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Abstract—This paper reports the analysis of data on 
traumatic brain injury using a probabilistic graphical modeling 
technique known as reconstructability analysis (RA). The 
analysis shows the flexibility, power, and comprehensibility of 
RA modeling, which is well-suited for mining biomedical data. 
One finding of the analysis is that education is a confounding 
variable for the Digit Symbol Test in discriminating the severity 
of concussion; another – and anomalous -- finding is that 
previous head injury predicts improved performance on the 
Reaction Time test. This analysis was exploratory, so its findings 
require follow-on confirmatory tests of their generalizability. 

Keywords—machine learning; reconstructability analysis; 
OCCAM; information theory; data mining; traumatic brain injury; 
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I. INTRODUCTION 
The analysis of health care data is usually done in a 

confirmatory mode, with analysis typically restricted to 
hypotheses generated in advance of the study. Secondary 
analysis can be useful when the clinical population exhibits 
unexplained variability in outcomes that are not resolved by the 
primary analysis. Also, the long time and considerable expense 
needed to complete a study make additional examination of the 
data desirable. Both of these conditions are highly relevant to 
traumatic brain injury: TBI is a serious and prevalent clinical 
condition for which unexplained variation in outcome 
unfortunately persists despite decades of research; moreover 
the volume of existing TBI data provides a unique opportunity 
for secondary analyses [1-2]. 

This paper reports the use of an exploratory modeling 
approach known as reconstructability analysis (RA) applied to 
the secondary analysis of TBI data. The aim is to discover 
unexpected relationships in the data and to contribute to 
ongoing efforts of the Brain Trauma Evidence Based 
Consortium (BTEC) to develop a dynamic model of brain 
trauma and a new clinically useful TBI classification system. 

RA [3-5] is a probabilistic graphical modeling technique, a 
fusion of information theory and graph theory. Graphs define 
the models that are considered, and information measures 
quantify the models’ predictive efficacy. In these graphs, a 
node is a variable and a link is a relation (an association) 
between two or more variables. If relations link only two 
nodes, this is an ordinary graph; if some relations link more 

than two nodes, it is a hypergraph. One is interested in models 
that are hypergraphs because one is interested in associations 
between more than two variables.  

RA is explicitly designed for exploratory modeling, having 
the capacity to detect non-linear and complex multivariate 
interactions that are not hypothesized in advance. RA models 
are also conceptually transparent: an RA model is simply a 
conditional probability distribution of a dependent variable 
(DV), given the composite state of a set of independent 
variables (IVs). As a probabilistic graphical modeling method, 
RA overlaps with log-linear modeling, logistic regression, and 
Bayesian networks. Where it overlaps with these similar 
methods, it is equivalent to them, although RA has unique 
features not present in these other methods, and these other 
methods have unique features not available in RA. All of these 
probabilistic graphical modeling methods differ from other 
machine learning methods, such as support vector machines 
and neural networks, which are designed for continuous 
variables. The reason RA is attractive for secondary data 
analysis is that other data analysis methods are often not well 
designed for exploration, have more limited model types, have 
difficulty with nominal variables or with stochasticity, or are 
not conceptually transparent. 

II. DATA 
The data analyzed here, obtained from Megan Preece [6-9], 

is on patients with traumatic brain injury resulting from 
automobile accidents. There are 52 variables, divided into five 
types, labeled as P, Y, G, C, and N variables, where P = patient 
characteristics (17 variables), Y = symptoms, i.e., subjective 
reports (25 variables), G = signs, i.e., objective indicators (4 
variables), C = cognitive deficits (5 variables), N = neurologic 
deficits (1 variable). The sample size is 337, reduced to 175 or 
fewer when missing data are excluded. 

The aim of the study is to predict specific deficit (C or N) 
variables from P, Y, and G variables and from the other deficit 
variables. In this paper, we report only the prediction of two C 
variables: the neuropsychological Digit Symbol Substitution 
Test (DSST), abbreviated as Cdg (N = 255), and the Spatial 
Reaction-Time Test (RT) normalized for age and sex, 
abbreviated as Cnr (N = 210). The DSST is a paper and pencil 
or online task requiring the patient to match symbols with their 
corresponding digits under timed conditions. It is considered to 
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be sensitive to brain injury and to concussion in particular.  The 
RT test, less complex than DSST, assesses how quickly the 
patient responds to visual stimuli.  The variables involved in 
the predictive models discussed in this paper, as IVs or DVs or 
both, are listed in TABLE I.  

 The first letters of the variables indicate their variable 
types. The table lists, after the variable abbreviations, their 
initial cardinalities; some variables were rebinned to lower 
cardinalities in the analysis. For some records, values of some 
variables were missing.  Being missing is included as an 
additional possible state; so, for example, binary variables with 
some values missing are listed as having cardinality 3. 

III. METHODOLOGY 
This section provides a brief summary of the main features 

of reconstructability analysis. RA calculations in this study 
were performed using the Occam software package developed 
at Portland State University (PSU) [10]. This package takes 
standard text input and provides easily interpretable output. It 
is web-accessible and can be run either in real time, where it 
provides html output, or in batch (off-line) mode, in which it 
emails results to the user as a csv file. This software package 
runs on PSU servers and is openly available for non-
commercial research and educational uses. 

Being based in information theory, RA is inherently a 
nominal data method, but can be applied also to continuous 
variables if their values are discretized (binned). Binning 
procedures are available in many commercial and public 
domain software packages; a utility program is also available at 
the RA web site [11], which outputs a data file in Occam input 
format. Occam also allows easy rebinning (aggregating 
existing bins) in the input file. The RA web site includes an 
Occam user manual and access to many publications that make 
use of RA methodology. 

An RA model is simpler – has fewer degrees of freedom 
(df) – than the data, but captures much of the information in the 
data. RA searches for good models are of two types: directed 
and neutral. Directed searches consider models that predict a 
dependent variable (DV) from a set of independent variables; 
neutral searches consider models that do not make any IV-DV 
distinction. Searches discussed in this paper are directed. 

TABLE I.  VARIABLES  IN MODELS DISCUSSED IN THIS PAPER       
(short name, initial cardinality, definition) 

Ped 8 highest level of education
Pij 5 Injury group (patient or control)
Pph 3 Previous head injury 
Pri 3 Recent illness 
Psx 2 Sex
Pye 6 Years of education
Ggc 4 Glasgow coma scale 
Gpt 3 Post traumatic amnesia
Cdg 7 Digit Symbol Substitution neuropsychological test
Csr 6 Spatial Reaction Time test (reaction time to visual stimuli)
Cnr 6 Spatial Reaction Time test normalized for age and sex  

In directed searches, a candidate model is compared to a 
reference model, which is either the independence model, for 
which no IV predicts the DV, or the data, for which all the IVs 
predict the DV in a single interaction effect. For example, 
consider three IVs, A, B, and C, and one DV, Z. The 
independence model, at the bottom of the lattice of structures, 
is ABC:Z, where the colon means ‘and.’ This model says that 
there is a relation between A, B, and C, but no relation between 
any of these IVs and Z. The data, at the top of the lattice of 
structures, is ABCZ, in which there is a four-way interaction 
effect where A, B, and C collectively predict Z. In the present 
study, the independence model is the chosen reference. 

A relation includes all its projections (embedded relations). 
ABC thus includes AB, AC, and BC, and the univariate 
margins, A, B, and C. The order of the relations in a structure 
is arbitrary, and the order of the variables in a relation is also 
arbitrary. For example, Z:BAC is identical to ABC:Z. 

An example of a model intermediate between the 
independence model and the data is ABC:BZ, which says that 
there is a relation between A, B, and C, which is non-predictive 
since it doesn’t involve the DV, and there is also a predictive 
relation between B and Z. The ABC in ABC:BZ is called the 
‘IV component’ since it includes all the IVs, and in Occam 
output, the model is referred to as IV:BZ. In directed search 
models, an IV component is always included to allow for 
relations among the IVs. When a predictive relation – here BZ 
– is included in a model, this does not mean that the relation is 
strong; it just means that this relation is being modeled. 

Models with one predicting relation, e.g., ABC:BZ, do not 
have loops, while models with multiple predicting relations, 
e.g., ABC:AZ:BZ, have loops. (The loop here consists of AZ, 
ZB, and BA; the last of these is embedded in ABC). In this 
latter model, AZ and BZ are separate, but they are not simply 
additive contributions to the prediction of Z. A conventional 
three-way interaction effect between A, B, and Z would be 
represented by an ABZ relation, as in model ABC:ABZ, but 
the AZ and BZ relations in ABC:AZ:BZ also constitute a 
(lesser) type of interaction effect [12]. Models without loops 
are computationally simple, since they can be fit algebraically. 
Models with loops can present challenging computational 
space and time demands, since they must be fit iteratively. For 
many variables, nearly all models have loops. One drawback of 
Bayesian networks (BN) is that they cannot have loops; RA, by 
contrast, encompasses such models, though RA in turn doesn’t 
consider all BN models [12]. 

Models are subsets of variables, each subset indicating a 
projection of the data that is preserved in the model. The above 
models are all ‘variable-based.’ Another type of model 
includes components that specify specific states of variables. 
An example is ABC: Z: A1B2Z. The first two components of 
this model, namely ABC and Z together define the variable-
based independence model. Addition of the A1B2Z component, 
however, makes this a state-based model. This third component 
means that the probability that A = 1, B = 2, and any value of Z 
is either unusually high or unusually low. State-based models 
pick out informationally salient states. In results reported 
below, the independence part of the state-based model is often 
omitted for simplicity. 
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The predictive success of (equivalently, the information 
captured in) a model is quantified by %ΔH, the reduction of 
uncertainty (Shannon entropy) of the DV if one knows the 
values of the predicting IVs. Like variance, H is a measure of 
spread, here the spread of a probability distribution, but unlike 
variance, low values of uncertainty-reduction, even as low as 
8%, can indicate big effect sizes. Uncertainty reduction is the 
central information theoretic measure of predictive efficacy, 
but since it is useful to compare RA results to other methods 
that don’t generate this measure. Occam reports also the more 
general accuracy measure of %correct, displayed in Occam as 
%c, and the related measures of true and false positives and 
negatives, sensitivity, and specificity. 

Uncertainty reduction roughly tracks with %correct – the 
more the uncertainty of the DV is reduced, the higher the 
accuracy of prediction tends to be – but these measures do not 
track perfectly. Moreover, they track best when the marginal 
probability distribution of the DV is approximately uniform. 
For skewed distributions, models can reduce uncertainty but 
still not improve accuracy. In such cases, the real predictive 
strength of the model is its uncertainty reduction, not its 
%correct. Uncertainty reduction, for example, registers the 
difference, for a binary variable, between predicting a state 
because it has a probability of .55 or because it has a 
probability of .95, despite the fact that both probability values 
give the same prediction and contribution to %correct.  

A good model has high uncertainty reduction or %correct; 
it also has low complexity, defined as degrees of freedom, or 
low Δdf, the difference between df(model) and df(reference), 
where the reference here is independence.. These two aspects 
of goodness oppose one another, so a good model is really one 
that optimally trades off accuracy (uncertainty reduction, 
information captured) and simplicity. This tradeoff is either 
explicit, as in the Bayesian Information Criterion (BIC) and the 
Akaike Information Criterion (AIC), which compute weighted 
sums of error and complexity (the opposites of accuracy and 
simplicity), or the tradeoff is implicit, as in a Chi-square p-
value calculation, also a standard way of selecting a model. 

BIC penalizes more for complexity than AIC, and is thus 
more conservative than AIC. A third model selection criterion 
in Occam is ‘Incremental p-value,’ which uses Chi-square p-
values to pick models. The IncrP model is the model with the 
highest uncertainty reduction whose difference from (the 
bottom reference of) independence is statistically significant, 
and for which a path exists from independence to the model in 
which every incremental increase in complexity is statistically 
significant. BIC and AIC are given in Occam output as 
differences between these measures for the reference minus 
their values for the model. Large positive differences indicate 
good models. 

Occam offers three types of searches that differ in 
refinement and thus predictive power: (1) a coarse search, 
using variable-based models without loops, which have only 
one predicting relation, e.g., IV:BZ; (2) a fine search, using 
variable-based models with loops, which have multiple 
predicting relations, e.g., IV:AZ:BZ; and (3) an ultra-fine 
search, which uses state-based models, e.g., IV:Z:A1B2Z. 
Coarse searches are fast and can handle many variables; fine 

searches are slow and can handle at most 100s of variables; 
ultra-fine searches are very slow, and can handle only fewer 
than 10 variables. Differences between these three searches are 
illustrated in Fig. 1.  

In this figure, a level in red represents the model selected 
by the search. Fine searches consider more models, at smaller 
increments of Δdf, than coarse searches, and ultra-fine searches 
more models than fine searches. More refined searches are 
advantageous because they might yield more complex and thus 
more predictive models that are still statistically justified, or 
they might yield models that are equally predictive but simpler 
(smaller Δdf) than those obtained from less refined searches. 
The above figure illustrates the first of these possible benefits: 
the fine search selects a more complex, and thus more 
predictive, model that is not considered by the coarse search; 
and the ultra-fine search selects a still more complex model 
that is not considered by the fine search. 

I. RESULTS 

This paper reports the results of coarse, fine, and ultra-fine 
searches for two DVs: the Digit Symbol Substitution Test 
(Cdg) and the Normalized Reaction Time Test (Cnr). For these 
DVs, a final best model was selected from the ultra-fine search, 
and for this model, the conditional probability distribution of 
the DV, given the predicting IVs, is shown and is then also 
summarized in a decision tree. 

A. Predicting performance on Digit Symbol Substitution test 
Table II presents the results of coarse, fine, and ultra-fine 

searches that attempt to predict Cdg after this DV has been 
rebinned to two states, roughly equal in probability. In listing 
the models, the table omits the non-predicting IV component. 

For the coarse search, the six top single predicting IVs are 
listed with their complexities (Δdf), the p-values that assess the 
significance of their difference from independence, their 
%reduction of DV uncertainty (%ΔH), their %correct (%c), 
and their ΔBIC from independence. The single predictors are 
ordered by their uncertainty reductions, which is different from 
the order of their ΔBIC values, since ΔBIC considers not only 
uncertainty reduction but also complexity. 

 

Fig. 1. Three types of model searches.  
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TABLE II.  CDG MODEL SEARCHES 

Model Δdf p % ΔH % c ΔBIC
REFERENCE  (independence)
Cdg 0 1.00 0.0 50.9 0.0
COARSE & (single predictors)

Pij Cdg 3 0.00 11.9 68.3 47.6
Ped Cdg 7 0.00 11.7 65.0 5.9
Ggc Cdg 3 0.00 5.6 65.0 18.3
Cnr Cdg 5 0.00 3.5 60.8 6.1
Pye Cdg 1 0.00 3.0 68.3 27.9
Csr Cdg 5 0.00 2.5 63.3 0.4
FINE * 

Pij Cdg : Pye Cdg 4 0.00 25.5 72.9 BIC
Pij Cdg : Pye Cdg : Cnr Cdg 9 0.00 32.8 76.7 AIC
Pij Cdg : Pye Cdg : Cnr Cdg : Psx Cdg 10 0.00 32.9 76.3 IncrP
ULTRA-FINE #

Pij2 Cnr1 Cdg : Pye0 Cdg 2 0.00 13.5 68.6 BIC
Pij = patient injury type Pye = years of education
Ped = education level Csr = Spatial Reaction Test 
Ggc = Glasgow coma scale Psx = sex
Cnr = Norm. Spatial Reaction Test
&N = 240
*N = 240, |Cnr| = 6, including missing
#N = 275, |Cnr| = 2, no missing  
The table shows that Pij (patient injury type) is the best 

single predictor in terms both of uncertainty reduction and 
ΔBIC, but these two measures differ in their ranking of Pye 
(years of education). Pye is the fifth best predictor in terms of 
uncertainty reduction, but the second best in ΔBIC, because it 
adds only 1 degree of freedom to the independence model. 

In the fine search, BIC picks a model with Pij and Pye as 
predictors, not surprisingly since these are, by ΔBIC, the first 
and second best single predicting IVs in the coarse search. The 
fine search results illustrate the fact that BIC selects simpler 
models (Δdf = 4) than AIC (Δdf = 9) and IncrP (Δdf = 10). The 
additional degree of freedom in the IncrP model beyond the 
AIC model is due to adding Psx (sex) as an additional 
predictor. 

The ultra-fine (state-based) search gives BIC model  

 IV: Cdg : Pij2 Cnr1 Cdg : Pye0 Cdg.  

This very simple (Δdf = 2) model includes all three predictors 
from the more complex (Δdf = 9) AIC fine search model, but it 
selects only one state of each of these predictors as salient. It 
also shows Pij and Cnr interacting in their prediction of Cdg, 
which is not seen in the AIC fine search model.  

This ultra-fine BIC model is only about half as predictive 
(%ΔH = 13.5) as the fine BIC model (%ΔH = 25.5), but it is 
also half as complex. (Δdf = 2 as opposed to 4). Using the most 
conservative criterion to select models, either of these two BIC 
models could be chosen as the ‘best model,’ but because the 
state-based model has an additional predictor (Cnr), and is thus 
potentially more interesting, it has been selected as the Cdg 
best model.  

TABLE III.  shows the conditional probability distribution, 
p(Cdg | Pij Pye Cnr), for the data and for this best model. The 
DV states, Cdg0 and Cdg1, mean low and high Digit Symbol 
scores, respectively, so a high probability of Cdg0 indicates a 
cognitive deficit. Alongside the conditional probability values, 
the table lists, for each composite IV state, the probability of a 
high score divided by the probability of a low score, namely 

Odds = p(Cdg1 | Pij Pye Cnr) / p(Cdg0 | Pij Pye Cnr). 

High Odds values are good outcomes, low Odds are poor 
outcomes, while Odds near 1 have IV conditional probabilities 
that are close to the marginal probabilities for the whole 
sample. To the right of the Odds column is the p-value that 
assesses the significance of the difference between conditional 
and marginal probabilities. 

Comparing the (shaded) 3rd and 4th rows of TABLE III.  
shows that for orthopedic (control) injuries and high education, 
difference in performance (in bold) on the Reaction-time Test 
(Cnr) does not predict any difference in the Odds. Comparing 
the (shaded) 3rd and 7th rows shows that for high education and 
fast reaction time, difference in injury type (Pij) – either head 
injury or merely orthopedic (in italics)  –also does not predict 
an Odds difference. All three of these rows (IV states) have the 
same Odds, namely 2.7. 

This table can be summarized in the decision tree shown in 
Fig. 2. The leaves of the tree are the Odds values followed by 
the p-value. Odds with significant p-values (at or near a 0.05 
cutoff level) are shown in larger font. The decision tree can be 
summarized verbally as follows. For all patients, education 
predicts performance on the Digit Symbol Substitution Test: 
more education predicts better performance. Education is thus 
a confounding variable for the Digit Test in discriminating 
concussion, and must be controlled for.  This is not surprising, 
given the complexity of the DSST. For orthopedic injury 
patients, reaction time does not predict digit symbol score. For 
patients with mild head injury, fast reaction time predicts better 
digit symbol performance beyond the influence of education 

TABLE III.  BEST (BIC) CDG MODEL 

Pij Pye Cnr N Cdg 0 Cdg 1 Cdg 0 Cdg 1 Odds p
orthop low fast 18 0.5 0.5 0.59 0.41 0.7 0.41
orthop low slow 22 0.68 0.32 0.59 0.41 0.7 0.36
orthop high fast 38 0.21 0.79 0.27 0.73 2.7 0.01
orthop high slow 20 0.35 0.65 0.27 0.73 2.7 0.05
head low fast 15 0.53 0.47 0.59 0.41 0.7 0.45
head low slow 24 0.88 0.13 0.86 0.14 0.2 0.00
head high fast 18 0.33 0.67 0.27 0.73 2.7 0.06
head high slow 20 0.6 0.4 0.62 0.38 0.6 0.26

175 0.49 0.51 0.49 0.51 1.00
IVs Pij (patient injury type): orthopedic (control) vs head injury

Pye (years of education): low vs high
Cnr (Normalized Reaction-time Test): fast (normal) vs slow (deficit)

DV Cdg (Digit Symbol Test): Cdg0 low (deficit) vs Cdg1 (high, normal)

IV states Data Model
Conditional probabilities of DV

 
. 
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Fig. 2. Decision tree for BIC best Cdg model 

B. Predicting performance on the Normalized Reaction Test 
TABLE IV. shows results of coarse, fine, ultra-fine 

searches for the Normalized Reaction-time Test (Cnr) after this 
DV has been rebinned to two equally sampled bins. 

For the coarse search, the table lists models selected by the 
three criteria, rather than tabulating the best single predictors. 
Three IVs show up in these models: Cdg, performance on the 
Digit Symbol Substitution Test (since Cnr predicts Cdg, it’s 
not surprising that Cdg also predicts Cnr); Gpt, amnesia; and, 
for the IncrP model, also Pph, previous head injury. These IVs 
show up as 3- and 4-way joint interaction effects.  

The fine search BIC model, Cdg Cnr : Gpt Cnr, includes 
Cdg and Gpt as separate rather than as joint predictors, but, the 
more aggressive AIC and IncrP criteria highlight a Cdg Gpt 
Cnr interaction effect, and also add Pph plus two additional IVs 
not found in the best coarse models: Pri, recent illness, in the 
AIC model, and Pye, years of education, in the IncrP model.  

TABLE IV.  CNR MODEL SEARCHES 

Model Δdf p % ΔH % c N=175
REFERENCE
Cnr 0 1.00 0.0 50.9
COARSE
Cdg Gpt Cnr 3 0.00 10.6 64.6 BIC, AIC
Pph Cdg Gpt Cnr 7 0.00 13.1 66.9 IncrP
FINE
Cdg Cnr : Gpt Cnr 2 0.00 8.8 64.6 BIC
Pri Cnr : Pph Cnr : Cdg Gpt Cnr 6 0.00 14.7 70.3 AIC
Pye Cnr : Pph Cnr : Cdg Gpt Cnr 5 0.00 12.9 67.4 IncrP
ULTRA-FINE
Pph1 Cdg1 Cnr : Cdg0 Gpt1 Cnr 2 0.00 12.4 64.8 BIC
Cdg = Digit Symbol Substitution Test Pri = recent illness
Gpt = amnesia; Pye = years education
Pph = previous head injury  
 

 

 

The ultra-fine search retains several of the IVs found in the 
coarse search, but indicates specific states of these variables: 
Pph1 is previous head injury, Cdg1 is high Digit Test score; 
Gpt1 is the absence of amnesia. Note that this Δdf=2 ultra-fine 
BIC model has a higher uncertainty reduction (%ΔH = 12.4) 
than the more complex (Δdf=3) coarse BIC model (%ΔH = 
10.6) and the equally complex (Δdf=2) fine BIC model (%ΔH 
= 8.8). Adding back IV: Cnr, the independence part of the 
ultra-fine model, the full state-based model is 

 IV : Cnr : Pph1 Cdg1 Cnr : Cdg0 Gpt1 Cnr. 

This is selected as the best Cnr model. 

TABLE V.  shows the conditional probability distribution 
for this model. The Odds value is the probability of fast 
(normal) reaction time divided by the probability of slow 
reaction time, given a particular IV state, , i.e.,  

Odds = p(Cnr0 | Pph Cdg Gpt) / p(Cnr1 | Pph Cdg Gpt). 

Again, high values of Odds are good, low values point to a 
deficit, and values near 1 indicate similarity to the marginal 
probability distribution of the overall sample.  

Comparing the (shaded) 2nd and 4th rows of TABLE V. 
shows that for those patients who score low on the Digit 
Symbol Substitution Test and have amnesia, the presence or 
absence (in bold) of a previous head injury does not matter: 
both have Odds = 0.2. Comparing the shaded 7th and 8th rows 
shows that if the patient has had a previous head injury and 
scores high (normal) on the Digit Symbol Test, the absence or 
presence (in italics) of amnesia also does not matter: both have 
Odds = 2.7.  

The table can be summarized in the decision tree shown in 
Fig. 3 which shows Odds followed by p-values. To summarize 
this decision tree: for low performance on Digit Symbol Test, 
amnesia predicts slow reaction time. For normal performance 
on Digit Symbol Test, previous head injury increases the 
probability of fast (normal) reaction time; this latter result is 
anomalous.  

TABLE V.  BEST (BIC) CNR MODEL 

Model
Pph Cdg Gpt N Cnr 0 Cnr 1 Cnr 0 Cnr 1 Odds p
no low no 20 0.4 0.6 0.52 0.48 1.1 0.92
no low yes 19 0.16 0.84 0.16 0.84 0.2 0.00
yes low no 30 0.57 0.43 0.52 0.48 1.1 0.90
yes low yes 18 0.17 0.83 0.16 0.84 0.2 0.00
no high no 24 0.50 0.50 0.52 0.48 1.1 0.91
no high yes 13 0.61 0.39 0.52 0.48 1.1 0.93
yes high no 38 0.76 0.23 0.73 0.27 2.7 0.01
yes high yes 14 0.64 0.36 0.73 0.27 2.7 0.09

176 0.51 0.49 0.51 0.49 1.0

IVs Pph (previous head injury): no vs yes
Cdg (Digit Symbol Substitution Test): low(deficit) vs high (normal)
Gpt (amnesia): no vs yes

DV Cnr (Reaction-time Test): Cnr0 fast (normal) vs Cnr1 slow (deficit)

              IV states Data
         Conditional probabilities of DV
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Fig. 3. Decision tree for BIC best Cnr model 

IV. SUMMARY 

This analysis of Preece data is a test bed for future analyses 
of other TBI data, which hopefully will include other types of 
IVs, such as imaging, genomic, and proteomic measures. 
Specific findings reported here are tentative and should be 
subjected to confirmatory tests with new data. This is 
particularly true of the anomalous finding in the Cnr model in 
which previous head injury predicted better reaction-time 
scores than the absence of previous injury. One possible 
explanation of this anomaly is that prior exposure to the 
Reaction Time test introduces a practice effect. But if reaction 
time is so vulnerable to a practice effect that it no longer 
discriminates concussed from non-concussed, then it’s 
probably not an appropriate measure for this purpose. Another 
finding of potential interest is the indication by the Cdg model 
that level of education may be a confounding factor in 
assessing TBI patients with the Digit Symbol Test. 

This illustrates the type of results that can be obtained from 
exploratory modeling with RA and demonstrates the possibility 
of using RA to better understand – and potentially to improve – 
clinical outcomes. Analyses can be done at three different 
levels of refinement. Models are conditional probability 
distributions of a DV given the states of IV predictors, 
distributions that are readily summarized with easily 
interpretable decision trees. Since RA is conceptually 
transparent and can handle both nominal and continuous data 
and both deterministic and stochastic relations, it is well-suited 
for exploratory analyses of biomedical data. 
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