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Abstract—Reconstructability Analysis (RA) is a data mining
method that searches for relations in data, especially non-linear
and higher order relations. This study shows that RA can
provide useful predictions of complications in knee replacement
surgery.
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L.

Legislative reforms aimed at slowing growth of US
healthcare costs are focused on achieving greater value per
dollar. To increase value while payments are diminishing and
tied to individual outcomes, healthcare providers must do
better at predicting risks and outcomes. One way to improve
predictions is through enhanced modeling methods. Current
modeling is predominantly done with logistic regression (LR).
This project applied Reconstructability Analysis (RA) to data
on hip and knee replacement surgery to predict complications
in patient outcomes, and this paper reports a few of the results
of the knee study. RA is partially similar to LR, but has some
unique features.

RA is a data mining method that searches for relations in
data, especially non-linear and higher ordinality relations, by
decomposing the frequency distribution of the data into
projections, several of which taken together define a model,
which is then assessed for statistical significance. The
predictive power of the model is expressed as the percent
reduction of uncertainty (Shannon entropy) of the dependent
variable (the DV) gained by knowing the values of the
predictive independent variables (the IVs). Here we report the
prediction of complications (DV), given a set of patient
comorbidities (IVs). Prediction is done with the conditional
probability distribution of the DV given the IVs specified by
an RA model of the data. Complex interaction effects between
the IVs and the DV may allow better predictions than
predictive I'Vs used separately. Exploratory modeling with RA
may even detect novel and surprising predictors. The main
virtue of exploratory modeling is that relations between the
IVs and the DV do not have to be specified up front, and thus
their form does not need to be known or hypothesized.
Relations can be discovered. For example, in a study applying
RA to genomic data, researchers found that RA can detect
gene-gene interactions that other methods could not detect [1].
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II. METHODS

A. Reconstructability Analysis

RA developed from the early works of Ross Ashby [1]
who defined a process for systematically testing whether a
complex constraint could first be decomposed into several
simpler constraints and then, using the maximum entropy
principle, recomposed without suffering serious information
loss. RA assesses the goodness of models that are hyper-
graphs either using set theoretic (SRA) or information
theoretic (IRA) measures. IRA, the approach used in this
project, resembles log-linear statistical methods in the social
sciences, and has had diverse applications including time-
series analysis, classification, decomposition, compression,
pattern recognition, prediction, control, and decision analysis
[3]. Several RA software applications exist such as GSPS [4],
Construct and Spectral [5], SAPS [6], EDA [7] and Occam [8
9]. For this project, the Occam software was used.

Although it is designed for nominal multivariate data, RA
can also handle continuous data by binning values into
discrete binary or multi-valued states. The more states of an
IV the better it can predict the outcome, but as the number of
states of a variable increases the sample size required also
increases, so the number of bins used for variables is a scarce
resource that must be allotted judiciously.

To illustrate the TRA method, consider data on four
variables, three IVs (A, B, C) and one DV (Z). For these four
variables, multiple relations are possible, and each set of non-
redundant relations is a graph or hypergraph structure that is a
candidate model of the data. There are 19 such structures for
three IVs and one DV, and for such a small number of
variables, exhaustive search of all models is possible. In the
current project, there are 188 IVs, which generate a massive
lattice of structures which cannot be examined exhaustively
but must instead be searched with intelligent heuristics.

Search for predictive models that are statistically
significant begins with the independence model, which for our
illustrative example is ABC:Z. This model says that there may
or may not be a relation among the IVs (A, B, C), but none of
the IVs predict Z. An ascending search then examines
increasingly complex — and more predictive — models until
difference from independence and gains in uncertainty
reduction due to increases of complexity are no longer
statistically significant. For example, one possible model that



the search might yield is ABC:ABZ:CZ; this model contains
an ABZ component that represents a predictive interaction
effect of two IVs, A and B, and the DV, plus an additional
predictive relation of C with the DV. Model search is done at
two levels of refinement: variable-based model without loops
(a “coarse” search) and variable-based models with loops (a
“fine” search), the refined search yielding more predictive and
typically more complex models.

To avoid overfitting, i.e., choosing an overly complex
model that does poorly when confronted with new data, a
good model should capture maximum information (constraint)
in the data while being as simple as possible. A simple model
is one whose degrees of freedom are not much greater than the
independence model. In Occam, the tradeoff between
information-captured and simplicity is done using three
different criteria: the Bayesian Information Criterion (BIC),
the Akaike Information Criterion (AIC), and the Incremental-p
Chi-square criterion (IncrP). BIC and AIC aggregate
information-captured and simplicity linearly, with BIC
penalizing models for complexity more than AIC. The third
criterion, IncrP, selects the model with the highest reduction
of DV uncertainty, where the difference between the model
and independence is statistically significant and where, in
addition, there is a path from independence where each
incremental step to the model is also significant. (A p-value of
0.05 was used as the cutoff for significance.) IncrP is
sometimes more conservative than AIC, sometimes less
conservative, but BIC is always the most conservative of the
three, and in this study, was the criterion used to select the
“best” model. BIC is reported below in TABLE 1 as the
difference between BIC for independence and BIC for the
model. The table also reports the percent reduction of
uncertainty of the DV achieved by the model, %AH(DV),
which is the actual predictive power of the model. Calculation
of uncertainty does not involve the sample size and is non-
statistical [10]; its significance is assessed by its p-value or by
the BIC/AIC measure. The reduction in uncertainty, a central
measure of RA not generally available with other methods, is
more sensitive to the predictive strength of a model than
Y%correct and related measures. Because of the logarithm term
in the expression for uncertainty, even small reductions of
uncertainty can correspond to big effect sizes. For example, an
8% reduction of uncertainty can correspond to a shift in the
odds of possible outcomes as big as a change from 1:1 to 2:1.

After the best model is obtained, its actual contents — what
predictions it makes for the DV for all the different IV states —
is examined in detail. In Occam, this detailed examination is
called “fit,” to be distinguished from the first step which is
called “search.” Search results below are shown in TABLE 1, fit
results in TABLE 2. For more information about RA, see [3]
and [11]. For more information about this study, see [12],
which also includes a demonstration that RA provides
predictive results not available from logistic regression.

B. The Data

Data used in this study derives from patients who
underwent an inpatient surgical procedure of a total knee
replacement at one of seven inpatient hospitals within an

integrated healthcare system in a single state. Participant data
consists of both hospital billing data and electronic health
record system clinical data. Clinical and cost data were
matched on the patient’s episode identifier, then de-identified
and transformed into the variables used in this research
project. Because the administrative claims database includes
variables that are collected in diverse health systems across
the nation, the resulting predictive model developed in this
project have the potential for wide-spread use.

There are 4,336 cases in the knee data set. ICD-9 codes
were used to classify the procedure of an elective total knee
replacement procedure (81.54) and to classify the comorbidity
IVs and the DV Complication occurring for each knee
procedure. The independent variables age (Age), surgeon
volume (Sv), and number of risks (Nr) were continuous
variables that were discretized into the binned variables Ageb,
Svb, and Nrb. These 1Vs were divided into 3 bins, with equal
sample sizes to allow optimal predictive capacity. The DV
Complication (Cp) was created by looking at the ICD-9
diagnosis codes with a Present On Arrival indicator of 0,
indicating the diagnosis was acquired after admission to the
hospital. The knee data set contained 913 complications in 205
cases. The complication rate for the knee data set is thus
205/4336 or 4.7%.

Preliminary analyses indicated the need to reduce the set
of IVs. This was done with a level = 1 loopless search which
assessed the predictive strengths, expressed in %AH reduction,
of the 188 IVs. An IV was retained if its p value was <.05.
Sorting IVs by %AH showed the single IVs with the greatest
predictive strength.

Initially analyses were conducted with training/ test splits,
but these resulted in %correct measures that were small and
misleading. While training/test splits is common in machine
learning research, it is often done with larger sample sizes and
fewer variables.  This project’s primary objective was
exploratory modeling, whose results need to be subjected to
subsequent confirmatory testing. Training/test splits were thus
not considered to be necessary.

III. RESULTS

A. Model Search

A model in TABLE 1 specifies the Vs (e.g., Nrb, Rku) that
predict the DV (Cp), followed by Adf = df(model) —
df(reference), the difference in degrees of freedom of the
model and independence; then ABIC = BIC(reference)—
BIC(model), for which improvements in the model compared
to the reference are reflected in larger positive values; then
%AH = 100 ( H(DV)-H(DVIIV) ) / H(DV), the %reduction of
uncertainty of the DV given the IVs. The reduction of
uncertainty measure indicates how predictive the IVs are, while
the BIC measure indicates how efficient the prediction is, i.e.,
how predictive the IVs are, given their complexity (df). Best
models are chosen based on their ABIC values, which results in
a highly conservative model choice.

TABLE 1 summarizes the results of single and multiple
predictors in loopless and all-model (with loops) searches. The
best coarse model shows that, for this data set, simply knowing
the fotal number of comorbidities a patient had (Nrb) along
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with chronic kidney disease (Rku) reduces the uncertainty in
predicting if Complication (Cp) occurred by 7.58%. Knowing
the surgeon who performed the surgery (S) reduces uncertainty
by 6.45%. Likewise, knowing only if the patient had
unspecified  hypertensive renal disease (Rrd) reduces
uncertainty by 3.11%.

The next type of search considers models with loops which
allows for multiple components predicting the DV. Within
each component, there may be interaction effects among the
IVs in their prediction of the DV, just as interaction effects
were observed in the best loopless BIC and AIC/IncrP models,
Nrb Rku Cp and Nrb Rhd Rku Cp, shown in TABLE 1.

Note that some single predicting variables do not show up
in the best coarse or fine models, indicating that the IVs are
not independent from each other. There are 6 single predicting
variables in the best BIC fine-grained model, Ageb Cp : Nrb
Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp. Five of these
variables — Ageb, Nrb, Ruh, Rhd, and Rku — also appear in the

top 10 single predicting components, while Rro is the 18" in
the list of single predicting components. This apparently low-
value variable was included when the RA search methodology
sought to improve a model already containing the better
individual predictors Ageb, Nrb, Ruh, Rhd, and Rku. Rro was
found to be the variable that added more additional
information to that model than any of the better single-
predicting IVs above it.

The best single predictor, S (surgeon) does not appear in
the best fine-grained model, presumably in part because S has
high cardinality and the information added by S is not worth
the complexity of including it in the model and perhaps in part
also because the predictive effect of S is already provided by
the Ageb, Nrb, Ruh, Rhd, and/or Rku predictors. Similarly,
Ageb, Nrb, Ruh, Rhd, and Rku contain the information
offered by the other single predictors all the way down to Rro.

TABLE 1. Summary of Search Results for All IVs. Search covers coarse and fine models. All p-values = 0.

MODEL Adf ABIC %AH Variable description
COARSE, single predictors (top 10)
S Cp 62 -412.7 6.45 Surgeon
Nrb Cp 2 77.29 5.69 Number of risks (binned)
Rrd Cp 1 43.04 3.11 Unspecitied hypertensive renal disease (403.9)
Rku Cp 1 39.63 291 Chronic kidney disease, unspecified (585.9)
Ruh Cp 1 33.56 2.54 Other and unspecified hyperlipidemia (272.4)
LCp 6 -9.04 2.5 Location
Ad Cp 27 -185.3 247 Admission diagnosis
Ageb Cp 2 14.61 1.9 Age (binned)
Raf Cp 1 11.46 1.2 Atrial fibrillation (427.31)
Rhf Cp 1 10.79 1.16 Heart failure (428)
MODEL Adf ABIC %AH Variable description
COARSE, single predictors not in the top 10 but in AIC or BIC models below
Rhd Cp (rank 12) 1 9.9 1.11 Other chronic pulmonary heart disease (416.8)
Rro Cp (rank 18) 1 3.22 0.7 Rosacea (695.3)
Reg Cp (rank 20) 1 1.95 0.63 Esophagitis (530.1)
MODEL Adf ABIC %AH Variable description
COARSE, best model (loopless)
ABIC (best model)
Nrb Rku Cp | 5 | 83.23 7.58 Number of risks (binned), Chronic kidney disease, unspecified (585.9)
IncrP & AAIC (same best model)
Nrb Rhd Rku Cp 1 5271 377 Iljilérr?ebyeg i.;i :ssé(?;g;lg)ed)’ Other chronic pulmonary heart disease (416.8), Chronic
MODEL Adf ABIC %AH Variable description
FINE, best models (with loops)
ABIC (best model)
Tt ST PR PR IV P oo i e e
’ ’ unspecified (585.9), Rosacea (695.3)
IncrP & AAIC (same best model)
AN RN |y | oy | e | (e e S e e e
Chronic kidney disease, unspecified (585.9), Rosacea (695.3)
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The third best single predictor, Rrd, does not appear in the
best fine-grained model either. Again, the information it
would add is presumably not worth the additional complexity
it would add. This explanation is supported by the fact that
Rrd is well predicted by Ageb, Nrb, Ruh, Rhd, and Rku. In
fact, Rku alone predicts Rrd with a %AH of 53.14%
demonstrating significant overlap between Rku and Rrd. This
lack of independence between the IVs is analogous to
collinearity among IVs in regression analysis.

The next type of search considers models with loops which
allows for multiple components that predict the DV. Unlike
the best /oopless models shown in TABLE 1, the best model for
Cp now does not contain interaction terms.

B. Model Fit

Having found a best model, the next step is to analyze its
detailed content- i.e., the conditional probability distribution
for the DV, given the predicting IVs. This distribution is
shown in TABLE 2 for the best fine-grained model Ageb Cp :
Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp.

TABLE 2 Fit Table for Best Model: Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp. Blue rows are for ratio < 0.90, orange rows for ratio > 1.10.

IVs Data Model
obs. p(DVIV) calc. ¢q(DVIIV)
# |Ageb Nrb  |Ruh  |[Rhd |Rku |Rro |freq Cp=0 Cp=1 Cp=0 Cp=1 ratio p(margin)
1 |1 1 0 0 0 0 502 99.00 1.00 99.11 0.89 0.19 0.00
2 |1 1 1 0 0 0 1 100.00 0.00 98.46 1.54 0.33 0.88
3 |1 2 0 0 0 0 457 98.69 131 97.77 2.24 0.47 0.01
4 |1 2 0 0 0 1 1 100.00 0.00 80.86 19.14 4.05 0.50
5 |1 2 0 0 1 0 2 100.00 0.00 91.86 8.14 1.72 0.82
6 |1 2 0 1 0 0 1 0.00 100.00 87.38 12.62 2.67 0.71
7 |1 2 1 0 0 0 34 91.18 8.82 96.17 3.83 0.81 0.81
8 |1 3 0 0 0 0 380 96.05 3.95 95.90 4.10 0.87 0.56
9 |1 3 0 0 0 1 1 100.00 0.00 69.34 30.66 6.48 0.22
10 |1 3 0 0 1 0 8 100.00 0.00 85.80 14.20 3.00 0.24
11 |1 3 0 1 0 0 100.00 0.00 78.75 21.25 4.49 0.27
12 |1 3 1 0 0 0 96 89.58 10.42 93.07 6.93 1.47 0.31
13 |1 3 1 0 0 1 1 100.00 0.00 56.47 43.53 9.21 0.07
14 |1 3 1 0 1 0 3 66.67 33.33 77.61 22.39 4.74 0.15
15 |1 3 1 1 0 0 1 0.00 100.00 68.01 31.99 6.77 0.20
16 |2 1 0 0 0 0 421 99.29 0.71 98.78 1.22 0.26 0.00
17 |2 1 0 1 0 0 1 100.00 0.00 92.78 7.22 1.53 0.91
18 |2 1 1 0 0 0 6 100.00 0.00 97.90 2.10 0.44 0.76
19 |2 2 0 0 0 0 420 96.91 3.10 96.96 3.04 0.64 0.10
20 |2 2 1 0 0 0 50 90.00 10.00 94.82 5.18 1.10 0.88
21 |2 3 0 0 0 0 349 93.98 6.02 94.47 5.53 1.17 0.48
22 |2 3 0 0 0 1 3 33.33 66.67 62.26 37.74 7.98 0.01
23 |2 3 0 0 1 0 10 60.00 40.00 81.51 18.49 391 0.04
24 |2 3 0 1 0 0 3 66.67 33.33 73.00 27.00 5.71 0.07
25 |2 3 0 1 1 0 1 100.00 0.00 41.10 58.90 12.46 0.01
26 |2 3 1 0 0 0 137 95.62 438 90.74 9.26 1.96 0.01
27 |2 3 1 0 1 0 9 44.44 55.56 71.66 28.34 5.99 0.00
28 |2 3 1 1 0 0 1 100.00 0.00 60.80 39.21 8.29 0.11
29 |3 1 0 0 0 0 376 97.87 2.13 98.11 1.90 0.40 0.01
30 |3 1 1 0 0 0 2 50.00 50.00 96.74 3.26 0.69 0.92
31 |3 2 0 0 0 0 447 95.08 4.92 95.32 4.68 0.99 0.96
32 |3 2 0 0 0 1 1 0.00 100.00 66.30 33.71 7.13 0.17
33 |3 2 0 0 1 0 7 100.00 0.00 84.01 15.99 3.38 0.19
34 |3 2 1 0 0 0 54 94.44 5.56 92.11 7.89 1.67 0.27
35 |3 3 0 0 0 0 341 90.62 9.38 91.60 8.41 1.78 0.00
36 |3 3 0 0 0 1 2 100.00 0.00 51.29 48.71 10.30 0.00
37 13 3 0 0 1 0 28 75.00 25.00 73.71 26.23 5.55 0.00
38 |3 3 0 1 0 0 7 57.14 42.86 63.31 36.70 7.76 0.00
39 |3 3 0 1 1 0 1 100.00 0.00 30.81 69.19 14.63 0.00
40 |3 3 1 0 0 0 148 87.84 12.16 86.21 13.79 2.92 0.00
41 |3 3 1 0 0 1 1 0.00 100.00 37.65 62.35 13.19 0.01
42 |3 3 1 0 1 0 18 66.67 33.33 61.74 38.26 8.09 0.00
43 |3 3 1 1 0 0 2 50.00 50.00 49.74 50.26 10.63 0.00
4336 95.27 4.73 95.27 4.73 1.00
# |Ageb Nrb  |Ruh  |Rhd |Rku |Rro |freq Cp=0 Cp=1 Cp=0 Cp=1 ratio p(margin)
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The columns of the table are: the model number, to be able to
refer to models easily; the six IVs in the model and their
different states; the frequency of each particular IV (vector)
state; the conditional probability p(Cp=0[IV) and p(Cp=1|IV)
in the data given as percentages; these two conditional
probabilities in the model, written as q(Cp=0/IV) and
q(Cp=1|IV); the ‘risk ratio’ of q(Cp=1[IV) / q(Cp=1), i.e., the
probability of complications for a particular IV state divided
by the marginal probability of complications for the whole
sample. So, for example, the first row specifies the IV state
(Ageb, Nrb, Ruh, Rhd, Rku, Rro) = (1,1,0,0,0,0), which
occurs 502 times in the sample, for which the conditional
probabilities for the data (p) and the model (q) are given in
percent, where risk ratio 0.19 = 0.89/4.73, and where the p-
value for the comparison of (99.11, 0.89) to the margins
(95.27, 4.73) is 0. The ‘risk ratio’ conveys the effect size,
while the p-value conveys the significance of the effect size.

For the independence model, which is the reference, we do
not know the state of Ageb or Nrb or if a comorbidity was
present, so the uncertainty of the DV comes from its marginal
distribution, which is the last line of the table, for which the
data and model conditional probabilities are the same. For the
calculated model, knowing the states of Nrb and Ageb and the
presence or absence of individual comorbidity IVs (Ruh, Rhd,
Rku, Rro) tells us about the probability of a complication
occurring. Model conditional probabilities are more
appropriate to use than data conditional probabilities because
the model is simpler than the data and generalizes better.

The marginal distribution (last line) of TABLE 2 shows that
in the sample of 4,336 knee replacement cases, Complication
(Cp=1) was present in 4.73% and absent in 95.27% of the
cases. If the conditional probabilities for particular IV states
are either higher or lower than the margins, then the IVs have
provided new (predictive) information. Looking at TABLE 2
shows a number of rows whose calculated probabilities are
very different from the margins: the blue and orange shaded
cells. Rows are highlighted if p(margin) < 0.05 and frequency
>10. Aside from very low-frequency IV states (rows 25, 39,
and 41), the model distribution never predicts more than a
50% chance of Cp =1, i.e., it always predicts Cp = 0, which
is just what the marginal distribution predicts even without
any IV information. The additional information that the model
provides beyond the independence model is the risk of
complication occurrence. While there were no IV states with
sizeable frequencies where q(Cp=1IV) > 0.5, there are
probabilities that are considerably different than the margins,
which demonstrate a lower (< 4.73%) or higher (> 4.73%) risk
of complications. These deviations from the risk of the overall
sample are indicated by the risk ratio: when ratio is < 0.90
(and statistically significant), risk is reduced (blue cells),
compared to the margins; when ratio > 1.10 (and statistically
significant), risk is increased (orange cells).

Row 1, for example, shows a protective effect for age < 63
(bin=1 for age binned, Ageb) and number of risks < 1 (bin = 1
for number of risks binned, Nrb) where the probability of
Cp=1 is 0.89% (ratio = 0.19), markedly lower than the margin
of 4.73%. Row 16 shows a similar protective effect, where
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even with age range 63-71 (bin = 2 for Ageb), as long as the
number of risks < 1 (bin = 1 for Nrb), the probability is 1.22%,
which is lower than the margin (ratio = 0.26). Row 29 also
offers a protective effect where even with age range 72-95
(bin = 3 for Ageb) as long as the number of risks < 1 (bin = 1
for Nrb) then the probability of Cp=1 is still lower than the
margin at 2.13% (ratio = 0.40). Row 3 shows that even where
there is an increase in number of comorbidities with number
of risks = 2 or 3 (bin = 2 for Nrb), when Ageb=1, there is still
a protective effect with probability of Cp=1 of 2.24% (ratio =
0.47). In each of these three cases where there was a
protective effect, the four comorbidity IVs, Ruh, Rhd, Rku
and Rro were all absent. To recapitulate: the results show that
if these comorbidity IVs are absent and Nrb = 1, then Ageb
can be in any of its 3 potential states and the risk is still low.
Risk is also reduced if Ruh, Rhd, Rku and Rro are not present,
even if there are more comorbidities present (Nrb = 2) if the
age is low (Ageb = 1).

Row 35 shows IV states that predict higher risk of Cp=I.
With age range 72-95 (bin = 3 for Ageb), and number of risks
between 4 and 18 (bin = 3 for Nrb), there is a higher
probability of Cp=1, namely 8.41% (ratio = 1.78). In this
state, there was no presence of one of the four comorbidity
IVs (Ruh, Rhd, Rku & Rro). In row 23, however, with the
presence of Rku and with lower age 63-71 (bin = 2 for Ageb),
and with number of risks between 4 and 18 (bin = 3 for Nrb),
the probability of Cp=1 is 18.49% (ratio = 3.91). Compare
row 35 also with row 37 in TABLE 2 (freq = 28) where again,
Ageb = 3 and Nrb =3 but Rku is present and we get a much
higher risk ratio of 5.5, a 0.2623 probability of Cp=1 which is
over 5 times the risk of the whole sample.

A complication (Cp=1) was observed in 4.73% (205
patients) of the 4336 patients in the knee data set, so this is the
percentage of patients for which the independence model,
which takes into account nothing about the patients or the
healthcare delivery system, would thus predict complication.
However, the best model from this analysis (Ageb Cp : Nrb
Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp) identified several
groups of patients who were at increased risk of Cp with
particular combinations of IV states from the model.
Considering these high-risk groups together, 15.73% of the
total patients in the sample had an increased risk of
complication. For these patients at increased risk, the weighted
average risk ratio is 2.41; thus 11.40% (or 494 patients) out of
that group (15.73% of the whole sample) would be predicted
to experience a complication.

IV. DISCUSSION & CONCLUSIONS

Predictive models can augment clinical decision making
by providing additional information. The models resulting
from this research provide new information about risk for a
sizeable proportion of the patient population. If used in real
time, such risk predictions could support clinical decision
making and custom tailored utilization of services.

One of the purposes of this research project was to
determine the variables that were the most predictive of each
of the DVs. A sample of previously known-to-be-predictive



IVs were included in the data sets for this project; results
validated many of these as important predictors while
excluding others. Additionally, the exploratory modeling
approach used in this project sought to detect novel or
surprising IVs that may not have been hypothesized
previously in the literature. Indeed, a number of novel IVs
were found to be important.

Future research might rectify the limitations of this
project’s data and employ additional RA techniques and
training-test splits. Implementation of predictive models
should be discussed with considerations for data supply lines,
maintenance of models, organizational buy-in, and the
acceptance of model output by clinical teams for use in real
time clinical practice.

This project demonstrated that RA can be useful in the
prediction of complications for knee replacement surgery. It
also has implication for broader testing and applications. RA
is likely to be useful for constructing predictive models for
other outcomes of interest and in other clinical areas.

If outcomes and risk are adequately predicted, areas for
potential improvement become clearer, and focused changes
can improve patient care. Better predictions, such as those
resulting from the RA methodology, can thus support
improvement in healthcare value — better outcomes at a lower
cost.

As reimbursement increasingly evolves into value-based
programs, understanding the outcomes achieved, and
customizing patient care to reduce unnecessary costs while
improving outcomes, will be an active area for clinicians,
healthcare administrators, researchers, and data scientists for
years to come.
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