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Reconstructability analysis, a methodology based on information Received 30 July 2019
theory and graph theory, was used to perform a sensitivity analy- Accepted 30 December 2020
sis of an agent-based model. The NetLogo BehaviorSpace tool was KEYWORDS

employed to do a full 2 factorial parameter sweep on Uri Wilen- Reconstructability analysis;

sky’s Wealth Distribution NetLogo model, to which a Gini-coefficient machine learning;
convergence condition was added. The analysis identified the most agent-based simulation;
influential predictors (parameters and their interactions) of the Gini- information theory;
coefficient wealth inequality outcome. Implications of this type of ~sensitivity analysis; wealth
analysis for building and testing agent-based simulation models are ~ distribution model
discussed.

1. Introduction

In agent-based simulation (ABS), agents interact with each other in a dynamic environ-
ment. By following simple rules, these interactions result in emergent behavior patterns.
SugarScape is a widely studied ABS model developed by Joshua M. Epstein and Robert
Axtell (Epstein and Axtell 1996). The NetLogo Wealth Distribution model, developed by
Uri Wilensky, is based on the SugarScape model and includes output variables for the Gini
coefficient, a measure of wealth inequality, and for the class distribution in the simula-
tion population (Wilensky 1999). This project applied a machine learning methodology to
the outputs generated by Wilensky’s Wealth Distribution model to answer the following
questions,

Can a machine learning algorithm detect relations between model parameters and model
output that augment our understanding of the model? Specifically, can such an algorithm
reveal the degree to which the model parameters and their interactions predict the model
output?

To address these questions, data produced by simulations of the NetLogo Wilensky Wealth
Distribution (WWD) model were analyzed with a software tool called OCCAM (named
after the principle of parsimony - or “Organizational Complexity Computation and
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Modeling”). OCCAM implements a machine learning methodology known as Recon-
structability Analysis (RA), well suited for detecting nonlinear and high ordinality mul-
tivariate interactions, and is available both online and as open-source code (Zwick 2019).
The results of the OCCAM analysis illuminated the sensitivity of Gini coefficient outcomes
to the parameters and interactions between the parameters in the model.

RA modeling of data from WWD simulations is a particularly powerful type of sensi-
tivity analysis of the WWD model, since sensitivity analysis usually involves varying input
parameters one at a time to see how variation affects the output, i.e. it is commonly done
without considering interactions among the inputs. Our sensitivity analysis is much more
substantial, since we do not look only at main effects. We deploy a full-scale RA analysis
on top of the WWD simulation, i.e. we add data-driven modeling (RA), as a meta-level, to
theory-driven modeling (WWD), as the base level. In theory-driven modeling one posits
a set of theoretically plausible relations between variables. In the data-driven modeling, by
contrast, relations are derived directly from data rather than from theory. For the WWD
model, one has a theory-based expectation of a property that will emerge from the hypoth-
esized relations, namely income inequality, but one does not have theoretical expectations
about how this property will actually depend upon the model parameters. To discover
this dependence, we applied RA to data generated by WWD simulations. RA is a general
machine learning methodology which could be applied to data from any simulation, but
it is likely that other machine learning approaches would also usefully supplement agent-
based simulation. Our purpose here was not to advocate specifically for RA, and we have
not compared its effectiveness to other machine learning approaches. Our aim is primar-
ily to offer a proof of concept: to show that adding a machine learning post-processing
step usefully augments ABS. We expect that our proof of concept will suggest new mod-
eling possibilities to researchers, since such two level analyses are rare in literatures of
both simulation and machine learning. Demonstrating the capabilities of RA, the specific
methodology that we used, is only a secondary aim of this paper. However, since RA is less
well known than other machine learning methodologies, this demonstration adds value to
this study.

1.1. The wealth distribution NetLogo model

Economists Joshua M. Epstein and Robert Axtell’s 1996 book Growing Artificial Societies,
introduced the SugarScape model and the idea of using agent-based simulation as a form of
generative social science research. Overall patterns of population behaviors emerge from
the simple rules involving individual agents’ fitness parameters, the abundance or scarcity
of resources in the environment, and population dynamics (Epstein 1999; Wilensky and
Rand 2015). The inspiration for studying the SugarScape model and the focus of this paper
is best articulated in the following quote from Epstein and Axtell (1996) regarding the
importance of studying agent-based models: “The ability to alter agent-interaction rules
and compute the effect on the Gini-coefficient and other summary statistics is one of the
most powerful features”. The aim of this study is to explore to what degree a machine-
learning algorithm can predict a macro-emergent condition - the Gini coeflicient - from
the simulation parameters.

Based on SugarScape, Wilensky’s Wealth Distribution model is included in the NetL-
ogo models library with the two additional output variables: the Gini-coefficient and a class
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histogram (for low, middle, and upper class) to display the overall distribution of the pri-
mary resource among the simulated population of agents. The primary resource is sugar in
SugarScape and is grain in the Wealth Distribution model. The outcomes of both models
demonstrate the Pareto Principle with most people being poor, some middle-class, and a
very few being wealthy; and the richest 20% of the population hold 80% (or more) of the
total wealth (Wilensky 1998).

The following description of the Wealth Distribution model is summarized directly
from Wilensky’s Info tab in the NetLogo model library. When the model is set up, the
environment, consisting of equally sized patches (nonmobile agents) in a two-dimensional
plane, is endowed with a random assignment of grain and grain growing capacity. A
population of individuals is randomly endowed with an initial wealth level and fitness
characteristics, and then randomly dispersed throughout the environment. The model is
executed in time-steps, where at each step, individuals look around at neighboring patches
for grain, move towards the most plentiful patch within the limits of their visual capa-
bilities, and harvest. Each time step involves this maneuver and costs the individual the
amount of grain specified by their random metabolism assignment. After harvest, patches
re-grow grain according to their random assignment for growth patterns. The calcula-
tion of the wealth distribution for individuals and population is executed and updated
in the NetLogo interface. An individual agent that fails to find enough grain to meet its
metabolism demand does not survive and is replaced with another randomly generated
individual in order to maintain the population number. Agents can also expire by meeting
the limit of their randomly assigned life expectancy. At each step the wealth distribution is
determined by ranking the individuals according to portion of total population of wealth
owned and then calculating the Gini coeflicient.

When Wilensky, Epstein, Axtell, Resnick and others wrote about agent-based simulation
models they discuss agents as being anything in the model that can be coded to follow
simple rules. In NetLogo, agents are then distinguished between environmental agents,
which they called patches and the individuals which they called turtles. In this paper, we
will use the term agents in a more narrowly defined way to refer only to the population of
individuals.

Table 1 summarizes the parameters in the Wealth Distribution model.

1.2. Reconstructability analysis and the OCCAM software tool

Only a brief description of Reconstructability Analysis (RA) is provided here. Corner-
stones of RA include Weiner’s (1914) work in set theory and relations, Shannon’s (1948)
concept of entropy, Ashby’s (1964) constraint analysis, and Klir’s general systems method-
ology (Jones 1985; Klir 1985; Zwick 2004). Foundations of RA are information theory,
graph theory, classical set theory, and probability theory (Klir 1986; Zwick 2004). RA
overlaps with log-linear methods, Bayesian networks, and other probabilistic graphical
modeling methodologies and is applicable to both nominal and continuous multivariate
data (Zwick 2004). It is qualitatively different from continuous variable methods such as
neural networks and regression techniques.

Klir defined RA as a methodology that deals with the class of problems characterized by
the relationship between an overall system, referred to here as the whole, and the multiple
subsystems — mathematically, the projected relations - that comprise the structure of the
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system, referred to here as the parts (Klir and Way 1985; Zwick 2001). The aim of the most
standard uses of RA is to find the simplest set of parts from which a good approximation to
the whole can be constructed (Klir 1985; Zwick 2004). The whole is an observed relation
in data; the approximation to the whole from a set of parts is a calculated relation. The
synthesis of the calculated relation is done using a maximum entropy formalism, which
typically gives results equivalent to maximum likelihood calculations.

The two versions of RA are information-theoretic, which applies to frequency and
probability distributions, and set-theoretic, which applies to set-theoretic relations and
mappings (Klir 1985; Krippendorft 1986; Zwick 2004). Both versions use the same Lattice
of Structures for the exploration of possible models. However, set-theoretic RA utilizes
Hartley entropy, is non-statistical, and overlaps with logic design and machine learning
methodologies (Zwick 2004), while information-theoretic RA uses Shannon entropy and
a Chi-squared distribution to assess models for statistical significance, similar to log-linear
methods (Klir 2006; Knoke and Burke 1980; Krippendorft 1986; Zwick 2004). This study
uses information-theoretic RA to predict the Gini outcomes from the model parameters
of the NetLogo agent-based model.

OCCAM is a web-based and open source RA software package for exploratory mod-
eling (Willett and Zwick 2003; Zwick 2019). It can be used to analyze data sets involving
nominal variables or continuous variables that are binned (discretized). It performs a beam
search of the Lattice of Structures and summarizes this search with the three best models
based on Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC), and
a third criterion that seeks the highest information model that is “cumulatively” statistically
significant relative to independence and “incrementally” significant for every step in some
path from independence to the model. These statistical tests use the Chi-square distribu-
tion and a user-specified p-value cutoftf where 0.05 is the default value. Usually, a model
is selected using one of these three criteria, and the model’s conditional distribution of
the dependent variable (DV) - here the Gini coeflicient - given the independent variables
(IV) - here the ABS parameter settings — is used to predict the DV. In this study, models
were first fit on training data, and then applied to test data. The goodness of a model’s pre-
diction is quantified by the model’s reduction of uncertainty of the DV, given the model’s
predicting IVs, and the percent correct (%C) in the test predictions.

Three types of models were considered — models without loops, disjoint models, and
all models (including those with loops) — and thus three model searches were performed.
These model types can be illustrated as follows. Suppose one has three IVs, namely A, B,
and C, and one DV, namely Z. A model without loops has the form IV:ABZ where the
“IV” relation in the model means a relation involving all the IVs, which here is ABC. The
ABZ relation in this model says that there is an interaction effect between IVs A and B
with the DV, Z. Models without loops pick out a single subset of predictors from among
the IVs. In other contexts, this search is useful for feature selection, but in this study, all
IVs are retained in all searches, so loopless models are of interest only for their simplicity.
The results of a loopless model search where the predicting relation involves only one IV
is given ahead in Table 4, which lists the individual IVs in order of predictive strength.

An example of a model with loops is IV:ABZ:BCZ. This model has the usual relation
among all the IVs, plus two predicting relations, ABZ and BCZ; each of these predicting
relations involves a three-way interaction effect. Such models are invariably more predic-
tive of a DV than loopless models, but they require iteration to be fitted. A disjoint model



INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 5

Table 1. Definitions for OCCAM output search measures (Zwick 2019).

OCCAM measure Abbreviation Description

search ID number ID unique model identifier assigned during search

model specification MODEL specified model where “IV" is a component with all the independent
variables in it

A-Degrees of Freedom ADF difference in degrees of freedom between the model and the reference
(the independent model); for the reference, this delta is 0

uncertainty reduction %AH(DV) percent reduction in uncertainty of the dependent variable for the
model

A Bayesian Information Criterion  ABIC difference of the values for Bayesian Information Criterion between
the reference and the model

%correct training data %C(train) performance of the model in predicting the training data

percent coverage %cover portion of the state space of predictors in the model that is present in
the data

%correct test data %C(test) performance of the model in predicting the test data

is a simple type of a model with loops. It can have multiple predicting relations, but these
relations are disjoint in the predicting IVs. An example is IV:ABZ:CZ, in which no IV is
present in both predicting relations. Disjoint models also require iteration to be fitted.

An all-models search allows loops and overlaps of IVs in the predicting relations; it
performs the best, i.e. it finds the most predictive models. A search restricted to disjoint
models finds somewhat less predictive models, but the separation of predicting IVs into
disjoint groups allows for simpler interpretation of the model. Finally, searches of loopless
models find even less predictive models, but these models are maximally simple and easiest
to understand.

Models are fit on training data and their generalizability is assessed on test data. The pre-
dictive strength of a model on the training data is indicated by its reduction of uncertainty,
its ABIC value, and its percent correct on the training set (%Cdata). Its generalizing perfor-
mance is assessed by percent correct on the test set (%Ctest). The statistical significance of
the model relative to reference of independence, is given by a p-value (“alpha”). The com-
plexity of a model, relative to independence, is its Adegrees of freedom. These measures are
summarized in Table 1.

2. Methodology

The experiments conducted in this study using the NetLogo (v.5.3.1) Wealth Distribution
Model represent a type of analysis that is similar to sensitivity analysis but more com-
prehensive. Wilensky and Rand describe the sensitivity analysis of an agent-based model
within the context of model verification, validation, and replication (2015). The inquiry
begins with the question, “Sensitive to what?”, and depends on whether the results being
considered are qualitative or quantitative (Wilensky and Rand 2015). Here we are interested
in the outcome of the Gini coeflicient when the value tends to converge, so a stopping crite-
ria was added to the end of the code which tells the simulation to stop when the difference
between the last step and the mean Gini-Index value for the last 25 steps is less than 0.001
or one-tenth of a percent. We used the NetLogo BehaviorSpace tool to run the simulation
over selected variable settings and collect data on the Gini-Index at the end of the run.
This section describes the process in two phases: the NetLogo simulation data collection
and processing, and the OCCAM (v.3.3.11) simulation analysis.
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Table 2. NetLogo wealth distribution model variables with descriptions.

Variable name Definition and function
Agent parameters
num-people Total size of the population. This number does not represent a maximum population

size, but rather it is a fixed number of individuals for each simulation. The population
size is thus static; it only changes when the parameter value (using the NetLogo
interface slider) is changed.

metabolism-max Each individual at birth is assigned a number that determines how much grain at each
time step is required to stay alive. The maximum number is set by the slider, but
each agent is assigned a random number in the range [1, max] for a metabolism
value.

max-vision Similar to metabolism-max, this is a set-point for the maximum vision level, where
each individual at birth is assigned a random number in the range [1, max] that
determines how far around itself it can see in order to find grain and execute the
decision rule to move.

life-expectancy-min New individual agents in the population will live at least this many time steps.

life-expectancy-max Individuals live at most this many time steps.

Environment parameters

grain-growth-interval How long it takes for grain to grow back once a patch’s resources have been depleted.
Low values are associated with more abundant resources because it takes fewer
time steps for the patch to recover.

num-grain-grown How much grain is grown at each time step.

percent-best-land The initial setting for the density of patches that are seeded with the maximum
amount of grain at time = 0.

max-grain Global variable in the model code tab, default value set to 50. This variable determines

the maximum amount of grain any patch can hold at any time during the simulation.

2.1. Data collection and processing

The data collection approach for this experiment was adapted from Uri Wilensky and
William Rand’s An Introduction to Agent-Based Modeling, specifically it used NetLogo's
BehaviorSpace tool to run the set of experiments to generate the large data set needed for
the data mining application (Wilensky and Rand 2015).

2.2. NetLogo wealth distribution model parameter definitions and variable
descriptions

Of the NetLogo Wealth Distribution model variable names and definitions given in Table 2,
the first five population parameters listed are agent variables which determine behavior and
interactions of free-roaming agents, while the last four are environmental variables that
determine how patches behave and interact. This set-up gives nine model parameters as
IV predictors of the Gini-coeflicient DV.

Both the time-step and the Gini coefficient are continuous variables, and must be binned
or recoded into discrete categories before passing the data file to OCCAM for analysis.
An Excel Macro tool designed for rebinning continuous data and formatting an OCCAM
input file was used to recode the time-step into three bins, and the Gini coefficient into four
equal interval bins where 1 corresponds to low values and 4 corresponds to high values of
the Gini-Index outcome.

2.3. NetLogo BehaviorSpace experimental design and data collection

A full factorial 2 statistical design was chosen to sample the model parameter space.
Table 3 defines the parameter range and the experimental values chosen for the low and
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Table 3. NetLogo BehaviorSpace experimental design settings.

NetLogo name OCCAM abbreviation Low High
num-people Pop 100 1000
metabolism-max Metab 1 25
max-vision Vis 1 15
life-expectancy-min MinAge 1 15
life-expectancy-max MaxAge 50 100
grain-growth-interval Grint 1 10
num-grain-grown GrRate 1 10
percent-best-land PBLand 5 25
max-grain MaxGr 50 500
step Time 26 determined in BehaviorSpace

high states. The max-grain variable that is imbedded in the model code was given the base-
line “as-is” model value of 50 as the low value, and a resource rich environment value of
500 for the high value. The simulation was done by running a full 2° design for each of the
two max-grain values. This whole experiment was replicated twenty times for the training
data and five times for the test data. A different random number generator seed was used
for each replication.

For each run, BehaviorSpace was set to record the ending time-step of the run and the
converged Gini-coeflicient value. Since the stopping condition used a running average of 25
time-steps for the Gini-coefficient, the earliest step the run would stop is 26 steps. Stopping
time is not a model parameter or variable, but is used in this analysis as an IV to capture a
possible relationship between the Gini-coeflicient outcome and the number of steps before
the equilibrium stopping condition is reached. This experimental design resulted in a state
space size of 2° (for the first nine parameters in Table 3) x 3 (number of bins for the last
Table 3 variable) x 4 (number of bins for the DV) = 6144. The 20 training replicates and
the 5 test replicates gave a total sample size of 10,240 runs for training data and 2560 runs
for test data.

2.4. OCCAM analysis set-up

OCCAM analysis consists of two steps: search and fit. The search step was conducted using
the default OCCAM settings as follows: default search direction up; sort by ABIC (dBIC)
during search; when searching look for larger ABIC values, use alpha threshold of 0.05;
sort report by descending information percentage, and include all reporting options for
statistical calculations. A search width of 10 was selected for all searches for several reasons:
to obtain the order in which single predictor models (for each variable) reduce uncertainty;
to observe top 10 predictors at each search level; and to try to avoid best model summary
results that are search path dependent. The number of levels searched depended upon the
search type: for loopless models, 12 levels (one more than the number of variables); disjoint
models searched 20 levels; and all models search was set to 70 levels. These values were
selected experimentally as to have conducted each search to either the top of the lattice, or
high enough that the three best models selected were one or more levels under the top-most
searched lattice level.

The OCCAM search output provides a log of the report settings, a summary with
selected statistical measures for top models at each search level, followed by a list of the Best
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Loopless model search
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Figure 1. OCCAM loopless search results with ADF plotted on log10 scale on X-axis and percent
uncertainty reduction %AH(DV) on Y-axis.

Models by ABIC, AAIC, and Incremental-p-value. The last of these criteria picks the high-
est information model whose difference from the reference is statistically significant and
for which a path from the reference to the model exists where each incremental increase
in complexity is also statistically significant (for some user-specified p-value cutoff).

Since the input file contains both a training set and a test set of data, this list also includes
a Best Model by %C(Test) with the warning that models should not be selected based on the
percent correct in the test data. This fourth “best model” just allows the user to see how
close the three model selection criteria are to what would have been an optimal model for
the test data if the DV values for the test had been known (which, for true test data is
never the case). The Best Model by %C(Test) thus indicates for each of the three selection
criteria whether it overfits or underfits the training data. These indications can be seen in
Figures 1-3.

The Fit step uses the ABIC best model from the all model search on the training data.
This step displays the conditional probability distributions for this model on the training
and test data, as well as the percent correct on training and test data for the model as a
whole and for each relation in the model. It also shows for the model as a whole and for
each relation how much their percent correct improves upon the reference model percent
correct. Specifically, improvement varies from 0 to 1 and is given by

%C(model) — %C(reference)
%C (highest possible) — %C(reference)

Improvement =

where %C (highest possible) is the percent correct for rules that would optimally predict
the DV given the IV states, which is not 100% because the data is stochastic. For some
IV states, the DV outcomes have some probability distribution, so perfect prediction is
inherently impossible. The optimal rule set predicts, for each IV state, the most probable
DV state.
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Disjoint model search
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Figure 2. OCCAM disjoint search results with ADF plotted on log10 scale on X-axis and percent uncer-
tainty reduction % AH(DV) on Y-axis.
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Figure 3. OCCAM all-models search results with ADF plotted on log10 scale on X-axis and percent
uncertainty reduction % AH(DV) on Y-axis.

3. Results & discussion
3.1. Search results

We begn our analysis by using a loopless search to order each independent variable (IV) as
a single predictor of the dependent variable (DV). By selecting the search width equal to
the number of IVs, we can see the reduction of uncertainty in predicting the DV and the
corresponding percent correct in predicting the training data and the test data, as shown in
Table 4. This orders the single IV predictors by their strength in reducing uncertainty; the
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Table 4. Summary of each variable as a single predictor of the Gini coefficient outcome for the NetLogo
wealth distribution model. (The model’s predictive relation is listed; its “IV” component is omitted.)

ID Model ADF Alpha %AH(DV) ABIC %C(train) %C(test)
T1x% PopGini 3 0.000 6.376 1658.4 46.1 40.5
10% VisGini 3 0.000 6.280 1632.9 44.1 384
9% GrrateGini 3 0.000 2.939 749.3 441 384
8% GrintGini 3 0.000 2.023 507.2 44.1 384
7% MaxageGini 3 0.000 1.930 482.5 441 384
6% MetabGini 3 0.000 1.897 473.8 441 384
5% MaxgrGini 3 0.000 1.771 440.5 441 384
4% PblandGini 3 0.000 0.516 108.6 441 384
3% TimeGini 6 0.000 0.454 64.5 441 384
2 MinageGini 3 0.926 0.002 —27.3 441 384
1% Gini 0 1.000 0.000 0.0 441 384

strongest predictors are likely to show up in the search log for the disjoint and all-models
searches. Specifically, in this case the top five predictors consistently show up in the best
models at each of the first several levels in every search mode that follows. For Table 4,
and also Table 5 (ahead), the asterisk next to an ID number indicates that the model has
satisfied the IncrP requirement.

The minimum age of the agents is the poorest single predictor of the Gini coefficient as
it has a negative ABIC value, which means that its BIC scores was worse than the reference
model. The population variable was the best single predictor, followed closely by the vision
variable. The table also shows how uncertainty reduction and the percent correct predic-
tions for training and test data are not linearly related measures of model fitness. We see
from these results that Pop is the only single predictor that improved the percent correct on
both training data and test data over the independence model. This shows that uncertainty
reduction is a more sensitive measure of predictive efficacy than percent correct.

Table 5 gives the best models summaries from each search type: loopless, disjoint, and
all-models. Similar to Table 4, the asterisk (*) next to the model ID indicates that the model
satisfies the IncrP requirement. For each of the search types that follows, details from the
search log summary showing models from each level in the lattice are plotted to show
the trade off between complexity as ADegrees of Freedom (ADF) and the reduction of
uncertainty obtained by the model as the search moves up the lattice from the reference
model. Figure 1 shows first the loopless model search lattice with 282 total models. Figure 2
shows the disjoint model search lattice with 1285 total models, and finally Figure 3 shows
the all-model search lattice with 15,429 total models.

In the loopless search, [Vs appeared in the order shown in Table 4. The A AIC model and
the %C(test) model were the same model (shown also in Table 5 as model ID 87) yielding
52.85% reduction of uncertainty with 765 degrees of freedom. Defining a model that does
worse than the %C(test) model and is more complex or less complex than this model as
“overfit” or “underfit”, respectively, the IncrP model overfit and the ABIC model underfit.
The ABIC model was more conservative by not including the Pbland term that showed up
in the AAIC and %C(test) model.

In the disjoint search, all three best models overfit the test data with the ABIC model
being the closest to %C(test). All three best models from this search contained interaction
terms with five or more variables, whereas the %C(test) model was much simpler with only
a four-way, a three-way, and two single term interactions with the DV. For the all-models



Table 5. Best model summaries from OCCAM search results (IV components are deleted).

OCCAM Search results best model summary

Loopless Models Search
% AH %C %C
1D Model ADF (DV) ABIC train test
ABIC 78x PopMetabVisMaxageGrintGrrateMaxgrGini 381 46.2 8688 66.0 55.5
AAIC 87x% PopMetabVisMaxageGrintGrratePblandMaxgrGini 765 529 6912 70.1 60.0
IncrP 89 PopMetabVisMaxageGrintGrratePblandMaxgr TimeGini 2301 57.3 —6103 72.5 59.1
%C(test) 87x PopMetabVisMaxageGrintGrratePblandMaxgrGini 765 529 6912 70.1 60.0
Disjoint Models Search
% AH %C
1D Model ADF (DV) ABIC train %C test
ABIC 86 PopGrintGini:MetabGini:VisMaxgrGini:MaxageGini:GrrateGini 27 30.5 7819 59.3 52.7
AAIC 84x PopGrrateGini:MetabVisGini:MaxageGini:GrintGini:MaxgrGini 27 30.5 7804 60.6 54.7
PopGini:MetabVisGini:MaxageGini:GrintGini:GrrateGini:
IncrP 82x PblandGini:MaxgrGini 27 30.4 7789 61.3 54.2
%C(test) 79% PopGrintGrrateGini: VisGini:MaxageGini:MaxgrGini 30 28.9 7369 59.0 524
All Models Search
% AH %C
1D Model ADF (DV) ABIC train %C test
ABIC 531 PopMetabVisGini:PopMetabGrrateGini:PopMetabPblandMaxgr 162 48.2 11248 68.2 60.3
Gini:PopVisMaxageGini:PopVisGrintGrrateGini:PopVisPbland
Gini:PopVisMaxgrGini:PopGrratePblandGini:PopGrrateMaxgr
Gini:MetabVisGrintGini:MetabVisGrrateGini:MetabVisPbland
Gini:MetabGrintGrrateGini:MaxageMaxgrGini:GrintPblandGini:
TimeGini
AAIC 701 PopMetabVisGini:PopMetabGrratePblandGini:PopMetabPbland 213 49.2 11046 68.5 60.3
MaxgrGini:PopVisMaxageGini:PopVisGrintGrrateGini:PopVis
PblandMaxgrGini:PopGrratePblandMaxgrGini:MetabVisGrint
PblandGini:MetabVisGrrateGini:MetabVisPblandMaxgrGini:
MetabGrintGrrateGini:VisMaxageMaxgrGini: VisGrratePbland
MaxgrGini:MaxagePblandMaxgrGini: TimeGini
IncrP 530% PopMetabVisGini:PopMetabGrrateGini:PopMetabPblandMaxgr 162 48.1 11226 67.9 60.1
Gini:PopVisMaxageGini:PopVisGrintGrrateGini:Pop VisPbland
MaxgrGini:PopGrrateMaxgrGini:MetabVisGrintGini:Metab
VisGrrateGini:MetabVisPblandGini:MetabGrintGrrateGini:
MaxageMaxgrGini:GrintPblandGini:TimeGini
%C (test) 551 PopMetabVisGini:PopMetabGrrateGini:PopMetabPbland 168 484 11239 68.4 60.7

MaxgrGini:PopVisMaxageGini:PopVisGrintGrrateGini:
PopVisPblandMaxgrGini:PopGrratePblandGini:PopGrrate
MaxgrGini:MetabVisGrintGini:MetabVisGrrateGini:Metab
VisPblandGini:MetabGrintGrrateGini:MaxageMaxgrGini:
GrintPblandGini:TimeGini

LL e SIILSAS TVHINID 40 TYNYNOM TYNOILYNYILNI
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Table 6. Partitioning uncertainty reduction by variable type.

Description IVcount ADF  %AH(DV) ABIC  %C(train)  %C(test)
All variables 10 162 48.2 68.2 60.3
Agent IVs (Pop, Metab, Vis, Minage, Maxage) 5 33 21.0 5258 54.5 47.9
Agent IVs omitting Pop (Metab, Vis, Minage, Maxage) 4 15 123 46.5 40.6
Environment IVs (Grit, Grrate, Pbland, Maxgr) 4 27 83 1890 46.7 38.7
Other IV (Time) 1 6 0.5 65 47.5 45.6

search AAIC overfit, but IncrP and ABIC both came very close to the %C(test) model with
ABIC being slightly closer than IncrP.

In the all-models OCCAM search results in Table 5, the best models include relations
where interaction effects involve at least 2 IVs and in several relations, 3 or 4 IVs are
present; this illustrates the capacity of RA to detect complex interaction effects. Hyper-
graph representations of the all-models search result best model by ABIC are included in
the Supplemental Figures, after the References section.

Uncertainty reduction can be partitioned between the agent variables, environmen-
tal variables, and interactions between the two types of variables by providing only
the variables of interest in the input file (by telling OCCAM to ignore the other vari-
ables in the data). Table 6 shows the results of this partitioning exercise. When all ten
IVs are used the uncertainty reduction is 48.2%, whereas the agent variables provide
21.0% uncertainty reduction while the environmental variables provide 8.3% uncer-
tainty reduction. The Time variable alone provides a fraction of one percent uncertainty
reduction. What this shows is that while the agent variables have a considerably larger
impact on uncertainty reduction than the environmental variables, there indeed is a
substantial agent-environment interaction effect in reducing uncertainty for the Gini out-
come. This is described in more specific detail in the Fit Analysis Results section that
follows.

3.2. Fit analysis results

The best model by ABIC from the all-models search (see Table 5) is:

IV: PopMetabVisGini: PopMetabGrrateGini: PopMetabPblandMaxgrGini: PopVisMaxageGini:
PopVisGrintGrrateGini: PopVisPblandGini: PopVisMaxgrGini: PopGrratePblandGini: Pop-
GrrateMaxgrGini: MetabVisGrintGini: MetabVisGrrateGini: MetabVisPblandGini: Metab-
GrintGrrateGini: MaxageMaxgrGini: GrintPblandGini: TimeGini.

The OCCAM Fit results summarize (for the model as a whole and for each relation in the
model) the frequencies for each IV state, the calculated conditional probabilities for the
model, and the selected prediction rule. Additionally, the prediction rule gives the expected
DV state along with percent and number correct on the data and the associated p-values.
The Fit summary for test data includes a frequency table and percent correct based on the
training data prediction rule, as well as a summary of the relation’s performance on test
data with the percent improvement by model based on the optimal prediction rule case for
the test data. The OCCAM Fit analysis thus identifies which relations (which interaction
effects) are the most important.

The best model in terms of ABIC from the all-models search contains the IV relation
and sixteen model predicting relations. These predicting relations are listed in Table 7,
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Table 7. Percent correct by model for each component and model improvement in
best all-models ABIC model.

Component %C(test) %Improvement
PopMetabVisMinageMaxageGrintGrratePblandMaxgrTime 60 56
PopVisMaxgrGini 50 82
PopMetabVisGini (only agent predictors) 49 94
PopVisMaxageGini (only agent predictors) 49 100
PopVisPblandGini 49 97
PopGrrateMaxgrGini 47 97
PopVisGrintGrrateGini 46 61
PopMetabPblandMaxgrGini 46 62
MetabVisGrrateGini 42 63
MetabVisPblandGini 41 56
MetabVisGrintGini 41 45
PopMetabGrrateGini 41 41
PopGrratePblandGini 40 26
MetabGrintGrrateGini 38 3
MaxageMaxgrGini 38 0
GrintPblandGini (all environmental predictors) 38 0
TimeGini 38 0

starting on the second line, in order of percent correct on test data, %C(test). The first
line of the table shows, for comparison, the percent correct of a model that is the data,
namely that includes all ten IVs. Using all the IVs allows us to correctly predict the test
data DV only 60% of the time; that is, the IV-DV relationship in the data is stochastic,
not deterministic. Note that within the 16 relations, there are only two relations where
all IV predictors are the agent variables and only one relation where they are all environ-
ment parameters; all the other thirteen relations involve interaction effects between one or
more environmental and one or more agent parameters. All of the deviations of the con-
ditional DV probability distribution given the composite IV states from both a uniform
DV distribution and the marginal DV probabilities are statistically significant at the 0.00
level. Table 7 summarizes, for each relation, its percent correct and its percent improve-
ment (derived from equation shown on page 8) from the independence model baseline. A
high %Improvement means that the prediction rule of the relation gotten from the training
data comes close to the best possible prediction rule, namely the rule, using the predicting
IVs in the given relation, that would have been optimal for the test data. % Improvement
does not have a simple relationship with %C(test) for the following reason. %C(test) is for
prediction rules applied to the test data, where these rules are obtained from the probabil-
ity distribution of the relation fitted to the training data, while %C(highest possible) is for
prediction rules applied to the test data obtained from the probability distribution of the
relation fitted to the test data. A relation, fitted as it should be on the training data, might
predict very well, but nowhere near as well as if it had been fitted - illegitimately — on the test
data itself.

The predicting relations are also summarized in Table 8. The last column gives the num-
ber of variables in each relation (listed in same order as Table 7) and the bottom row gives
the number of relations containing each predictor variable (listed in order of single predic-
tor strength, Table 4). The top two single predictors, namely Pop and Vis show up as the
most frequent predictors in the all-models ABIC model relations. While the metabolism
variable, Metab, was not in the top 5 of single predictor models, it did show up as the third
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Table 8. Table of variables present in components of best all-models ABIC model.

Number of
variables in
Component Pop Vis Grrate Grint Maxage Metab Maxgr Pbland Time component

PopMetabVisGini 1 1
PopMetabGrrateGini 1 1
PopMetabPblandMaxgrGini 1 1 1
PopVisMaxageGini
PopVisGrintGrrateGini
PopVisPblandGini
PopVisMaxgrGini
PopGrratePblandGini
PopGrrateMaxgrGini
MetabVisGrintGini 1 1
MetabVisGrrateGini 1 1
MetabVisPblandGini 1
MetabGrintGrrateGini 1 1
MaxageMaxgrGini 1 1

GrintPblandGini 1 1
TimeGini 1
Variable Frequency 9 8 6 4 2 7 4 5 1

w
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Table 9. OCCAM fit output example of most predictive component within the best all-models ABIC
model: conditional probabilities for DV states given IV states.

IV state p(DV|IV) as percentage Prediction & risk ratios

Pop Vis Maxgr Gini=1 Gini=2 Gini=3 Gini=4 rule Ratio_G1 Ratio_G4

100 1 50 15.08 23.75 36.8 24.38 3 0.91 1.54
100 1 500 3.59 8.52 20.78 67.11 4 0.22 4.24
100 15 50 33.83 34.14 243 7.73 2(1) 2.04 0.49
100 15 500 26.88 35.16 35.7 2.27 3(2) 1.62 0.14
1000 1 50 8.67 81.8 8.13 1.41 2 0.52 0.09
1000 1 500 3.75 47.58 28.75 19.92 2 0.23 1.26
1000 15 50 24.22 57.11 15.08 3.59 2 146 0.23
1000 15 500 16.48 64.61 18.59 0.31 2 1 0.02
Marginal values 16.56 44.08 23.52 15.84 2

most frequently occurring variable in the model relations which reveals its importance in
terms of interaction effects.

Additionally, the OCCAM Fit output provides, for each relation, the expected DV state
for the various IV composite states. Here we will only discuss the Fit output of one of
the 16 relations in the ABIC model, which is summarized in the conditional probabili-
ties of Table 9 and illustrated in the decision tree of Figure 4. The most predictive (highest
%correct in test data) relation, PopVisMaxgr, is a three way interaction between the pop-
ulation size, the potential vision range for the agents, and the environmental max grain
parameter. OCCAM provides for all relations, the conditional probability of all Gini states
for each IV state, and part of this output is what is shown in Table 9 . The first three columns
specify the IV state. The “Gini =" columns are percentages of the frequencies for each IV
state with these outcomes, where Gini = 1 is the most equitable state and Gini = 4 is the
most inequitable state. The rule is a prediction rule based on the highest percentage DV
outcome given the IV state. Note that for two IVs states (the third and fourth rows of the
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MaxGr

3 (2)

4

Figure 4. Decision tree indicating predicted DV state for the most predictive fit component (PopVis-
MaxGr) from the best model by ABIC results of the OCCAM all-models search.

table), the probability of the next lower Gini state is only slightly lower than the probability
of the most likely Gini state; and the prediction rule indicates this alternative Gini state
in parenthesis. Ratio_G1 and Ratio_G4 are the ratios of the probabilities of the predicted
DV outcome for a given IV state relative to the marginal probabilities of Gini = 1 and
Gini = 4. Ratio > 1.0 means increased probability of occurrence and Ratio < 1.0 mean
decreased probability of occurrence. Italics are used to indicate a tendency towards inequity
and underlining is used to indicate a tendency toward more equitable Gini states. Extreme
cases are bolded. For each IV state, the conditional probability for the most probable DV
state — which yields the prediction rule - is shaded; states with probabilities close to the
rule state are shaded more lightly. The frequency of every IV state is 1280; the total sample
size is thus 10,240.

For example, the IV state (Pop, Vis, Maxgr) = (100, 15, 50) has rule = 2, which means
that Gini = 2 is predicted for this state, although Gini =1 is only slightly less probable, so
1 is in parentheses in the rule column. For this IV state, the probability of Gini = 1is.3383,
2.04 times the marginal p(Gini = 1) = .1656, the probability of a highly equitable outcome.
Also, for this IV state, the probability of Gini = 4 is .0773, 0.49 times less likely than the
marginal p(Gini =4) = .1584, the probability of a highly inequitable outcome. The table
also shows that the IV state (1000, 15, 500) is neither more nor less likely to produce the
most equitable outcome (Ratio_G1 = 1), but is extremely unlikely (Ratio_G4 = .02) to
produce a highly inequitable outcome.

Here we can see that when the population is small (100) and vision is limited (1),
and the environment is resource rich (500) the most inequitable Gini outcome is 4.24
times as likely to occur. Conversely, with a small population (100) with greater range
of vision (15) and the baseline resource environment (50), the most equitable Gini=1
outcome is twice (2.04) as likely to occur, although the prediction rule is for Gini=2.
Overall we see an increased probability of a more equitable Gini outcome (all Ratio_G1
values > 1) when the population has a higher vision (Vis = 15); the values are 2.04, 1.62,
1.46, and 1.00. The prediction rules of the table are summarized in a decision tree diagram
in Figure 4.
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4. Conclusions

4.1. Summary of findings

The Introduction of this paper posed the following questions “Can a machine learning
algorithm detect relations between the model parameters and the model output that aug-
ment our understanding of the model? Specifically, can such an algorithm reveal the degree
to which the parameters and their interactions predict the model output?” We have shown
that the answers to these questions are “Yes. RA tells us how predictive are (i) single
parameters, (ii) multi-parameter relations, and (iii) multi-relation models”. The following
summarizes the RA findings:

(1)

(2)

(3)

At its simplest (main effects) level, RA quantifies the degree of dependence of the
model output upon each of the ten individual parameters in the model. It does so
using an information theoretic measure (reduction of uncertainty) and allied mea-
sures (e.g. the Bayesian information criterion) that are more informative than more
general %correct measure of prediction accuracy. The most predictive parameter, Pop,
reduces the output uncertainty by 6.4% (Table 4). This may seem small, but %uncer-
tainty reduction is very different from %variance explained because of the logarithm
term in the expression for uncertainty; an uncertainty reduction of as little as 8% can
correspond in some cases to the odds of two possible outcomes changing as much
as from 1:1 to 2:1 (Zwick 2020). The second most predictive parameter, almost as
predictive as the first, is the vision range parameter, Vis, which reduces the output
uncertainty by 6.3%. These two parameters have considerably greater predictive power
than the other eight parameters. There are five agent parameters, four environment
parameters, and time, a neutral parameter. Both of the top two predictors are agent
parameters.

The full RA analysis (Table 5) yields a best model that reduces the output uncertainty
by 48.2%. Even though this model was selected using BIC, the most conservative
model selection criterion available in OCCAM, the model is very complex, consisting
of 16 predictive relations, which when fused together yield the 48.2% overall uncer-
tainty reduction. 15 of these relations involve interaction effects where at least two
parameters predict the output, while most relations involve three predicting param-
eters (the 16th relation has time as a sole predictor). Of these 15 relations, 2 involve
only agent parameters, 1 involves only environment parameters, while the remain-
ing 12 involve both agent and environment parameters (Tables 5-8). So the best BIC
model is complex in the dependence of the output on the parameters in three different
ways: (a) the model consists in multiple predictive relations, (b) nearly all these rela-
tions involve interaction effects of two or more parameters with the Gini output, and
(c) most interaction effects involve both agent parameters and environment param-
eters. The complexity of the model can also be visualized in the hypergraph displays
shown in the Supplemental Figures.

While there are many strong agent-environment parameter interactions, still the
agent parameters taken all together are more predictive (21.0% uncertainty reduction)
than the environment parameters taken all together (8.3% uncertainty reduction)
(Table 6).
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(4) Justasin the simplest RA analysis one can rank individual parameters by their predic-
tive efficacy, one can also rank the 16 relations in the best BIC model by their predictive
efficacy (Table 7). Not surprisingly, the four most predictive relations all involve the
top two predicting parameters, Pop and Vis, which are supplemented by one additional
parameter, either an agent parameter or an environmental parameter.

(5) RA analysis also tells us what the predictions actually are for all possible states of
individual parameters, multi-parameter relations, or multi-relation models. However,
there are too many states for the 10 parameters in the BIC model to show predictions
for all of them, so Table 9 shows the predictions for states of only the single most pre-
dictive relation in the model, namely PopVisMaxgrGini. Predictions are expressed as
conditional probability distributions. Table 9 also shows how many times more likely
the predicted Gini is than Gini=1, the lowest income inequality, and Gini =4, the
highest income inequality. Figure 4 summarizes the conditional probabilities in an
easy-to-grasp decision tree.

OCCAM thus provides a detailed analysis of the relations between the parameters in the
NetLogo model and indicates which parameters and interactions among parameters are
influential in determining the emergent properties of the simulation. Such detailed explo-
ration of the parameter space is not only interesting as a simulation post-processing. It
is also interesting in providing new perspectives to the simulation designer, and it can
additionally be useful for determining the extent to which an implemented model cor-
responds to a conceptual model and has realistic outputs. The potential use of OCCAM as
an exploratory tool for NetLogo and other ABS packages also offers a promising mode of
exploring other model validation procedures including microvalidation, macrovalidation,
and empirical validation as described by Wilensky and Rand (Wilensky and Rand 2015).

4.2. Discussion and next steps

This sensitivity analysis of Wilensky’s Wealth Distribution Model is intended to be portable
to other simulation models, thereby adding another model analysis tool to the modeler’s
toolkit. Another approach could have used the NetLogo BehaviorSearch tool (Stonedahl
and Wilensky 2010; Wilensky and Shargel 2002) however the output of that process
would require a considerable degree of statistical analysis and interpretation. The approach
demonstrated here directly provides the interpretable results for the modeler.

Additionally, OCCAM is well suited for studying different agent-based models for
equivalence. Two models are considered to be approximately equivalent if both produce
similar distributions of results that cannot be distinguished statistically or the results
of the two models produce the same internal relationships (Axtell et al. 1996). These
two categories of equivalence could be tested simultaneously and very quickly using the
OCCAM comparison feature which allows the user to perform and compare the same
search sequence on two data files.

An additional OCCAM capability that can provide more detailed examination of an
agent-based simulation model is the use of state-based models in which predictors can be
particular IV states, not merely IV variables (in all their states). State-based RA considers
many more models using a finer granularity of the Lattice of Structures, where the number
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of structures in this lattice is affected by the cardinalities of the variables (Zwick 2019),
and is computationally more demanding than the variable-based analyses reported in this
paper.

Further investigation on the roles of fitness or wealth inheritance and population carry-
ing capacity under resource redistribution (trading and markets) by adding these features
to the model and testing the sensitivity of the Gini coefficient to changes in such fea-
tures could lead to new insights regarding wealth distributions and sustainability in simple
economies. Additionally, altruistic rules could be given to some agents in order to study
how wealth might be redistributed without the coordinating role of a central authority.

Robert Axelrod stated, “Perhaps the most useful outcome of a simulation model is to
provide new ways of thinking about old problems” (1996). Since the inception of computer
simulation models like agent-based models, there have been challenges in testing the sen-
sitivity of model outcomes to initial conditions and parameter settings (Epstein and Axtell
1996). Data-mining and machine learning applications offer a new approach for exploring
the relations between the model parameters and the model outcomes. Machine learning
analyses such as this expands the modelers’ options in the verification and validation pro-
cess of building and testing agent-based simulation models, and provide insight into how
macro system properties, such as wealth inequality, emerge from micro agent-environment
interactions.
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