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ABSTRACT
Patent citation shows how a technology impacts other inventions,
so the number of patent citations (backward citations) is used in
many technology prediction studies. Current prediction methods
use patent citations, but since it may take a long time till a patent is
cited by other inventors, identifying impactful patents based on their
citations is not an effective way. The prediction method offered in
this article predicts patent citations based on the content of patents.
In this research, Reconstructability Analysis (RA), which is based on
information theory and graph theory, is applied to predict patent
citations based on keywords extracted from the abstracts of selected
patents. After applying three classes of RA (variable-based analy-
sis without and with loops and state-based analysis), nine specific
IV states of a predicting model are extracted. These states involve
the four keywords of “chamber”, “hous”, “main”, and “return”. Lastly,
the abstracts of the patents are examined to identify the techni-
cal subjects relevant to smart building technologies for which these
keywords are proxies.
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1. Introduction

Due to the rapid growth in the number of patents filed around the world, patent databases
have become tremendous technological resources. To elicit technical knowledge from
patents and use it in managerial and engineering decisions, three major types of patent
analysis have been developed: bibliometrics analysis, citation analysis, and keyword-based
analysis. These methods are based upon on the three major parts of patent documents:
metadata, main body, and citations. In bibliometrics analysis, the relation between inven-
tors, firms, research institutes, countries, etc. are analyzed. In citation analysis, citations
are considered as proxies for technological impacts, which means that when a patent cites
another patent, the citing patent is impacted by the cited patent. In keyword-based patent
analysis, keywords are employed as proxy for patent content, extracted by textmining tools,
and analyzed by machine learning methods, specifically by clustering analysis. This paper
is an example of this third type of analysis which is keyword-based.
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Patent citation analysis is applied for various purposes, because patent citations can
represent technological changes. Assessing future technological impacts (Lee et al. 2012),
monitoring technological trends (Lee, Jeon, and Park 2011), predicting emerging technolo-
gies (Érdi et al. 2012), and exploring technology diffusion (Chang, Lai, and Chang 2009)
are examples of such patent citation applications. But citation analysis inherently suffers
from a drawback, namely that it is not able to rely on technical content of patents (Yoon
and Park 2004). However, there is correlation between the number of citations and the
technical richness of patents’ contents; thus, we exploit the link between patent citations
and patent content by using keyword-based analyses to make citation predictions. Predict-
ing citations based on patent content may allow us to discover technologies that will be
impactful in the future. Therefore, the research question of this paper is that if there are a
set of keywords in the abstract of patents that the frequency number of the keywords can
be applied to predict patent citation.

Reconstructability Analysis (RA) is chosen as the main methodology for citation pre-
diction since RA is very well suited for predictive modeling that is exploratory as opposed
to confirmatory. Other methodologies, such as network analysis and cluster analysis, are
unable to predict citations. In this work, RA is specifically applied to smart building
technologies to predict which patents will be cited in the future.

2. Literature review

Patents are good representatives for technological events. When a patent cites another
patent, this means the citing patent is impacted by the cited patent (Lee et al. 2012). Patent
citations are deployed to study many technological events such as linkage between science
and technology (Li et al. 2014; Kousha and Thelwall 2017), knowledge flow and diffu-
sion (Yoon and Lee 2008), patent valuation (Harhoff et al. 1999; Hu, Rousseau, and Chen
2012), stock market valuation (Hall, Jaffe, and Trajtenberg 2005), technological conver-
gence between industries (Karvonen and Kässi 2013), emerging research areas (Kajikawa
and Takeda 2009), emerging technologies (Breitzman and Thomas 2015; Kim and Bae
2017), the future impact of current technologies (Lee et al. 2012) and technology diffu-
sion (Chang, Lai, and Chang 2009). Different methodologies like stochastic analysis (Lee
et al. 2012), cluster analysis (Chang, Lai, and Chang 2009; Liu and Shih 2010; Érdi et al.
2012; Breitzman and Thomas 2015), and network analysis (Érdi et al. 2012) are applied to
patent citation analysis, but patent citation analysis is subject to some drawbacks (Yoon and
Park 2004). First, patent citation analysis only discovers individual relations between two
patents. There might be semantically relation between two patents without any citations
between them, Therefore, patent citation analysis does not identify the overall relationships
among all patents. Basically, citations cannot cover the richness of potential information,
so they limit the scope of analysis. Second, citation analysis is not able to consider semantic
relationships between patents; it may even produce superficial or misleading indices.

To remedy the above-mentioned problem, patent researchers have developed keyword-
basedmethods by applying text mining tools because keywords are good representatives of
the content of patents (Madani andWeber 2015). The majority of keyword based methods
are developed for the purpose of technology prediction (Yoon and Park 2004; Yoon and
Park 2007; Jun 2014; Kim, Park, and Jang 2015) or other related topics such as technology
monitoring (Lee, Jeon, and Park 2011), technology discovery (Lee, Yoon, and Park 2009),
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and roadmapping (Lee et al. 2008). The dominantmethods deployed in the keyword based
methods are cluster analysis methods and network analysis. Clustering methods such as k-
mean (Kim, Park, and Jang 2015), principle component analysis (Lee, Yoon, and Park 2009)
are utilized to group or tomap patents based on their semantic similarity. Network analysis
analyzes the relation between patents based on the intense of their similarity.

There is, however, a huge gap between patent citation analysis and keyword based patent
analysis. As introduced above, many patent citation analysis methods and many keyword-
based patent analysis methods have been developed, but no research has been done to
bridge these two types of patent analysis. Bridging these two types of analysis would allow
us to predict patent citation, which would improve significantly the accuracy of patent
citation based methods (Yan et al. 2011).

None of the existingmethodologies – network analysis or cluster analysis – is able to pre-
dict patent citations based on the content of patents (keywords). Network analysis studies
the structure of relationships between entities like citations, and cluster analysis groups
a set of similar objects, like keywords. To improve patent citation prediction, we need to
apply a method that predicts patent citations based on the frequency number of keywords.
Such a capability is provided by Reconstructability Analysis (RA) which yields models that
predict citations based on keyword frequencies. RA is introduced in the next section.

3. Methodology

3.1. Patents extraction

Patents extraction provides the data set for analysis, so the more accurate the extraction,
the more accurate analysis we will have. Since we are prediction patent citations based on
patent contents, we extract patents based on keywords representing smart building tech-
nologies. It is very important to have the correct keywords that address smart building
technologies. In this research, an initial dictionary of keywords is developed based on the
literature and experts’ judgment, and then it is expanded by applyingGoogle Adword capa-
bilities. To identify the keywords which address smart building patents, the concept of
smart building is divided into threemain categories: 1) energy, 2) efficiency, and 3) building
(Table 1). The first column titled “energy” represents all forms of energy consumption in
buildings. To cover all possible wordings in the patents, the asterisk symbol (*) is used as a
wildcard. For instance, heat* covers all possible variations such as heat, heating, heater, etc.
The second column addresses all possible words representing the concept of “smart”, such

Table 1. “Smart Building” keywords used in the
query shown in Figure 1.

Energy Efficiency Building

Heat* Sav* Home
Light* Optimi* House
Cool* Manag* Floor
Ventil* Reduc*
Refrig* Control*
Pump* Smart
HVAC automat*

Sustainab*
Intelligent
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Figure 1. The query used to search in USPTO database through “LexisNexis Academic Universe”.

as saving, managing, reducing, etc. The last column signifies all possible words approxi-
mating “building”. The key words are extracted through several rounds by applying the
literature (Kim, Stumpf, and Kim 2011) and Google AdWords.

To extract the patents information from the LexisNexis database, the query shown in
Figure 1 is designed based upon field tags used by the database. To gather smart building
patents, the query parameters were set for US patents issued between 1990 and 2013. All
keywords mentioned in Table 1, were deployed to look in titles and abstracts of patents.
After applying the query, 2483 patents were recognized. In this case, “abstract”, “appli-
cation number”, “filing date”, and “cited patents” are represented by ABST, APPL-NO,
FILED-DATE, and REF-CITED tags, respectively, to design the query shown in Figure 1.
The output was in text file format.

3.2. Patents data preprocessing

To do Reconstructability Analysis, we need to elicit two main groups of numbers from
the patents data set. The two groups are: (1) the numbers of citations of all the patents
(the DV), and (2) the frequencies of all the keywords (the IVs). So the extracted patents
data, which are in text format, need to be organized in two separate databases. The first
database is provided to figure out the number of citations between the extracted patents.
There might be patents citing the extracted patents, but they are not considered in the data
set because they are not basically relevant to smart technologies, and consequently their
keywords are not considered for the citation prediction. The second database is for text
mining purposes to figure out the frequency numbers. The first database is a 2483× 2483
matrix reflecting relations between the patents. If a cell contains “1”, it means the patent
located in the column is cited by the patent located in the row and if the cell shows “0”,
it means there is no citation. The data fields of the second database are “patent number”
which comprises the patent numbers of the extracted patents, and 235 fields that contain
the frequency numbers of keywords in the abstracts.

Several tasks including syntax tagging, word stemming, and stop-word elimination are
required to extract the keywords. In syntax tagging, words or terms are distinguished in
the sentences, then their suffixes are removed via a stemming procedure. To omit words
such as the, is, at, which, and on from the reserved words, a list of stop-words, given from
RANKS.NLWebsite (“Stopwords,” “Ranks” Company 2014), are deployed.

To extract the most repeated keywords in the patents, we used Weka (Hall et al.
2009), written in Java and developed at the University of Wikato in New Zealand. We
applied Weka’s StringToWordVector filter which removed numbers and stop words. We
also removed general keywords, such as “Winter, “mold”, and “dark,” that are not relevant
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to the technologies we are trying to predict. At the end of this filtering process, 235 key-
words remained. With these keywords, we created a database including patent number,
abstract, frequency number of the keywords, and also citation number of the patents. The
citation numbers come from the matrix mentioned earlier.

With this database, we apply a two-step preprocess to the data set to make it ready for
RA. First, we create a spreadsheet containing the IVs, which are the frequency numbers of
the keywords extracted from text mining, and the DV, which is the number of citations of
the patents. Then the frequencies of the IVs are binned, because, as mentioned before, only
nominal variables or discretized quantitative variables converted to nominal variables are
usable in RA. After binning, the binned data including IVs and DV are organized in a text
file in OCCAM format (Fusion, Willet, and Zwick 2012).

TheDV is binned to two bins, because in themajority of cases (patents) citation number
is zero. In this case, 92.9% of the patent citations are zero. Therefore, where DV = 1 the
citation number is zero, meaning the patent is not cited, and DV = 2 means the citation
number is more than zero, i.e. the patent is cited at least once.

3.3. Reconstructability analysis

Reconstructability Analysis (RA), introduced first by Ashby (1964), is a method based
on information theory and graph theory. RA has similarities with log-linear methods
applied in social sciences (Bishop, Feinberg, and Holland 1978) and can be considered
a machine learning technique such as those widely used in computer science (Perkowski
et al. 1997). RA, like log-linear andmachine learningmethods, is applied inmany different
fields, including time-series analysis, classification, decomposition, compression, pattern
recognition, prediction, control, and decision analysis (Zwick 2004a).

Basically, RA decomposes a probability or frequency distribution into component dis-
tributions (Klir 1985) by applying statistical multivariate analysis similar to log-linear
methods (Zwick 2011) and logistics regression. RA also overlaps mathematically with
Bayesian networks. Despite these similarities, RA, log-linear, and Bayesian Networks
methodologies each has its own unique capabilities (Zwick 2011). For example, RA can
analyze set-theoretic relations and arbitrary functions, is capable of state-based analysis
(Zwick 2004c; Johnson 2005), and has a Fourier version (Zwick 2004b). RA and log-linear,
but not Bayesian Networks, can utilize models with loops in both directed and neutral sys-
tems. (In directed systems, IVs andDVs are distinguished, and IVs are used to predict DVs.
In neutral systems, IVs and DVs are not distinguished. Neutral systems simply try to find
the relations between all the variables.)

Three classes of RA models are applied in this research: (1) variable-based (VB) mod-
els without loops, (2) variable-based models with loops, and (3) state-based (SB) models
(which typically have loops). These models give us coarse, refined, and ultra-refined mod-
els, schematically depicted in Figure 2 (Zwick 2011). The bold lines in the figure show how
complex a model might be accepted in each of the classes. In VB loopless models, the indi-
cated bold linemight be themost complexmodel that could be statistically acceptable. The
dotted lines above the bold line indicate models that are statistically insignificant. Because
VB models with loops make finer discriminations, a more complex such model might be
statistically significant. Since SB models make even finer discriminations, they may allow
a still more complex model to be accepted as statistically significant.
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Figure 2. Degree of refinement of RA models (Zwick 2011).

In loopless models, there is only a single “predicting component”. For example, in the
model ABCD:ABZ, A and B predict Z. (The first component, ABCD, allows for associa-
tions between the IVs.) Models with loops have more than one predicting component. For
example, in ABCD:AZ:BZ model, two variables, A and B, separately predict Z, and these
predictions are fused in themodel. State-basedmodels like ABCD:A1B2Z:B1C3Z predict Z
with more specific information about states of IVs. The states are indicated by subscripts.

A web-based program developed at Portland State University (Portland, Oregon) was
used to perform theRAanalysis. The program is named “Organizational ComplexityCom-
putation and Modeling” (OCCAM), which is also an allusion to Occam’s (sometimes
spelled Ockham’s) Razor, the principle of parsimony, important in modeling. The first
precursor to OCCAM was written by Zwick and Hosseini (Hosseini and Zwick 1986). A
detailed overview of RA (Zwick 2004a) OCCAMmanual (Fusion,Willet, and Zwick 2012),
and a review of OCCAM architecture (Willet and Zwick 2004) are available at the RA web
site, http://www.pdx.edu/sysc/research-discrete-multivariate-modeling.

Three basic functions of OCCAM were employed for this data patent analysis:

• Loopless analysis, as the first step in RA, is used to discover what keywords (IVs) are
individually the most predictive of patent citation (DV).

• With-loops analysis find three best models for patent citation predicting. These best
models involve multiple and/or interacting IVs are based on BIC (Bayesian Informa-
tion Criterion), AIC (Akaike Information Criterion), and Incremental p-values criteria.
The AIC and BIC best model criteria select models based on a linear tradeoff of the
information captured in a model and its complexity, with the BIC criterion penaliz-
ing models more heavily for complexity. The Incremental-p model picks the highest
information model whose difference from the reference (independence) model is sta-
tistically significant, where there is also a path from the reference to the model, where
every incremental step of the path is statistically significant. In all of the analyses, sig-
nificance level is chosen as 5%. Actually, models are chosen based on �AIC and �BIC,
which are differences of AIC and BIC of the models from values for the reference (the
independencemodel); this results in goodmodels having higher positive values of these
differences. (Normally, when BIC or AIC values are given, they’re given as values for



INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 827

particular models, not as differences from a reference model, and then good models are
those that have lower or negative values.) Thesemodels with loops are the key outcomes
of this research.

• State-based analysishelps tomore deeply scrutinize the IVs selected in prior steps. There
might exist some interactions between the IVs selected in prior steps that are unde-
tectable in variable-based analysis. State-based models can use these subtle interactions
for more accurate predictions.

4. RA results

As mentioned before, RA is designed for nominal variables or for discretized quantitative
variables converted to nominal variables. Tomake quantitative variables usable, it is neces-
sary to bin them. Table 2 shows the binning of the four IVs that analysis (discussed below)
revealed to be predictive. The four keywords shown in Table 2 are the best predictors in
the variable-based analysis with loops (see section 4.2 and Table 4). For instance, Db = 2
means “Chamber” is frequented at least one time, or Dg = 3 means “hous” is frequented
between 2 and 15. Also, Z, which is the dependent variable (DV), is binned to 1 and 2. If
Z = 2, it means the patent is cited; otherwise it is not cited.

To bin the number of frequency of the keywords, a binning software program is applied.
The binning program tries to create a set of bins that are equally sampled. Since for all key
words, most cases have no citations of the key words, a uniform distribution is impossible
to achieve, but the binning program attempts a reasonable compromise. The first bin is
necessarily always for zero frequency of keywords (IVs) or citations (DV). The number of
additional bins then depends on how many cases are spread over 1 frequency/citation, 2
frequencies/citations, etc. For keywords chamber, main, and return, the number of cases
where there are 1 or more is small (167, 137, and 84 compared to over 2000 for no fre-
quency), so it makes sense only to add one extra bin for these keywords. For hous, however,
there are 410 cases where this keyword is frequented once, and 267 where it is frequented
more than once, so itmakes sense to assign a separate bin for each of these situations. Other
keywords are treated similarly.

Table 2. Relation between the bin numbers and the frequency of occurrence of
the IVs (the keywords).

IV Keyword Values

Db chamber Bin 1 2
Frequency 0 1–12
#Patents 2316 167

Dg hous Bin 1 2 3
Frequency 0 1 2–15
#Patents 1806 410 267

Iz main Bin 1 2
Frequency 0 1–11
#Patents 2346 137

Ja return Bin 1 2
Frequency 0 1–11
#Patents 2399 84
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4.1. Loopless variable-based analysis

The result of loopless analysis is tabulated inAppendix 2, where uncertainty reduction pro-
gressively increases as models go from the bottom (the independence model) to the top
(the most complex model considered). Uncertainty reduction is the primary information
theoretic measure of the goodness of a model; it is analogous to %variance explained, but
because of the logarithm term in the Shannon expression of uncertainty even small uncer-
tainty reductions (for example, even 8%) can represent large effect sizes. Since uncertainty
reduction is specific to information theoretic analyses, amore generalmeasure of goodness
of models, namely %correct in prediction, is also offered in this paper. The independence
model, IV:Z, by definition, has no uncertainty reduction in the DV since no IVs are asso-
ciated with it, i.e. so %�H(DV) is always zero in level 0. Also, %Correct(Data) starts from
94.7%, whichmeans that a default prediction (the prediction without any knowledge of the
presence or absence of any keywords) of no citation (Z = 1) will be 94.7% correct. This is
the default prediction, because that percentage of the patents is not cited by other patents
in the sample. This means that we are struggling to predict very infrequent occurrence of
Z = 2 in this data set.

Among the IVs, three single IVs, namely Ac, Iz, and Ja, give themost uncertainty reduc-
tion. Of these three IVs, Ja, which is “return”, is amuch stronger predictor than Iz (“main”)
and Ac (“light”). As shown in Table 3, it has much higher values of both uncertainty reduc-
tion and%Correct. Note that Iz and Ac do not improve %Correct over its default value, but
their predictive effect is captured in their non-zero uncertainty reduction.

As shown in Appendix 2, IV:IzJaZ is the best BIC model in the loopless analysis. Iz and
Ja together predict Z with 83.33% uncertainty reduction and �DF = 3. Also, IV:DbIzJaZ
and IV:DgIzJaZ are the best AIC and incremental-p models, respectively.

4.2. Variable-based analysis with loops

Allowing loops delivers more powerful variable-based models, as shown in Table 4. Since
BIC is more conservative than AIC and Incremental p-value, the BIC model is the most
reliable result of this study. Not surprisingly, the first and second single IV predictors are
in the BICmodel. In addition, twomore IVs,Db andDg, are added in the BICmodel as new
predictors. The AIC and Incremental p-values models are identical, and they include most
of the same predicting variables. In comparison to BIC, they keep Dg, Iz, and Ja and drop

Table 3. Best single IVs prediction patent citations.

IV %�H (DV) p % correct

Ja 54 .00 98.1
Iz 15 .00 94.7
Ac 3.3 .00 94.7

Table 4. Best variable-based models selected based on three criteria.

Criterion Model %�H (DV) % correct �DF p

BIC IV:DbZ:DgZ:IZ:JaZ 86.6 98.8 5 0
AIC IV:AmZ:AsZ:DgZ:EbZ:FdZ:IZ:JaZ 90.9 99.3 15 0
Incremental p IV:AmZ:AsZ:DgZ:EbZ:FdZ:IZ:JaZ 90.9 99.3 15 0
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Db. Also, the AIC and the p-value models havemore uncertainty reduction and prediction
correctness, but the delta degrees of freedom, �DF, has increased greatly from 5 to 15,
whichmeans these twomodels are 3Xmore complex. All variable-basedmodels generated
by OCCAM are available in Appendix 3.

RA also gives specific information about any given model. The “Do Fit” option in
OCCAM examines the given model in detail, and states exactly what DV values it pre-
dicts for all possible values of the predicting IVs (see Appendix 4). Since we are interested
in predicting whether a patent will be cited or not, we look at column “Z = 2” for the
model probabilities. If the probability of Z = 2 is considerably larger than its marginal
probability of 5.27%, patent citation is more likely, assuming that the difference between
the model probabilities and the independent model margins are statistically significant.
This difference is examined by a Chi-squared test to see if its p-value is less than 0.05.
We also consider only IV states where the calculated conditional probability distribution
is different from uniform, and this difference is statistically significant with the same p-
value cutoff. Eight combinations of the IVs that have passed both of the above criteria
are shown in Table 5. For example, in the first row, having Db = 1, Dg = 1, Iz = 1, and
Ja = 2, the model 100% predicts Z = 2. Or for the second row, having Db = 1, Dg = 1,
Iz = 2, and Ja = 1, the model predict Z = 2 for 22.13%. The column named “rule” is the
DV (Z) prediction result. The prediction rule indicates which DV state one should predict
for any particular IV state. The rule is determined from the conditional probability distri-
bution for the model, namely q(DV|IV). Specifically, the rule indicates the most probable
DV state, the DV state whose q(DV|IV) is maximum, for the particular IV. In the present
case, if rule = 2, it means that one should predict Z = 2, i.e. that the patents containing
the IVs (the keywords) will be cited. If rule = 1, it means that one should predict Z = 1,
i.e. that the patents will not be cited. So, for example, in Table 5, for IV state (Db, Dg, Iz,
Ja) = (1,1,2,1), the probability of Z = 1 is .779, while the probability of Z = 2 is .221, so
one predicts Z = 1. In addition to Table 5, OCCAM generates individual tables for each
of the predicting IVs in the model. These tables, shown in Appendix 4, reveal that none
of the other three IVs alone ever predict Z = 2, but Ja predicts Z = 2 100% when Ja = 2.
This shows that this analysis method can pick up predictive interaction effects involving
several IVs even though the IVs are not individually predictive.

Table 5. Variable based analysis for the BIC model (IV:DbZ:DgZ:IZ:JaZ) (Probabilities p and q are shown
as %).

Data Model

IVs obs. p(DV|IV) calc. q(DV|IV)
Db Dg Iz Ja freq Z = 1 Z = 2 Z = 1 Z = 2 rule

1 1 1 2 56 0 100 0 100 2
1 1 2 1 81 77.8 22.2 77.9 22.1 1
1 1 2 2 4 0 100 0 100 2
1 2 1 2 4 0 100 0 100 2
1 2 2 1 14 85.7 14.3 85.56 13.4 1
1 3 1 2 8 0 100 0 100 2
1 3 2 1 13 23.1 76.9 22.1 77.9 2
2 1 1 2 5 0 100 0 100 2
2 3 2 1 7 0 100 3.8 96.2 2
– – – – 2483 94.7 5.3 94.7 5.3 1
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4.3. State-based analysis

In the state-based analysis done here, only the IVs (Db, Dg, Iz, and Ja) are
used; the remaining IVs are ignored. The result of state-based analysis is given in
Appendix 5. The best model for all three criteria (BIC, AIC, and incremental-p) is
IV:Db1Z:Dg3Iz2Ja1Z:Iz1Ja1Z:Ja2Z:Z. This state-basedmodel has four specific states added
in the order listed to the independencemodel DbDgIzJa:Z. As shown in Table 6, thismodel
is slightly better in terms of�DF,%�H(DV), and�BIC than the (BIC) best variable-based
model with loops, namely IV:DbZ:DgZ:IZ:JaZ, previously given in Table 4.

The conditional probability distribution of the state-based model is shown in Table 7,
which also provides other detail omitted in Table 5. p-rule is the p-value for testing the
prediction rule, i.e. the deviation of the calculated conditional probability distribution
q(DV|IV) from equal likelihood of Z = 1 or 2, and p-margin is the p-value for testing
its deviation from the marginal p(DV) distribution, which is (94.7%, 5.3%). The table lists
all the IV states for which p-rule ≤ .05. Six IV states (not shaded) have a lower probability
than the margin of being cited (Z = 2) and nine IV states (shaded) have a higher proba-
bility of being cited. Components of the state-based model, IV:Db1Z: Dg3 Iz2 Ja1 Z: Iz1
Ja1 Z: Ja2 Z: Z, point to important IV states: (Dg = 3, Iz = 2, Ja = 1) and (Ja = 2) states
always predict citation, while (Iz = 1, Ja = 1) states never predict citation.

4.4. Prediction rules

As pointed out earlier, each of the three classes of RA analysis has a different degree of
refinement. Variable-based (VB) analysis without loops, VB with loops, and state-based

Table 6. Comparing the models resulted from variable-based analysis and state-based analysis

Model �DF p-value %� H (DV) � AIC � BIC Inc. p-value %C (Data)

State-based IV:Db1Z:Dg3Iz2Ja1
Z:Iz1Ja1Z:Ja2Z:Z

4 0 87.3 887.0 863.8 0.00 98.8

Variable-based IV:DbZ:DgZ:IZ:JaZ 5 0 86.6 878.8 849.7 0 98.8

Table 7. State-based BICmodel IV:Db1Z:Dg3Iz2Ja1Z:Iz1Ja1Z:Ja2Z:Z (Probabilities p & q are shown as %).

Data Model

IV obs. p(DV|IV) calc. q(DV|IV)
Db Dg Iz Ja freq Z = 1 Z = 2 Z = 1 Z = 2 rule #correct %correct p-rule p-margin

1 1 1 1 1583 100 0 100 0 1 1583 100 0.00 0.00
1 1 1 2 56 0 100 0 100 2 56 100 0.00 0.00
1 1 2 1 81 77.8 22.2 79.4 1 63 77.7 0.00 0.00
1 1 2 2 4 0 100 0 100 2 4 100 0.05 0.00
1 2 1 1 343 100 0 100 0 1 343 100 0.00 0.00
1 2 1 2 4 0 100 0 100 2 4 100 0.05 0.00
1 2 2 1 14 85.7 14.3 79.4 1 12 85.7 0.03 0.01
1 3 1 1 208 100 0 100 0 1 208 100 0.00 0.00
1 3 1 2 8 0 100 0 100 2 8 100 0.00 0.00
1 3 2 1 13 23.1 76.9 21.2 78.8 2 10 76.9 0.04 0.00
2 1 1 1 65 100 0 100 0 1 65 100 0.00 0.06
2 1 1 2 5 0 100 0 100 2 5 100 0.03 0.00
2 2 1 1 42 100 0 100 0 1 42 100 0.00 0.13
2 3 1 1 27 100 0 100 0 1 27 100 0.00 0.22
2 3 2 1 7 0 100 3.4 96.6 2 7 100 0.01 0.00
– – – – 2483 94.7 5.3 94.7 5.3 1 2454 98.8 – –

All of the IV states are statistically significant (p-rule ≤ .05).
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Table 8. Patent citation predictions: the probabilities of being cited for the 9 keyword combinations all
exceed the marginal probability (on the last line) of 5.3%.

Keyword frequency Probability (%)

# Chamber (Db) Hous (Dg) Main (Iz) Return (Ja) Freq. Not cited Cited

1 0 0 0 > 0 56 0 100
2 0 0 > 0 0 81 79.3 20.6
3 0 0 > 0 > 0 4 0 100
4 0 1 0 > 0 4 0 100
5 0 1 > 0 0 14 79.3 20.6
6 0 > 1 0 > 0 8 0 100
7 0 > 1 > 0 0 13 21.2 78.7
8 > 0 0 0 > 0 5 0 100
9 > 0 > 1 > 0 0 7 3.4 96.5
– – – – – 2483 94.7 5.3

All of the IV states are statistically significant (p-rule ≤ .05).

(SB) analyses allow coarse, refined, and ultra-refined modeling respectively (Kramer et al.
2012). In this case, four variables with the largest effects in DV prediction, for VB with-
out loops analysis, are Db, Dg, Iz, and Ja. Furthermore, more detailed models made of
the four variables are recognized in VB with loops and SB analyses. Db, Dg, Iz, and Ja
represent “chamber”, “hous”, “main”, and “return” keywords correspondingly. While both
Table 5 and Table 7 contain detailed information about Db, Dg, Iz, and Ja as predictors of
Z, Table 7 is based on the more refined state-based model, so we use Table 7 as the basis
of the prediction. Table 8, based on Table 7, shows the citation prediction of the IV states
whose p-values are less than 0.05.

To display which combination of keyword frequencies predicts the patent citations, we
need to convert the bin numbers of the four IVs in Table 7 into their corresponding fre-
quency numbers or ranges; this is done in Table 8.The relation between the bin numbers
and the frequency numbers are given above in Table 2. So, for example bin number 1 for
Db, the upper left number in Table 7, corresponds to frequency 0, the upper left number in
Table 8. Table 8, shows how we can predict the patent citations via the keywords frequen-
cies. Specifically, it shows nine predictions from keywords frequencies of whether patents
with these frequencies would be cited. Note that two of the IV states ({Db = 1, Dg = 1,
Iz = 2, Ja = 1} and {Db = 1, Dg = 2, Iz = 2, Ja = 1}) in Table 7 which have a prediction
rule of 1 (which predict not being cited), their q(DV = 2|IV) are 20.6%, almost 4 times
bigger than 5.276%, which is the default probability of being cited in the data.

Of the nine prediction rules (rows) in Table 8, seven are combinations of the keywords
that predict that patents will be cited. These seven can be grouped to summary rules I & II
which are:

I: return>0 predicts pcitation = 100%, #patents = 77

This encompasses individual rules 1, 3, 4, 6 and 8 in the above table. The second sum-
mary rule has primary and secondary components which encompass individual rules 7
and 9, respectively, in the table. This summary rule is

For Return = 0,
II: hous>1 &Main>0 predicts Pcitation =78.7%, #patents=13
IIa: hous>1 &Main>0 & Chamber>0 predicts Pcitation =96.5%, #patents=7
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5. Discussion

To see how these four keywords enhance patent citation prediction, one must dig into the
patents to understand to what the keywords are referring in the abstracts. To do this, rules
I and IIa are considered as the basis of the discussion (see section 4.4). Rule I expresses the
fact that if a smart building patent contains “return” or its derivatives in its abstract, the
patent will definitely be cited (100% probability). Rule IIa indicates that a smart building
patent will be cited with 96.5% probability if it contains “main” and “chamber” and at least
two derivatives of “house” in its abstract.

“Return” has two main roles in the abstracts of smart building patents. First, “return”
occurs in the abstract of smart building patents when something such as air, or water is cir-
culating in a HVAC system and also occurs when someone such as a user or an occupant is
going back to a building. For example, “return air” refers to how “return air” may be used
as a cooling source in HVAC systems in US20080265046; “return water” acts as a part of
pool heater in US5560216, an automatic washer in US5241843, a water heater system in
US20080265046, and a steam heating system in US20080223947. In addition, “occupants
return” and “user return” are mentioned in the abstract of patents related to communi-
cating control systems (such as US20080217419, US8386082 and US20110125329) where
the systemmanages the energy consumption based the presence or absence of a user or an
occupant. Second, “return” is used in the abstract of smart building patents when a main
part of the invention functions to return something. “A return plenum pressure controller”
and “a return fan control system” in an HVAC system (US8326464, US20130096722, and
US20100057258), “return line connecting an output of the chiller to an input of the cool-
ing tower” in a climate control system (US20100201125), “return ducts” in a dehumidifier

Table 9. Predicted inventions that will be cited.

Prediction Rules Key Phrases Inventions

Rule I: (return > 0) return users, return occupants Communication Control Systems
return fan control system HVAC Systems
return line connecting an output of the chiller to an
input of the cooling tower

Climate Control Systems

return duct Dehumidifier Systems
non-return valve Water Supply Systems

Rule IIa: (main > 0,
hous > 1,
chamber > 0)

A casing houses: semiconductor modules, constituting
amain circuit for power conversion; . . .
Within the casing, a cooling chamber including a
coolant passage is formed, and a chamber wall of the
cooling chamber is formedwith a thermally conductive
material.
At least the semiconductor modules, are housed inside
the cooling chamber, and at least the capacitor and the
control circuit are disposed outside the cooling cham-
ber.

Power Converters

An automatic biomass fuel burning heating device and
method comprising a burn chamber having . . .

A burn chamber having a feed auger opening in a burn
chamber wall.
The control maintain supply air into the brooder house
at a constant set temperature by varying the volume
rate of air flow based on air inlet temperature and the
temperature in the burn chamber.

Waste litter heater
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system (US20060086112), and “non-return valve” in a water supply system (US7066197)
are examples of the main parts that function to return something.

“Main”, “chamber”, and derivatives of “house” in the smart building patents provide
inventions that generate a form of energy, more specifically heat, or convert heat to another
form of energy. A group of patents including US7978468, US7969735, US20110235270,
and US20100188814 explain “a power converter that converts input power to a specific
type of power and outputs the power resulting from the conversion”. In this technology, a
semiconductormodule is housed inside a cooling chamber with the peripheral wall thereof
constituted of a thermally conductive material to reduce the effect of heat from the semi-
conductormodule on the other components. In addition, patentUS20060236906 describes
another invention that provides an automatic waste burning heating device. This technol-
ogy is applied in poultry industry to burn poultry litter to generate and consume heat in
buildings for different purposes.

In summary, it is expected that smart building inventions related to communication
control systems, HVAC systems, climate control systems, dehumidifier systems, and water
supply systems will be cited, according to rule I. In addition, smart building inventions
related to power converters and waste litter heater will be cited, according to rule IIa. The
summary of predictions and their related rules are illustrated in Table 9.

6. Conclusion

Patent citation is used as a proxy for technological impact studies, but is subject to the
limitations of each patent’s contents (Yoon and Park 2004). The importance of patent cita-
tion prediction is revealed when we see 94% of smart building patents of this study are not
cited. In this research, a keyword-based method is developed to predict patent citations.
The keywords are extracted by applying Weka, a text mining software program developed
by the University of Waikato (New Zealand) (Hall et al. 2009). Keywords are analyzed by
Reconstructability Analysis (RA) (Ashby 1964) to discover keyword patterns in promis-
ing patent citations. This method enables us to both predict patent citations as proxies of
technological impacts and to find out which aspects of technologies cause the impacts by
interpreting the associated keywords.

Three different classes of RA searches are applied: (1) variable-based models without
loops, (2) variable-based models with loops, and (3) state-based models. These models
give us coarse, refined, and ultra-refined models, as shown in Figure 2 (Zwick 2011). As
a result of RA analysis, four keywords, including “chamber”, “house” and its derivatives,
“main”, and “return”, emerged as the keywords whose frequency in a patent related to
smart building technologies which were the most predictive indicators of likelihood to be
cited by other patents. The specific combinations of frequency of the keywords are sum-
marized in Table 8. According to the keywords investigated in the abstracts, some smart
building inventions, shown in Table 9, are predicted to be cited.

Practitioners can take the advantage of our method to not only explore in patent
databases to find those patents leveraging technological changes in their industry like
smart buildings, but also dig into the patents more efficiently by considering the key-
words recognized by RA to identify the technologies. In keyword-based studies, like
ours, having a comprehensive thesaurus or dictionary of the research area is ideal
for the researchers, but professional thesaurus or dictionaries are rarely available for
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specific emerging technologies, such as smart building technologies. Semantic analy-
sis can be employed as a remedy in the future studies to compensate for the lack of
professional thesaurus or dictionaries. WordNet, a lexical database made by Princeton
University (Princeton University 2010) enables researchers to analyze their corpus seman-
tically, e.g. patents, to extract all possible keywords related to the main concept of their
research.

The use of Reconstructability Analysis in this research makes several theoretical con-
tributions. First, the analytical procedures described in this paper show how data can be
analyzed in an exploratory mode, eliminating the need to hypothesize and then test spe-
cific predictive relations whose form is explicitly specified. Second, these procedures allow
one to detect interaction effects involving multiple predictors, even when the individual
IVs do not have significant predictive effects. Third, the predictive models are concep-
tually transparent, being simple conditional probability distributions. This differentiates
these methods from other data mining techniques, such as neural networks, which are
“black boxes,” where predictive models are not as easy to interpret and are not strongly
associated with statistical measures. Fourth, this work outlines a hierarchical procedure
where exploratory analysis is done at different degrees of refinement; this allows flexibil-
ity in the analysis under varying conditions of sample size and computational capabilities.
(RA requires sample sizes that are larger than those required for standard linear regression
analyses.)

Ideally, these methods should be applied in conjunction with cross-validation tech-
niques, i.e. subjecting models obtained from training data to separate test data; this has
not been done in this study. Future research should include cross-validation assessment of
predictive models. It should expand % correct calculations to include the explicit analysis
of sensitivity and specificity, i.e. the subdivision of incorrect predictions into false nega-
tives and false positives. Also, more specifically, as an expansion of this particular study,
analysis should consider the predictive keywords found in models favored by the less con-
servative model selection criteria (AIC and IncrP) that are not found in models favored by
the preferredmodel selection criterion (BIC). As shown in Table 4, these keywords include
variablesAm,As, Eb, and Fd,which correspond to keywords control, dev, head, and flow. In
addition, although state-based calculations take considerable computer time, state-based
runs can be done with additional predictors, i.e. 5 or 6, as opposed to the 4 reported in this
paper.

Abbreviations

Abbreviation Keyword Description

RA Reconstructability Analysis The methodology used to predict patent citations based on
keywords extracted from abstract of patents.

IV Independent Variable IVs are the inputs (keywords) of the prediction model.
DV Dependent Variable DV is the output of the model, predicted by the IVs.
VB Variable-based Three different classes of RA models are applied in this research:

1) variable-based (VB) model without loops, 2) variable-based
(VB) model with loops, and 3) state-based (SB) models (which
typically have loops).

SB State-based
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Abbreviation Keyword Description

BIC Bayesian Information
Criterion

AIC Akaike Information
Criterion

BIC and AIC are generally used to define the best models. These
criteria trade off uncertainty reduction and model simplicity in
different ways (Kramer et al. 2012). BIC, the more conservative
criterion, is favored in this study. A third criterion, Incremental-p,
is also used; it picks the highest information model whose
difference from independence is statistically significant and for
which a path from independence exists where each increment
of complexity is also statistically significant,

DF Degree of Freedom The number of parameters in a model, the measure of its
complexity.

H Uncertainty Information theoretic measure of variable unpredictability. The
reduction of uncertainty of a DV achieved by knowing the IVs
is roughly analogous to the %variance explained, except small
values of uncertainty reduction can indicate big effect sizes.
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Appendices

Appendix 1. The extracted keywords from the patents

IV Keyword IV Keyword IV Keyword IV Keyword IV Keyword IV Keyword

aa power bp panel de threshold eu Condim gj sampl ia follower
ab energ bq valv dg hous ev Scor gk condenser ib gener
ac light br reflect dh coil ew Beam gl wir ic assemb
ad ga bs switch di room ex Test gm model id wast
ae member bt van dj dur ey Cool gn dat ie enclosur
af bal bu cit dk select ez Condit go inform if hom
ag golf bv electron dl timer fa Funct gp st ig load
ah hydr bw fir dm door fb Cover gq ba ih steam
ai finger bx thermostat dn lock fc Cast gr saving ii 3-d
aj lift by transfer do fuel fd Flow gs stat ij mot
ak food bz port dp liquid fe Ha gt rot ik picture
al cel ca carbur dq treatm ff Hav gu imag il cabinet
am control cb commun dr semiconduc fg Invent gv hot im fig
an il cc transformer ds structur fh Melt gw crop in exchang
ao circuit cd inst dt firebox fi Metal gy exerc io loc
ap wiper ce park du detect fj Molt gz provid ip point
aq system cf wind dv upper fk NoZl ha interfac iq motor
ar aud cg air dw air-m fl Par hb sh ir rf
as dev ch shel dx posit fm Pat hc lower is stick
at pump ci cabl dy mach fn Pool hd diffuser it light-em
au channel cj sol dz sid fo Prov he composit iu guest
av endotrach ck weather ea el fp Strip hf layer iv chain
aw tub cl em eb head fq Substr hg outer iw user
ax compon cm ar ec print fr Surface hh protect ix appl
ay opt cn alarm ed fireplac fs U hi period iy dish
az hvac co brush ee chair ft uniform hj led iz main
ba pressur cp water ef sen fu weir hk acoust ja return
bb electr cq launch eg temper fv step hl reson Z* Citation
bc heat cr vacuum eh oper fw filter hn refriger
bd network cs ozon ei concentr fx vibr ho se
be hydraul ct sc ej displ fy clamp hp barrel
bf sign cu therm ek tank fz box hq ccfl
bg unit cv oil el greenh ga build hr bod
bh modl cw miner em bask gb lin hs oil-st
bi level cx subst en remov gc sewer ht tissu
bj setpoint cy brak eo row gd mater hu mirror
bk compr cz dist ep cut ge veloc hv clean
bl sect da fluid eq cl gf infrar hw fixtur
bm extern db chamber er roof gg zon hx receiv
bn wal dc dril es combust gh forml hy sub-chamber
bo laser dd spac et Floor gi siz hz bottom

*Z is the dependent variable (DV).
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Appendix 2. OCCAM results – loopless variable-based analysis

ID Model Level �DF p-value %�H(DV) �AIC �BIC %C(Data)

13 IV:AqBgIzJaZ 4 95 0.00 88.92 722.10 169.46 98.5
12 IV:BaDgIzJaZ 4 35 0.00 88.38 836.60 633.00 98.9
11 IV:AmDgIzJaZ 4 71 0.00 88.35 764.27 351.25 98.9
10* IV:DgIzJaZ 3 11 0.00 85.75 857.58 793.59 98.6
9 IV:BgIzJaZ 3 15 0.00 85.34 845.41 758.15 98.1
8* IV:DbIzJaZ 3 7 0.00 84.98 857.75 817.03 98.5
7* IV:IzJaZ 2 3 0.00 83.33 848.76 831.31 98.1
6* IV:DbJaZ 2 3 0.00 58.46 593.67 576.22 98.1
5* IV:DgJaZ 2 5 0.00 57.11 575.77 546.69 98.1
4* IV:JaZ 1 1 0.00 54.89 561.03 555.21 98.1
3* IV:IZ 1 1 0.00 15.46 156.56 150.75 94.7
2* IV:AcZ 1 4 0.00 3.32 26.08 2.81 94.7
1* IV:Z 0 0 1.00 0.00 0.00 0.00 94.7

*Indicates those models whose difference from their lower level progenitor is statistically significant
Best Model(s): by�BIC is 7*, by�AIC is 8*, and by Information, with all Inc. p-value < 0.05 is 10*.

Appendix 3. OCCAM results – variable-based analysis with loops

ID MODEL Level �DF p-value %�H(DV) �AIC �BIC Inc. p-value %C(Data)

22* IV:AmZ:AsZ:DgZ:EbZ:FdZ:IZ:JaZ 7 15 0.00 90.9 902.5 815.2 0.00 99.3
21* IV:AmZ:AsZ:CbZ:DgZ:EbZ:IZ:JaZ 7 15 0.00 90.9 902.2 814.9 0.00 99.2
20* IV:AmZ:AsZ:BgZ:CbZ:DgZ:IZ:JaZ 7 17 0.00 90.8 897.5 798.6 0.00 99.3
19* IV:AmZ:AsZ:DgZ:EbZ:IZ:JaZ 6 13 0.00 89.9 895.7 820.1 0.00 99.2
18* IV:AmZ:AsZ:DcZ:DgZ:IZ:JaZ 6 13 0.00 89.6 893.0 817.4 0.00 99.1
17* IV:AmZ:AsZ:CbZ:DgZ:IZ:JaZ 6 14 0.00 89.6 890.8 809.4 0.00 99.1
16* IV:AmZ:AsZ:DgZ:IZ:JaZ 5 12 0.00 88.5 883.4 813.6 0.00 99.0
15* IV:AmZ:CbZ:DgZ:IZ:JaZ 5 11 0.00 88.2 882.4 818.4 0.00 98.9
14* IV:AmZ:DgZ:EbZ:IZ:JaZ 5 10 0.00 88.1 883.9 825.7 0.00 99.1
13* IV:AmZ:DgZ:IZ:JaZ 4 9 0.00 86.9 873.6 821.2 0.00 98.9
12* IV:BgZ:DgZ:IZ:JaZ 4 7 0.00 86.7 875.3 834.6 0.00 98.7
11* IV:DbZ:DgZ:IZ:JaZ 4 5 0.00 86.6 878.8 849.7 0.00 98.8
10* IV:DgZ:IZ:JaZ 3 4 0.00 85.3 867.4 844.1 0.00 98.7
9* IV:BgZ:IZ:JaZ 3 5 0.00 84.9 861.1 832.0 0.00 98.2
8* IV:DbZ:IZ:JaZ 3 3 0.00 84.6 861.8 844.3 0.00 98.6
7* IV:IZ:JaZ 2 2 0.00 83.0 847.1 835.4 0.00 98.1
6* IV:DbZ:JaZ 2 2 0.00 58.4 595.3 583.7 0.00 98.1
5* IV:DgZ:JaZ 2 3 0.00 57.1 579.6 562.1 0.00 98.1
4* IV:JaZ 1 1 0.00 54.9 561.0 555.2 0.00 98.1
3* IV:IZ 1 1 0.00 15.5 156.6 150.7 0.00 94.7
2* IV:AcZ 1 4 0.00 3.3 26.1 2.8 0.00 94.7
1* IV:Z 0 0 1.00 0.0 0.0 0.0 0.00 94.7

*Indicates those models whose difference from their lower level progenitor is statistically significant.
Best Model(s): by�BIC is 11*, by both�AIC and Incremental-p is 22*.



840 F. MADANI ET AL.

Appendix 4. OCCAM results – variable-based analysis with loops: the

distributions corresponding to the four separate components of

IV:DbZ:DgZ:IZ:JaZModel

Data

IV obs. p(DV|IV)
Db freq Z = 1 Z = 2 rule #correct %correct

1 2316 95.50 4.49 1 2212 95.50
2 167 83.83 16.16 1 140 83.83

2483 94.72 5.27 1 2352 94.72

Data

IV obs. p(DV|IV)
Dg freq Z = 1 Z = 2 rule #correct %correct

1 1806 94.96 5.03 1 1715 94.96
2 410 97.31 2.68 1 399 97.31
3 267 89.13 10.86 1 238 89.13

2483 94.72 5.27 1 2352 94.72

Data

IV obs. p(DV|IV)
Iz freq Z = 1 Z = 2 rule #correct %correct

1 2346 96.675 3.325 1 2268 96.675
2 137 61.314 38.686 1 84 61.314

2483 94.724 5.276 1 2352 94.724

Data

IV obs. p(DV|IV)
Ja freq Z = 1 Z = 2 rule #correct %correct

1 2399 98.04 1.95 1 2352 98.04
2 84 0 100 2 84 100

2483 94.72 5.27 1 2436 98.10
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