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• ABSTRACT: This paper reports the analysis of data on traumatic brain 
injury using a probabilistic graphical modeling technique known as 
reconstructability analysis (RA). The study shows the flexibility, power, 
and comprehensibility of RA modeling, which is well-suited for mining 
biomedical data.  

• One finding of the analysis is that education is a confounding variable 
for the Digit Symbol Test in discriminating the severity of concussion; 
another – and anomalous – finding is that previous head injury predicts 
improved performance on the Reaction Time test. This analysis was 
exploratory, so its findings require follow-on confirmatory tests of their 
generalizability. 

  

1. Exploratory modeling with RA (Occam) 

2. Results on Preece data set 
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1. Exploratory modeling with RA (Occam)  
• Most biomedical data analyses are confirmatory, 

testing only specific hypotheses. Since studies are 
expensive & time-consuming, it is useful to explore 
what else might be discovered in the data. 

• Exploratory studies can find unexpected effects, 
especially non-linear & many-variable interactions 
(which should, however, then be tested in confirmatory 
mode with new data). 

• Exploratory studies (by data analysts) are unbiased.  
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Why RA & Occam software  

• Explicitly designed for exploratory modeling 
– Analyzes both nominal & continuous (binned) variables 
– Easily interpretable; standard text input; web-accessible, 

emails results to user 
 

• Other statistical & machine-learning methods (log-
linear, logistic regression, Bayesian networks, classification trees, 
support vector machines, neural nets) not well designed for 
exploration, or have limited model types, or have 
difficulty with nominal variables or with stochasticity 
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• Reconstructability Analysis (RA) = Information 
theory + Graph theory 

  
• RA model = a hypergraph applied to data 
  
 

                  = a (joint or conditional) probability 
distribution simpler (fewer df) than the data, 
capturing much of the information in the data 

 
 

 

What RA is  



7 

 
• Neutral search (clustering): find relations among all variables 

    (not discussed here) 
 

• Directed search (classification): predict DV from IVs. Want: 
– High accuracy (information captured) (low error) measured by 

• %∆H = % reduction of uncertainty (like variance) 

• %c    = % correct in prediction (a general measure) 

– High model simplicity (low complexity) = low ∆df  
 

– Model selection criteria trade off these two objectives 
 

 

Two types of RA explorations   
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Model selection criteria   

Tradeoff between accuracy & simplicity (error & complexity) 

• Conservative: Bayesian Information Criterion (BIC) 

• Aggressive:   Akaike Information Criterion     (AIC) 

                      Incremental p-value               (IncrP) 
 
 

• AIC & BIC: linear combinations of error & complexity; BIC penalizes 
more for complexity: weights it by ln(N) 

 

• IncrP uses Chi-square p-values to pick models whose difference from -- 
& every incremental step from -- independence is statistically significant 
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• Reduction of uncertainty (Shannon entropy), a simple example 
 

 
 
 
 

• p(Z1)/p(Z0)= 1:1, not knowing A → 2:1 or 1:2, knowing A 
 

• Reduction of uncertainty = ∆H(Z|A) = T(A:Z) / H(Z) = 8% 
 

• 8% reduction in uncertainty (here) is large (unlike variance!)  

 Z0 Z1  
A0 .67*.5 .33*.5 .5 
A1 .33*.5 .67*.5 .5 

df=3 .5 .5  
 

H(A) H(Z) 

T(A:Z) 

 
 
 
 

Uncertainty reduction: primary measure   
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Degrees of refinement of RA model search   

3 degrees of search refinement (IVs: A,B,C…; DV: Z ) 
 

• Coarse search: variable-based models w/o loops, e.g., A B Z 

                                        Fast, can handle many variables 
 

• Fine search:  variable-based models with loops,   e.g., A B Z : B C Z 

                                    Slow, can handle 100s of variables 
 

• Ultra-fine search: state-based models, e.g., A2 B1 Z : B0 Z 

                                            Very slow, less than 10 variables 
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Degrees of refinement of RA model search 
 

No loops 
COARSE 

With loops 
FINE 

State-based 
ULTRA-FINE 

Complexity 

(degrees of 
freedom) 

Variable-based 
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# variables 2 3 4 5 6 7 
7# neutral VB models (loops) 2 9 114 6,894 7,785,062 2.4 1012 
     For 1 DV:       
# directed VB models (loops) 2 5 19 167 7,580 7.8 106 
# directed VB models (no loops) 2 4 8 16 32 64 

     For binary variables:       
# neutral SB models (loops) 14 even more severely exponential 
 

    
 

NEED INTELLIGENT HEURISTICS TO DO EXPLORATORY 
MODELING with 52 variables (# variables in Preece data) 
 
Can now explore a few 100 variables; if parallelized could deal with more. 
 

Combinatorial explosion of possible models 
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Independence model (reference) 

complexity 

Searching the space of possible models   
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• Automobile accident data: 52 variables 
 

• Variable types 
– P = patient characteristics (17 variables) 
– Y = symptoms (25): subjective reports 
– G = signs (4): objective indicators 
– C = cognitive deficits (5) 
– N = neurologic deficits (1) 

 

• N = 337; reduces to 175 or less if exclude missing data 

2. Application to Preece data  
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Variables (1/3)  

• Patient (P) variables (17) 

pinjgrp,5, pij Injury Group: TBI patient or control (orthopedic injury)
page,7, pag age
psex,2, psx sex
pyred,6, pye years of education
pedlevel,8, ped highest level of education
puhrsleep,5, pul usual # of hrs of sleep: less than or greater than normal (8 hr)
precentill,3, pri recent illness 0 no 1 yes
pmedication,3, pmd current medications 0 no 1 yes
ppainkller,3, ppk currently on painkillers 0 no 1 yes
ppreheadinj,3, pph have they had previous head injury 0 no 1 yes
pprecon,3, ppc previous concussion 0 no 1 yes
pnumprecon,8, pnp how many previous concussions
pdbqerror,13, pqe Driver Behavior Questionaire self reported driving errors/violation
pdbqviol,14, pqv Driver Behavior Questionaire violations
plitigat,4, plg was the case litigated
prespacc,6, pac who was responsible for the accident
pfsiq,5, piq full scale IQ calculated from national adult reading test
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Variables (2/3)  

• Symptom (Y) variables (25) 

ypainscale,5, ypn standard painscale used by hospitals
yemoscale,5, yem sacle defining emotional state(0 no problems 1 few 2 moderate 3 many problems)
ydassd,5, ydd Depression Anxiety Stress Scales: depression
ydassa,6, yda Depression Anxiety Stress Scales: anxiety
ydasss,4, yds Depression Anxiety Stress Scales: stress
yheadache,6, yhs Rivermead    headache
ydizz,5, ydz Rivermead    dizzy
ynausea,5, yna Rivermead    nausea
ynoisesens,6, yns Rivermead    noise sensitivity
yslpdis,6, ysd Rivermead    sleep disorder
yfatigue,6, yfa Rivermead    fatigue
yirritable,6, yir Rivermead    irritable
ydepressed,5, ydp Rivermead    depressed
yanxious,6, yax Rivermead    anxious
yfrustrated,5, yfr Rivermead    frustrated
yforgtful,6, yfg Rivermead    forgetful
ypoorconc,6, ycn Rivermead    poor concentration
ylongthink,6, ytk Rivermead    long time to think
yblurredvis,6, ybr Rivermead    blurred vision
ylightsens,5, yls Rivermead    light sensitivity
ydoublevis,6, ydv Rivermead    double vision
yrestless,6, yrs Rivermead    restless
ydazed,5, yaz Rivermead    dazed
yrivmead,5, yrm summation of Rivermead post concussion symptom questionaire
ycrrectedvis,3, ycv corrected vision
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Variables (3/3)  

• Sign (G) & Deficit (C, N) variables (4, 5, 1) 
 

ghrssleep,5, ghl number of hours of sleep, divided in less than normal normal=8hr and greater than normal
ggcs,4, ggc Glasgow coma scale a measure of level of unconsciousness; lower = deeper unconsciousness
gextcause,8, gxc external cause of the injury
gpta,3, gpt post traumatic amnesia

chazpt,10, chp hazard perception test measures how quickly potential driving hazards are predicted
cnormsrt,6, cnr Spatial Reaction Time normalized for age and sex
cspatialreac,6, csr Spatial Reaction Time tests how quickly patient responds to a visual stimuli
cdgtcorrect,7, cdg Digit Symbol Substitution neuropsychological test
cstarcan,4, csc Star Cancelation Test a test of spatial neglect

nlogmar,4, nlr LogMAR   Logarithm of the Minimum Angle of Resolution: a visual acuity test
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Occam input file (partial) (note missing data) 
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Directed searches 

• Predicting cognitive, neurological deficit variables 
• #bins excludes missing values 

 #bins N

cdgtcorrect 6 Cdg 255 Digit Symbol Substitution neuropsychological test

cnormsrt 6 Cnr 210 Spatial Reaction Time normalized for age and sex
cspatialreac 6 csr 214 Spatial Reaction Time test: how quickly patient responds to visual stimuli

nlogmar 3 Nlr 209 LogMAR   Log of Minimum Angle of Resolution (visual acuity)
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Cdg coarse, fine, ultra-fine searches  
Predict Cdg: digit symbol substitution test (rebin |Cdg| = 2: ~ 50-50) 

MODEL (IV component omitted) ∆df p %∆H %c
COARSE, single predictors ∆BIC N=240
Pij Cdg 3 0.00 11.9 68.3 47.6 patient injury type
Ped Cdg 7 0.00 11.7 65.0 5.9 education level
Ggc Cdg 3 0.00 5.6 65.0 18.3 Glasgow coma scale
Cnr Cdg 5 0.00 3.5 60.8 6.1 spatial reaction, normalized
Pye Cdg 1 0.00 3.0 68.3 27.9 years education
Csr Cdg 5 0.00 2.5 63.3 0.4 spatial reaction
Cdg (independence=reference)                     0 1.00 0.0 50.8 0
FINE Criterion N=240 |Cnr|=6, incl missing
Pij Cdg : Pye Cdg 4 0.00 25.5 72.9 BIC
Pij Cdg : Pye Cdg : Cnr Cdg 9 0.00 32.8 76.7 AIC
Pij Cdg : Psx Cdg : Pye Cdg : Cnr Cdg 10 0.00 32.9 76.3 IncrP sex
ULTRA-FINE (state-based model) N=175 |Cnr|=2, no missing
Pij2 Cnr1 Cdg : Pye0 Cdg 2 0.00 13.5 68.6 BIC
Cdg (independence=reference)          0 1.00 0.0 50.9
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Model: Pij2 Cnr1 Cdg : Pye0 Cdg 

Odds (high is good) = Cdg1/Cdg0(model) = p(high digit score)/p(low score) 
Pij1 control (orthopedic), Pij2 mild head injury; Pye0 low years educ.; Cnr0 = fast reaction 
 

         conditional probabilities of DV 
               IV states data model 

Pij Pye Cnr N Cdg0 Cdg1 Cdg0 Cdg1 Odds p 
1 0 0 18 0.50 0.50 0.59 0.41 0.7 .41 
1 0 1 22 0.68 0.32 0.59 0.41 0.7 .36 
1 1 0 38 0.21 0.79 0.27 0.73 2.7 .01 
1 1 1 20 0.35 0.65 0.27 0.73 2.7 .05 
2 0 0 15 0.53 0.47 0.59 0.41 0.7 .45 
2 0 1 24 0.88 0.13 0.86 0.14 0.2 .00 
2 1 0 18 0.33 0.67 0.27 0.73 2.7 .06 
2 1 1 20 0.60 0.40 0.62 0.38 0.6 .26 

175 0.49 0.51 0.49 0.51 1.0 

Cdg ultra-fine (state-based) model 3/3  
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Digit Symbol score odds (prob. high performance/ prob. low performance) & 
p-values relative to marginal prob. (odds = 1):  

.6  .26 

2.7  .06 

low 

high 

Years education 

fast 
mild head 

control 
(orthopedic) 

Patient injury 

.7  .22 

low 

high 
Years education 

2.7 .00 

Reaction time 
.7  .45 

.2  .00 slow 

fast 

slow 
Reaction time 

Cdg decision tree from conditional probabilities 
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• For all patients, education predicts performance on digit 
symbol test: more education predicts better performance. 
– Education is a confounding variable for digit symbol test in 

discriminating concussion, & must be controlled for  
 

• For controls (orthopedic injury), reaction time does not 
predict digit symbol score. 
 

• For TBI patients, fast reaction time predicts better digit 
symbol performance beyond influence of education. 

 

Cdg decision tree, verbally  
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Cnr coarse, fine, ultra-fine searches  

Predict Cnr: reaction time, normalized by age, sex (rebin |Cnr| = 2: ~ 50-50) 

MODEL ∆df p %∆H %c N=175
COARSE, single component predictors
Cdg Gpt Cnr 3 0.00 10.6 64.6 BIC, AIC  Cdg = digit symbol test
Pph Cdg Gpt Cnr 7 0.00 13.1 66.9 IncrP  Gpt = amnesia
Cnr   (independence=reference)                     0 1.00 0.0 50.9  Pph = previous head injury
FINE
Cdg Cnr : Gpt Cnr 2 0.00 8.8 64.6 BIC
Pri Cnr : Pph Cnr : Cdg Gpt Cnr 6 0.00 14.7 70.3 AIC  Pri = recent illness
Pye Cnr : Pph Cnr : Cdg Gpt Cnr 5 0.00 12.9 67.4 IncrP  Pye = years education

ULTRA-FINE (state-based model)
Pph1 Cdg1 Cnr : Cdg0 Gpt1 Cnr 2 0.00 12.4 64.8 BIC
Cnr   (independence=reference)                     0 1.00 0.0 50.9
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Model: Pph1 Cdg1 Cnr : Cdg0 Gpt1 Cnr 

Odds (high is good) = Cnr0/Cnr1(model) = p(fast = normal reaction)/p(slow) 
Pph1 previous head injury, Cdg1 high digit score; Gpt1 amnesia 
 

          conditional probabilities of DV 
              IV states data model 

Pph Cdg Gpt N Cnr0 Cnr1 Cnr0 Cnr1 Odds p 
0 0 0 20 0.40 0.60 0.52 0.48 1.1 .92 
0 0 1 19 0.16 0.84 0.16 0.84 0.2 .00 
1 0 0 30 0.57 0.43 0.52 0.48 1.1 .90 
1 0 1 18 0.17 0.83 0.16 0.84 0.2 .00 
0 1 0 24 0.50 0.50 0.52 0.48 1.1 .91 
0 1 1 13 0.61 0.39 0.52 0.48 1.1 .93 
1 1 0 38 0.76 0.23 0.73 0.27 2.7 .01 
1 1 1 14 0.64 0.36 0.73 0.27 2.7 .09 

176 0.51 0.49 0.51 0.49 1.0 

Cnr ultra-fine model  
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Reaction time Odds (probability fast/ probability slow)  
& p-values relative to marginal prob. (odds = 1)  

no 

yes 

Previous head injury 
normal 

low 

Digit symbol score 

no 

yes 

Amnesia 

2.7 .01,.09 

1.1  .91 

.2 .00 

Cnr decision tree from conditional probabilities 

1.1  .92 
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• For low performance on digit symbol test, amnesia 
predicts slow reaction time. 
 

• For normal performance on digit symbol test, previous 
head injury increases the probability of fast (normal) 
reaction time.  THIS IS ANOMALOUS.  
– Need to see if it would be replicated in another data set.  
– Possible explanation: prior exposure to Reaction Time test 

introduces a practice effect. 
– If Reaction Time is so vulnerable to a practice effect, then it’s 

probably not an appropriate measure to discriminate concussed 
from non-concussed patients. 
 

 

Cnr decision tree, verbally  
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Summary  

• This secondary analysis yields intriguing new results. 
• Since study is exploratory, these results are tentative, 

needing confirmation with other data sets. 
 

• Study should be expanded to additional data sets 
(accident, military, sports), with higher N, fewer missing 
data, new variable types (imaging, genomic, proteomic). 
 

• Work is collaborative with investigators who share data. 
  
• Occam is open to researchers, web-accessible 
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RA (DMM) web page 
http://pdx.edu/sysc/research-discrete-multivariate-modeling 

http://pdx.edu/sysc/research-discrete-multivariate-modeling


• Thank you. 
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