ageb, Nrb, Ruh, Rhd, and Rku contain the information 
offered by the other single predictors all the way down to Rro. 

 

 
TABLE 1. Summary of Search Results for All IVs. Search covers coarse and fine models. All p-values = 0. 

MODEL df BIC % H Variable description 
COARSE, single predictors (top 10) 

S Cp 62 -412.7 6.45 Surgeon 
Nrb Cp 2 77.29 5.69 Number of risks (binned) 
Rrd Cp 1 43.04 3.11 Unspecified hypertensive renal disease (403.9) 
Rku Cp 1 39.63 2.91 Chronic kidney disease, unspecified (585.9) 
Ruh Cp 1 33.56 2.54 Other and unspecified hyperlipidemia (272.4) 
L Cp 6 -9.04 2.5 Location 
Ad Cp 27 -185.3 2.47 Admission diagnosis 
Ageb Cp 2 14.61 1.9 Age (binned) 
Raf Cp 1 11.46 1.2 Atrial fibrillation (427.31) 
Rhf Cp 1 10.79 1.16 Heart failure (428) 
MODEL df BIC % H Variable description 
COARSE, single predictors not in the top 10 but in AIC or BIC models below 

Rhd Cp (rank 12) 1 9.9 1.11 Other chronic pulmonary heart disease (416.8) 
Rro Cp (rank 18) 1 3.22 0.7 Rosacea (695.3) 
Reg Cp (rank 20) 1 1.95 0.63 Esophagitis (530.1) 
MODEL df BIC % H Variable description 
COARSE, best model (loopless) 

BIC (best model) 
Nrb Rku Cp 5 83.23 7.58 Number of risks (binned), Chronic kidney disease, unspecified (585.9) 
IncrP & AIC (same best model) 

Nrb Rhd Rku Cp 11 52.71 8.77 Number of risks (binned), Other chronic pulmonary heart disease (416.8), Chronic 
kidney disease (585.9) 

MODEL df BIC % H Variable description 
FINE, best models (with loops) 

BIC (best model) 

Ageb Cp : Nrb Cp : Ruh Cp:Rhd 
Cp : Rku Cp : Rro Cp 8 104.7 10.4 

Age (binned), Number of risks (binned), Other and unspecified hyperlipidemia 
(272.4), Other chronic pulmonary heart disease (416.8), Chronic kidney disease, 
unspecified (585.9), Rosacea (695.3) 

IncrP & AIC  (same best model) 

Ageb Cp : Nrb Cp : Ruh Cp: Rhd 
Cp : Reg Cp : Rku Cp : Rro Cp 9 104.2 10.88 

Age (binned), Number of risks (binned), Other and unspecified hyperlipidemia 
(272.4), Other chronic pulmonary heart disease (416.8), Esophagitis (530.1), 
Chronic kidney disease, unspecified (585.9), Rosacea (695.3) 

1154



 

The third best single predictor, Rrd, does not appear in the 
best fine-grained model either. Again, the information it 
would add is presumably not worth the additional complexity 
it would add. This explanation is supported by the fact that 
Rrd is well predicted by Ageb, Nrb, Ruh, Rhd, and Rku. In 
fact, Rku alone predicts Rrd with a % H of 53.14% 
demonstrating significant overlap between Rku and Rrd. This 
lack of independence between the IVs is analogous to 
collinearity among IVs in regression analysis. 

The next type of search considers models with loops which 
allows for multiple components that predict the DV. Unlike 
the best loopless models shown in TABLE 1, the best model for 
Cp now does not contain interaction terms. 

B. Model Fit 
Having found a best model, the next step is to analyze its 
detailed content- i.e., the conditional probability distribution 
for the DV, given the predicting IVs. This distribution is  
shown in TABLE 2 for the best fine-grained model Ageb Cp : 
Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp.  

 
TABLE 2  Fit Table for Best Model: Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp. Blue rows are for ratio < 0.90, orange rows for ratio > 1.10.  
IVs Data Model 

obs. p(DV|IV) calc. q(DV|IV) 
# Ageb Nrb Ruh Rhd Rku Rro freq Cp=0 Cp=1 Cp=0 Cp=1 ratio p(margin) 
1 1 1 0 0 0 0 502 99.00 1.00 99.11 0.89 0.19 0.00 
2 1 1 1 0 0 0 1 100.00 0.00 98.46 1.54 0.33 0.88 
3 1 2 0 0 0 0 457 98.69 1.31 97.77 2.24 0.47 0.01 
4 1 2 0 0 0 1 1 100.00 0.00 80.86 19.14 4.05 0.50 
5 1 2 0 0 1 0 2 100.00 0.00 91.86 8.14 1.72 0.82 
6 1 2 0 1 0 0 1 0.00 100.00 87.38 12.62 2.67 0.71 
7 1 2 1 0 0 0 34 91.18 8.82 96.17 3.83 0.81 0.81 
8 1 3 0 0 0 0 380 96.05 3.95 95.90 4.10 0.87 0.56 
9 1 3 0 0 0 1 1 100.00 0.00 69.34 30.66 6.48 0.22 
10 1 3 0 0 1 0 8 100.00 0.00 85.80 14.20 3.00 0.24 
11 1 3 0 1 0 0 2 100.00 0.00 78.75 21.25 4.49 0.27 
12 1 3 1 0 0 0 96 89.58 10.42 93.07 6.93 1.47 0.31 
13 1 3 1 0 0 1 1 100.00 0.00 56.47 43.53 9.21 0.07 
14 1 3 1 0 1 0 3 66.67 33.33 77.61 22.39 4.74 0.15 
15 1 3 1 1 0 0 1 0.00 100.00 68.01 31.99 6.77 0.20 
16 2 1 0 0 0 0 421 99.29 0.71 98.78 1.22 0.26 0.00 
17 2 1 0 1 0 0 1 100.00 0.00 92.78 7.22 1.53 0.91 
18 2 1 1 0 0 0 6 100.00 0.00 97.90 2.10 0.44 0.76 
19 2 2 0 0 0 0 420 96.91 3.10 96.96 3.04 0.64 0.10 
20 2 2 1 0 0 0 50 90.00 10.00 94.82 5.18 1.10 0.88 
21 2 3 0 0 0 0 349 93.98 6.02 94.47 5.53 1.17 0.48 
22 2 3 0 0 0 1 3 33.33 66.67 62.26 37.74 7.98 0.01 
23 2 3 0 0 1 0 10 60.00 40.00 81.51 18.49 3.91 0.04 
24 2 3 0 1 0 0 3 66.67 33.33 73.00 27.00 5.71 0.07 
25 2 3 0 1 1 0 1 100.00 0.00 41.10 58.90 12.46 0.01 
26 2 3 1 0 0 0 137 95.62 4.38 90.74 9.26 1.96 0.01 
27 2 3 1 0 1 0 9 44.44 55.56 71.66 28.34 5.99 0.00 
28 2 3 1 1 0 0 1 100.00 0.00 60.80 39.21 8.29 0.11 
29 3 1 0 0 0 0 376 97.87 2.13 98.11 1.90 0.40 0.01 
30 3 1 1 0 0 0 2 50.00 50.00 96.74 3.26 0.69 0.92 
31 3 2 0 0 0 0 447 95.08 4.92 95.32 4.68 0.99 0.96 
32 3 2 0 0 0 1 1 0.00 100.00 66.30 33.71 7.13 0.17 
33 3 2 0 0 1 0 7 100.00 0.00 84.01 15.99 3.38 0.19 
34 3 2 1 0 0 0 54 94.44 5.56 92.11 7.89 1.67 0.27 
35 3 3 0 0 0 0 341 90.62 9.38 91.60 8.41 1.78 0.00 
36 3 3 0 0 0 1 2 100.00 0.00 51.29 48.71 10.30 0.00 
37 3 3 0 0 1 0 28 75.00 25.00 73.77 26.23 5.55 0.00 
38 3 3 0 1 0 0 7 57.14 42.86 63.31 36.70 7.76 0.00 
39 3 3 0 1 1 0 1 100.00 0.00 30.81 69.19 14.63 0.00 
40 3 3 1 0 0 0 148 87.84 12.16 86.21 13.79 2.92 0.00 
41 3 3 1 0 0 1 1 0.00 100.00 37.65 62.35 13.19 0.01 
42 3 3 1 0 1 0 18 66.67 33.33 61.74 38.26 8.09 0.00 
43 3 3 1 1 0 0 2 50.00 50.00 49.74 50.26 10.63 0.00 
              4336 95.27 4.73 95.27 4.73 1.00   
# Ageb Nrb Ruh Rhd Rku Rro freq Cp=0 Cp=1 Cp=0 Cp=1 ratio p(margin) 
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The columns of the table are: the model number, to be able to 
refer to models easily; the six IVs in the model and their 
different states; the frequency of each particular IV (vector) 
state; the conditional probability p(Cp=0|IV) and p(Cp=1|IV) 
in the data given as percentages; these two conditional 
probabilities in the model, written as q(Cp=0|IV) and 
q(Cp=1|IV); the ‘risk ratio’ of q(Cp=1|IV) / q(Cp=1), i.e., the 
probability of complications for a particular IV state divided 
by the marginal probability of complications for the whole 
sample. So, for example, the first row specifies the IV state 
(Ageb, Nrb, Ruh, Rhd, Rku, Rro) = (1,1,0,0,0,0), which 
occurs 502 times in the sample, for which the conditional 
probabilities for the data (p) and the model (q) are given in 
percent, where risk ratio 0.19 = 0.89/4.73, and where the p-
value for the comparison of (99.11, 0.89) to the margins 
(95.27, 4.73) is 0. The ‘risk ratio’ conveys the effect size, 
while the p-value conveys the significance of the effect size.  

For the independence model, which is the reference, we do 
not know the state of Ageb or Nrb or if a comorbidity was 
present, so the uncertainty of the DV comes from its marginal 
distribution, which is the last line of the table, for which the 
data and model conditional probabilities are the same. For the 
calculated model, knowing the states of Nrb and Ageb and the 
presence or absence of individual comorbidity IVs (Ruh, Rhd, 
Rku, Rro) tells us about the probability of a complication 
occurring. Model conditional probabilities are more 
appropriate to use than data conditional probabilities because 
the model is simpler than the data and generalizes better.  

The marginal distribution (last line) of TABLE 2  shows that 
in the sample of 4,336 knee replacement cases, Complication 
(Cp=1) was present in 4.73% and absent in 95.27% of the 
cases. If the conditional probabilities for particular IV states 
are either higher or lower than the margins, then the IVs have 
provided new (predictive) information. Looking at TABLE 2 
shows a number of rows whose calculated probabilities are 
very different from the margins: the blue and orange shaded 
cells. Rows are highlighted if p(margin)  0.05 and frequency 
>10. Aside from very low-frequency IV states (rows 25, 39, 
and 41), the model distribution never predicts more than a 
50% chance of Cp = 1, i.e., it always predicts Cp = 0, which 
is just what the marginal distribution predicts even without 
any IV information. The additional information that the model 
provides beyond the independence model is the risk of 
complication occurrence. While there were no IV states with 
sizeable frequencies where q(Cp=1|IV) > 0.5, there are 
probabilities that are considerably different than the margins, 
which demonstrate a lower (< 4.73%) or higher (> 4.73%) risk 
of complications. These deviations from the risk of the overall 
sample are indicated by the risk ratio: when ratio is < 0.90 
(and statistically significant), risk is reduced (blue cells), 
compared to the margins; when ratio > 1.10 (and statistically 
significant), risk is increased (orange cells).  

Row 1, for example, shows a protective effect for age < 63 
(bin=1 for age binned, Ageb) and number of risks  1 (bin = 1 
for number of risks binned, Nrb) where the probability of 
Cp=1 is 0.89% (ratio = 0.19), markedly lower than the margin 
of 4.73%. Row 16 shows a similar protective effect, where 

even with age range 63-71 (bin = 2 for Ageb), as long as the 
number of risks  1 (bin = 1 for Nrb), the probability is 1.22%, 
which is lower than the margin (ratio = 0.26). Row 29 also 
offers a protective effect where even with age range 72-95 
(bin = 3 for Ageb) as long as the number of risks  1 (bin = 1 
for Nrb) then the probability of Cp=1 is still lower than the 
margin at 2.13% (ratio = 0.40). Row 3 shows that even where 
there is an increase in number of comorbidities with number 
of risks = 2 or 3 (bin = 2 for Nrb), when Ageb=1, there is still 
a protective effect with probability of Cp=1 of 2.24% (ratio = 
0.47). In each of these three cases where there was a 
protective effect, the four comorbidity IVs, Ruh, Rhd, Rku 
and Rro were all absent. To recapitulate: the results show that 
if these comorbidity IVs are absent and Nrb = 1, then Ageb 
can be in any of its 3 potential states and the risk is still low. 
Risk is also reduced if Ruh, Rhd, Rku and Rro are not present, 
even if there are more comorbidities present (Nrb = 2) if the 
age is low (Ageb = 1).  

Row 35 shows IV states that predict higher risk of Cp=1. 
With age range 72-95 (bin = 3 for Ageb), and number of risks 
between 4 and 18 (bin = 3 for Nrb), there is a higher 
probability of Cp=1, namely 8.41% (ratio = 1.78). In this 
state, there was no presence of one of the four comorbidity 
IVs (Ruh, Rhd, Rku & Rro). In row 23, however, with the 
presence of Rku and with lower age 63-71 (bin = 2 for Ageb), 
and with number of risks between 4 and 18 (bin = 3 for Nrb), 
the probability of Cp=1 is 18.49% (ratio = 3.91). Compare 
row 35 also with row 37 in TABLE 2 (freq = 28) where again, 
Ageb = 3 and Nrb =3 but Rku is present and we get a much 
higher risk ratio of 5.5, a 0.2623 probability of Cp=1 which is 
over 5 times the risk of the whole sample.   

A complication (Cp=1) was observed in 4.73% (205 
patients) of the 4336 patients in the knee data set, so this is the 
percentage of patients for which the independence model, 
which takes into account nothing about the patients or the 
healthcare delivery system, would thus predict complication. 
However, the best model from this analysis (Ageb Cp : Nrb 
Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp) identified several 
groups of patients who were at increased risk of Cp with 
particular combinations of IV states from the model. 
Considering these high-risk groups together, 15.73% of the 
total patients in the sample had an increased risk of 
complication. For these patients at increased risk, the weighted 
average risk ratio is 2.41; thus 11.40% (or 494 patients) out of 
that group (15.73% of the whole sample) would be predicted 
to experience a complication.  

IV. DISCUSSION & CONCLUSIONS 
Predictive models can augment clinical decision making 

by providing additional information. The models resulting 
from this research provide new information about risk for a 
sizeable proportion of the patient population. If used in real 
time, such risk predictions could support clinical decision 
making and custom tailored utilization of services.  

One of the purposes of this research project was to 
determine the variables that were the most predictive of each 
of the DVs. A sample of previously known-to-be-predictive 
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IVs were included in the data sets for this project; results 
validated many of these as important predictors while 
excluding others. Additionally, the exploratory modeling 
approach used in this project sought to detect novel or 
surprising IVs that may not have been hypothesized 
previously in the literature. Indeed, a number of novel IVs 
were found to be important. 

Future research might rectify the limitations of this 
project’s data and employ additional RA techniques and 
training-test splits. Implementation of predictive models 
should be discussed with considerations for data supply lines, 
maintenance of models, organizational buy-in, and the 
acceptance of model output by clinical teams for use in real 
time clinical practice.   

This project demonstrated that RA can be useful in the 
prediction of complications for knee replacement surgery. It 
also has implication for broader testing and applications. RA 
is likely to be useful for constructing predictive models for 
other outcomes of interest and in other clinical areas. 

If outcomes and risk are adequately predicted, areas for 
potential improvement become clearer, and focused changes 
can improve patient care. Better predictions, such as those 
resulting from the RA methodology, can thus support 
improvement in healthcare value – better outcomes at a lower 
cost.  

As reimbursement increasingly evolves into value-based 
programs, understanding the outcomes achieved, and 
customizing patient care to reduce unnecessary costs while 
improving outcomes, will be an active area for clinicians, 
healthcare administrators, researchers, and data scientists for 
years to come. 
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