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Abstract—Reconstructability Analysis (RA) is an information- and
graph-theory-based method which has been successfully used in
previous genomic studies. Here we apply it to genetic (14 SNPs) and
non-genetic (Education, Age, Gender) data on Alzheimer disease in a
well-characterized Case/Control sample of 424 individuals. We
confirm the importance of APOE as a predictor of the disease, and
identify one non-genetic factor, Education, and two SNPs, one in
BINI and the other in SORCS1, as likely disease predictors.
SORCSL1 appears to be a common risk factor for people with or
without APOE. We also identify a possible interaction effect between
Education and BINI. Methodologically, we introduce and use to
advantage some more powerful features of RA not used in prior
genomic studies.

Keywords: Reconstructability Analysis, Alzheimer Disease,
genetics, bioinformatics, OCCAM

I. INTRODUCTION

The genetic component to complex human diseases can
include direct effects of single genes or multiple genes acting
independently, the epistatic interaction of multiple genes, and
the interaction of genes with the environment. Detecting these
interactions with standard statistical tools is difficult, because
effects may be small or very complex or because there may be
interaction effects where there are minimal or no main effects.

Significant advances have been made over the last two
decades in developing analytic methods and bioinformatics
tools for detecting single genes that are necessary for, or
contribute to, human diseases. For the most part, however,
diseases with a “simple” genetic etiology are relatively rare.
Common diseases (e.g., hypertension, cancer, dementia) are the
result of DNA sequence variations in multiple genes, at least
some of which may interact in a non-additive, or epistatic,
fashion, and thus have a substantially more complex genetic
etiology. Early genome-wide association results have identified

associations with only modest main effects. To account for
highly familial traits, there are many more loci with very
modest main effects, more rare variants with larger effects, or
gene-gene and/or gene-environment interactions that are a
more prominent element of the genetic component of these
diseases. For example, despite recent advances in the use of
genome-wide association studies (GWAS) to identify genetic
variants, or SNPs, associated with Alzheimer disease (AD),
variants identified to date have modest main effects and
account for only a fraction of the genetic risk.

Reconstructability Analysis (RA) is an information- and
graph-theory-based method that is superior to current methods
in several respects. Prior work has shown that RA is capable of
detecting low levels of genetic interactions, despite high noise
levels, in simulated data, reliably detecting interactions in
heritabilities as low as 0.008, with as many as 50 noise genes
[1]. RA outperformed earlier work which used neural nets [2]
and multifactor dimension reduction [3]. Further, in single
SNP tests on real data on diabetes, RA closely approximated
results obtained by traditional linkage analysis in predicting
both case/control status [4] and non-parametric linkage (NPL)
categories [5]. In cross-chromosome tests [6], RA confirmed
the association between the chr2 NIDDM1 region and the chrl5
CYP19 region, and detected a multi-SNP association between
NIDDM1 and CAPNS3 on chrl5 [7], supporting the suggestion
that CAPN3 contributes to susceptibility to diabetes [8]. Based
on our past success with the diabetes dataset, in this paper we
use RA to investigate genetic and non-genetic factors and gene-
gene epistasis in AD. Our goal is to extend our understanding
of Alzheimer disease and to confirm earlier studies that
demonstrated the usefulness of RA.
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II.  RECONSTRUCTABILITY ANALYSIS

Reconstructability analysis (RA) is an information- and
graph-theoretic methodology originated by Ashby [9] and
further developed by others [10]-[17]. An account of its origin
[18] and compact summaries [19], [20] are also available. In
RA, a probability or frequency distribution or a set-theoretic
relation is decomposed into component distributions or
relations [21]. When applied to the decomposition of frequency
distributions, RA does statistical multivariate analysis and
resembles log-linear (LL) methods [22], used widely in the
social sciences, and closely related logistic regression (LR)
techniques. RA also overlaps with Bayesian networks (BN).
Where these methodologies overlap, they are mathematically
equivalent. However, RA, LL, and BN each have unique
capacities not commonly available in the other two [23]. For
example, RA, but not LL or BN, can be applied to set-theoretic
relations and to arbitrary functions of nominal variables; RA
also has a state-based version [24], [25], a finer-grained
modeling approach than the standard variable-based approach,
and also a Fourier version [26]. RA and LL, but not BN, can
utilize models with loops and can address not only problems
where IVs (independent variables, inputs) and DVs (dependent
variables, outputs) are distinguished (called directed systems),
but also problems where this distinction is not made (neutral
systems). LR, as implemented in PLINK [27], which is widely
used for genomic analysis, is less general than RA. Both RA
and BN explicitly conceptualize the lattice of graphical models
and have been computationally adapted for exploratory
modeling, which is not as easily done in LL and LR. However,
all these methodologies are inherently designed for nominal
variables, and are thus natural for analyzing genomic data.
(They can also be applied to quantitative or ordinal variables by
binning.) By contrast, certain other machine learning methods
such as neural nets [2], [28] or support vector machines [29],
presuppose metric information and are thus less inherently
suited for genomic analyses.

The following discussion summarizes the basic ideas
of RA. Consider a directed system with IVs (genes or SNPs or
covariates) A, B, C, and D, and DV the disease status Z.
Consider an observed frequency distribution f(A, B, C, D, Z)
which we write as ABCDZ. RA decomposes such a
distribution into projections such as ABCD and ABZ, which
when taken together define an RA model m = ABCD:ABZ that
is less complex (fewer degrees of freedom) than the data. This
model defines a calculated frequency (or probability)
distribution ABCDZ,, obtained by maximum entropy
composition of ABCD and ABZ, which is compared with the
observed ABCDZ. While the data itself, ABCDZ, also called
the “saturated model,” allows all four IVs to jointly predict Z,
the ABCD:ABZ structure allows only A and B to jointly
predict Z, with C and D having no predictive relationship with
Z. A and B predict Z via the conditional probabilities p,,(Z|AB)
derived from the ABCDZ,, distribution. (In all models, the
order of the components and the order of the variables within
each component is arbitrary, so, for example, ABCD:ABZ =
BZA:CDBA.) The ABCD component of ABCD:ABZ assures
that models that will be compared to one another all involve the
same set of variables and will be hierarchically related; it also
allows — but does not identify — associations between the IVs
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themselves. For visual simplicity, this component that includes
all the I'Vs is omitted in models described below.

If ABCD:ABZ is a good model, one can equivalently
say that the “transmission” or “mutual information” T,,(AB:Z)
= H(Z) — H(Z|AB) is high, while the transmission T,,(CD:Z)
is low. H is uncertainty (Shannon entropy), so transmission
here is reduction of uncertainty about Z. Dividing T,,(AB:Z)
by H(Z) (and multiplying by 100) gives %AH,,(Z|AB), the
%uncertainty reduction of Z, knowing A and B. Uncertainty
reduction for nominal variables is analogous to %variance
explained for continuous variables, but one difference between
the two is that because of the logarithm term in the expression
for Shannon entropy even a small uncertainty reduction can
correspond to a large effect size. For the reference
“independence” model ABCD:Z, in which no IV predicts Z,
%AH,(Z) = 0. Uncertainty reduction can be assessed for
statistical significance with the Chi-square distribution.

Because uncertainty reduction is an information
theoretic measure of predictive efficacy that is not calculated
by most other methods, it is useful to supplement it with
%correct, a generic measure of predictive accuracy that is
commonly produced by most modeling methods. %correct
roughly follows uncertainty reduction, but the two are not
precisely co-linear.

For the purposes of this study, there are three different
classes of RA models: variable-based (VB) models without
loops, variable-based models with loops, and state-based (SB)
models. These allow coarse, refined, and ultra-refined
modeling, respectively, graphically depicted in Figure 1 [23].
Conversely, these three classes are applicable to many
variables, a modest number of variables, and few variables,
respectively. The bold lines in the figure indicate how complex
a model might be acceptable using each class of model

A
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Figure 1. Degrees of refinement of RA models.

Models such as ABCDZ, ABCD:ABZ, and AB:Z each
have a “single predicting component,” i.e., a component that
includes Z and only one subset of the IVs and whose
probability distribution is used to predict Z. Such models are
loopless, and do “feature selection” or “dimensionality
reduction.” By contrast, consider model ABCD:ABZ:CDZ; its
the second and third components allow Z to be predicted by A
and B jointly and also, separately, by C and D jointly. The two
predicting components are integrated by a maximum entropy
algorithm, and from the integrated (calculated) distribution, one
obtains the conditional distribution for the model,
pm(Z|ABCD). This conditional distribution is different from
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the conditional distribution obtainable directly from the data,
and it is the calculated distribution that is used for prediction.

Since a model includes a non-predicting component
containing all the IVs (e.g., ABCD in model ABCD:ABZ),
models with more than one predicting component necessarily
have loops. (The simplest example of a two predicting
component model that has a loop is BA:AZ:ZB.) For loopless
models with a small number of predicting IVs, one can easily
examine all possible structures. However, with more than a few
variables, exhaustive evaluation of all models becomes
prohibitive if models with loops are considered, since these
models do not have algebraic solutions but require iterative
computation [26] .

The models discussed above are “variable based”, i.e.,
defined in terms of subsets of variables. RA also includes
“state-based” models [24], such as ABCD:A;B,Z:B,CsZ,
which are instead defined at least partially in terms of
information-rich specific states of variables, the states being
indicated by subscripts. In this study, a SNP state codes a
diploid genotype, i.c., the genotype homozygous in one allele is
coded as state 1, heterozygous genotypes as state 2, and the
genotype homozygous in the other allele as state 3. Z encodes
case (Z=1) vs. control (Z=0). The A;B,Z component in the
above model means that p,,(Z;|A|B,) is significantly different
than p(Z,) i.e., that genotype AB, is at higher or lower risk for
disease than average. (This could be expressed in terms of
p(Zy); since Z has two states, pm(Zo| A1B2) = 1- pm(Z1|A1B,).)
State-based RA resembles multifactor dimensionality reduction
(MDR), which has been used to study epistasis [30], and some
implementations of logistic regression. Most state-based
models have loops, but a definitive algorithm for loop detection
in this class of models has not yet been established.

Variable-based models with or without loops and state-
based models can be evaluated in terms of uncertainty
reduction, which is tested for significance relative to
independence with a Chi-square p-value. Consider choosing
the model with the greatest uncertainty reduction that is
significant in this way. This “Cumulative-p” criterion,
however, always overfits, and needs to be augmented by the
more stringent condition that every step from independence is
statistically significant. This is one way to select a best model,
namely the most uncertainty-reducing model which is
cumulatively significant and whose path from the
independence model is also significant at every step. We call
this the “Incremental-p best model.” We also use two other
criteria to define best models: BIC, the Bayesian Information
Criterion [31], and AIC, the Akaike Information Criterion [32].
All three criteria penalize the model for complexity (Adf
relative to independence), i.e., trade off uncertainty reduction
and model simplicity, in different ways. AIC and BIC integrate
these two considerations linearly, quite different from the way
they are integrated in a Chi-square p-value calculation. Of
these three criteria, BIC is the most conservative, penalizing
complexity the most severely, so the interactions in the BIC
best model are the most reliable. Incremental-p and AIC are
less conservative criteria that select more complex models;
sometimes Incremental-p selects a more complex model than
AIC; sometimes the reverse is true. BIC never overfits; AIC or
Incremental-p sometimes overfit. In this study, what is actually

3

calculated is AAIC = AIC(reference) — AIC(model), similarly
for ABIC; good models have high AAIC or ABIC.

Like other methods, RA allows one to control for particular
IVs. For example, a high T(A:Z) says that A predicts Z, while
a high Tc(A:Z) = T(AC:CZ) says that A predicts Z even when
controlling for C. Tc(A:Z) = H(Z|C) — H(Z|AC), so A predicts
Z even when controlling for C when the uncertainty of Z
knowing C is reduced by knowing also A. The significance of
this reduction can be assessed by a Chi-square p-value.
Controlling for some variables while calculating associations
between others is easiest to grasp for loopless models, but it
can also be applied to models with loops.

Calculations were done using the RA software program
developed at Portland State University (Portland, Oregon)
called OCCAM (named for the principle of parsimony and also
“Organizational Complexity Computation and Modeling”). The
earliest program was developed by Zwick and Hosseini [33];
reviews of RA methodology [19], [20], a list of recent RA
papers, an OCCAM manual [34] and a description of OCCAM
architecture [35] are available.

III. METHODOLOGY

A. The Data

Subjects were recruited from aging research cohorts
collected over twenty years at the Layton Aging and
Alzheimer’s Center at Oregon Health & Science University
(OHSU) (Portland, Oregon). Stringent criteria were used to
ascertain well-characterized cases and controls. All subjects
were deceased and had been evaluated for cognitive decline
and dementia within 12 months prior to death. In addition, all
were at least 65 years of age at the time of death, had an
autopsy, were of Caucasian ancestry and had DNA available
for SNP genotyping. Controls were defined as clinically non-
demented individuals with autopsy confirmation of no AD
neuropathology, and cases were defined as clinically demented
individuals with autopsy-confirmed high levels of AD
neuropathology. A total of 437 individuals met these criteria.
The study was approved by the IRB at OHSU.

Genome-wide SNP data for all subjects was obtained from
the NIH-sponsored Alzheimer Disease Genetics Consortium
(ADGC). Imputed genotypes, provided by the ADGC, were
used to replace any missing data. For this study, we selected 15
SNPs , most of which represent genes that have been reported
to be associated with AD in published genome-wide
association studies (GWAS) (as summarized on the Alzforum
website, www.alzgene.org). One SNP and 13 subjects were
dropped due to excessive missing data, yielding an initial data
set with a sample size of 424, including 221 cases and 203
controls. Missing data for which no imputed data was available
were then handled in two different ways: (1) they were
excluded from the data, i.e., these subjects were also dropped,
slightly reducing the sample size further, or (2) they were
treated as a fourth genotype. When (1) was used, this is noted
in results below; otherwise (2) was done.

B. Analysis
Our strategy involved the following four steps.
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Step 1: We looked at variable-based loopless models to see
what these models suggest about the most predictive single
IVs.

Step 2: We then searched among variable-based models
with loops, and proposed three best models for the AD data
using the three criteria of BIC, AIC, and Incremental-p. These
models are the principal results of this study.

Step 3: In the models of Step 2, both direct and indirect
effects of the IVs on Z (CaseControl) can contribute to the
interactions that were found, so we did a series of calculations
where we controlled for one or more of the IVs while looking
for associations of the remaining Vs with Z.

TABLE I. VARIABLES
Variable 1D Gene  Chromosome Comment
Name
APOE Ap APOE 19 1 = Allele 4 present;
0 = absent
Gender Sx n/a 1=M,0=F
Education Ed n/a Grade: 0=<9, 1 =9-12,
2 =>12 years
Age at last Ag n/a 0=60<75, 1 =75<90,
examination 2 =90+ years
rs1801133 A MTHFR 1
rs3818361 B CR1 1 Missing 3
rs7561528 C BIN1 2
1744373 D  BINI 2
1s6943822 E RELN 7
154298437 F RELN 7
rs7012010 G CLU 8
rs11136000 H  CLU 8
rs10786998 J SORCS1 10 Missing 9
rs11193130 K SORCS1 10 Missing 11
rs610932 L MS4A6A 11
rs3851179 M PICALM 11
1rs3764650 N ABCA7 19 Missing 2
rs3865444 P CD33 19 Missing 9
CaseControl  Z n/a Case =1, Control =0
Step 4: Finally, narrowing our IV set to the four salient

predictors from the previous three steps, we looked at state-
based models to see if these models suggested interaction
effects. Since state-based models are more refined (specific)
and thus more powerful than variable-based models even with
loops, it is possible that these models can pick out interactions
that are too subtle to be detected with variable-based models.

All statistical tests in this paper used a 0.05 cut-off for
significance. The p values reported in the tables below are
“cumulative” p-values, i.c., tested for the model compared to
the independence model. The tables also indicate whenever

4

models listed are not incrementally significant, i.e., significant
for each step ascending from the reference of independence.

This study differs methodologically from our previous use
of RA to analyze diabetes data [7] in two ways: (1) There we
utilized only variable-based models without loops, while here
we exploit the more powerful variable-based models with loops
and state-based models. (2) Here we also use RA methods for
controlling for some variables by looking at conditional
associations and by partitioning the data into separate values of
important variables, specifically Ap.

IV. RESULTS

Step 1. An examination of the simplest loopless models,
namely those with a single predicting IV, yielded the following
table (Table II) of the reduction of the uncertainty of Z, given
the IV. The table reports all IVs whose p-value < 0.05. As
expected, APOE (Ap) is the top uncertainty reducer. The next
most predictive IV, Education, reduces uncertainty much less.

TABLE II. BEST SINGLE [V PREDICTORS OF CASECONTROL
v %AH(Z|IV) p %correct
Ap 9.1 0.000 67.3
Ed 3.5 0.000 56.7
C 2.6 0.001 57.9
K 2.5 0.001 56.4
J 1.5 0.015 54.7
Ag 1.2 0.036 55.7
L 1.1 0.047 545
none  -- - 51.8

Subjects with missing J and K values were excluded here; sample size = 413.

After that, SNPs C and K are less predictive than Ed. This
is followed by Age and SNP L. The next best predictors, SNPs
A and G (these are variable names, not alleles), with p [ 0.05,
are weaker still; these are not included in the table, but do show
up in a model discussed below. In addition to reporting
uncertainty reductions, we report the %correct that predictions
achieve. The bottom entry of the table indicates that the
independence model (which doesn’t reduce uncertainty of Z at
all) has %correct = 51.8; this is the result of always predicting
the majority state of Z, which in our data is Control.

Of the seven IVs listed in the table, J and K, which are in
the same gene, are extremely tightly associated, with %AH of
89.2% or 88.4%, depending on which of the two is used to
predict the other, and with %correct in predictions (both ways)
0f 97.3%. Despite this close association K is a better predictor
of Z than J. (That this shows up much more strongly in %AH
than in %correct is due to the log term in the former measure.)
Given this tight association, one of the two can be omitted from
further consideration; we chose J to be dropped. Each of the
SNP pairs, C and D, E and F, and G and H are similarly in a
single gene and are tightly associated; again, one of each pair is
more predictive of Z, namely C, E, and G.
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Step 2. Searching among models with loops yielded the best
variable-based models listed in Table III. (For visual simplicity,
in this table and in the rest of this paper, the model component
that includes all the IVs is omitted.) The BIC model is the most
solid result of this study. If we had considered only models
without loops, the BIC model would have been simply ApZ,
i.e., we would have missed the importance of Ed and K. This
illustrates the point made by Figure 1.

TABLE III. a
BEST VARIABLE-BASED MODELS USING THE THREE CRITERIA
Criterion Model %AH % b
Correct p
BIC ApZ:EJdZ:KZ 15.6 70.5 5 0.00
AIC ApAZ:EdZ:KZ:CZ 19.8 73.4 11 0.00

Incremental-p ApZ:EdZ:KZ:CZ:LZ 183 71.2 9 0.00

a. Subjects missing K values were excluded; sample size =413. b. The p-value is the cumulative p
relative to independence. All three models are incrementally significant.

The BIC model includes the 1%, 2™, and 4™ best single IV
predictors of Z shown in Table II. The two less conservative
criteria, namely AIC and Incremental-p, add A, C, and L as
possible predictors; of these, considering Table II and also
results presented below, C is the most likely to be reliable.

Step 3. Since we are concerned about possible associations
among the IVs, we did a series of calculations that illuminate
the effects of such associations. Some of these calculations
explicitly or implicitly controlled for some IVs while looking at
associations of other [Vs with Z. We considered four types of
control calculations, summarized as follows.

3.1 Control for all other (17) IVs, while looking at the
association of one IV with Z.

3.2 Control for the covariates, Ag, Ed, Sx, and for Ap, or
subsets of these four IVs, using loopless models.

3.3 Control for the covariates, Ag, Ed, Sx, and for Ap, or
subsets of these four IVs, using models with loops.

3.4 RA analysis for the two specific values of Ap.

3.1. Calculations that control for some IVs while looking at
associations of other IVs with Z do so by comparing two
different models. Because of our small sample size, such
comparisons were not statistically significant when association
of any individual IV with Z was controlled for all other 17 IVs.

3.2. Our small sample size also did not indicate any
significant predictor of Z when controlling for the three
covariates and Ap.  This calculation compares model
ApAgEdSxZ with model ApAgEdSxYZ, where Y is one other
IV. None of these comparisons was significant. However,
controlling for fewer IVs yielded results. Controlling for Ag,
Ed, and Sx, we found that Ap, not surprisingly, is a significant
predictor, and the only one. Controlling for Ap and Ed, we
found C to be the only significant predictor. Controlling for Ap
alone, Ed, C, K, and A were all significant individual
predictors, in that order. These results are consistent with those
of Tables II and III.

3.3. It is possible to control for IVs also using models with
loops by selecting a reference model that has the IVs one wants
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to control for, and testing whether adding a new IV is
significant. To obtain this reference model, an analysis was
first done on the four IVs, Ap, Ag, Ed, and Sx, that we want to
control for. The results are shown in Table I'V.

TABLE IV. SELECTING A MODEL WITH LOOPS FOR CONTROL
CALCULATIONS
Criterion Model %AH % Adf p
Correct
BIC ApZ:EdZ 11.3 70.0 3 0.00
AIC a 132 70.0 7 0.00
ApSxZ:EdZ:AgZ
Incremental-p = ApZ:EdZ:AgZ 12.3 70.0 5 0.00

a. Not incrementally significant (sample size 424)

We selected the Incremental-p model, ApZ:EdZ:AgZ,
which is intermediate in complexity, as the reference for
control calculations, and searched for additional IV predictors
that are significant relative to this reference. We found that
adding one predictor, K or C or J, was incrementally
significant; adding two sequentially, either K and C, or C and J,
was also significant, not surprisingly since J and K are tightly
associated. If we instead select the BIC model, ApZ:EdZ, as
the reference model for these control calculations, the best
predictors to add to this model are K or C or J, in that order. If
we select an even simpler model, namely ApZ, as the
reference, the best predictor to add are Ed or K or C or J, in that
order. These results are consistent and support the proposition
that of the IVs in the best models reported in Table III, the
predictive effects of K and C are independent of and not due to
associations with Ap and Ed.

With the exception of the AIC model in Table III, which is
not incrementally significant, in all of the models we have
considered so far, the effect of each IV is independent of the
effects of the other IVs. That is, so far, we do not see any
interaction (epistatic) effects; each component of all of these
models involves only one IV and Z. In Step 3.4 and in Step 4,
however, we do find such interaction effects.

3.4. Finally, we repeated the RA analysis setting Ap=0 or
Ap=1, and the results are shown in Table V. We note that
since Ed, K, or C showed up as predictors in this analysis for
Ap=0, this cannot be due to association with Ap, since here Ap
is fixed. Second, K occurs as a shared risk factor for both
people who have APOE and those who do not, but these two
groups seem also to have some different specific risk factors,
namely Ed, C, and Ag for those who do not have APOE, and A
and G (these are variable names, not alleles) for those who do.
Third, the predictive power of Ap=1 models is stronger than
the predictive power of Ap=0 models, as expected since the
Ap=1 models are dominated by the risk allele. (The predictive
power of Ap=1 models is also stronger than the models of
Table III, all of which include Ap as a variable). The Ap=0
models are a little more heterogeneous with respect to what’s
causing AD, since these models doesn’t include the APOE risk
factor. Fourth, both the Ap=0 and Ap=1 results suggest
interaction effects; EAC and AgK in the former, and AK in the
latter; and these effects are in models that are incrementally
significant.
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TABLE V. BEST VARIABLE-BASED MODELS FOR SUBJECTS WITHOUT OR
WITH APOE
Criterion Model %AH % Adf p
Correct
Ap=0
BIC EdZ:CZ 9.4 69.3 4 0.00
AIC EdCZ:AgKZ 19.1 75.7 16 0.00
Incremental-p EdCZ:AgKZ 19.1 75.7 16 0.00
Ap=1
BIC AKZ 23.5 79.5 8 0.00
AIC AKZ:AgZa 32.8 80.8 14 0.00
Incremental-p AKZ 23.5 79.5 8 0.00

a. Not incrementally significant

Step 4. Finally, we analyzed the data also with state-based
(SB) RA models, restricting the analysis to only the four IVs,
Ap, Ed, K, and C, where missing K values were excluded
(sample size 413). In the results obtained, all three best models
(BIC, AIC, and Incremental-p) were the same, namely the
Adf=5 model (omitting for clarity the ApEdCK:Z part of the
model),

ApoZ . ApoEdoZ . KzZ : ApoEd2C2Z . ApoEd1C2KIZ

This model has 5 specific states added in the order listed to
the independence model ApEdCK:Z. This model is better than
the Adf=5 BIC model of Table III, namely ApZ:EdZ:KZ. It
has a higher uncertainty reduction (%AH(Z|ApEdCK)= 19.4%
compared to %AH(Z| ApEdK) = 15.6% for the earlier BIC
model), a higher ABIC value (80.7 here, compared to 59.1 for
the earlier model), and a very slightly higher %correct (70.7
compared to 70.5). The SB model has a p-value relative to the
reference of 0.00, and the incremental p-values in the five steps
are all 0.000, except for the 5™ step, which is 0.003.

One should not be confused by the SB analysis picking out
Ap, rather than Ap,; a state is information-rich if it either
increases or decreases penetrance over 'the average'. Because
the model actually includes the IV component, ApEdCK, and
the marginals, Z, which together constitute the independence
model, and because the cardinalities of both Ap and Z are 2, the
first interaction here, Ap,Z, is equivalent to a simple ApZ
variable-based component, which adds only 1 degree of
freedom to the independence model. The third component,
K,Z, is also simple, but it is a real state-based component since
the cardinality of K is 3; knowing K,Z and also ApEdKC and Z
does not tell us p(KyZ) or p(K,Z). It was noted above that K is
predictive of Z; this SB model tells us more specifically that it
is K, that is especially predictive.

This SB model is also interesting because it includes in
components #2, 4, and 5, interaction effect between states of
Ap, Ed, and Z, between states of Ap, Ed, C, and Z, and
between states of Ap, Ed, C, K, and Z. The last of these
interaction effects is especially complex. Since this is our first
application of state-based RA modeling to genomic data, and
since our sample size is small, we hesitate to make assertions
based on these findings. We note, however, that this SB model
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supports the interaction effect between Ed and C that was
found in the variable-based models for Ap=0 in Table V

V. DISCUSSION

In summary, our results suggest that:

1. APOE genotype, education level and SORCS1 (K) are
solid predictors of case/control status, because they appear in
the most conservative (BIC) best model. SORCS1 also gains
support because it appears in both Ap=0 and 1 models.
Although SORCS1 has not been implicated as a susceptibility
gene for AD in any GWAS studies, its potential importance in
the pathophysiology of AD has been reported in two studies
[36], [37].

2. BIN1 (C) is the next most likely predictor, since it
appears in the Incremental-p and AIC best models of Table III,
as well as the Ap=0 results of Table V. BIN1 has been reported
to be a susceptibility gene for AD, and has been replicated in at
least two independent GWAS studies (see www.alzforum.org)

3. Calculations that control for APOE genotype, education
level and age suggest that SORCS1 and BIN1 do not derive
their predictive power indirectly via their associations with
these controlling variables, but have independent predictive
power as originally suggested by the models of Table III. BIN1
has been associated with lower episodic memory [38] and the
effects of age on episodic memory are reported to be smaller in
subjects with high educational levels compared to those with
lower levels [39]. These reports lend support to our findings of
an interaction between BIN1 and education level.

4. MS4A6A, MTHFR and CLU appear as possible predictors
in models of Table III and Table V. Since these predictors were
not supported by multiple different calculations, they must be
regarded as only tentative.

5. The main models proposed here (Table III) do not show
evidence of interaction effects between the genes we
investigated. However, there are suggestions of such effects
between Education and BINI (C) in both the analyses for
APOE=0 (Table V) and in the state-based analysis. These
suggestions must also be regarded as tentative.

A number of the SNPs we included in this study, for which
significant associations with AD have been reported and
replicated in previous GWAS studies, did not appear as
predictors of AD. This may be due, at least in part, to the fact
that in the GWAS studies, based on thousands of cases and
controls, the majority of controls were still living and, thus, no
neuropathological confirmation of control status was available.

Methodologically, we demonstrate the analytical
capabilities of Reconstructability Analysis, and extend its uses
beyond our earlier genomic studies.
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