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Series Editor’s Introduction

Professor Krippendorff has written an excellent introduction to infor-
mation theory, particularly to its application for structural modeling.
He provides a lucid discussion of essential topics, such as how to confirm
an information theory model, its use in exploratory research, and how it
compares with alternative approaches such as network analysis, path
analysis, chi-square, and analysis of variance. This places information
theory into a framework that most social scientists can readily compre-
hend and evaluate. Professor Krippendorff’s thorough understanding
of the theory and use of information theory also takes the careful reader
a long way toward competency.

This book is particularly successful at making a rather complicated
system for analyzing multivariate qualitative data as simple as possible.
Krippendorff does this by building the entire presentation around intui-
tively appealing notions of information, such as the amount of infor-
mation provided by an answer to a question, the amount transmitted
through a noisy channel, and so on, rather than by using the axioms and
theorems of information theory. He also makes copious use of illus-
trations designed to simplify and clarify the complex issues of structural
modeling.

Although this book is an introduction to a well-known but as yet
underutilized topic, it does more than merely summarize current knowl-
edge or present basic concepts. It presents new developments, including
extensions of classical information theory to many variables, to circular
causal processes and to complex models of qualitative data, the use of
information theory as an analytical tool, the algebra of information in
many variables, and a description of the algorithms needed for com-
puter implementations. Much of Krippendorff’s presentation is original
and promises wide applications. It should serve equally well as a text-
book and as a source book for social scientists and social researchers
who are interested in communication explanations and information
theory. We recommend it highly to researchers in communication
theory, information science, and systems theory, and suggest that it be
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studied carefully by social scientists interested in structural modeling,
particularly in sociology, political science, and psychology. Professor
Krippendorff has written his manuscript with these audiences in mind
and has succeeded admirably.

—John L. Sullivan
Series Co-Editor




FOREWORD

The desire to take a fresh look at the topic of this volume is motivated
by both a renewed interest in qualitative data and recent developments
in information theory. Information theory is not merely a convenient
statistical tool; it has an additional appeal to social scientists because it
provides explanatory structures, theorems of considerable generality,
and a powerful calculus for quantities of entropy, information, and
communication—all of which are at the root of many social phe-
nomena. The ideas and terminology developed in the first five chapters
reflect this dual purpose by providing concepts that are both basic to
social theory and introductory to the analytical machinery that follows.

The book’s main thesis derives from the extension of the original
Mathematical Theory of Communication (Shannon and Weaver, 1949)
to multiple variables (McGill, 1954; Kullback, 1959; Ashby, 1965, 1969)
and to complex structures (Klir, 1976). In particular, this volume treats
circular causal or simultaneous dependencies (Krippendorff, 1981) that
escaped analysis by most established techniques, as well as penetration
by traditional social science theories. The availability of electronic
computers played an important role in forging these developments by
relieving researchers of routine calculations and allowing themto adopt
more powerful conceptualizations governing data analysis and explo-
ration. Finally, multivariate information theory has acquired additional
foundations in the work by theoretical statisticians, especially by
Kullback, Mosteller, Goodman, Fienberg, Bishop, and others who
linked these notions to the ongoing revolution in contingency table
analysis, variance analysis, log-linear modeling, and Markov processes
in particular.

Although there are many modern facets of information theory, this
book presents only what is needed to search for and test structural
models of qualitative data; that is, models that exhibit complex relations
among their component parts and rely on these relations to interpret
given data. Communication or information transmission is just one
attractive interpretation of such relationships. In this respect the book’s
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aim is primarily practical, providing tools rather than theorems. It starts
with deliberate slowness. Chapters progressively build upon each other.

~The apparently independent Chapters 6 through 12 are tied together in
Chapters 13 through 15. Readers can develop their own sense of closure
even before getting to the end of the volume.

Information Theory is written for advanced undergraduate and
graduate students. It can be used as a text in qualitative data analysis
and multivariate techniques courses. It should also be of interest to
experienced social scientists who can afford to read more selectively.
Communication researchers, information scientists, and systems the-
orists might find these structural models particularly close to their
theoretical concerns.

I am grateful for many valuable comments and suggestions received
from colleagues, especially from Roger C. Conant, Alexander von Eye,
Seth Finn, an anonymous reviewer, and from students at The Annenberg
School of Communications, University of Pennsylvania, who used
earlier drafts as a text. Finally, the work is unthinkable without W. Ross
Ashby’s early influence.



INFORMATION THEORY
Structural Models for
Qualitative Data

KLAUS KRIPPENDORFF
University of Pennsylvania

1. QUALITATIVE DATA

Qualitative data arise from distinctions drawn within a sample of obser-
vations. The act of drawing distinctions makes the observations distin-
guished of a different kind. No quantitative (ordinal or magnitudinal)
differences are implied. Figure 1 depicts distinctions drawn by the New
York Times Magazine (March 11, 1979) within 4,764 murder cases tried
in Florida between 1973 and 1979. Each dot represents a case, and one
may notice the conspicuous absence of death sentences for white
convicts when the victim is black. Observations may be people, as in
Figure 1, but they may also be messages, events, things, processes,
anything individually describable, and any motivation to find differ-
ences between them qualifies as a basis of drawing distinctions. There
may be numerous distinctions. For example, individuals might be classi-
fied by occupation, place of birth, sex, party affiliation, marital status,
religion, criminal record, psychopathology, telephone number, types of
people friendly with, personality type, languages spoken, magazines
subscribed to, messages received, media use habits, type of car owned,
reasons for visiting a physician, or drugs used—but none of them
implies a continuum, and all are logically independent of each other.

Qualitative data are also called nominal because the descriptions
used are like names, making observations merely same or different
without recognizing degrees (e.g., the use of social security numbers);
categorical because observations are considered by their kind, category,
or class to which they belong; discrete because the boundaries make and
mark a discontinuity in space; and freely permutable because the
arrangement of observations is arbitrary and conveys no information.
The latter is also connoted by the label unordered data.
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Figure 1

Although manysocial science data are of this kind, the social sciences
are not limited to qualitative data—consider such variables as age,
income, time spent watching TV, and intelligence quotient, which are
called quantitative because there can be more or less of it. Nor are
qualitative data excluded from other fields of inquiry—consider the
distinction between gaseous, fluid, and solid states of matter in physics;
positions of a relay or the states of a whole switching network in
electrical engineering; treatment histories of patients in medicine; genetic
structures in biology; and market compositions in economics, all of
which are differentiated by kind, not by magnitude. Qualitative data are
sometimes considered primitive, but it is their basic nature that makes
them probably the most universally available. Qualitative data are
found particularly when natural language enters the observations of
interest or when a culture or its social institutions prescribe in which
categories people, messages, events, products, or procedures are to be
viewed, discussed, or responded to.

Qualitative data may come in the form of a protocol of events
observed over time, as shown by the interaction sequences in Figure 2.
They may be grouped into classes, ignoring time, as in Figure 1, or
tabulated by kind, as in Figure 3 (taken from Lipset et al., 1954: 1161).

Distinctions that are drawn independently of each other are said to
constitute different variables. A variable is a conceptual device com-
prising an exhaustive set of mutually exclusive categories or values. The
product of these variables constitutes discrete multivariate spaces.
Figure 4 spatially depicts the data in Figure 1. Herein the three (logically
independent) distinctions or variables serve as the dimensions of a space
whose 2 X 2 X 2 or eight cells contain the number of cases that these
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distinctions regard as of the same kind. Incidentally, the term count data
reflects this somewhat less important convenience of representing by
their number the observations that a classification scheme no longer
distinguishes. Spatial representations can aid the recognition of pat-
terns in qualitative data (see Figure 44 as an example of where the above
may lead to) but become easily incomprehensible when more than three
dimensions are involved. Cross-tabulations list the frequencies or prob-
abilities of observations in tabular or matrix form, either breaking a
multivariate space into separate subspaces or combining dimensions to
obtain comprehensive tables. The latter is exemplified in Figure 5 by
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Time 2
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i
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i
+ 57 9 {15 1
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- 10 | 41 4 | 15
Time 1
+ 21 2 137 111
- 2 15 S | 59
Figure §

four-dimensional panel data, provided to Paul Lazarsfeld by NBC,
showing exposure to violent TV programming, E, and aggressive
behavior, A, both recorded at two different points in time (Lazarsfeld,
1974).

Our definition of qualitative data excludes situations in which (1) dis-
tinctions are vacuous (i.e., they do not distinguish among observations),
thus leaving all of them of the same kind; {2) distinctions are incomplete
(i.e., they are not drawn among all observations, whether because
qualities are partially unknown or categories are ambiguous, fuzzy, or
inappropriate), thus rendering some observations incomparable; and
(3) the observations distinguished differ in magnitudes (i.e., there is an
order, a continuum, or a metric underlying the observations).

Notationally, we shall reserve capital letters A, B, C,..., Z, excepting
a few found in the List of Symbols, to denote variables and small letters
a, b, c,..., z for the qualities or categories constituting them. AB denotes
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a product of two variables, usually conceived of as a matrix whose rows
and columns are labeled aeA and beB, respectively, and whose cells are
designated by abeAB. By extension, cross-tabulations or multivariate
spaces of an indefinite but finite dimensionality will be referred to by
ABC...Z and its cells by abc...zeABC...Z. In these terms Figure 5 is an
EA X E’A’ matrix of 16 eae’a’ cells.

2. SELECTIVE INFORMATION

[nformation is the key to my approach. Although we subsequently
will revise this concept to meet the requirements of structural models of
qualitative data, to begin with I define information as a measure of the
amount of selective work a message enables its receiver to do.

Accordingly, asking a yes-or-no question admits an initial uncer-
tainty about what the correct answer might be, and the answer to such a
question informs the questioner in the sense of “selecting” one of the two
options he or she had in mind, thus removing the initial uncertainty. The
answer to a yes-or-no question is taken to convey one bit of information
which constitutes our basic unit of measurement. To capture this intu-
ition, uncertainty U is defined by the dual or base-2 logarithm of the
number N of options available. With reference to some variable A,

U(A)=log, N, [2.1]

Accordingly, our yes-or-no question implies N = 2 logical alternatives
and represents log2 = 1 bit of uncertainty.

Given that N refers to logical possibilities, each being of equal weight,
U may be said to measure the logical variety in a descriptive system
of categories. The attribute “logical” is important, as my definition of
information does not yet extend to data, frequencies, or observational
probabilities. Figure 6 lists some integer values.

The amount of information a message—say, a—of the set of possible
messages A conveys then becomes the difference between two states of
uncertainty, the uncertainty U(A) before or without knowledge of that
message and the uncertainty U(a) after or with knowledge of that
message:

I(aeA)=U(A)—U(a) =log, N, —log, N, [2.2]

So if a decision maker must pick one of N4 = 8 alternative courses of
action and is given a report that shows that six of them lead to certain
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Number of Logical Probability
Options Bits of Options
1 0 1.
2 1 S
4 2 25
8 3 125
16 4 0625
32 5 .03125
64 6 .015625
128 7 .0078125
256 8 .00390625
512 9 .001953125
1024 10 .0009765625
N log,N —1"
og, N

Figure 6

failure, there remain N, = 8 - 6 = 2 options to choose from, making the
report worth

I(Report) = U, U

efore

after log,8 —log,2 =2 bits
of information, which is equivalent to receiving the answers to two
yes-or-no questions. To remove the remaining uncertainty, the decision
maker will have to gather one more bit of information or risk a 509
chance of failure. This risk is, of course, considerably less than the risk
that existed before receiving the report.

The connection between uncertainty and the risk involved in making
wrong decisions leads to an expression of information as a function of
the probability of selecting the desired set of alternatives by chance:

N
a
N

I(aeA) =log, N, —log, N, = —log, —log, P, [2.3]

A

where P, = N,/Na is the logical probability of the alternatives in a
relative to A. In this algebraically equivalent form, information is seen
as a measure of the difficulty of making appropriate (to a degree better
than chance) decisions, and because a less expected message is more
informative, information also can be interpreted as a measure of the
surprise value of a message.

Figure 6 suggests that bits are nothing but a different way of counting
options, by the exponents of the value 2 rather than by their number.
This use of logarithms makes bits additive when options are multi-
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plicative (see “log”in the List of Symbols). So when P, is the probability
of guessing the answer to question A and Py is the probability of guessing
the answer to an independent question B, the probability of guessing
both correctly will be Py, = P,Ps.

I(abeAB) = —log, P, [2.4]
= —log, P P,
= —log, P_—log, P,
= I(aeA) + I(beB)

It is this property that assures the additivity of information quantities—
for example, that two floppy disks can contain twice as much informa-

tion as one. For further explanations of these ideas, see Krippendorff
(1975).

3. ENTROPY, DIVERSITY,
VARIETY

Entropy is a measure of observational variety or of actual (as opposed
tologically possible) diversity. Unlike the measure of selective informa-
tion, entropy takes into account that messages or categories of events
may occur with unequal frequencies or probabilities. The two measures
are related, however, and one will be distinguished from the other.

Reconsider the data in Figure 1. When all n = 4,764 murder cases are
considered unique (as they no doubt are from the perspective of the
individuals involved), the total amount of uncertainty as to which case
we are referring to is log»4764 = 12.218 bits. After drawing distinctions
suitable to an analysis and thereby putting several observationsinto one
category on grounds that in some crucial respect they are the same,
as seen in Figure 4, some uncertainty will be lost. The uncertainty lost by
lumping 111 cases into one category is log:111; in another it is
log22074...; and in the generic a™ category of the variable A it is U(a) =
logzn.. On average, this uncertainty is 10.660 bits. A reasonable measure
of the uncertainty remaining after such a multiple classification is the
difference between the uncertainty in the sample before any classifica-
tion and the average uncertainty such a classification loses. The resulting
measure is called entropy,.. Without loss of generality, it is stated here
for one variable (even so, our example could be seen as involving three):
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H(A) = log,n — z -i:f— (log,n,) [3.1]

acA

Whereas the selective information in 2.3 quantifies a simple reduction
in logical possibilities, the entropy in 3.1 quantifies a reduction of n
distinct observations to fewer categories. In our example, the entropy is
12.218 - 10.660 = 1.558 bits. By rearranging the parts of 3.1, the entropy
can be seen to be the average amount of information required to select
(predict or identify) observations by categories:

n n
H(A) = D ~ (—10g2 —lf—) (3.2]

aeA

By replacing the relative frequency n./n with its limiting case, the
probability p., we obtain:

H(A) = - ZA p,log, p, [3.3]

which is the most familiar definition of entropy and was introduced in
this form by Shannon and Weaver (1949). (Although there are occasions
on which the relative frequencies in a sample deviate from the probabil-
ities in the population from which that sample was drawn, we will be
concerned with this difference only when testing the significance of
information quantities and will use relative frequencies and probabil-
ities interchangeably otherwise.) In the one-variable “outcomes of
murder trials” there are a subtotal of 131 death convictions that are
much more difficult to guess (—10g2Pacath penaity = 5.184 bits) than the 4,633
other outcomes (-logzpotner = .0402 bits). Considering the different
weights imposed by their rather unequal frequency of occurrence,
=Pdeath pcnaltlegZPdeath penalty = . 1426 and -pothcr10g2pothcr =.0391 ’ the entropy
in this distinction sums to .1817 bits, quantitatively reflecting a rather
predictable outcome. ,

Part of the definition of entropy, and one reason for calling it a
measure of observational variety, is that unobserved possibilities do not
enter the measure. The average is computed only for categories of
observations that do occur at least once. This is reflected in the conven-
tion adopted here: 0log20 = 0.

Note some of its properties. Entropies are zero or positive and
limited by
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0 < H(A) <H(A)__ = log,(min[N, ,n]) [3.4]

where Na is the number of categories in variable A and n is the sample
size. The entropy is zero when observational variety is absent—that is,
when distinctions are vacuous and all observations are of the samekind,
p. = 1 for one category and zero for all others, in which case both 11og.1 =0
and by convention 0log;0 = 0. The entropy is maximum when the Na
cells are occupied either by the same number of observations, n.=n/Na,
in which case frequencies and probabilities are uniformly distributed, or
by n. = 1 at most, in which case all observations are unique. Thus the
amount of uncertainty (2.1) is a limiting condition for quantities of
entropy. In the example, the victims’ race, with its almost uniform
distribution of 519% and 49%, measures an entropy of .9997 bits and is
near its maximum of 1 bit.

Entropies do not respond to the nature of the categories involved.
Their labels are freely permutable. Only the set of frequencies or proba-
bilities matters. It is in this sense that entropes are said to be content-
Jree. What is true for the arrangement of values in a variable is also true
for the arrangement of cells in a matrix or space of greater dimension-
ality. The entropy

H(ABC..Z)=-2 2, ... 2 p, ,log p.  _ [35]

aeA beB zZ€Z

which is an obvious generalization of 3.3, reflects more and finer dis-
tinctions than those drawn by any single variable, but it too mea-
sures nothing other than a dimensionless collection of frequencies or
probabilities.

Unlike variance measures of deviations from a mean which assume
normal distributions, entropies assume nothing about the nature of the
frequency or probability distribution they assess and are thus non-
parametric measures of variety and entirely general in this respect.

Entropies are averages. Figure 7 illustrates how one might interpret
them as an average number of binary decisions made in the course of
classification. This partition of 32 events measures 1.875 bits. The
decision tree recursively divides these events into equal parts, each
amounting to 1 bit. However, after the first distinction, the second is
made in only half of the cases and thus contributes only .5 bits to the
measure. The third distinction is made in only a quarter of the cases and
contributes .25 bits, and so on. These four contributions add to the total
of 1.875 bits, QED. It follows that 1 bit of entropy may reflect not only
two equally likely alternatives but could also arise from decisions among
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1 .
+ 'g(l bit)

1.875 bits

Figure 7

more than two rather unlikely cases. Figure 8 exemplifies several distri-
butions, all of which measure approximately 1 bit.

Entropies are a function of relative magnitudes, probabilities being
the most common form. The sample size does not influence the entropy
values (except in the form of a statistical bias, which will be considered
later). Entropies may be standardized or expressed relative to their
maximum:

H(A)

0<H(A)

<1 [3.6]

max

Standardized or relative entropies no longer express the magnitude of
diversity or variety (analogous to variance) but may be interpreted as an
index of uniformity (analogous to the standard deviation). Entropy
measures provide access to a rich source of data for the construction of
theories in which variety, diversity, and differentiation are the target of
generalizations. For example, early studies in psychology of absolute
judgments led to generalizations of human information-processing
limits over several sensory domains (Miller, 1956; Attneave, 1959). The
entropy of prose (Shannon and Weaver, 1949; Weltner, 1973) has been
correlated with readability (Taylor, 1953, 1956), with English profi-
ciency (Darnell, 1970, 1972), and with reader enjoyment (Finn, 1985).
Similar intentions led to applications of entropy measures to art and
aesthetics (Bense, 1956; Attneave, 1959; Moles, 1966; Berlyne, 1971),
newspapers (Schramm, 1955), television programming (Watt and Krull,
1974; Watt and Welch, 1983), and to the instrumental and functional
complexity of cultural objects (Moles, 1960).

To test whether the press fulfills its promise of keeping the public
informed, Chaffee and Wilson (1977) used entropies to measure the
diversity of public opinion in media-poor and media-rich environments.
Danowski (1974) and Danowski and Ruchinskas (1979) correlated the
entropy of media exposure with aging and with the complexity of
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interpersonal networks. Entropy is also the primary target of what has
become known as the convergence model of communication (Rogers
and Kincaid, 1981). It suggests that communication processes change
the distributions of beliefs, values, and behaviors within a population
and reverse the natural tendency toward increasing entropy.

Entropy is also the target of many processes of social control. For
example, political succession can be seen as reducing the great variety of
aspirants to a political office until the last uncertainty is removed by
ballot. In a pedagogical example, Lachman, Lachman, and Butterfield
(1979) cite an entropy of nearly 4 bits from November 1975 data on the
probable success of some 17 candidates for the U.S. presidency. The
preelection process reduced this entropy to nearly 1 bit (characterizing
the nearly equally likely success of Carter and Ford before election day
on which voters removed the remaining uncertainty). '

Finally, entropy is also the key to a fundamental law in the cyber-
netics of regulation. Ashby’s (1956) law of requisite variety, which states
that “only variety can destroy variety,” implies that the survival of a
system depends on its ability to generate at least as much variety within
its boundaries as exists in the form of threatening disturbances from its
environment. In light of such a fundamental condition, many entropy
measures gain social importance. For example, Theil (1972) reported
studies measuring occupational diversity in cities, industrial concentra-
tion in the United States, and the entropies of employment, markets,
income, and political representation, all of which can be linked to the
growth and decline of social systems. Montroll (1983) applied the entropy
function to Sears catalogues and showed that the company’s success
depended on keeping variations in the entropy of prices nearly constant.
Galtung (1975) related entropy to a general theory of peace.

Subsequent chapters take the wide applicability of entropy measures
for granted, avoid using them as measures or indices in their own right,
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and focus instead on the analytical opportunities they offer, Shannon’s
theory of communication being an early recognition of these.

4. SHANNON’S THEORY OF COMMUNICATION

Shannon’s widely publicized model of communication (Shannon and
Weaver, 1949) is a chain of processes as shown in Figure 9. The model is
of considerable generality. The labels on its boxes do not matter but
merely exemplify one interpretation. The model is applicable not only to
mediated communication (e.g., telephone, newsprint, computers) but
also to the flow of orders through a chain of command, to the sequential
analysis of data in the course of a scientific experiment, or to infor-
mation processing within an organism. What is important is that each of
these boxes is described by a transformation, with variable inputs,
variable outputs, and transition probabilities connecting the two. A
transformation so described is also called a code. Shannon’s theory
keeps track of information flows through such coding processes, quanti-
fies channel capacities, redundancies, and errors, and offers various
theorems relating them.

To understand any one of Shannon’s boxes in this chain, we must
identify two sets of categories, whether they be signals, messages,
judgments, courses of action, types of contents, or patterns in the input
or output. We must then ascertain the connections between them.
Figure 10 gives four such examples sagittally and tabularly. In a Perfect
Channel, the messages sent and the messages received correspond one to
one. They do not need to be the same—as in translations or in sound
recordings—as long as they are not irrecoverably mixed. In a per-
fect channel of communication, encoding and decoding are inverses of
each other. Imperfect channels entail two kinds of errors: noise and
equivocation.

Noise and Equivocation

Noise occurs when a sender cannot be certain about how the message
is received. In Figure 10 this is indicated by branching arrows or by two

Noise
!

—1 Source > Sender Ao  Channel }—B»4 Recciver o1 Destination f——w=

'

Equivocation

Figure 9
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or more entries per row. The term is borrowed from acoustical experi-
ences in telephone communication that make hearing difficult and is
generalized here to refer to all unexplainable variation, including the
static on a TV screen and incomprehensible rhetoric. Noise need not be
undesirable as in creative pursuits or in political discourse, in which
ambiguity may be intentional. Noise simply measures the input-unre-
lated variety in an output stream.

Equivocation occurs when the receiver is unable to differentiate
between two or more messages sent. In Figure 10 this is indicated by
converging arrows or by two or more entries per column. Equivocation
can be taken to mean “regarded as equal” and occurs not only when a
receiver cannot make out which message was intended but in all efforts
to classify, abbreviate, simplify, or abstract. Equivocation measures the
variety removed from the input stream.

The mathematical machinery for analyzing such situations requires
data on either (a) the probabilities or frequencies with which messages
are sent plus the transition probabilities of how each sent message is
received, (b) the probabilities or frequencies with which messages are
received plus the (inverse transition) probabilities of how each received
message was sent, or, finally, (c) the probabilities or frequencies of all
transitions between or cooccurrences of values from two or more vari-
ables. Figure 11 defines the relevant probabilities and frequencies in
terms of (c). (For notational simplicity we are now taking for granted a’s
membership in A, b’s membership in B, and so on and drop references to
relative frequencies in preference to probabilities where practical.)

According to 3.2 and 3.3, the sender’s entropy in the vertical margin
(row sums) in Figure 11 is
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n

- _ na a
HA)==2p, log, p, =3 < log, 7
The receiver’s entropy in the horizontal margin (column sums) is
ooy
H(B)=- 1 =—) — log, —
(B) ;pb 0g, Py Zbl — log, —

and the total entropy in the table of cooccurrences is
‘ Z b LA
H(AB) = "Z Xb: P.y 108, P, = -Z oy log, Y
a a

Without reference to marginal entropies, H(AB)’s absolute limits are as
in 3.4, and with reference to marginal entropies, H(AB)’s relative limits
are

max[H(A), H(B)] < H(AB) < H(A) + H(B) [4.1]

In 4.1 the minimum entropy represents the case in which either the rows
or the columns of the transition matrix have no more than one non-zero
entry each, the corresponding conditional probabilities are unity, and
the relation manifest in this distribution is many-to-one. The perfect
channel in Figure 10 exemplifies the extreme case of this condition, a
one-to-one relation. Much of the beauty of Shannon’s information
calculus rests on the fact that the maximum entropy in a matrix is the
sum of the two marginal entropies. We noted this property in 2.4. Now
4.1 implies that the probabilities s = papp Of this maximum entropy
distribution need not be computed explicitly.

Receiver’s States Receiver’s States
beB beB
Sender’s . . . i Z
StatesaeA | ... Py - pa=szab R - n.

Figure 11
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The amount of noise is variously defined by

H, (B) = H(AB)—H(A) [42]
=2 p, H (B)

=27, |~ 2. by, log, pbla]

L b

_ na l‘1ab 1‘1ab
= — |- . 10g2 .
a 1 _ b a 1‘1a

n

that is, as the algebraic difference between the joint entropy H(AB) and
the sender’s entropy H(A), as the average of the entropies Hy(B) in the
rows of Figure 11, the latter being expressed either in terms of condi-
tional probabilities py, or relative frequencies nas/n.. If each message
were received as one and only one message, then transition probabilities
Pvja = 0 or 1, all row entropies Ha(B) = 0, H(AB) = H(B), and noise
1s absent. Positive quantities of noise therefore indicate the confusion
the known message a causes in the receiver B. The amount of noise is
limited by

max [0, H(B) ~H(A)] <H,(B) <H(B) <H(AB) [4.3]

The amount of equivocation follows the same logic except that the
positions of sender and receiver and, consequently, the references to
rows and columns are reversed. If Ha(B) measures the noise in a com-
munication channel, Hg(A) becomes its equivocation.

Information Transmitted

The amount of information transmitted through a channel can also
be expressed in several conceptually different but mathematically equiv-
alent ways. As the difference between the maximum entropy and the
observed entropy,

T(A:B) = H(A) + H(B) — H(AB) [4.4]

as the difference between the receiver’s entropy and that part of its
entropy which is noise,

T(A:B) = H(B)— H, (B) [4.5]
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as the difference between the sender’s entropy and that part of its
entropy lost by equivocation,

T(A:B) =H(A) —Hg(A) [4.6]

and in terms of probabilities or frequencies,

Pav
T(A:B) = Z}: p,, log, — [4.7]
a b ﬂab
S5 g tor, 22 TF g 7
a al
= p.. log = ——1log, n
a b ab 2 PPy a b I 2 an'b
n

The probabilities 7. = paps are expected when sender and receiver do not
communicate and operate independently of each other. The so-called
maximum entropy probabilities provide the standard against which the
observed probabilities p are evaluated explicitly in 4.7 and implicitly in
4.4 through 4.6. The log:p/ 7 is also known as the log-likelihood ratio.

The relations among these five measures can be visualized with
Figure 12. It depicts the flow of information through any one of the
components of a communication chain. Equivocation subtracts from
the sender’s entropy, yielding the quantity of information actually trans-
mitted, and noise adds unrelated variation to this transmitted quality,
yielding the entropy at the receiver. The amount of information trans-
mitted is the entropy shared by both—input and output, sender and
recelver, and so on.

The limits of the amount of information transmitted can be shown
with 4.4. When H(AB) is maximum by 4.1, the difference that defines
T(A:B) becomes zero. When H(AB) is minimum, then the smaller of the
two, H(A) or H(B), remains. Hence:

0 < T(A:B) < T(A:B)__ =min[H(A), H(B)] [4.8]

leading to the so-called index of predictability:

. __T(A:B)
0=t s~ TAH <1 [4.9]

max

We will generalize the maximum amount of information in 8.9 and the
index in 13.5.

Inasmuch as the algebraic relations between entropies might elude
recognition of the implicit comparisons that are made by this informa-
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Noise
H,(B)

Channel

Receiver's Entropy
. L Information Transmitted H(B)
Sender’s Entropy

H(A) T(A:B)

Equivocation

H,(A)
Figure 12
Second Interview B
R+ R- D+ D-
Republican for Willkie R+ | 129 3 1 2 {135
First Republican against Willkie R—| 11 23 0 11| 35
Interview
A Democrat for Willkie D+ 1 0 12 11 24
Democrat against Willkie D- 1 1 2 68 72
142 27 15 82 | 266
Figure 13

tion quantity, we apply three alternative computations to the data in
Figure 3, now summarized in Figure 13. Although these data are not
literally about sending and receiving messages, they do conform to the
requirements, particularly to form c. The absence of information trans-
mitted from the first to the second interview would mean that changes
occurred at random, whereas non-zero amounts would indicate that
attitudes in the second interview are to an extent indicated by T(A:B)
predictable from knowledge of the first, the retention of these attitudes
offering the most obvious explanation.

Applying 3.3 and 3.5 directly to the table and its margins (using “A”
to designate the first interview and “B” the second) yields

H(A) = 1.705 bits
H(B) = 1.575 bits
H(AB) = 2.227 bits

By 4.4, the amount of information transmitted between the two inter-
views is
T(A:B)=H(A) + H(B) — H(AB) = 1.054 bits
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This quantity is gtatistically significant beyond reasonable doubt, an
issue addressed in Chapters 10 and 11. By 4.8, T(A:B)max = 1.575 bits,
and the difference between the observed and this maximum quantity is
the result of some voters changing their minds. These cases are found in
the off-diagonal cells of the matrix and constitute noise.

Although this computation of the information quantity is straight-
forward and simple, it does not shed light on where changes have
introduced uncertainties and how they affect the measure. To highlight
such analyses, Figure 14 demonstrates a second approach. It shows the
computation of the quantity of noise, using 4.2. We see the conditional
probabilities p,, tabulated and the entropies H.(B) associated with each
row of this matrix. Both respectively exhibit and indicate the results
obtained during the second interview given the outcome of the first. The
noiseHa(B) is the average row entropy H.(B). In the absence of any
pattern across time, we would expect the distribution of conditional
probabilities p,, to replicate the unconditional probabilities p, in which
case all Ha(B) = H(B) and T(A:B) = 0. In the other extreme, when the
second interview merely replicates the first, all observations would turn
up in the diagonal, each row would have only one occupied cell, all
H.(B) = 0 and T(A:B) = H(B), which is the maximum information
retainable in this case. In the example all entropies H.(B) are non-zero
and smaller than H(B). We also note that most changes understandably
occur in the two rows for the initially conflicting categories (R-) and
(D+), which are indicated by an entropy markedly higher than in the
rows for the consistent categories, (R+) and (D-). But because the two
conflicting categories occur less frequently than the other two, their row
entropies also contribute less to the total amount of information in the
data (last column in Figure 14). Subtracting the quantity of noise,
H(B), from the entropy in the second interview, H(B), as in 4.5, again
yields T(A:B) = H(B) - Ha(B) = 1.575 - .522 = 1.054 bits of information

pb|a pa Ha(B) paHa(B) .
a= R+ 1.956 .022 .007 .0iS .507 327 166
R—-1{.314 .657 .000 .029 .132 1.069 141
D+ | .042 .000 .500 .458 .090 1.207 .109
D-1] .014 .014 .028 .944 271 .393 106
pb H(B) - HA(B)=T(A:B)
534 102 .056 .308 1.575 522 1.054

Figure 14
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retained between the two interviews. With this simple entropy differ-
ence, the quantity implicitly compares the conditional probabilities py,,
with the (unconditional) probabilities p» row for row.

The third approach to computing information quantities is illus-
trated by applying 4.7. It compares the observed probabilities p.» with
the maximum entropy probabilities ., that are expected under condi-
tions of independence. Both of these and the weighted log-likelihood
ratios are givenin Figure 15. In the top and leftmost (R+R+) cell of these
matrices we find the observed probability p., = 129/266 = .485 to be
larger than the expected probability m.p = p.py = .508 X .534 =.271; the
latter would have been observed had the attitudes expressed during the
two interviews been unrelated or changed at random. In this cell obser-
vations exceed expectations by a factor of p./ms = 1.790. Because this
likelihood ratio exceeds unity, the log-likelihood ratio is positive. The
weighted log-likelihood ratio contributes pa,logzpabs/ 7a = .407 bits to the
total amount of information. Figure 15 shows these contributions for all
cells. It turns out that all diagonal cells are positive as well. The signs of
the weighted log-likelihood ratios indicate whether observations are
above (plus) or below (minus) expectations. The sum over all of these
quantities is the amount of information retained between the two inter-
views, or T(A:B) = 1.054 bits as before. Again, regardless of how the
amount of information is computed, the resulting quantity expresses the
above comparisons implicitly.

Pab Tab  PaPob
a=R+|.485 011 .004 .008 271 052 .027 .156
R-|.041 .086 .000 .004 070 .013 .007 .047
D+|.004 .000 .045 .041 048 009 005 .028]
D-|.004 .004 .008 .255 145 028 .015 .028
. Pab
p (o]
ab g2 ”ab
=R+ | 407]-025 -011 -033
R- | -032| .233 —.013
D+ |-014 142 .024
D- | =020 —011 —008 | .413
1.054 bits
=T(A:B)

Figure 15
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Redundancy

One of Shannon’s most celebrated contributions is the proof that
noise that detracts from the amount of information otherwise transmit-
table can be counteracted up to an arbitrarily small error either by
additional correction channels of a capacity equal to or exceeding the
amount of noise entering the communications or by coding an equiv-
alent amount of redundancy into the channel. Familiar forms of the
latter are repetitions of the messages sent or the use of fewer than all
possible messages, including parity checks of various complexity. This
gives rise to measures of redundancy. For simple entropies within a
communication channel, redundancy is the difference between the
entropy of a uniform distribution and the observed entropy and is an
information measure in its own right:

T(A) =H(@A),_ , —H(A) [4.10]
or expressed as an index:
TA) _.__H@A)
HQA) 1 HQA), [4.11]

The latter led Shannon and Weaver (1949) to observe that the English
language is about 50% redundant, a figure that other researchers have
upgraded to 70%. This redundancy accounts for the fact that we can
detect and correct typographical errors and syntactical mistakes in
English prose. A nonredundant language would be a more efficient
means of communication but totally insensitive to transmission errors
of any kind. For example, this book consists of about 22,000 words and
names, and has a word entropy of 8,613 bits, and because it uses only
about 2,500 kinds of words, it is 249% redundant.

The total amount of information transmitted can be generalized to
many variables (McGill, 1954; Ashby, 1969):

T(A:B:C:...:Z)=H(A) + H(B) + HC) + ... +H(Z)  [4.12]
~H(ABC...Z)

As stated earlier, Shannon’s theory was originally concerned with a
particular structural model of communication involving binary compo-
nents (having inputs and outputs only) and no loops. The causal chain in
Figure 9 exemplifies this case. Foreshadowing extensions to more
complex models in subsequent chapters, the total amount of informa-
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tionin achain A—~B—C—D—...—Z, similar to Figure 9, turns out to be
the sum of the transmissions in each of its components:

T(A:B:C:...:Z)=T(A:B) + T(B:C) [4.13]
+ T(C:D)+ ...+ T(Y:2)

The model assumes that communication between A and C, A and Z, B
and Z, and so on and all higher-order interactions are absent. For such
chains a bottleneck theorem states that the amount of information a
chain can maximally transmit from its input to its output cannot exceed
the amount transmitted by its weakest link:

T(A:Z) < min[T(A:B), T(B:C), T(C:D), ..., T(Y:Z)] [4.14]

Subsequent chapters expand Shannon’s original conceptions.

5. COMPARISONS OF
QUALITATIVE VARIATES

Situations may arise in which comparisons of simple measures of
diversity will not suffice. Recall Figure 8, which depicts rather different
distributions of equal entropy. We are concerned here with comparing
two frequency or probability distributions within the same variables.
Consider a hypothetical set of data created after Theil (1972), who
studied racial segregation in Chicago with entropy measures.

Figure 16 lists the racial composition in all five schools of a district.
The first and largest school is predominantly black. The second is
predominantly Caucasian, with the fifth and smallest being nearly exclu-

Racesb of B
Black Caucasian Hispanic Asian Racial Entropy (Bits)
a=1 422 91 151 0 Hl(B)= 1.294
2 11 257 37 66 H2 (B)=1.292
3 458 68 68 68 H3(B) =2.000
4 50 51 25 14 H4(B) = 1.837
5 1 98 1 2 l—l5 B)Y= .307
Total 552 565 282 150 H(B) = 1.836

Figure 16
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sively so. Although there are apparent differences in the first two schools’
composition, both have nearly the same racial entropy of 1.292 bits,
which shows that the content-free quantities of entropy by themselves
say nothing about differences between two frequency distributions and
hence about racial discrimination or bias in this case. Expectations are
important. If race does not enter a school’s admissions policy, we would
expect the racial mixture within each school to resemble that in the
school-age population of the surrounding community as a whole. This is
clearly not the case in the first, second, and last schools, which have
unexpectedly large numbers in one category, or in the third school,
which, despite good intentions, employs an equal quota system. We
approach such comparisons in two ways.

Informational Distance

One way is suggested by comparing one row with the aggregate sum
of all others. In effect this means rearranging the data in Figure 16 into
several 2 X Ng matrices as in Figure 17, in our example, one for each
school. The amount of information transmitted between the two vari-
ables, a versus not-a and B, as obtained by 4.4 through 4.7, measures the
dissimilarity or difference between one row and all others and is called
the informational distance T(aa:B):

Pp " Pap
+ -p,)log, ——
2 By~ y) o8y (T

pab

T(ai:B) = Zb: P, l0g, [5.1]

athb

T(aa:B) is zero or positive. It is maximum if, whenever pab is zero, ps - pab
is non-zero and vice versa and cannot exceed 1 bit. It is zero when the
probability distribution pyy, in a equals that of pg}, in 3, in which case
both equal the distribution of py, in the margin and p,p, = paps. This plus
the symmetry T(aa:B) satisfies all requirements of a distance function.
Measures of this kind have been used in document retrieval and pattern
recognition but have also been applied to make qualitative data amen-
able to multidimensional scaling analyses.

In our example the use of the informational distance T(aa:B) as a
measure of racial discrimination is marred by its otherwise useful
symmetry. It responds to the volumes of discriminatory decisions
regardless of whether they are made inside a school (first row in Figure
17) or in its aggregate environment (second row in Figure 17). When
schools are of rather unequal size, the bias in smaller schools is likely to
remain unnoticed in contrast to the lack of differentiation within their
then larger environments. For example, the informational distance
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between the second school and its environment is .185 bits, whereas for
the last school, which is in fact more selective, it is only .081 bits.

Informational Bias

The second measure compares observed and expected probabilities
as well but only within any one row (or column, as appropriate). The
informational bias

Py
P,Py

T(a:B)= ——-Zpb og, [5:2]

consists of only the first part of T(aa:B) in 5.1. Observations in this a™
row have the status of a subsample, and T(a:B) measures the degree to
which that subsample differs from the whole sample of which it is a part.
In the algebraically equivalent forms,

Pyl
T(a:B) = Zb pblalog2 = = -—; Py| 4108, Py —-H, (B)

the measure appears to be the difference between an entropy in B, which
is weighted not by py, as in H(B), but by pya, and the (conditional)
entropy Ha(B) in the a® row. T(a:B) is related to the total amount of
information in a matrix by

T(A:B) = ZZ P logz

—Zp T(a:B)

and to T(aa:B) by
T(aa:B) =p, T(a:B) + paT(é-llB)
Obviously, the informational bias is not symmetrical regarding the two

distributions, T(a:B) # T(a:B), and therefore cannot be interpreted as a
distance function.
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Ppla _Z Pyla log2 Py~ Ha(B) = T(a:B)
b

a=1 | .636 .137 .227 .000 1.701 1.294 407

2 |.029 .93 .100 .178 1.896 1.292 604

3 [.250 .250 .250 .250 2.187 2.000 .187

4 |.357 .364 .179 .100 1.837 1.837 .000

5 1.010 .959 .010 .021 1.505 307 1.198
Py, H(B) - HA(B) = T(A:B)

357 363 .183 .097 1.836 1.405 431

Figure 18

For the racial segregation data, Figure 18 lists the conditional proba-
bilities py),, the probabilities py, to which the former are compared, and
the entropy components leading to T(a:B) to the right of this matrix.

Informational bias measures reveal, what is intuitively rather obvious,
that the last school follows the most stringent discriminatory policy,
making, on average, more than one decision per student to keep certain
racial groups out. All of these measures except for the fourth school are
significant beyond reasonable doubt.

Bias measures of this kind have many applications and will be gener-
alized in Chapter 13 for examining strata in complex models.

6. STRUCTURAL MODELS

Generally amodelis intended to represent a portion of reality so as to
explain, to predict, or to control certain features of that reality which are
otherwise difficult to observe or to manage. Here the “reality” of interest
is manifest in multivariate qualitative data. Any model of such data
must be specified by a limited number of parameters with respect to
which the model and the data correspond. Given this limited corre-
spondence, a model must then be able to generate a set of artificial or
hypothetical data within the original multivariate space, and if the two
sets of data match or their difference is insignificant, one is justified to
conclude that the model explains, accounts for, simulates, or replicates
the data in hand. Figure 19 illustrates what is involved. The approach
taken here is traceable to Ashby’s (1964) constraint analysis and has
recently been termed “reconstructability analysis” (Klir, 1981). We pre-




33

Computation
of Maximum Entropy
Distribution
within Parameters

Model-Generated Data in AB . . .
H(m)=H(K,K,:...)

Model m:

Parameters K‘ . K2 .. .. of Model:

Test for
Goodness of Fit

Observed Datain AB...Z
H(m_ )=H(AB...Z)

Reality m
as Seen by an Observer
in Variables A, B, .. ., Z

Reality of n Observations:

Equivocation

za:zb: e pab...ZIOgZ nab...z

Figure 19

sent here the logic of such models, leaving quantitative accounts for
Chapters 8 and 12. |

Parameters

The parameters of a structural model are relations within selected
subsets of the variables modeled. For example, Shannon’s model of
communication consists of a sequence of bivariate components, each
realizing a relation in pairs of variables, ultimately linking an input to an
output through a chain of components, excluding all bypasses and
higher-order interactions. The choice of parameters may have technical,
theoretical, empirical, or even aesthetic motivations. A technical reason
for adopting certain parameters might stem from knowledge of the
system modeled. If two variables are not connected in reality, an appro-
priate model need not consider this relation. A theoretical reason might
rely on the dependencies that an existing theory anticipates. An empir-
ical reason might point to evidence that the parameters chosen are those
minimally necessary to reproduce the given data. An aesthetic reason
might be based on preferences for certain kinds of explanations—simple
ones, for instance.

When data are quantitative, parameters may be defined by mathe-
matical functions. For example, the equation y = rg(x)-+ ey describes a
linear relation between the two variables X and Y. Because data rarely
exhibit such a one-to-one relation (function), as the coefficient ryy
implies, an error term ey is added to express the deviationin Y from this
ideal line and yields a closer approximation to what the data actually
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show. Figure 20 depicts three quantitative relations illustrating this
point.

When data are qualitative, functional expressions such as those
underlying Figure 20 are inappropriate because addition and multipli-
cation do not apply to unordered variables. What would be appropriate
here is the use of the very distribution of cooccurrences in the original
data—for example, data in Figures 5, 10, and 13, the distribution of
observed pairs in Figure 20, all of which constitute the most obvious and
uncontaminated manifestation of relations among variables. Observed
cooccurrences may not have the aesthetic appeal that mathematical
equations have, but because all equations can be represented distribu-
tionally, as Figure 20 shows, the form is not only the more universal of
the two but also avoids several errors.

First, functions are idealizations, many of them assuming linearity, as
suggested in Figure 20. The reliance on the very distribution of observa-
tional data from which such functions could have been estimated avoids
the bias inherent in mathematical simplicity.

Second, the use of variance terms, e, in our example, assumes that
deviations from the ideal conform to a standard statistical distribution,
the normal distribution for example. Such an assumption is not only
unnecessarily restrictive but also violates the qualitative nature of our
data.

Third, the coefficients r,y of structural equations, and many familiar
mathematical operations (including those represented by the arrows of
path diagrams), are all binary and relate pairs of variables only. Natural
language also favors the expression of binary relations (opposites,
contrasts, differences, causes) at the virtual exclusion of higher-order
interactions. Even Shannon’s original conception of communication is
limited in this way. An analysis that relies on binary relations at the
expense of relations of higher ordinality cannot capture the complexity
that may be manifest in multivariate data.

Returning to the parameters of structural models, each relation
within a designated set of variables may be said to specify a different
component of amodel. In the block diagram we shall use to depict such
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models, parameters are represented by boxes to which some variables
are attached by lines. We say “attached” because these variables may be
inputs or outputs, as in Shannon’s communication chain, or simply
observed variables without causal implications. The number of vari-
ables involved in a parameter equals that component’s ordinality. The
second model in Figure 21 contains one fourth-order component,
ABCE, and two third-order components, BCD and CDE. Researchers
familiar with path diagrams and causal networks, in which nodes repre-
sent variables and lines represent influences, must make a gestalt switch
here, converting lines into boxes and nodes into lines. Block diagrams
are capable of representing higher-order interactions (in boxes). Graph-
ical devices that represent influences by arrows or dependencies by lines
between variables cannot capture anything above an ordinality of two.

We can think of a component of an ordinality of one as a simple
random generator that reproduces the distribution of frequencies or
probabilities as originally observed in the one variable attached toit. By
extension, a component of higher ordinality can be thought of as a
random generator that reproduces the distribution of frequencies or
probabilities of cooccurrences through which the observed relation
between the attached variables is empirically manifest.

Composition

A structural model consists of several components, each specified by
a different parameter with respect to which it corresponds to the data to
be modeled, and none is included or equivalent to another. 1 consider
here the logic for composing such models (see Klir, 1976, 1981) and
define appropriate terms.

A model is said to cover the variables it models. Figure 21 shows four
different models covering the same set of five variables. The first does
not differentiate components. It represents the data in their original
form by asingle, all-encompassing component of ordinality five without
simplification and is called the saturated model. 1 refer to this extreme
case of a model by m,. Here the saturated model is m, = ABCDE. The
second consists of three components, K; = ABCE, Kz = BCD, and K3 =
CDE, and is denoted by m; = ABCE:BCD:CDE. The third is derived
from m; by omitting the CDE component, which does not change its
cover. The fourth consists of five components, one for each variable;
and because they work entirely independently of each other, we denote
this condition by the subscript “ind.” The model of independent vari-
ables is mi,a = A:B:C:D:E.

A model’s components must be neither included nor equivalent rela-
tive to one another and are connected by the variables they share. One
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component is included in another if all of the former’s variables are also
variables of the latter. Two components are equivalent if they cover the
same variables. The restriction is motivated by the fact that an explana-
tion of a relation already explained adds nothing and is redundant.
Figure 22 shows three mere graphical variates of the model m; =
ABCE:BCD of Figure 21 in which the redundant components are
crossed and should be omitted.

In the model ABCE:BCD:CDE of Figure 21, variable A is said to be
unique to the first component K, = ABCE because A occurs in no other
component of that model. BC is shared between the first and the second
component, and we note this fact by writing K&K = BC. Similarly,
K1&K; = CE and K2&K3 = CD. K1&K:&K3 = Cis shared among all three
components. In a block diagram each variable occurs only once,
regardless of how many components it connects.

The “behavioral” interpretation of the connections among the boxes
of a block diagram is that components either communicate with each
other or coordinate their behavior but only along the variables they
share. In a chain one component’s output is the next component’s input,
and the two components are thereby no longer independent. In the
model ABCE:BCD:CDE of Figure 21, communication among compo-
nents is circular and the loop involves variables B, D, and E. Block
diagrams are much like the process diagrams in management or like the
wiring diagrams in electrical engineering in which lines indicate connec-
tions among components or what is transmitted between them.

Interactions

A parameter—thatis, a probability distribution within a subset of the
variables covered by a model—contains all complexities that a compo-
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nent can represent, particularly all relations of an ordinality less than the
number of variables involved. Thus the parameter ABCD contains four
tertiary relations—ABC, ABD, ACD, and BCD—six binary relations—
AB, AC, AD, BC, BD, and CD—four unary relations in separate
variables—A, B, C, and D—and the nominal ¢. The parameter ABC

<ABCD>

<ABC> <ABD> <ACD> <BCD>

<A|B>MC D>
<A><ITM%L/
¢//

contains AB, AC,BC, A, B, C, and ¢, all of which are already contained
in ABCD. This embeddedness motivates the demand that the compo-
nents of a model are neither included nor equivalent relative to each
other and led to calling such models hierarchical.

However, there arises the need to consider what is unique to a set of
variables—for example, what is unique to ABC and not reducible to AB,
AC, BC, or to what any of these contain. This is called an interaction. An
interaction is a unique dependency from which all relations of a lower
ordinality are removed. All of its variables are essential; none can be
omitted. By this definition interactions are not embedded in each other,
can be said to be the additive content of a relation, and form Boolean
lattices. We use “<”and “>"todistinguish interactions from the param-
eters that contain them. Figure 23 depicts the interactional content of
the relation ABCD.

Except for the satured model, m,, which contains all interactions
possible within the original data, all other models exclude some interac-
tions. Figure 23 also depicts the interactions contained in the model
ABC:BCD, using heavy lines to connect them. Interactions excluded
from this model are connected by fine lines, and interactions shared by
the two components are connected by two heavy lines. As indicated in
this figure, in lattices of all possible interactions, relations form sublat-
tices, one for each component and one for each shared set of variables.

A

Figure 23
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Relations Between Models: Descendency

Two models are said to have the same structure or are of the same
structure type if one can be obtained from the other by a mere one-to-one
relabeling of its variables. For example, the models ABCE:BCD:CDE
(see Figure 21) and ABCE: ABD: ADE have the same structure because
the latter can be obtained from the former by exchanging A with Cin all
components. Models of the same structure yield the same block dia-
grams except for the labels on their connecting lines. Block diagrams
without labels depict structure types (see Figure 25).

Structural modeling often requires comparisons of models. For this
purpose we define the notion of descendency. One model is said to be a
descendent of another if all relations in the former model are included in
the latter and both models cover the same variables. Descendent models
are also called nested models. For example, the model AB: AD:BCDE is
a descendent of ABD:BCDE because AB and AD are included in ABD
and BCDE occurs in both. Two models of which neither is a descendent
of the other are incompatible. For example, the model AC:BCDE, which
contains AC, isincompatible with ABD:BCDE and AB:AD:BCDE be-
cause ACis absent from both. We denote descendency by an arrow from
anancestor to its descendent: for example, ABD:BCDE—~AB: AD:BCDE,
or more generally m;—m,;.

A model is a direct or immediate descendent of another if no inter-
mediate models exist and the two models differ by only one interaction.
For example, the following string denotes one of several possible lines of
immediate descendents of ABD:BCDE:

ABD:BCDE -~ AB: AD:BCDE —» AB: BCDE — A: BCDE
- A :BCD:BCE:BDE:CDE

Here interactions <ABD> <AD>, <AB>and <BCDE> are removed
in this order, reaching A:BCD:BCE:BDE:CDE in four steps. Klir
(1976) calls these steps “immediate refinements” as they introduce sim-
pler components. An algorithm for generating a model’s immediate
descendents is given in Chapter 14. Given that an ancestor always repre-
sents greater complexity than any of its descendents, the number of
immediate descendents that separate two models can serve as a measure
of the difference in their complexity. Figure 24 includes this number.

Lattices

Models that cover the same variables always have one nearest com-
mon ancestor and one nearest common descendent. The nearest common
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Figure 24

ancestor is composed of all and only the components of the models
being compared, except those included or equivalent relative to each
other. For example, when putting the two incompatible models
AC:BCDE and ABD:CD:CE together, CD and CE of the second model
are contained in BCDE of the first and are redundant in any common
ancestor. The remaining components, AC:ABD:BCDE, constitute the
nearest common ancestor of the two models. The nearest common
descendent contains all and only the interactions shared by the models
being compared. Using the same two models as an example, ABD:CD:CE
contains<ABD>, <AB>, <AD>, <BD>, <CD>, and <CE>, of
which only the last three are shared with AC:BCDE. Given that none of
the interactions involving A is shared, the nearest common descendent
will include A as a separate variable and BC, CD, and CE as compo-
nents. The resulting A:BD:CD:CE, retains all shared interactions, pre-
serves the distinctions made by either model, and is their nearest common

descendent. .
As already mentioned, generic references to models are helpful, m; or

r components. The nearest common ancestor of two models is denoted
by “m;Um;” and the nearest common descent by m;(m;. The saturated
model, m,, representing the data without simplification, can be called the
most distant common ancestor, and minq, the least complex of all possible
models, can be called the most distant common descendent. 1t follows
that for any two models, covering the same variables
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-~ mNm, > m,_ [6.1]

mo—> miUm - m y

] i

-
m_ - miUmj - mj - miﬂmj m 4

These relationships define a lattice, which is depicted in Figure 24 using
the above models as an example. The numbers indicate how many
generations these models are apart.

Lattices of structural models as in Figure 24 differ from the Boolean
lattices of all possible interactions as in Figure 23. Lattices of all possible
models provide important guides for analysts of qualitative data to find
their way through the forest of models to be considered. They also form

ABC e_r e‘j ﬂi /6%6\:5{?:
AB: AC: BC tﬂ! rgi]:x 5%5 OO
v of oo o oo 8470
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the basis of computer programs for exploratory analysis. To appreciate
the kind of lattices we have to be concerned with, Figure 25 depicts two
versions of the lattice of all models in three variables and two lattices of
all structure types of models in three and four variables, respectively.
Chapter 14 considers algorithms for the generation of such lattices.

7. MODELS WITH AND
WITHOUT LOOPS

Shannon’s communication chain is the prototype of a structural
model without loops. The output of one component is the input to the
next. Thereis no feedback. Causality goes one way only. No component
influences itself, directly or indirectly. Models without loops can be
evaluated sequentially, and convenient algebraic (so-called closed form)
expressions for computing the maximum entropy probabilities are
made available in Chapters 12 and 14. For structural models with loops,
algebraic expressions are unavailable and maximum entropy probabil-
ities must be computed iteratively (see Chapter 12), requiring electronic
computers. This difference motivates the distinction elaborated in this
chapter.

When models are simple, loops are easily recognizable by their circu-
larity. But when models cover many variables and dependencies among
them are complex, a visual inspection of block diagrams may be mis-
leading. Consider the examples in Figure 26. Here m; clearly contains a
loop involving A-B-CD and back to A, but the structure in the others
might not be so transparent.

To detect whether a structural model contains loops, we use an
algorithm similarto the one suggested by Bishop, Fienberg, and Holland
(1978:76):
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Given the components K1, K,..., K, Kj,... of a model
(1) remove all variables that are unique to any K.

(2) remove any K. that is equal to or contained in any other K; of the
(remaining) set.

Repeat 1 and 2 until either
(a) no variables remain, in which case loops are absent, or
(b) the remainder is unalterable by 1 or 2, in which case loops
exist.

Take m; of Figure 26 for the first example:
Given: ABC:ACD:BCE
by l: ABC:AC:BC
by 2: ABC
by 1: ¢
Hence m; does not contain loops.
Applied to ms of Figure 26:

Given: AB:ACD:BCE:DE
by 1: AB:ACD:BCE:DE (no unique variable)
by 2: AB:ACD:BCE:DE (no K equal to or contained in
another)
Hence m; does contain loops, namely A-B-E-D-A, A-B-C-A
and C-D-E-C
Applied to m4 of Figure 26:
Given: ABC:ABE:BCD
by l: ABC:AB:BC
by 2: ABC

by 1: ¢
Hence m4 does not contain loops.

Actually, m; and m4 have the same structure (one can be obtained from
the other by exchanging labels), and the test is redundant. Their dif-
ferent appearances demonstrate that block diagrams can hide the exis-
tence of loops or falsely suggest them. The formal test is conclusive,
however.

Note that the direction of causality does not enter the test for whether
a model contains loops. For example, m3; = AB:ACD:BCE:DE cannot
be altered by our algorithm and is therefore said to contain loops; even
so, the causality indicated by the arrows in Figure 26 is unidirectional.
Also the distinction between nonrecursive and recursive models, which
is made in the literature on modeling quantitative data, does not always
coincide with the distinction between models with and without loops.
Because of the absence of circular causalities, m3; would be considered a
recursive model even though it does contain loops.
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This algorithm is merely intended to separate structures according
to their unequal computational requirements. However, the sequence
leading to the determination that loops are absent is nothing but the
inverse of a recursive procedure by which such models could be con-
structed by extending components to cover additional variables or by
adding components with new variables to an existing model. The proba-
bilities generated by loopless models are computable in the same order.
Test results leading to the conclusion that loops exist point to a set of
variables within which some loop(s) make sequential computations
impossible, requiring iterative processes instead.

8. INFORMATION IN MODELS
AND IN DATA

We stated that structural models that reproduce given data reasonably
well can serve as an explanation of those data. To assess their goodness
of fit, measures are now needed that compare the artificial data gener-
ated by a model with the original data. In this chapter we will extend
Shannon’s initially bivariate notion of information and develop the
instrumentarium needed to quantify how much of the information
present in data is represented in a particular model or ignored by it.
These information quantities not only provide criteria for deciding how
good a model is but will also guide the exploration of alternative model
structures.

To begin with McGill (1954) and Ashby’s (1969) generalization of
Shannon and Weaver’s (1949) notion of information, we observe that
4.12is in fact composed of two separate entropies, the entropy in model

in the saturated model m, = ABC...Z, both covering the same variables:

T(A:B:C:...:Z) - [8.1]
= H(A)+H(B) + H(C)+ ...+ H(Z)~H(ABC...Z)
= H(A:B:C:...:Z) ~H(ABC...Z)
= H(m;,y) - H(m,)
= T(my;q)

H(m,) conforms to 3.5 and is the entropy in the original c!at? that
contain all complexities a model might hope to explain within the
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variables covered. It is also the smallest entropy a model of these data
can generate. H(mjnq) is the entropy in a model of independent variables
that excludes all relations among variables the data could contain. Being
computed as the sum of the entropies in the individual variables, by 4.1, it
is also the maximum entropy obtainable within the given set of variables
and the entropy of the so-called maximum likelihood distribution to
which only the knowledge of the distribution in individual variables
enters (Gokhale and Kullback, 1978). The difference between the two,
the total amount of information, T(mina), is the maximum amount of
information in the data that a model can conceivably explain. T(A:B)in
4.4 through 4.7 is its simplest form.

In developing the required information quantities, we proceed in two
steps. The first is to generalize T(minq) in 8.1 to more complex models.
Let pa.... be the probabilities in the data (or “generated” by m,) and let

Pabc...z be the probabilities generated by a model m;. Then, by analogy
to 4.7,

Pape..
T(mj)=§_:§_:b ;pabc"z log, —=== [8.2)
a

abc..z

T(m.) = 0 and for models m; with loops:
T(mj)qﬁH(mj)—H(mo) [8.3]

Given that T(minq) is the amount of information m, can and m;,q cannot
explain, T(m;) must be interpreted as the amount of information in the
data m, that escapes an account by model m;. It measures by how much
my; is in error and indicates the quantity that structural modeling efforts
aim to minimize.

The second step toward the desired generalization concerns informa-
tion measures that permit comparisons between descendent models. Let
there be two such models, m; and m; of which m; generates distributions
of probabilities wax.... and m; generates distributions of probabilities
pabe...z. The informational difference—that is, the amount of informa-
tion modeled in m; but ignored in m;—is

w
bc..
I(mi—>mj) = E Zb: z :pabc"z log, pa — [8.4]
a z

abc..z

This most general definition of information lends itself to what is
probably the most important identity for partitioning quantities of
information. It is attributed to Gokhale and Kullback (1978):
nd

I(m - m, =I(mo—>mi)+I(mi—>mind) [8.5]
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This definition decomposes the total amount of informationin the data,
I(mo—min), into one quantity, I(mj—~m;,q), for which the model m;
accounts, and another quantity, I(m,—~m;), by which that model is in
error, the latter being due to the differences between the observed and
the model-generated data.
For a line of descendent models, 8.5 is extendable to any number of
models whose informational differences are related as follows:
I(m »>m, ,)=I(m ~>m)+I(m > m,) + I(m, -m ) [3.6]
This accounting equation enables the analyst to assess not only how
much information a given model ignores and represents in its structure,
respectively, but also by how much another model would improve its
“fit.” We shall use both forms, 8.5 primarily for confirmation and 8.6

primarily for exploration. For algebraic convenience, the informa-
tional difference in 8.4 may also be stated in T-terms:

I(m, ~> mj) =I(m_ ~ mj) —I(m - m)= T(mj) -T(m) [8.7]

Figure 27 relates the quantities in 8.5 through 8.7 graphically within a
stylized lattice of all possible models with the same cover.
For an algebraic example of the two information quantities, [ and T,

taking full advantage of the algebraic properties of the information
quantities associated with loopless models, we find the following
equivalence:

I(m -m, ) = I(m - m

o chain ) +1 (mc

[8.8]

o hain ~ mind)

T(A:B:C:...:Z)=T(AB:BC:CD:...:YZ)
+T(A:B)+T(B:C)+ T(C:D)+...+ T(Y:Z)
Whereas the sum T(A:B) + T(B:C) + ... + T(Y:Z) expresses the infor-

summarizes all quantities of information transmitted between nonsuc-
cessive pairs of variables—for example, T(A:C), T(A:Z), T(B:Z)—and
contained in higher-order interactions which the chain cannot repre-
sent. If the reality the data represents is indeed chainlike, then the latter
and, for this chain, extraneous quantities will be zero and the total
amount of information equals the sum of the transmissions within
components as in 4.13. If these extraneous quantities are non-zero, then
these error quantities suggest that the reality of the data is not quite as
chainlike as the model supposes. Equation 8.8 also demonstrates that
the informational differences between models, expressed in I-measures,
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I(m,~m,) 4011 | bits

[.(mo—) mind)

L b

Y

Figure 27

implicitly represent quantities of information transmitted between vari-
ables, expressed in T-measures, whereby the latter need not have the
same COVers. |

- For a numerical example, consider 18 hypothetical observations in
six binary variables A through F of two values, 0 or 1 each, as listed in
Figure 28. The total amount of information in these data is 1.8301 bits.
Of this, the model ABCD:CDEF accounts for 1.4290 bits, or 78%, and
fails to account for the remaining .4011 bits. These quantities are found
in Figure 27 as well. The model AC:BC:CD:DE:DF accounts for only
.0446 bits, or 2% of the total amount, and fails to account for 1.7854 bits.
Clearly in this instance, the simpler model is totally inadequate. It
ignores the information accounted for by higher-order interactions
present in the data. This finding would lead to the conclusion that a
theory that might be used to explain these data cannot be constructed in
terms of the binary relations in AC:BC:CD:DE:DF. A more appro-
priate theory should state at least two fourth-order relationships between
variables and, if it does just this, can then explain no more than 78% of
the information that could be accounted for.

A: 00000O0O0OO0OO0OTI1T1T111111]1
B: 00 00111110000011T11
c: 0011001110001100T1]1
pD: 001 111001001010101
E: 01 0101010101010101
F: 01 0110101010100101

Figure 28
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We. shall later require an expression of the maximum value of the
quantity I(mi—m). Without justification, this maximum is

I(mi»mj)max=1(mi—>mj)+KZ{H(K)— max [H(K&L))} [8.9]

Lem,
J

where K is acomponent of m;, Lisa component of m;, and K&L consists
of the variables shared by the two components K and L.

Note that all information quantities so far considered pertain to
models as awhole. They differentiate neither the contributions made by
its component parts (the expression in T-terms for the chain is an excep-
tion) nor the contributions made by particular interactions. We shall
address some of these issues in Chapter 14. Note also that we have not
yet stated how the probabilities generated by these models are com-
puted and compared with available data; Chapter 12 concerns this issue.
Finally, the problem of testing the significance of the information
quantities will be addressed in Chapters 10 and 11.

9. STRUCTURAL ZEROS

In multivariate spaces some cells may remain empty or have zero
observed frequencies. Three reasons could account for such cells, the
last being our primary concern. The first is empirical. Zero frequencies
may be due to existing constraints in the data source, and evidence of
this nature may contribute to the research findings. Second, zero fre-
quencies may be due to sample sizes that are too small to contain all
possible observations. Sampling theory contends that with increasing
sample sizes each possible observation will eventually occur at least
once, no matter how rare the case may be. Significance tests aim at
differentiating between the two kinds of reasons. The third reason is
logical or theoretical. Frequencies may be zero because observations are
impossible or excluded on a priori grounds. Such cells are different from
the other two in that expected probabilities are zero as well. A zero
frequency therefore may have quite different interpretations.

A zero in a cell for empirically possible observations (for which
expected probabilities are non-zero) is called an observational zero,
whereas a zero in an unoccupiable cell or in a cell for which observations
are impossible (and expected probabilities are zero as well) is called a
structural zero.

For example, consider data on “who follows whom”in astudy of turn .
taking during a group discussion. Given that no person can take the turn
to speak away from himself or herself, all diagonal cells of the square
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Figure 29

matrix in Figure 29 will contain structural zeros. A model generating
expected probabilities with which observed frequencies are to be com-
pared must not enter anything in these unoccupiable cells either. Or
consider the cross-tabulation of messages exchanged between individ-
uals of higher and lower ranks within a corporation that recognizes five
levels of employment. Given that “higher rank” and “lower rank” are
defined in terms of the difference in rank, only a triangle of the matrix in
Figure 29 is occupiable. The remaining cells contain structural zeros.
Structural zeros do not need to be distributed as regularly as in Figure
29. Further examples are found in Figure 32.

Structural zeros destroy the strict Cartesian orthogonality of com-
plete multivariate spaces that are formed by the simple product of their
variables, and complicate computations by structural models (specifi-
cally the generation of maximum entropy probability distributions and
the evaluation of their degrees of freedom). In contrast, observational
zeros do not contribute to the information measures and require no
special considerations.

10. DEGREES OF FREEDOM

Degrees of freedom enumerate the non-zero probabilities that a
model needs to compute (estimate) within its parameters. This number
is required for testing the significance of the information quantities.

The most elementary constraint on the choice of probabilities is that
their sum must equal unity or, with reference to frequencies, their sum
must equal the known sample size. Accordingly, and with N categories
or cells, we can estimate only N - 1 probabilities, after which the
probability in the N™ cell is no longer a matter of choice. Thus within a
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variable or space K, the degree of freedom (df) for simple entropies
H(K) is

df, =N, -1 [10.1]

Structural models impose the additional constraint that the com-
puted probabilities must conform to that model’s parameters. Inthe 3X 5
matrix AB of Figure 30, for example, there are dfas =Nag-1=15-1=14
degrees of freedom. The parameters of the model A:B with its two
independent components (variables) A and Bhavedfa=Na-1=3-1=2
and dfsg = Np - 1 =5 - 1 = 4 degrees of freedom, respectively, and
dfs.p = dfs + dfg = 2 + 4 = 6 in total.

For models without structural zeros, 10.2 generalizes this notion to

af_ =Ze: df, [102]

__ degrees of freedom in sets of variables
shared among four components

+ etc.

For testing the significance of information quantities I(mi—m;),
involving two descendent models without structural zeros, the degree of
freedom is

iy om, = U, = oy [10.3]

In Figure 30, dfsp.a.p = df 5 — dfs. = 14 - 6 = 8 degrees of freedom. The
matrix labeled AB—A: B illustrates this condition. Because each model
must satisfy its parameters, this maximum entropy distribution n}ust
satisfy the requirement that rows and columns add to the marginal
probabilities in A and in B. Of the 3 X 5 =15 cells, the seven shaded cells
are implied or fixed once the eight unshaded cells are chosen, hence

df,p_.p = 8 as obtained above. For the five structure types possible
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within three variables (see Figure 25), the degrees of freedom are listed in
Figure 31. The entries in this table take advantage of the fact that in the
absence of structural zeros, multivariate spaces are Cartesian products
of its variables—that is, Nagpc...= NaNsNc.... Because each model in this
table is an immediate descendent of the one above, the column lists the
degrees of freedom for the interactions eliminated during this descent.

The individual degrees of freedom sum to the total dfy, ., ,. The table
should be familiar to x° users. |

Interaction

Removed
i m, dfmi m;—m; g dfmi_’miﬂ
0 ABC N,pc~1! <ABC> (N, -D)(Ng-D(N.—1)
1 AB:AC:BC NAB+NAC+NBCc-Na-Np-Nc <BC> (Ng=D(N,-1)
2  AB:AC NAB+*NAC-Na-1 <AC>  (N,-D(N.-D
3 AB:C N,ptNc—2 <AB> (N,-D(Np-1)
4 A:B:C NA+NB+NC—3

Napc~No~Np~Nc*2

Figure 31

For models with structural zeros, degrees of freedom cannot be
determined by unqualified multiplication. Cells with structural zeros or
with unalterably fixed probabilities must be discounted not only numer-
ically but also regarding their positions relative to each other. I propose
the following three-step procedure:
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(1) (a) Start with the original space ABC...Z, covering the same
variables as the model m = K;:K,:. .
(b) Assign zeros to all cells of ABC...Z with structural zeros and

with a priori and fixed probabilities (neither of which is
estimated) and assign ones to all other cells.

(c) Obtain cell entries for each of m’s parameters K by summing
over the corresponding cell entries (zero or one) in ABC...Z.
(d) Change to zero the entries in those cells of ABC...Z that

participate in yielding the sum of unity in any cell of a
parameter K.

(¢) Repeat candd until the distribution of zeros and ones remains
unchanged.

® Deter.mine whether the cells in ABC...Z with ones are sepa-
rableinto parts R of ABC...Z. Two submatrices or subspaces

of a multivariate space are separable if they have no cate-
gories or qualities in common.

(8) For each part R separately, sum its entries to cells in each
component K. Call the set of cells with non-zero entries
in K: Kg.

(2) Compute the degrees of freedom according to 10.1, 10.2, and 10.3
but separately for each part R and its corresponding Kgs. The

degree of freedom dfw ., is the sum of the degrees of freedom
obtained for each of its parts.

(3) Given the above results for any pair of models, of which one must
be a descendent of the other, compute the difference in the
degrees of freedom by

df = df —df [10.4]

mi—>m' m_-—>m: m ">1'11l

In essence, step 1 removes so-called noninteractive cells, whose prob-
abilities are not free to be estimated, and it distinguishes among sub-
matrices or subspaces whose degrees of freedom must be considered
separately. Step 2 computes the degree of freedom dfy,, ., used in step 3
to obtain dfy, .. Equation 10.4 is the general form of 10.3. We illustrate
the process with the four examples from Figure 32.

Suppose the null hypothesis A:B of the independence of A and Bis to
be tested with structural zeros distributed as in the left of the three
matrices in Figure 32. Step lb assigns zeros to the nine cells with
structural zeros and ones to the seven occupiable cells. Summing these
entries toward the margins, step ¢ yields onesin cell4 of A and incell 1
of B. Step 1d then changes to zero the cells 11 and 44 of AB which are
responsible for the ones in A and in B. Step 1c then finds ones in 1 of A
and 4 of B, causing step 1d to change 12 and 34 of ABto zero, and so on
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until, as it turns out in this case, all cells are zero. As there obviouslyis a
sequence for computing all probabilities in AB from those in A and B,
which this procedure actually traces, there are no options, no degrees of
freedom, and there is in fact no information in the data that the model
does not already contain in its parameters. The set of values to be
estimated being empty, the degrees of freedom is zero.

Suppose the null hypothesis C:D is to be tested with structural zeros
as distributed in the second matrix of Figure 32. Here step 1c finds a one
in cell 1 of D causing step 1d to change cell 11 of CD to zero, then step
Ic finds a one in cell 1 of C, causing step 1d to change cell 12 of CD to
zero. At this point the iteration stops. The remaining six ones remain in
place. Because the matrix is not separable, we compute the degrees of
freedom from this remaining set as a whole. According to step 2, we find
dfCD =6-1= 5, dfc= de= 3-1= 2, dfCD-C:D =5-2-2= 1, and, indeed,
only one of the six probabilities in this matrix needs to be estimated for
all the other probabilities to become known.

When the third of these matrices is subjected to the same test, the
configuration of zeros and ones assigned by step 1b remains unalterable
by 1c and by 1d. However, the matrix is clearly separable into two 2 X 2
submatrices. To obtain the degrees of freedom for the whole matrix, we
take the two separable parts individually. Each 2 X 2 matrix contributes
one degree of freedom, which brings the degree of freedom dfgp.g.f in
the matrix as a whole to one.
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In the last example of Figure 32 the cube of 2 X 2 X 2 cells has only
one structural zero. Several models can be applied in this case. Under
the model G:H:J, none of the seven possible cellsis removable by step 1,
nothing is separable, hence R consists of the seven cells. Then according
tostep 2, dfgy;=7-1=6,dfg=dfy=dfy=2-1=1,and dfggj—G.H.3=7 -
1 -1-1=4, For the model GH: J we find only one cell, cell 111, to
equal one of GH’s values, the other six remain unaltered by step 1.
Step 2 yields dfeuy =6 -1 =5,dfgu=3-1=2,dfy=2-1=1, and
dfGHJ-GH:J =5-2-1=2. Applylng step 3, dfGH:J-'G:H:J =4 -2=2.Forthe
model GH:GJ:HJ, starting with GH, cell 111 is removed as before.
Combined with GJ, cells 211 and 221 are removed, leaving the
remaining four cells to be uniquely determinable by values in HJ, hence
dfgyi—cu.cy-py = 0. This suggests that the one structural zero here
excludes third-order interactions from the data.

Alternative procedures are described by Bishop et al. (1978:115ff).

11. THE SIGNIFICANCE OF
INFORMATION QUANTITIES

All information quantities express differences between two distribu-
tions of frequencies or probabilities. When the sample size of these
distributions is small, sampling biases may add to these differences. It
follows that information quantities obtained from a sample tend to
overestimate the true information quantities in a population from which
that sample was drawn and are rarely exactly zero even when thereis no
statistical difference between the two distributions. This led Miller
(1955) to propose correction formulas that need not concern us here.
What we need to decide is whether an information quantity as measured
exceeds the sampling error that the sample size leads us to expect.

Miller and Meadow (1954) have shown that quantities of information
and the familiar x* (chi-square) values are similar in distribution. The
maximum likelihood estimate L

1?=2n2 plog, 2 =13863nI [11.1]

approximates x° asymptotically, and the approximation becomes the
better the smaller the information quantities are. Thus with the help'of
the L? values and the appropriate degrees of freedom, the probabil.lty
(significance level) that the information quantities reflect sampling
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biases rather than true differences can be obtained using standard x>
tables.

For example, in Chapter 4 and for data in Figure 13, we found the
amount of information retained between two interviews to be T(A:B) =
1.054 bits. The degrees of freedom in this 4 X 4 table is dfsp.A.5 = 9.
And with n = 266, L? becomes 388.67. According to any x* table, for 9
degrees of freedom we require a x° of at least 27.88 in order to reject the
null hypothesis at the .001 level of significance. Given that L? here
exceeds the required x? value, the information quantity is statistically
significant at this level. Or consider the data on racial biases in Figure 16
as analyzed in Figure 18. For the third school, T(3:B) =.187 bits, dfg = 3,
n = 272, L? = 70.51 exceeds the x* = 16.7 required to reject the null
hypothesis at the .001 level of significance. Thus there is little doubt that
racial considerations matter in this school. For the fourth school,
T(4:B)=.00013 bits, dfg = 3, n= 140, L?=.03 does not come near the x* of
any reasonable level of significance. Hence bias cannot be alleged here.

Note that x’ tests are limited to distributions whose average cell
frequency is at least five, n > 5SN. Although the violation of this restriction
biases the information quantities as well, as the emphasis in this test is on
the null hypothesis (of no true differences between two frequency distri-
butions), an overestimation of information quantities feeds the Type 1
error of rejecting the null hypothesis when it should be accepted.
However, because of the particular organization of structural models
(see lattices in Figures 24 and 25), the models that do survive this test
tend to be more complex than actually needed and are likely to include
the true model (which would have been found had more data been
available) as one of its descendents. Unlike the x? test, in the context of
this modeling approach, inadequate samples render the L? test not
inappropriate but merely more conservative. The L? tests says little
about the complementary error of accepting positive quantities of
information as true quantities when they might be affected by inade-
quate sample sizes. For further comparisons see Chapter 15.

For really small sample sizes (relative to the number of cells available
in a multivariate space) we refer to “bootstrap techniques” outlined by
Diaconis and Efron (1983), which provide reasonable estimates of the
reliabilities of the models inferred from data.

12. MAXIMUM ENTROPY COMPUTATIONS

Structural models compute a probability distribution that satisfies
their parameters and is otherwise maximum in entropy. For models with-



55

out loops and without structural zeros, all relevant entropies can be
obtained algebraically from the entropies in a model’s parameters with-
out the need explicitly to generate maximum entropy probability distri-
butions. The latter is required for models with loops and for many cases
in which structural zeros are present. We will start with the former and
then proceed to the general case.

Models Without Loops and Without Structural Zeros

The computational shortcuts available for loopless models are rooted
in the fact that the probabilities such models generate are simple
products of the probabilities in a model’s parameters whose condition-
ality reflects the way components are connected. For example, the
maximum entropy probabilities in the model of independent variables,

ﬂabc..z = papb pc =t pz

pab pbc pcd cet pyz
pbpc “ o py

Pabeoz pabpc|bpd|c co o Pryy <

and in the model m; = ABC: ACD:BCE of Figure 26 they are

_ - pabcpacdpbce
pabcde - pabc pdlacpelbc PP
actbc

Given that the logarithm of a product equals the sum of the logarithms
of each part, the entropies of these probabilities become the sum of the
entropies in each component, conditional on the variables shared

among them:

H(ABC : ACD: BCE) = H(ABC) + H, (D) + Hy(E)

Generalizing from the above, the maximum entropy in a model
without loops and without structural zeros 1s
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H(Kl:K2:K3:...)=§;H(Ke) . [12.1]

-2 HEK,&K)

e f>e

I H(K, &K &K )

e f>e g>f

_ All entropies in variables shared
among four components

+ etc.

In words, it is the sum of the entropies in their components minus the sum
of the entropies in variables shared by pairs of components, plus the sum
of the entropies in variables shared by any three components, minus . . .
and so on until no shared variables remain. So for ABC: ACD:BCE,

H(ABC:ACD: BCE) = H(ABC) + H(ACD) + H(BCE)
—H(AC) —~H(BC) - H(C)
+ H(C)
= H(ABC) + H(E) + H, (D)
= H(ACD) + H, .(B) + H,(E)
= H(BCE) + Hy_(A) + H, (D)

The first of these identities illustrates the entropy computation by 12.1;
the last three reflect the orders in which components can be assembled
sequentially. For comparing models without loops and without struc-
tural zeros, information quantities can also be expressed as mere entropy
differences:

I(m, > m,) = H(mj) — H(m,) [12.2]

Although the transmission measures of information theory were origi-
nally developed for models of independent variables and different
covers (McGill, 1954; Ashby, 1969), all of which are naturally loopless,
12.1 and 12.2 point to the possibility of finding T-measures for the
informational differences between descendent models. Consider the
models depicted in Figure 24 for examples. The closest common ancestor
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of m; anfi m; has aloop and cannot be considered here, but the remaining
models in this figure are loopless. Illustrating the above, the amount of

information I(m;—m"m;) can be simplifi i
the last step: J J plitied using 12.1, 12.2, and 4.4 for

H(A:BD:CD:CE) = H(A) + H(BD) + H(CD) + H(CE)
= H(D) —H(C)
~H(ABD:CD:CE) = - H(ABD) - H(CD) - H(CE)

+ H(D) + H(C)
I(ABD:CD:CE~ A:BD:CD: CE)=H(A)+ H(BD) — H(ABD)

= I(ABD-A:BD) = T(A: BD)

The algebraic properties of information in loopless models are further
developed in Chapter 13.

Models With Loops or With Structural Zeros

The very nature of loops is that the components involved ultimately
affect themselves. Loops have neither beginning nor end. The distri-
bution of probabilities generated by models with loops must reflect this
crucial circularity. Entropies cannot be obtained by (closed form) alge-
braic expressions that imply a linear order of computation. Take the
model AB:BC: ACfor example. Applying the first component AB to the
observed probabilities p., we compute probabilities p, and, applying the
second component BC to these, we find p.. But then, applying the third
component AC, which closes the circle, we obtain values for p’, that may
not be the same as those with which we started, requiring revisions,
revisions of revisions, and so on. To take appropriate account of this
circularity, the computation has to proceed as indicated by such a model
and go around and around its loops until the distribution achieves
equilibrium (i.e., wabc..z = Wabc.z) and is maximum in entropy. The
iterative algorithm described below does just this.

It happens that structural zeros may make similar computational
demands. For example, in Figure 29 we find a matrix with structural
zeros in the diagonal. Had all cells of this matrix been occupiable, the
probabilities expected under the null hypothesis of independence would
have been . = paps. However, this expression assigns non-zero expecta-
tions also to the diagonal, yields an entropy that exceeds the maximum
obtainable within that matrix, and is thus misleading. Suppose, then, we
acknowledge the structural zeros and adjust the expected probabilities
in the non-zero cells by 7’a = paps(1 — pv). Although the columns now add
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up, 21r a = Pb, the rows do not, 21rab 7 Pa. Attemptmg to adjust 7w
further so that also the row sums conform to the required marginal
values now disturbs the column sums, and so on, again forcing the
computation into a seemingly unending cycle of revisions similar to
models with loops.

Although there are several cases of matrices with structural zeros that
can be evaluated by conventional algebraic methods (see Bishop et al.,
1978, and the triangular matrix in Figure 29 for examples), the steps
involved are often so cumbersome that we suggest using the iterative
algorithm in all of these cases.

We state the iterative algorithm, originally proposed by Demming and
Stephan and generalized by Darroch and Ratcliff (1972), in these terms:

Given a model K Ky : K with r components K, .
Letp,,. be the observed probabilities in the space ABC . . . the model
covers.

Let pk be the probabilities in the et component K,, obtained by
summmg over the values k, €K, of K,’s complement (variables not

inK,):
= Zﬁ:e pabc...

Let N be the number of structural zeros, Nf be the number of fixed
probabilities and let v be the sum of the fixed probabilities.

Set the No cells with structural zeros to: ggi = 0

Set the Nf cells with fixed probabilities to: S’% = Pape...

Set the remaining N, o —-N, —N; cells to: w(%z._' =(1- V)/(NABC -
No -N;)

For iterations: t=0,1,2, ...
For components: K,,e=1,2,3,...,r
-N — uted
For cells whose N, o N, N; cells are to be comp

(rt+e—1)
(rt+e) -p abc...
“sbe.. ke
(rt+e—l)
2 abc

ke

Stop when a suitable level of approximation is reached.
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In words and exemplified by a model AB:BC:AC in, say,a2 X4 X3
space ABC without structural zeros, we start with the parameters of this
model, the probabilities pab, psc, and p., obtained by summing over
values in C, in A, and in B, respectively. These marginal probabilities
must be satisfied by the distribution we seek to generate. As there are
neither structural zeros nor fixed cell entries, we initialize war = 1/24 in
each of the 2 X 4 X 3 cells. Then:

- We obtain the marginal probabilities in AB by:
(3t) _ (3t)
wab - zc: wabc

Considering that w_, should equal p_, , we adjust:

(3t)
w(3t+1) - abc
abc ab  (3t)
w
ab

We obtain the marginal probabilities in BC by:

3t+1) (3t+1)
bc Py wabc

Considering that w, . should equal p, , we adjust:

(3t+1)
w(3t+2) - abc
abc bc (3t+1)

w,
bc

We obtain the marginal probabilities in AC by:

,Bt2) = Z 3t12)

ac b abc

Considering that w__ should equal p,_ , we adjust:

(3t+2)

WG o, b
+2

abc ac w(3t )

ac

~ We increment t by 1 and continue until the computed probabilities w,
in each component K, approximates the observed probabilities p,
. . . . e
within desired limts.

e

L
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For models with simple loops and only a few structural zeros or fixed
probabilities, a reasonable approximation to the maximum entropy
distribution is found in five to eight iterations, after which probabilities
are generally accurate in the first three digits. When models contain
neither loops nor structural zeros, the algorithm achieves a perfect fit
after the first iteration. With the availability of computers, the iterative
algorithm therefore may be used to compute the maximum entropy
probabilities for all models. A test for having reached a reasonably close
approximation then obviates the test for the presence of loops presented
in Chapter 7. Although algebraic expressions are undoubtedly useful
conceptually and advantageous computationally, the iterative algorithm
is entirely general and limited only by the computability of the space
ABC...Z, specifically by its size Nasc...z.

13. CONFIRMATION

In a confirmatory mode of analysis, we start with a structural model,
then test how well that model fits the given data, and, finally, we analyze
the details of the model’s fit to direct the interpretation of findings. In
contrast, in an exploratory mode, we specify at most the properties of
the class of models to be considered and leave the search for an optimum
model (in a sense to be delineated) to a procedure, usually in the form of
acomputer algorithm. The confirmatory approach is particularly appro-
priate when the analysis is guided by theoretical considerations—for
example, when the validity of a particular theory is at stake or when
some patterns of explanation are preferable to others.

We will elaborate here several analytical devices applicable to struc-
tural models generally and leave the search algorithms for Chapter 14.

The Goodness of Fit of a Model

The goodness of fit reduces to testing the significance of the difference
between the original data in the saturated model m, and the distribution
generated by a model m; that conforms to the data only in its parameters
and is maximum in entropy otherwise (see Figure 19). Accordingto 8.4,
in which m, is represented by the observed probabilities pate.... and m; by
the generated probabilities par...., the amount of information by which
the model is in error is

pabc..
p

I(m, > m) = b,y 108,

abc..
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A zero value of this quantity indicates a perfect fit. Non-zero values are
tested for their significance, using 11.1:

L2 =1.3863 n I(m - mj)

mo—*mj

in which n is the sample size. Together with the appropriate degrees of
freedom dfy, ., as discussed in Chapter 10, and an ordinary x’ table,
the significance level is determined as in Chapter 11. In this test the
whole model acts as a structural null hypothesis. If the quantity by
which the modelis in error is significant, then the model must be rejected
asinadequate. If this quantity is insignificant, the model may be accepted
as an explanation of the data, its significance level indicating the proba-
bility of being wrong in this decision.

The Amount of Information Modeled

This assesses the difference between the distribution generated by the
model in hand and the distribution that would be expected if all of the
model’s variables were unrelated or independent. With the observed
probabilities pax...; in m,, the probabilities pa.... generated by m; as in
the above, but with the probability mrasx.... associated with the model minq,
the amount of information modeled is

I(m, >m, ) =E Pabe.. 108, .

For a model to be a reasonably good one we expect this quantity to be
large. If it is not, a significance test in which m;.q serves as the structural
null hypothesis will reveal whether the modeling effort has merit at all.
The two information quantities are related by 8.5:
I(m,-»m,_,)=1Im - m,) + I(mj ->m,_.)
which suggests two instructive expressions, indicating the proportion of
information a model explains or fails to account for, respectively:

Proportion of unexplained information  I(m_ - mj)/ I(m —>m, )

Proportion of explained information I(mj -m, )/ I(m ->m )

For example, the model m; = EAE":EAA'’ for the television and aggres-
sion data in Figure 5, also depicted in Figure 35, is evaluated as follows:
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Information Ignored Information Modeled
I(m,—~m;) = .0080 bits I(m;—mina) = .6229 bits
L’ =335 L =262.53
df -4 af =7
significance = no . significance = .0001 level
unexplained = 1.27% explained = 98.73%

These rather unambiguous findings suggest that it would be a mistake to
dismiss the model relating prior TV violence exposure, E, and prior
aggressive behavior, A, to subsequent TV violence exposure, E’, on the
one hand and to subsequent aggressive behavior, A’, on the other.
However, the confidence this test establishes refers only to the absence
of modeling errors. Neither the test nor any of the measures employed
will indicate whether the model is structurally the most economical one,
an issue discussed in Chapter 14. Moreover, these measures apply only
to a model as a whole and are not indicative of its individual parts, to
which we will now turn.

The Complexity of a Model’s Components

This should indicate how much is involved in describing or in
building a model’s components. Whether a component operationalizes
a verbal hypothesis or embodies a complex function, in order to con-
tribute to the modeling effort that component must recognize or draw a
finite number of distinctions. The larger this number is, the more variety
it can store, transmit, or share and the more difficult it will therefore be
to describe or materially represent that component. The required
number of cells or states ranges between the following extremes:

required number

H(K) [ o
12 [< of states or cells K

[13.1]

where Nk is the number of occupiable cells in K, excluding structural
zeros, H(K) is theentropy in K, and the inverted brackets denote that the
enclosed expression is to be rounded to the nearest larger integer. log;
of the three expressions would give the complexity of a component
in bits.

The Contributions a Component Makes

A model’s contributions to the amount of information modeled are of
two kinds, uniqueto a component and shared with other components of
that model. Both quantities add up to the total amount of information
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processed by the component in question. All of these contributions are
obtained by removing certain interactions from a component and
measuring the informational difference this makes.

The interactions that need to be removed from a component K are
absent in the partition Ky of this component’s variables into sets of
variables that always cooccur in the model. For example, in Figure 33,
AB and CD always occur togetherin K;:K,: K3 = ABCDE:CDEF:EFG.
Partitioning K, by this rule yields K. = AB:CD:E in which AB are
variables unique to K; and partitioning K; yields Kspar = E: F: G in which
G 1s unique to Ks. The latter omits the interactions <EF>, <EFG>,
<EG>, <FG>, of which <EF> is shared by K; and K, the other three
being unique to K.

The total amount of information processed by a component is the
informational difference between the whole and the partitioned com-
ponent and makes no reference to the context of that component. Given
that the partitioned component consists of independent variables, we
can express this quantity in two ways:

IK-K_ )=T(K

part) [13.2]

part
In the preceding example, K; processes (ABCDE—~AB:CD:E) =
T(AB:CD:E) bits.

The unique contribution by a component is the informational dif-
ference between the model m that contains the component K whole and
the model m,K.: that contains Kp.r in K’s place:

I(m—->m,K [13.3]

part)
In practice, because all but K’s unique variables are shared with other
components in the model m and are hence redundant in m,Kpar, the model
m, K. represents K by its unique variables only and is simply omitted if
no such variables exist. The component K; of the model in Figure 33
contains the unique variable AB, whereas K, contains none. Their
unique contributions are, respectively,

I(m—->m,K ) = I(ABCDE : CDEF : EFG - AB: CDEF : EFG)
1part
I(m~>m,K, )=I(ABCDE:CDEF :EFG - ABCDE: EFG)

In a component’s unique contribution, the variables shared with the
other components of that model are controlled, averaged over all of their
values and thereby prevented from entering that measure, whereas in the
total amount of information processed by a component, variables are
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%——-— K] D—-g"—r‘: ’jg’G
[

E

ABCDE : CDEF : EFG
Figure 33
not controlled and may hence contain shared, or what is sometimes
called spurious, quantities.
The amount of information shared between one component K and all
other components of the model m is the difference between K’s total
quantity and its unique contribution:

IK~>K )~ Im->mK [13.4]

part)

In models without loops, these contributions can be expressed by
T-measures. Figure 34 differentiates the contributions for the model in
Figure 33. For example, the amount of information T(E:F) that
responds to the interaction <EF> contained in both K; and K3 is a
shared quantity, could be processed in either of the two components,
and contributes to the totals of both. The shared quantity T(CD:E) could
be similarly handled, either in K, or in K. Naturally, the unique quan-
tities respond only to interactions unique to acomponent. An example of

Only when shared contributions are absent do the contributions made
by individual components add to the total amount a model processes.
This sum is uninterpretable otherwise.

The Strength of Relations (Association)

The strength of relations within a model’s components follows from
the above. Association is strongest when (a) all variables attached to a
component are perfectly predictable (determined) from each other and

K1 : K2 : K3
Model: ABCDE : CDEF : EFG
Unique Contributions
I(m—»m,Kpaﬂ) T(AB:CDE) T(CDE: EF) TEF: G)
Shared Contributions
I(K—»Kpart) ~I(m-m, Kpart) TCD: L) TCD: Y+ T(E: 1) Td: )
Totals I(K-K_ ) T(AB:CD:E) T(CD:E:F) TE:F:G)

part

Figure 34
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(b) the component realizing this relation is essential in the context of all
other components of that model. The bivariate index of predictability
introduced in the form of 4.9 responds to condition a and is a qualitative
analogue of the path coefficient or the squared correlation coefficient.
We need to generalize this index to any structure and hence to numbers
of variables larger than two, thus making it responsive to condition b.

The measure of acomponent’s unique contribution is sensitive to the
network of connections in which that component participates and serves
as an absolute measure of association among its variables. The upper
limit of this quantity is found with 8.9, and the proportion of the two
quantities indicates the extent to which a component’s behavior is
predictable or determinate (as opposed to governed by random pro-
cesses). We propose the following relative measure of association as a
generalization of 4.9:

Im->m,K__ )

part
< = < .
0 tK’m I( ,Kp 1 [13.5]

art)max

tx,m (read the subscript as “component K in the context of model m”)
indicates the strength of the associations within K. These associations
are unique to K, not shared with other components of the model m. The
index is zero when the variables separated in K. are all independent in
K, in which case K is a totally fictitious component of m and may be
omitted without loss. The index is unity when the variables in Ky, are
within the confines of the model’s parameters maximally constrained, in
which case K embodies a many-to-one if not a one-to-one-to-one . . .
relation (the qualitative analogue of perfect “multicollinearity” and the
multivariate version of perfect correlation).

Applied to the television and aggression data in Figure 5, the unique
contribution of the component EAE’ of the model EAE’: EAA’in Figure
35 that attempts to explain TV exposure to violence is

I(m->mK  )=I(EAE:EAA'>E':EAA’) = .2032

With L? = 85.6 and df = 3 this contribution is significant at the .0001 level.
Its maximum is obtained by 8.9:

I(m->m,K I(m->m,K )+ H(EAE') — max[H(E'), H(EA)]

patt)max

= 2032 +2.7922 —max[.9992, 1.9962]

.9992
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Thus the association coefficient becomes tgag: pap-gaa’ = .2032/.9992 =
.2034. It suggests that the association in EAE’, though statistically
significant, has only 20% of the strength it could have within the context
of this model. This value is found in the appropriate box in Figure 35,
which also depicts the model EE": EA’": AA’ for comparison.

With reference to the latter model in this figure, exposure to violent
TV programming and aggressive behavior turns out to be remarkably
stable over time, with television exerting only a small influence on
aggressive behavior. In assessing such associations it is important to
note that the choice of a model is crucial because it specifies the controls
to which measures of a component’s strength respond. Associations like
those discussed could be spurious, an issue we will now address.

The Amount of Interaction

This is the informational difference between two models that differ
only by the interaction to be assessed, one being the immediate descen-
dent of the other. For example, the model ABC: ABD:CD includes the
interaction <CD>>, whereas the model ABC:ABD does not, the latter
being an immediate descendent of the former. The model ABC:ABD
includes the interaction <ABC>, whereas AC:BC: ABD does not, both
being exactly one generation apart. With this understanding the amount
of interaction is merely notational. Let m<K> be a model that excludes
the interaction <K> and let M<K> be the immediate ancestor of
m<K> now including <K>. The amount of information associated
with the interaction <K> then becomes

I(m<K>-> m<K>) [13.6]

With reference to the model m,, this quantity is called the genuine (as
opposed to the spurious) amount of interaction for it expresses the
amount of information in interaction <K> with all variables not in K
controlled for, averaged, or prevented from contributing to this
measure. References to models other than m, omit some of these

ye 2034 fogor =t 1194 oot
L k
]
A><\ TNAI
\\ \" 4159 p——"=A' A———d 4036 |
et 0001 e 000 1
AEA": ALL AA" EA'EE

Figure 35
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controls. Figure 36 shows genuine interactions of different ordinality
and controls within five variables.

Continuing the example of the television and aggression data, the
extent of the multiple causal relations among television exposure,
aggression, and subsequent aggression—that is, the amount of genuine
interaction in <EAA’>—is

I(EAE":EAA:EE'A': AE'A' > EAE': EE'A’: AE'A") =.0008

and is not significant. The extent to which exposure to television

violence causes aggression—that is, the amount of genuine interaction
in <EA">—is

I(EAE':EA": AE'A’ > EAE': AE'A’) = .0058

It is larger than the triple interaction but still not significant. However,
the stability of aggressive behavior—that is, the amount of genuine
interactionin <AA’>:

I(EAE': AA":EE'A’ - EAE':EE'A") = 3869

yields L* = 163.1, df = 1, and is significant at the .0001 level. This
interaction cannot be dismissed. Thus interaction effects can be isolated
and measured with the strongest controls to which given data lend
themselves. As we said, weaker controls are possible in the context of
models other than m,.

Strata Within Models

Structural models may be examined from yet another perspective.
One always can ignore some of the variables of a multivariate dis-
tribution by summing and then test models with smaller covers on the
whole sample. But one can also leave the dimensionality of the data
intact and examine how well a model fits within a particular subsample

<K>
Controlled
Ordinality <K> m, <K> mo'<—l(5 By
5 <ABCDE> ABCDE = m ABCD: ABCE : ABDE: ACDE: BCDE none
4 <ABCD> | ABCD: ABCE: ABDE : ACDE: BCDE ABCE : ABDE: ACDE : BCDE E
3 <ABC> ABC: ABDE: ACDE: BCDE ABDE : ACDE : BCDE DE
2 <AB> AB: ACDE: BCDE ACDE: BCDE CDE

Figure 36
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of these data. When such subsamples are defined in a model’s own
terms, one evaluates strata within a space. :

For example, in a model that suggests a certain variable to be the
input or the controlling variable of the modeled process, one may want
to test the extent to which the behavior of the model associated with
each input value conforms to or deviates from the structure summarily
represented by the model of all data. If the input to such a model is an
on-off switch, causing a structure in the on position and independence in
the alternative, the model would presumably be confirmed in the on
position only, data on the off position then merely add noise. Or
consider a complex model of social mobility, including categories of
religious affiliations. It is quite possible that each religious group
conforms to a variation of the general model and that a separate
assessment of their conformity to the descendents of this general model
might provide additional insights about the differences among these
groups.

Information measures aiding the examination of strata take advan-
tage of the fact that information quantities are averages of log-likelihood
- ratios as in 4.7 and that such averages may also be obtained for any
subspace of a multivariate space characterized by particular valuesin its
variables or in the parameters of a model. We generalize the informa-
tional bias 5.2 to complex models:

I(m,~> mj) =2:ps Is(mi—>mj) [13.7]
S

and

§S

!
L(m;>m)) = — };_:ps§ log, [13.8]
S

s§

where s denotes one category or value of a subspace S of ABC...Z
covered by the two models m; and m;, 5 is a category or values of S’s
complement Sin ABC...Z, probabilities ps = pas.... are observed, proba-
bilities ws = wan...c are generated by m;, and probabilities pg = panc.... are
generated by m;. Equation 13.7 partitions an information quantity into
the weighted sum of the information quantities associated with each
stratum s, and 13.8 shows the latter as the average log-likelihood ratio
within that stratum.

We follow the notational conventions of 5.2 according to which the
stratum s, which is indicated by subscript in the above, replaces refer-
ences to those variables in the model designations, now held constant:
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L(AB>A:B)=1I(aB—>a:B)=T(a:B)

1 pab
= — 10 —
. Eb Pap 108,

ab

in which case the degrees of freedom is not df,p-..5 but dfg. Using
ABC:BD:CD and AB:C:D as examples, we can examine any slice
(hyperplane) in the multivariate space by holding one value constant—
for example, in the unique variable A:

L. (ABC:BD:CD—-AB:C:D) =1(aBC:BD:CD-2aB:C:D)

= Z abcd
pabcd 0

abced

for which the degree of freedom becomes dfgc.pp.cp-p.c:p. We can
- examine any parameter of a model (subspace or cylinder of the multi-
variate space) by holding one of its values constant—for example, in the
second component:

I J(ABC:BD:CD—>AB:C:D) =I(AbC:bd:Cd > Ab: C:d)

— Z D log abcd
abed 2
pbd ac pabcd

whereby the degree of freedom reduces to dfsc—.o.c. And in the extreme
case, we can examine any state of the model (a cell in the multivariate
space):

4(ABC:BD:CD - AB:C:D) = I(abc:bd:cd »ab:c: d)

abc

losing all degrees of freedom, however. The latter is no longer an
information measure proper but will identify deviant cells. We exempli-
fied its use in Figure 15.

The reduction in the number of degrees of freedom points to the fact
that strata are not capable of recognizing the highest-order interaction
in the original data. Tests on strata of models are particularly useful in
conjunction with forms like 8.5, which partitions the total amount of
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information into the amount omitted and represented by that model.
Equation 13.7 points to the possibility of aggregating the individual
strata similar to the informational bias in Figure 17.

14. EXPLORATION

In an exploratory mode of analysis we search among models that
possess certain specified structural properties to find those with an
optimal balance between the two conflicting criteria of simplicity and
goodness of fit. Inasmuch as the search presupposes little about the data
under consideration, exploration may lead to unanticipated results. We
will illustrate the process by means of several algorithms.

Searching for the Ordinalities of Appropriate Models

Data may vary greatly in complexity. Appropriate techniques for
analysis must have the capacity to respond to their complexity or
potentially important patterns may never be discovered. Here we search
for the ordinality of the interactions manifest in multivariate data.

As adigression, we note that most of the familiar statistical techniques
in the social sciences respond to binary relations only and are then of
ordinality two: correlations between pairs of variables, similarities and
distances between observations, networks of communication links
between senders and receivers, comparisons between two systems, and
so on. Such techniques are computationally convenient, but if there are
reasons to suspect that higher-order interactions are present in the data,
one should at least ascertain the significance of omitting these. The
appropriate measure of this omission is the informational difference
between the original data m, and a model consisting of all possible

ordinality larger than two.

Using the superscript w to denote the common ordinality of the
components of a model, starting with m" = m,, where W is the number
of variables covered by m, and also the largest ordinality these data may
contain, and ending with the model consisting of W independent
variables, m' = ming, We partition the total amount of information in the
data I(m"~m") = I(mo—mins) by
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W_1) = amount of W-th order interaction [14.1]

I(mw—>m

I(mW_'1 >m" 2) = amount of W—1-th order interaction

I(m” ->m" ') = amount of w-th order interaction

I(m3 - m2) amount of third-order interaction

I(m®->m')

amount of second-order interaction

For example, for the five variables A, B, C, E, and F (omitting D) of data
in Figure 28, we obtain the following account:

I(m®-m*) = .0000
I(m*-m?®) = .9780
I(m®>-m?) = .0000
I(m*-m') = 0743
I(m® —m!) = 1.0523 bits

where:

m’® = ABCEF |

m®* = ABCE : ABCF : ABEF : ACEF : BCEF

m3 = ABC: ABE : ABF: ACE : ACF : AEF : BCE: BCF : BEF: CEF
m? = AB:AC:AE:AF:BC:BE:BF:CE:CF:EF

m! = A:B:C:E:F

Here interactions of ordinality two amount to only .0743 bits, or 7% of
the total amount of information in the data. Interactions of ordinality
four measure .9780 bits and account for the remaining 93%. All tertiary
and quintenary interactions are absent. The account suggests that an
analysis of the data in terms of pairs of variables would miss the most
important pattern and that an appropriate analytical technique should
respond to pattern of an ordinality of at least four. Thus the researcher
locates the ordinality of the interactional content in given data and is
able to determine the requirements of appropriate analytical techniques.

Note that all models with components of uniform ordinality larger
than unity possess loops and require iterative procedures and hence
electronic computers for their evaluation. Note further that the number
of components of an ordinality of wis W!/w!(W -w)!, increases with the
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number W of variables covered by the model, and is additionally largest
when w = W/2. These numbers can easily exceed computational limits
- and must be kept small in practical applications. Because analytical
techniques of lower ordinality are more readily available and easier to
apply, we suggest evaluating such models in the order of their increasing
ordinality—that is, first m!, then m%, then ?, and so on—until either
practical analytical procedures of that ordinality are no longer available
or satisfactory amounts of information are accounted for. Exceeding
the former criterion suggests that the data are too complex to be
analyzed; reaching the latter conditions indicates the ordinality an appro-
priate technique would require. For other heuristics see Conant (1981).

Searching for Optimum Models

Here we describe a general search algorithm for data explorations and
in turn develop three variations of this procedure. The steps in this
general algorithm are

(1) Start with some model m; (this model could be the saturated
model m, containing all complexities in the data, the model m" as
obtained from the previous procedure, or any model suggested in
theoretical writings, for example).

(2) Compute the next generation of descendents m; of the model m;
that conforms to the desired characteristics of the models to be
explored. (The implementation of the algorithm varies with these
characteristics.)

(3) For each descendent model m; compute I(mi—m;), I(m,—~m;),
their statistical significance, or whatever may serve as a termina-
tion criterion for the search process.

(4) Unless a termination criterion is reached, enter the (set of)
model(s) m; for which I(m;—m;) is smallest as the next ancestor(s)
of m;into step 2 above. The most obvious termination criterion is
that the quantity I(m,—m;) of information omitted is statistically
significant. Another criterion is that the quantity I(m,—m;)
exceeds a certain proportion of the total I(mo—~mine), and so on.

Essentially the algorithm calls for computing the next generation of
descendents of a given model, selecting the model(s) with the smallest
error (best fit) from these and reapplying the algorithm on the model(s)
selected until structural simplifications are no longer justifiable. Now
consider three implementations of this search.

General models with same covers. In this approach variables are
neither differentiated by kind nor assumed to have an a priori ordering.
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All structural models are considered possible except that each model
accounts for the same variables selected for analysis; no variable is
discarded. The following algorithm in place of step 2 generates all
immediate descendents:

Given a model m; = K;:Kz:...K; of r components K.
Let the component K have w variables V’, V”,..., V¥

For each K¢, f = 1, 2,..., r, for which w > 1, generate an immediate
descendent as follows:

each K — V omits a different variable, thus eliminating the
interaction <K:> from K.

(b) Remove any K - V that is now redundant relative to the
remainder of m; and enter the result as an immediate descen-
dent m;.

The resulting set of models m; is the set of immediate descendents of
the model m;.

For example, m; = ABC:CD. Decomposing the first component
yields AB: AC:BC:CD without redundancies. Decomposing the second
component yields ABC:C:D in which Cis redundant. Hence ABC:CD’s
two immediate descendents are AB:AC:BC:CD and ABC:D. The
former omits the interaction <ABC>, the latter omits the interac-
tion <CD>.

When this algorithm for generating immediate descendents of a
model is entered in step 2 of the general search algorithm and applied to
the election data in Figure 3, the search proceeds as shown in Figure 37.

Here A and A’ are party affiliations (R = Republican, D = Democrat)
obtained during the first and second interview, respectively, and P and
P’ are preferences (+, -) for Willkie expressed at the same two times. The
models with the smallest error in any one generation are starred (asterisk)
in the righthand column of Figure 37 and taken to be the ancestor(s) of
the models generated at the subsequent step. Tracing the sequence(s) of
models with the smallest errors, we can see that the fourth-order interac-
tion <APA’P’> is removed in step 1, all four third-order interactions
are then removed in steps 2 through 5, and three second-order inter-
actions, <AP">,<PA’>, and <AP>areremoved in steps 6 through 8,
yielding the model AA”:PP":A’P’ as the simplest model with still insig-
nificant errors. In all further simplifications errors would become incre-
mentally significant, hence the search ‘may have to stop there. The
remaining components generate an artificial dis}ribution that closely
approximates the original data. Figure 38 depicts the observed and
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Next
Step Model m; I(m,— mj) Sig. I (mj a1 mj) Sig. Ancestor
0 APA'P’ .0000
1 APA’: APP': AA'P':PA'P' =m?3 .0001 ns .0001 ns *
2 APA'. APP': AA'P’ .0002 ns .0001 ns
APA’: APP':PA'P’ .0001 ns .0000 ns
APA': AA'P :PA'P’ .0001 ns .0000 ns
APP' : AA'P':PA'P’ .0001 ns .0000 ns
3 AA': APP':PA'P’ .0001 ns .0000 ns *
APA': AP':PA'P’ 0001 ns .0000 ns *
APA': APP':A'P’ .0007 ns .0006 ns
AP: AA'P':PA’'P’ .0001 ns .0000 ns *
APA':AA'P': PP’ .0019 ns .0018 ns
APP': AA'P':PA .0007 ns 0006 ns
4 APP':PA'P’ 4669 .0001 4668 .0001
AA':AP: AP':PA'P’ .0001 ns .0000 ns *
AA':APP' :PA':A'P’ .0008 ns .0007 ns
APA':PA'P’ .0020 ns 0019 ns
APA': AP :PP': A'P’ .0019 ns .0018 ns
AA'P:PA'P 0192 ns 0191 .0100
AP:AA'P':PA’: PP’ .0019 ns .0018 ns




5 AA': AP :PA'P’ 0193 ns 0192 .0100
AP: AP’ :PA'P’ 4685 .0001 4684 .0001
AP:AA':PA'P’ 2 .0020 ns .0019 ns
AP:AA': AP':PA':PP': A'P'=m .0019 ns .0018 ns

6 AP: AA': AP':PA’: PP .0460 .0100 .0441 .0001
AP:AA': AP':PA':A'P’ 2799 .0001 2780 .0001
AP:AA':AP':PP': A'P’ .0178 ns 0159 ns
AP:AA':PA':PP': A'P’ .0040 ns .0021 ns
AP:AP :PA':PP': A'P’ 4705 .0001 .4686 .0001
AA' AP :PA': PP : A'P’ 0212 ns 0193 .0100

7 AP:AA’:PA": _PP" .1595 .0001 1555 .0001
AP: AA":PA':A'P’ 2820 ns 2780 .0001
AP: AA':PP':A'P 0183 ns .0143 ns
AP:PA':PP': A'P’ .5839 .0001 .5799 .0001
AA':PA':PP': AP’ .0233 ns .0193 .0100

8 AP:AA’:PP' .1599 .0001 1416 .0001
AP:AA':A'P’ 2824 .0001 2641 .0001
AP:PP' :A'P’ .5840 .0001 .5657 .0001
AA':PP':A'P’ 0234 ns 0051 ns

9 A:PP:A'P .7947 .0001 7713 .0001
AA":P:A'P 4931 .0001 4697 .0001
AA'. PP’ 3705 .0001 .3471 .0001

10 A:A':PP’ 1.1418 .0001 7713 .0001
AA PP .8402 .0001 4697 .0001

11 A:P:A":P' =ml 1.6115 .0001 7713 .0001
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A’ P P’
R D + - + -
R} 166 4 R} 142 27 + 1 143 16
A A P
D 3 93 D} 15 82 - 14 93
Components Ki: AA' | A'P’ PP’
AIPI
R+ R- D+ D-
R+ 129 3 1 2
(127.0) (3.9) (0.6) (0.5
R 11 23 0 1
(12.5) 22.6 0.0 2.
AP ( ) (0.0) (2.9
D+ 1 0 12 11
(2.3) 0.1) (13.1) (119
D— 1 1 2 68
(0.2) 0.4) (1.3) (67.1)

Data m,:

Model m,: APA'P

(AA':A'P':PP)

Figure 38

model-generated frequency distributions and above it the three param-
eters of that model.

The substantive conclusion that could be drawn from this result is
that voting is marked first by (the stability of) party affiliations, AA’,
second and independent of this by (the stability of) individual prefer-
ences for a candidate, PP’, and third and also independent of the two by
the resulting relation, A’P’(which shows a tendency for voters to change
toward consistency between party affiliation and preferences for that
party’s candidate). Although AP resembles A’P’, the tendency toward
consistency has the effect of polarizing the population; hence A’P’
represents more information than AP and therefore turns up in the
model, whereas AP does not. Higher-order explanations are unwar-
ranted here.

Note that the above search for an optimum model started with m, =
APA’P’ and made no assumptions about the data. By taking advantage
of the lattice organization of structural models, it evaluated a/l models
of the lattice of possible models implicitly. Figure 25 depicted the types
of structures involved; the search could proceed from any model,




77

however. For example, had one first determined where significant
ordinalities are located, one would have found that interactions of
ordinality three and four are insignificant in this case (see m’ at step 1
and m” at step 5 in Figure 37) and starting with m* would have yielded
the same result with half the computational effort. Or, starting with a
model that represents certain theoretical propositions, one could have
ascertained whether simplifications of this model are empirically justi-
fiable. In this example the models produced in steps beyond 8 are no
longer justifiable in any case.

The algorithm for generating models covering all variables is one of
four including algorithms for generating models that are selective about
variables and models without loops (Krippendorff, 1982a).

Regression models distinguish between two kinds of variables:
criteria or dependent variables and predictor or independent variables.
Predictor variables are intended to explain the criterion variables, and
structures within the latter are explored only in reference to this aim.
Here we consider one criterion variable only. The algorithm for gener-
ating such models, now taking the place of step 2 in the general search
procedure, is as follows:

Given any regression model m; = ZL;:ZL;:...:ZL,:L,,
where Z is the criterion variable, L, is the product of all predictor
variables, and L, L., ... are contained in L..
The two extreme cases of such models are the saturated model m, =
ZL,, which includes all relations in the data, and Z:L,, which
excludes all relations between the two kinds of variables.

Let L have w variables V', V”,..., V".

Foreach ZL;of m;, f= 1, 2,..., 1, taking one at a time

L - V omits a different variable, thus removing the interaction
<L¢> from ZL:. If w = 1, L¢ - V omits that one variable.

(b) With each L; — V resulting from (a) associate the criterion vari-
able Z.

(c) Remove any Z(L; — V) that is now redundant relative to the
remainder of m; and enter the result as a next-generation regres-
sion model m;.

The resulting set of regression models myj; is the set of next-generation
descendents of mi.

We exemplify the steps involved with the television and aggression
data used previously. Aggressive behavior A’ is taken as the criterion
variable Z, and the three variables E, A, and E’ are taken as the predictor
variables for A’. The steps are shown in Figure 39. Here L, = EAE’is seen
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Next
Step Model m; [(m,— mj) Sig. I(mj_1 - mj) Sig. Ancestor

0 A'EAE' .0000
1 A'EA:A'EE': A’ AE': EAFE' .0017 ns .0017 ns *
2 A' EA:A' EE':EAE’ 0017 ns .0000 ns *

A'EA: A’ AE': EAE' .0069 ns .0052 ns

A'EE': A' AE':EAE’ .0025 ns .0008 ns
3 A'EA:A'E':EAE' .0071 ns .0054 ns

A'EE': A’ A:EAE' .0028 ns 0011 ns *
4 A'EE':EAE' .3985 .0001 .3957 .0001

A'E:A"A:A'E':EAE’ .0083 ns .0055 ns *
5 A'E:A'A:EAE’ 0092 ns 0009 ns *

A'E:A'E':EAE’ 4025 0001 .3942 0001

A'A:A'E':EAE’ .0141 ns .0058 ns
6 A'E:EAE’ 4101 .0001 4009 0001

A' A:EAE’ .0203 ns 0111 0500 *
7 A':EAE’ 4239 .0001 4036 .0001

Figure 39
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to occur as a separate component in each of these models. It accounts for
the interactions among the predictor variables unrelated to A’. The
remaining components contain interactions involving A’ and subsets of
the variables E, A, and E’. The simplest model with the least amount of
error turns out to be A’E:A’A:EAE’ and is found in step 5. It relates
television violence and aggressive behavior both separately to subse-
quent aggressive behavior. Step 6 shows that the A’E component, relating
television violence to subsequent aggression, is the weakest and its
omission would lead to a barely significant error (.05 level), a finding
already depicted in Figure 35.

The above algorithm is the simplest one of several other forms for
regression analyses (Krippendorff, 1982b) that could focus on different
kinds of contributions (cumulative, ordinal, unique, the above contribu-
tions being additive), on multiple criterion variables, or on situations in
which two or more classes of variables are considered predictors of each
other.

Partition models. Partitioning aims at grouping variables into mutu-
ally exclusive subsets of minimal statistical dependence. By identifying
subsets that are nearly independent, partitioning may point to variables
that can be described separately, without loss or with minimal losses and
at a substantial reduction in analytical efforts. Partitioning also yields
results consistent with the notion of a hierarchy of part-whole distinc-
tions or of subsystem-system relations and serves the common problem
of understanding a whole by its “natural” parts. We describe the
algorithm as follows:

Given any model m; whose components K partition an initial set of
variables into mutually exclusive parts. Initially m; may be the satu-
rated model m, and ultimately it becomes mijnq.

On each component K of m; that contains more than one variable,
apply the general search algorithm with the algorithm for generating
all “models” on the path toward an additional bipartition in place of
step 2 and replace K by L:M resulting from K’s partition.

The algorithm for generating all “models” on the path toward one
bipartition initially accepts the component K = L:M, proceeds
through “models” LS:SM, where S denotes variables shared by the
two components and L and M are unique, and terminates with L:M
whose parts are mutually exclusive and jointly cover K’s original
variables.

Let V' and V” denote two variablesin S and let S — V say that variable
V is removed from S.
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Initially:  for each pair of variables V' and V” in K replace K by
' (K- V):(K-V).

All resulting forms LS:SM are initial descendents of K
on the path toward its eventual bipartition.

Otherwise: for each variable V of S

replace LS:SM by LS:(S- V)M and by L(S - V) SM

The resulting forms are subsequent descendents of K on
the path toward its eventual bipartition.

The lattice in Figure 40 contains all possible structures of models on
the path toward one bipartition of seven variables. The number of
descendent models that need to be evaluated to determine the next step
are indicated therein. All paths terminate in any one of three kinds of
bipartitions, numerically with 6:1, 5:2, and 4:3 variables. The quanti-
tative criteria guiding this search are as in the previous searches. One
considerable advantage of this algorithm is that none of the models
involved contain loops and can thus be evaluated more efficiently than
those that do.

Figure 41 depicts the results of reapplying the algorithm to each part
of a partition of seven variables, ultimately achieving the complete
decomposition into separate variables. The lattice does not show the
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! xmgdcls that are intermediate to these partitions. For example, the whole
N lattlce in Figure 40 is summarized as the first step of the process shownin
ffg.f e 41. The informational difference between the original data and
the first bipartition expresses the interdependence between the two
\ Pt “p ipal parts of that partition. Subsequent differences express addi-
“ttonal interdependencies between the two parts of a finer partition, thus
revealing a hierarchical account of interdependencies. Such differences
often are interpreted as measures of communication between the two
subsystems in the context of a (sub)system to which both belong. The
sum of these quantities along any one path in this lattice equals the total
amount of communication within the whole system, and this total is
invariant to the order by which the partition was obtained.

Again, there are variations to the partitioning algorithm. For exam-
ple, one may take not absolute but relative information measures—
as in 4.9—as decision criteria, thus favoring partitions whose parts
are similar in size. One may combine the algorithm for generating
bipartitions with the one for generating regression models and achieve
partitions among predictor variables, and so on.

Beyond the three kinds of implementations of the general search
algorithm, note that any class of models whose structural properties can
be formally stated and incorporated in a process of generating descen-
dent models can be subjected to incremental simplifications. Researchers
may want to define their own problem of exploration in these terms and
follow the algorithm outlined above.

A point of caution is needed here. The number of models that can be
defined and must be evaluated during explorations can become large
even when only moderate numbers of variables are involved. The
stepwise and incremental approach followed by the search procedure
reduces the computational effort considerably. But even here computa-
tional limits are approached rather quickly. This author’s computer
program for confirmation handles up to 10 variables with no more than
10 values each and up to 10 components. Conant (1981) has been
working on a computationally more efficient approach (which cannot
be presented here).

Algebraic Techniques

These techniques go back to work done by Ashby (1965, 1969) and
Conant (1976) and are known to apply only to models without loops
(Krippendorff, 1980) and without structural zeros. When models do
contain loops, iterative procedures are required, as discussed in Chapter
12. Algebraic techniques have the advantage of computational effi-
ciency and lead to simple conceptualizations. We extend here some of
the forms introduced in Chapters 8 and 12.
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The most simple identity between entropies and the two kinds of
expressions for amounts of information is :

I(m, —>mj) = H(mj) —H(m,) = T(mj) | [14.2]

It does not hold for models with loops (8.3). We generalize this identity
to any two models that are loopless, cover the same variables, and are

I(m,~ mj) = H(mj) —H(m)=Tx )+ T(x,)+...+Tx)+... [14.3]
X, =Ki&K K&K K &K :... redundant parts eliminated
TK)=0

We also introduce a notafional simplification by entering variables
shared by all components of a model as subscripts:

T(LK,:LK,:LK,:...) = T (K :K,:K,:...) - [144]

~ which identifies variables in L as the controlling variables of

Ki:K::Kjs:.... Forexample, for mi= ABCD:BCDE—m;= ABC:BCD:CE:

x, = ABCD&ABC : ABCD&BCD: ABCD&CE = ABC:BCD
x, = BCDE&ABC: BCDE&BCD : BCDE&CE = BCD:CE

and
I(m,~ mj) = H(mj) —H(m,) = T(ABC: BCD) + T(BCD: CE)
= Tpo(A:D) + T (BD:E)

wherein the two T-measures assess communication between A and D
and between BD and E, both of which are present in m; but absent from
m;. Equation 8.8 exemplified the application of 14.3 to communication
chains. In both cases T-measures cover different variables. Equation 14.3
states a fundamental relationship between the I-measures, which have
descendent models of the same covers in their arguments, and T-mea-
sures, which express dependencies between the variables involved in the
differences between these models.

Algebraic techniques for exploration essentially decompose a total
amount of information into additive quantities. These additive quanti-
ties collectively designate one or more paths through alattice of loopless
models (also see Figure 43), summarize the information losses of several
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intermediate models (without actually evaluating them explicitly), and
thus help the researcher to find paths along which strong structures
exist. Figure 42 shows the T-measures along the two paths between
ABCD:BCDE and ABC:BCD:CE. If a quantity is insignificant, all
intermediate models are not worth exploring and may be ignored in the
search for an optimum. If one or more of these quantities is statistically
significant, a systematic top-down search for the optimum can start with
the simplest descendent model implicit in the insignificant T-measures.
In the example, if Tc(BD:E) is and Tsc(A: D) is not significant, then one
would initiate a search with the model ABC:BCDE.

We now state three identities and derive a fourth, all of which may be
used for algebraic exploration in a lattice of loopless models. The first is
the extension to more variables:

TA:B:C:D:...)=T(A:B)+ T(AB:C)+ T(ABC:D)+... [14.5]

It equates the total amount of information in data T(mia) with a series of
binary transmission terms, each covering one variable more than that
preceding one. The order of variables being arbitrary, numerous enu-
meration schemes are possible. In the three-variable case,

T(A:B:C) =T(A:B) + T(AB: C)

=T(A:C) + T(AC: B)

~ =T(B:C) + T(A:BC)
Each identity evaluates at least one path in the Iattice of loopless models
between ABC and A:B:C, which bypasses all models with loops, and in

this case also the models AB:BC, AB:AC, and AC:BC. (See Figure 25
for the complete lattice.)

m, = ABCD: BCDE

T,.(A:D)

ABC: BCDE l(mi—>mj)= H(mj)-H(mi)
=H(ABC:BCD:CE)-H(ABCD: BCDE)

ABCD:CE

TBC(A :D)

m, = ABC:BCD:CE

Figure 42
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The second identity concerns partitions into mutually exclusive
parts:

T(A:B:C:...:.L:M:N:...) = T(A:B:C:...) + T(L:M:N:...)  [14.6]
+ T(ABC...:LMN...)

It suggests that the total T(minq) can be broken down into the sum of the
amounts of information within each part plus the amount of informa-
tion between these parts. This identity underlies the search algorithm for
partitions and the path(s) such an identity evaluates can be envisioned
by means of Figure 41.

The third identity is related to the regression of one variable in terms
of all others:

T(ABC...:Z) = T(A:Z) + T, (B: Z) [14.7]

+T,,(C:Z)+.. +T,p (Y:2)

It expresses the total amount of information between one variable and
all others as a function of the information between that one variable and
one other, that one variable and a second other controlled for by the
first, and so on. Applying 4.5 to the left side and bringing the condi-
tional entropy Hasc..(Z) in T(ABC...:Z) to the other side yields

H(Z)= T(A:Z)+T,(B:Z) [14.8]
tTap(C: D)+ ..+ T g (Y:2)+ H, 5. @

where H(Z) is the entropy in the variable Z to be explained, Hagc...(Z) is
the unexplainable entropy or noise in Z, and T terms are the incremental
contributions to H(Z). A stepwise regression procedure naturally
follows from this equation. It would start by searching for a variable Y
for which Tagc..(Y:Z) is minimum, then search for a variable X for
which Tagc...(X:Z) is a minimum, and so on until a simple binary
transmission term of the form T(A:Z) remains. (Proceeding from the
largest value of T(A:Z) may not be advisable given that higher-order
interactions would escape this measure, whereas the conditional mea-
sures use them as controls.)

Applying now the identity of regression 14.7 to each of the parts
obtained from the identity of extension 14.5 gives the following account:
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T(A:B)+ T(AB:C) + T(ABC: D) + T(ABCD:E) + . .
{ y Y §
=T(A:B)+ T(A:C)+ T(A:D)+ T(A:E)+... [14.9]

+T,(B:C)+ T,(B:D)+ T,(B:E)+...
+ T,5(C:D)+ T,5(C:E)+...

+ T,pc(D:E)+...

+...

=T(A:B:C:D:E:...)

Each of these terms represents an informational difference between two
descendent loopless models that are one generation apart. These quan-
tities partition the total amount of information into the incremental
information losses along some path through the lattice of possible
loopless models from m, to mina. Again, variables can be taken in any
order, and 14.9 can be used to evaluate any path through this lattice.
Moreover, and inasmuch as some of these terms can be rearranged and
applied to different models, a given set of terms may be shared by several
such paths. Figure 43 depicts the 16 possible paths for which the terms in
14.9 can account. For simplicity, this figure represents the same T terms
by the same kind of line and at the same angle, thus showing the different
positions these terms may occupy along these paths. Finding, for

ABCD
V \
ABC: ABD ABD: ACD
T,(B:D) ,/
ABcl;A'B ﬁ.c?;g!sn ‘ ABD:CD
T, (B:0)/ ) S
AB:AC’;._‘XB ABC:D “p:c AB:BD:CD

.
.
s o*
22 4

A:BD:CD

A:B:CD

Figure 43
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example, that Ta(B:C) and T(A:B) are significant whereas all others are
not would suggest that the optimum model lies somewhere between
ABC:D and AC:B:D from both of which D could be ignored as a
noncontributory variable.

Even though algebraic techniques are restricted to loopless models,
they do provide useful tools for exploring the complexity of multivariate
data and become essential outside the computational limits for evalu-
ating models with loops.

15. COMPARISONS WITH
ALTERNATIVE APPROACHES

Network and Path Analyses

The information theory for the structural modeling of qualitative
data has much in common with network analysis, path analysis, and the
structural modeling approach to quantitative data: All respond to the
need to make relations in multivariate data transparent. Network
analysis, for example, largely starts with bivariate data, such as who
talks to whom and how often, distances in space, or differences in time
or in other magnitudes; aggregates such data much as graph theory
does; and then identifies chains, loops, bottlenecks, centralities, and so
on but is unable to consider relations of ordinality higher than two.
Higher-order causes or consequences sometimes enter the path dia-
grams as complicating phenomena, but because its arrows link variables
in pairs, the approach is basically focused on bivariate explanations of
multivariate phenomena. (Try drawing a line connecting three points
other than in pairs!) The coefficients of structural equation models,
briefly discussed in Chapter 6, do not need to but often do express linear
relations between pairs of variables and are thus similarly limiting. The
information theory approach is not so restricted, however. It considers
binary relations merely as a special case, Shannon’s communication
chain being a historical example. It routinely incorporates higher-order
interactions in its models and thus enables researchers to develop and
test theories—especially communication theories—of theoretically
unlimited complexity.

Also mentioned in Chapter 6 is that the parameters of information-
theoretical models do not rely on mathematical assumptions and forms.
Whereas structural equation approaches tend to make linear assump-
tions or construct its models through other mathematical idealizations,
the parameters of information-theoretical models are the very distri-




87

butions found in the multivariate data themselves, without any sim-
plification. It follows that any kind of relation, linear/nonlinear,
unimodal/multimodal, deterministic/probabilistic, and so on, is pre-
served in the distributions our models generate. The information theo-
retical approach is hence entirely general.

Chi-Square

Chapter 11 explored the role of the maximum likelihood approx1-

mation L’ in providing information theory with access to the familiar x*
tables. All three quantities

_ @-n)’
X2 _nz——_{r——
=Zplog2§

L* =20 plog, ~ =1.3863 nl

are zero when the observed probabilities p equal and expected probabil-
ities and increase in magnitude with increasing differences between the
two. x* and L? are functions of the sample size n; the information I is
independent of it.

Despite these functional similarities, a major difference is that I and
L’, the latter being a mere multiple of I, are additive in ways x’is not. In
particular, differences in x? values are uninterpretable, whereas many
differences amonginformation quantities yield other information quan-
tities that can be subjected to the same tests as the quantities from which
they were derived. Thus as Ku and Kullback (1974) and many others
have concluded, information quantities provide researchers with an
analytical flexibility unknown to x* users, and information statistics are
therefore often preferable to x” statistics.

Another difference lies in the magnitude individual cells contribute to
the two measures. Cell contributions to x* are known to become unjusti-
fiably large when expected frequencies (which appear in its denomi-
nator) are small or nearly absent. This is the primary reason why the use
of x statistics calls for a minimum of five expected observations per cell
(strict condition) or an average of five or more observations per cell
(weak condition), which, in the context of multivariate analysis, often
makes exorbitant demands on adequate sample sizes. In contrast, the
log-likelihood contributions to information quantities are weighted by
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the observed frequencies in a cell, and each contribution is therefore
proportional to this frequency (see Figure 15 for examples).

Although information measures become biased as well when samples
are inadequate, they tend to overestimate the true quantities involved.
In significance tests, such biases make the rejection of null hypotheses
(that observed and expected probability distributions really are the
same) more likely when they are true in fact and thus favor models that
are more complex than necessary and include the correct model as one
of their descendents. Chapter 11 concluded that in the structural
modeling context inadequate sample sizes render information statistics
not inappropriate but merely more conservative.

Analysis of Variance

The similarity of entropy as a measure of diversity or variety and
variance was explored in Chapter 3, which suggested that entropy,
implying no assumptions regarding the order or shape of the distribu-
tion in data, is the more general of the two. This argument is further
strengthened by the fact that information quantities for interval data or
“continuous channels” have been proposed in the original work by
Shannon and Weaver (1949), whereas a converse proposal for applying
the analysis of variance to qualitative data or “discrete channels” is
unavailable. Despite these differences there are interesting similarities
that stem from their respective logic of partitioning variation. In the
analysis of variance

Vi = V+VA+ VB VAR vO L vAC L vBC L vARC L 1151

where each effect is defined independent of all others—for example, VA®
excludes what V* and V® contribute and is in turn excluded from the
contribution by VA®C, thus accounting for the unique effect of the
interaction <AB> on the criterion variable, say Z. For W predictor
variables 15.1 has 2% terms.

A partition of information quantities resembling 15.1 is found in
14.7, wherein the total amount of informationinZ, T(ABC...:Z), corre-
sponds to Vioul, T(A:Z) corresponds to VA, Ta(B:Z) corresponds to VE+
VAB Tap(C:Z)to V€ + VA€ + VBC .+ VABC and so on. Evidently both forms
are capable of accounting for the variation in one variable by parti-
tioning others. However, the information identity 14.7 accounts for
these components in groups. The reason for this property will become
clear in the following comparison.
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Log-Linear Modeling

Log-linear modeling (Goodman, 1972; Bishop et al., 1978) is related
to information theory as well. It proposes an additive function similar to
15.1 for explaining not the variation in one variable but the frequencies
in the very multivariate space it partitions:

AB C AC BC ABC

A B
+ +
Uy tutultu Tt Tt Tt [15.2]

loge n a b ab

abc.. =utu

where u is the average logenas... over all cells, u expresses the deviation
from this average on account of A, ui? expresses the deviation due to
AB over and above what u, us ,and ue express, and so on. All uterms are
logarithms of various forms of cross-product ratios, and the form of this
function obviously resembles that used in the analysis of variance except
that it applies to individual cells.

For two reasons the ideal of 15.2 is unachievable. First, u terms are
not entirely independent. Already uac® is no longer obtainable by alge-
braic means because it would have to exclude the effects of u4’, uz’, and
us, which, taken together, constitute a loop and must be evaluated
iteratively. The sum of these parts does not equal the whole, which
challenges the function’s additivity. Second, to obtain expected fre-
quencies, u terms cannot be zeroed arbitrarily. Bishop et al.’s “hierarchy
principle” (1978: 67-68) formalizes the order in which contributions may
or must be grouped, thus curbing the freedom to assemble the u terms
into models that the function’s notations claim. ‘

The information theory for structural modeling provides an additive
form as well: |

Im -m ) =I(m ->m)+Im >m)+.. . +I(..->m,) [15.3]

It partitions the total amount of information into up to 2Y - W -1
additive quantities, representing contributions similar to 15.1 and 15.2
except for those associated with the W single variables (which appear
moved here to the left side of the expression and are contained in
I(mo—ming)) and the overall term, which is zero. If models are immediate
descendents, then each informational difference measures the contri-
bution of exactly one interaction, just as in the analysis of variance and
intended by the log-linear ideal, but it measures these always in the
context of the model from which it is removed, thus implying that these
contributions are ordered. The notation m,—m;—m;=...~Mina indi-
cates a descendence ordering of those contributions and designates one
path through the lattice of possible models. There are therefore up to as
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many additive functions of the form 15.3 available as there are paths
through such a lattice.

On the surface, the absence of a single accounting equation and the
context sensitivity of the additive quantities involved might seem disad-
vantageous. However, this merely recognizes Bishop et al.’s hierarchy
principle. Whereas the log-linear approach postulates the ideal of a
single additive function of all possible contributions and must then tell
users that its terms cannot be analyzed (assembled orignored) freely, the
information-theoretical approach has built the same restrictions into its
logic of structural models (see Chapter 6) and into its accounting equa-
tions that implicitly abide by this logic. With this in mind, the informa-
tional account, besides offering a summary account for all cells, is
simpler than the log-linear approach. I surmise this difference to be also
one of style: The log-linear approach grew out of the traditions of
analysis. The information-theoretical approach grew out of an iterative
exploration of data.

The Most Basic Reference Possible

Finally, throughout the book we stated all informational accounts with
reference to models of the same cover. This places mi,q at the base of the
lattices of models considered here and defines I(mo,—ming) = T(Mina) as
the maximum amount of information such models can explain. It
disallows the simple omission of variables and prevents an accounting of
the contributions such omitted variables make. For practically all struc-
tural modeling tasks this reference is sufficient and we chose it for this
very reason. However, nothing prevents an extension of the information
quantities to models with different covers that claim no knowledge
about the distribution in some (or all) variables (Krippendorff, 1981)
and to state individual contributions in terms of 2% logarithmic func-
tions of frequencies analogous to 15.2.

log2 nabc.. = log2 NANBNC .. [15-4]
p p
2 _° P
tlog, 1 +log, 1 +log, -
NA NB ata
pc p pabc p b
c abc
+log2 _}.._+log2 ap +10g2 pabpac +log2 0 t.o..
N pa c abc
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Here nis the sample size, N is the number of occupiable cells in A, and
pabvc 15 the probability generated by the model AB: AC:BC (which con-
tains a loop). logzn/NaNsNc.. resembles the general u term, and all
other parts of 15.4 are log-likelihood ratios whose non-zero values
indicate the magnitude and direction of an effect on logzna.... . Figure 44
exemplifies this account.

Averaging the partsin 15.4 and moving the log;n/NaNgNc... term to
the left side of the identity yields 2% - 1 information quantities. In the
three-variable case 15.4 becomes

T(ABC) = T(A) + T(B) + T(A: B) + T(C) + T(A: C) [15.5]
+ [T, (B:C) -~ T(AB: AC: BC)] + T(AB: AC:BC)

where the redundancy T(ABC) is the informational difference between
the presence and the rotal absence of any knowledge about a probability
distribution in selected variables, T(ABC...) = I(mo—mmax) generalizes
4.10, and the other T measures are as usual. An analysis of the Florida
murder trial datain Figure 1 demonstrates the use of these forms. Figure
44 shows all models along the optimum path (as defined by the search
algorithm in Chapter 14), the frequency distributions in their param-
eters, and the maximum entropy frequencies generated by them jointly
(rounded to full integers). The meaning of mmayx as the ultimate descen-
dent may also become clear in the latter distribution. The race of the
murdereris A, the race of the victim is V, and the outcome of the trial is
O, as shown in Figure 4.

The figure also illustrates the use of 15.4 to explain the cell of 48 cases
in which the murder victims are white and the perpetrators of the crime
are black and sentenced to death. Its eight terms sum to log,48 = 5.5850.
Knowledge of <O>, that death penalty is rare in comparison to other
outcomes, and of <AV>, that interracial violence is less frequent than
intraracial violence, accounts for the largest deviations and indicates
that observed frequencies are less than those assumed by the uniform
distribution. Knowledge of <VO>>, that death penalty is more likely
when victims are white, and of < AO>, that murderers are more likely
sentenced to death when they are black, accounts for increases in
frequency in this cell. A third-order interaction is absent.

The figure also contains a complete account according to 15.5 of the
total amount of redundancy T(AVO) = I(mo—Mmax) = 1.4421 bits. Only
the third-order quantity turns out to be zero. All descendents of the
model AV:AQO:VO exhibit statistically significant errors and cannot be
accepted as adequate models of these data. Because this simple 2 X2 X2
example has few degrees of freedom, 15.4 and 15.5 yield essentially
similar insights. This may not be so when variables involve finer dis-
tinctions and cells make very different contributions.

I N e i
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Log-Likelihood
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In conclusion, the information theory for structural modeling has
aims similar to such traditional approaches as network and path
analyses, x° statistics, analysis of variance, and log-linear queling but
accomplishes them more elegantly, provides greater analytical power
and flexibility, retains more direct touch with the (mathematlcall'y)
uncontaminated data, and suggests interpretations closer to social

theory, to communication theory in particular.
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