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Abstract—This paper reports the analysis of data on
traumatic brain injury using a probabilistic graphical modeling
technique known as reconstructability analysis (RA). The
analysis shows the flexibility, power, and comprehensibility of
RA modeling, which is well-suited for mining biomedical data.
One finding of the analysis is that education is a confounding
variable for the Digit Symbol Test in discriminating the severity
of concussion; another — and anomalous -- finding is that
previous head injury predicts improved performance on the
Reaction Time test. This analysis was exploratory, so its findings
require follow-on confirmatory tests of their generalizability.
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The analysis of health care data is usually done in a
confirmatory mode, with analysis typically restricted to
hypotheses generated in advance of the study. Secondary
analysis can be useful when the clinical population exhibits
unexplained variability in outcomes that are not resolved by the
primary analysis. Also, the long time and considerable expense
needed to complete a study make additional examination of the
data desirable. Both of these conditions are highly relevant to
traumatic brain injury: TBI is a serious and prevalent clinical
condition for which unexplained variation in outcome
unfortunately persists despite decades of research; moreover
the volume of existing TBI data provides a unique opportunity
for secondary analyses [1-2].

INTRODUCTION

This paper reports the use of an exploratory modeling
approach known as reconstructability analysis (RA) applied to
the secondary analysis of TBI data. The aim is to discover
unexpected relationships in the data and to contribute to
ongoing efforts of the Brain Trauma Evidence Based
Consortium (BTEC) to develop a dynamic model of brain
trauma and a new clinically useful TBI classification system.

RA [3-5] is a probabilistic graphical modeling technique, a
fusion of information theory and graph theory. Graphs define
the models that are considered, and information measures
quantify the models’ predictive efficacy. In these graphs, a
node is a variable and a link is a relation (an association)
between two or more variables. If relations link only two
nodes, this is an ordinary graph; if some relations link more
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than two nodes, it is a hypergraph. One is interested in models
that are hypergraphs because one is interested in associations
between more than two variables.

RA is explicitly designed for exploratory modeling, having
the capacity to detect non-linear and complex multivariate
interactions that are not hypothesized in advance. RA models
are also conceptually transparent: an RA model is simply a
conditional probability distribution of a dependent variable
(DV), given the composite state of a set of independent
variables (IVs). As a probabilistic graphical modeling method,
RA overlaps with log-linear modeling, logistic regression, and
Bayesian networks. Where it overlaps with these similar
methods, it is equivalent to them, although RA has unique
features not present in these other methods, and these other
methods have unique features not available in RA. All of these
probabilistic graphical modeling methods differ from other
machine learning methods, such as support vector machines
and neural networks, which are designed for continuous
variables. The reason RA is attractive for secondary data
analysis is that other data analysis methods are often not well
designed for exploration, have more limited model types, have
difficulty with nominal variables or with stochasticity, or are
not conceptually transparent.

II.

The data analyzed here, obtained from Megan Preece [6-9],
is on patients with traumatic brain injury resulting from
automobile accidents. There are 52 variables, divided into five
types, labeled as P, Y, G, C, and N variables, where P = patient
characteristics (17 variables), Y = symptoms, i.e., subjective
reports (25 variables), G = signs, i.e., objective indicators (4
variables), C = cognitive deficits (5 variables), N = neurologic
deficits (1 variable). The sample size is 337, reduced to 175 or
fewer when missing data are excluded.

DATA

The aim of the study is to predict specific deficit (C or N)
variables from P, Y, and G variables and from the other deficit
variables. In this paper, we report only the prediction of two C
variables: the neuropsychological Digit Symbol Substitution
Test (DSST), abbreviated as Cdg (N = 255), and the Spatial
Reaction-Time Test (RT) normalized for age and sex,
abbreviated as Cnr (N = 210). The DSST is a paper and pencil
or online task requiring the patient to match symbols with their
corresponding digits under timed conditions. It is considered to



be sensitive to brain injury and to concussion in particular. The
RT test, less complex than DSST, assesses how quickly the
patient responds to visual stimuli. The variables involved in
the predictive models discussed in this paper, as IVs or DVs or
both, are listed in TABLE 1.

The first letters of the variables indicate their variable
types. The table lists, after the variable abbreviations, their
initial cardinalities; some variables were rebinned to lower
cardinalities in the analysis. For some records, values of some
variables were missing. Being missing is included as an
additional possible state; so, for example, binary variables with
some values missing are listed as having cardinality 3.

II1.

This section provides a brief summary of the main features
of reconstructability analysis. RA calculations in this study
were performed using the Occam software package developed
at Portland State University (PSU) [10]. This package takes
standard text input and provides easily interpretable output. It
is web-accessible and can be run either in real time, where it
provides html output, or in batch (off-line) mode, in which it
emails results to the user as a csv file. This software package
runs on PSU servers and is openly available for non-
commercial research and educational uses.

METHODOLOGY

Being based in information theory, RA is inherently a
nominal data method, but can be applied also to continuous
variables if their values are discretized (binned). Binning
procedures are available in many commercial and public
domain software packages; a utility program is also available at
the RA web site [11], which outputs a data file in Occam input
format. Occam also allows easy rebinning (aggregating
existing bins) in the input file. The RA web site includes an
Occam user manual and access to many publications that make
use of RA methodology.

An RA model is simpler — has fewer degrees of freedom
(df) — than the data, but captures much of the information in the
data. RA searches for good models are of two types: directed
and neutral. Directed searches consider models that predict a
dependent variable (DV) from a set of independent variables;
neutral searches consider models that do not make any IV-DV
distinction. Searches discussed in this paper are directed.

TABLE L VARIABLES IN MODELS DISCUSSED IN THIS PAPER
(short name, initial cardinality, definition)

Ped 8  highest level of education

Pjj 5 Injury group (patient or control)

Pph 3 Previous head injury

Pri 3 Recentillness

Psx 2 Sex

Pye 6  Years of education

Gge 4 Glasgow coma scale

Gpt 3 Post traumatic amnesia

Cdg 7  Digit Symbol Substitution neuropsychological test
Csr 6  Spatial Reaction Time test (reaction time to visual stimuli)
Cnr 6  Spatial Reaction Time test normalized for age and sex
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In directed searches, a candidate model is compared to a
reference model, which is either the independence model, for
which no IV predicts the DV, or the data, for which all the IVs
predict the DV in a single interaction effect. For example,
consider three IVs, A, B, and C, and one DV, Z. The
independence model, at the bottom of the lattice of structures,
is ABC:Z, where the colon means ‘and.” This model says that
there is a relation between A, B, and C, but no relation between
any of these IVs and Z. The data, at the top of the lattice of
structures, is ABCZ, in which there is a four-way interaction
effect where A, B, and C collectively predict Z. In the present
study, the independence model is the chosen reference.

A relation includes all its projections (embedded relations).
ABC thus includes AB, AC, and BC, and the univariate
margins, A, B, and C. The order of the relations in a structure
is arbitrary, and the order of the variables in a relation is also
arbitrary. For example, Z:BAC is identical to ABC:Z.

An example of a model intermediate between the
independence model and the data is ABC:BZ, which says that
there is a relation between A, B, and C, which is non-predictive
since it doesn’t involve the DV, and there is also a predictive
relation between B and Z. The ABC in ABC:BZ is called the
‘IV component’ since it includes all the IVs, and in Occam
output, the model is referred to as IV:BZ. In directed search
models, an IV component is always included to allow for
relations among the IVs. When a predictive relation — here BZ
— is included in a model, this does not mean that the relation is
strong; it just means that this relation is being modeled.

Models with one predicting relation, e.g., ABC:BZ, do not
have loops, while models with multiple predicting relations,
e.g., ABC:AZ:BZ, have loops. (The loop here consists of AZ,
ZB, and BA; the last of these is embedded in ABC). In this
latter model, AZ and BZ are separate, but they are not simply
additive contributions to the prediction of Z. A conventional
three-way interaction effect between A, B, and Z would be
represented by an ABZ relation, as in model ABC:ABZ, but
the AZ and BZ relations in ABC:AZ:BZ also constitute a
(lesser) type of interaction effect [12]. Models without loops
are computationally simple, since they can be fit algebraically.
Models with loops can present challenging computational
space and time demands, since they must be fit iteratively. For
many variables, nearly all models have loops. One drawback of
Bayesian networks (BN) is that they cannot have loops; RA, by
contrast, encompasses such models, though RA in turn doesn’t
consider all BN models [12].

Models are subsets of variables, each subset indicating a
projection of the data that is preserved in the model. The above
models are all ‘variable-based.” Another type of model
includes components that specify specific states of variables.
An example is ABC: Z: A;B>Z. The first two components of
this model, namely ABC and Z together define the variable-
based independence model. Addition of the A1B,Z component,
however, makes this a state-based model. This third component
means that the probability that A =1, B =2, and any value of Z
is either unusually high or unusually low. State-based models
pick out informationally salient states. In results reported
below, the independence part of the state-based model is often
omitted for simplicity.



The predictive success of (equivalently, the information
captured in) a model is quantified by %AH, the reduction of
uncertainty (Shannon entropy) of the DV if one knows the
values of the predicting I'Vs. Like variance, H is a measure of
spread, here the spread of a probability distribution, but unlike
variance, low values of uncertainty-reduction, even as low as
8%, can indicate big effect sizes. Uncertainty reduction is the
central information theoretic measure of predictive efficacy,
but since it is useful to compare RA results to other methods
that don’t generate this measure. Occam reports also the more
general accuracy measure of %correct, displayed in Occam as
%c, and the related measures of true and false positives and
negatives, sensitivity, and specificity.

Uncertainty reduction roughly tracks with %correct — the
more the uncertainty of the DV is reduced, the higher the
accuracy of prediction tends to be — but these measures do not
track perfectly. Moreover, they track best when the marginal
probability distribution of the DV is approximately uniform.
For skewed distributions, models can reduce uncertainty but
still not improve accuracy. In such cases, the real predictive
strength of the model is its uncertainty reduction, not its
%correct. Uncertainty reduction, for example, registers the
difference, for a binary variable, between predicting a state
because it has a probability of .55 or because it has a
probability of .95, despite the fact that both probability values
give the same prediction and contribution to %correct.

A good model has high uncertainty reduction or %correct;
it also has low complexity, defined as degrees of freedom, or
low Adf, the difference between df(model) and df(reference),
where the reference here is independence.. These two aspects
of goodness oppose one another, so a good model is really one
that optimally trades off accuracy (uncertainty reduction,
information captured) and simplicity. This tradeoff is either
explicit, as in the Bayesian Information Criterion (BIC) and the
Akaike Information Criterion (AIC), which compute weighted
sums of error and complexity (the opposites of accuracy and
simplicity), or the tradeoff is implicit, as in a Chi-square p-
value calculation, also a standard way of selecting a model.

BIC penalizes more for complexity than AIC, and is thus
more conservative than AIC. A third model selection criterion
in Occam is ‘Incremental p-value,” which uses Chi-square p-
values to pick models. The IncrP model is the model with the
highest uncertainty reduction whose difference from (the
bottom reference of) independence is statistically significant,
and for which a path exists from independence to the model in
which every incremental increase in complexity is statistically
significant. BIC and AIC are given in Occam output as
differences between these measures for the reference minus
their values for the model. Large positive differences indicate
good models.

Occam offers three types of searches that differ in
refinement and thus predictive power: (1) a coarse search,
using variable-based models without loops, which have only
one predicting relation, e.g., IV:BZ; (2) a fine search, using
variable-based models with loops, which have multiple
predicting relations, e.g., IV:AZ:BZ; and (3) an ultra-fine
search, which uses state-based models, e.g., IV:Z:AB,Z.
Coarse searches are fast and can handle many variables; fine

searches are slow and can handle at most 100s of variables;
ultra-fine searches are very slow, and can handle only fewer
than 10 variables. Differences between these three searches are
illustrated in Fig. 1.

In this figure, a level in red represents the model selected
by the search. Fine searches consider more models, at smaller
increments of Adf, than coarse searches, and ultra-fine searches
more models than fine searches. More refined searches are
advantageous because they might yield more complex and thus
more predictive models that are still statistically justified, or
they might yield models that are equally predictive but simpler
(smaller Adf) than those obtained from less refined searches.
The above figure illustrates the first of these possible benefits:
the fine search selects a more complex, and thus more
predictive, model that is not considered by the coarse search;
and the ultra-fine search selects a still more complex model
that is not considered by the fine search.

I.  RESULTS

This paper reports the results of coarse, fine, and ultra-fine
searches for two DVs: the Digit Symbol Substitution Test
(Cdg) and the Normalized Reaction Time Test (Cnr). For these
DVs, a final best model was selected from the ultra-fine search,
and for this model, the conditional probability distribution of
the DV, given the predicting IVs, is shown and is then also
summarized in a decision tree.

A. Predicting performance on Digit Symbol Substitution test

Table II presents the results of coarse, fine, and ultra-fine
searches that attempt to predict Cdg after this DV has been
rebinned to two states, roughly equal in probability. In listing
the models, the table omits the non-predicting IV component.

For the coarse search, the six top single predicting [Vs are
listed with their complexities (Adf), the p-values that assess the
significance of their difference from independence, their
%reduction of DV uncertainty (%AH), their %correct (%oc),
and their ABIC from independence. The single predictors are
ordered by their uncertainty reductions, which is different from
the order of their ABIC values, since ABIC considers not only
uncertainty reduction but also complexity.

-~
data
Complexity —
(degrees of —
freedom) —
independence
Models: Variable-based State-based
No loops With loops ULTRA-FINE
COARSE FINE

Fig. 1. Three types of model searches.



TABLE II. CDG MODEL SEARCHES

Model Adf P %AH  %¢
REFERENCE (independence)

Cdg 0 1.00 0.0 50.9 0.0
COARSE ¢ (single predictors)

Pij Cdg 3 0.00 11.9 68.3 47.6
Ped Cdg 7 0.00 11.7 65.0 59
Gge Cdg 3 0.00 5.6 65.0 18.3
Cnr Cdg 5 0.00 35 60.8 6.1
Pye Cdg 1 0.00 3.0 68.3 27.9
Csr Cdg 5 0.00 2.5 63.3 04
FINE”

Pij Cdg : Pye Cdg 0.00 255 72.9 BIC
Pij Cdg : Pye Cdg : Cnr Cdg 0.00 32.8 76.7 AIC
PijCdg : Pye Cdg : Cnr Cdg : PsxCdg 10 0.00 329 763  IncrP
ULTRA-FINE*®

Pij2 Cnr1 Cdg : Pyeo Cdg 2 0.00 13.5 68.6 BIC

Pij = patient injury type Pye =years of education

Ped = education level Csr = Spatial Reaction Test
Gge = Glasgow coma scale Psx=sex
Cnr = Norm. Spatial Reaction Test

N =240

N= 240, |Cnr| = 6, including missing

N= 275, |Cnr| =2, no missing

The table shows that Pij (patient injury type) is the best
single predictor in terms both of uncertainty reduction and
ABIC, but these two measures differ in their ranking of Pye
(years of education). Pye is the fifth best predictor in terms of
uncertainty reduction, but the second best in ABIC, because it
adds only 1 degree of freedom to the independence model.

In the fine search, BIC picks a model with Pij and Pye as
predictors, not surprisingly since these are, by ABIC, the first
and second best single predicting [Vs in the coarse search. The
fine search results illustrate the fact that BIC selects simpler
models (Adf = 4) than AIC (Adf = 9) and IncrP (Adf = 10). The
additional degree of freedom in the IncrP model beyond the
AIC model is due to adding Psx (sex) as an additional
predictor.

The ultra-fine (state-based) search gives BIC model
IV: Cdg : Pij2 Cnri Cdg : Pyeo Cdg.

This very simple (Adf = 2) model includes all three predictors
from the more complex (Adf = 9) AIC fine search model, but it
selects only one state of each of these predictors as salient. It
also shows Pij and Cnr interacting in their prediction of Cdg,
which is not seen in the AIC fine search model.

This ultra-fine BIC model is only about half as predictive
(%AH = 13.5) as the fine BIC model (%AH = 25.5), but it is
also half as complex. (Adf =2 as opposed to 4). Using the most
conservative criterion to select models, either of these two BIC
models could be chosen as the ‘best model,” but because the
state-based model has an additional predictor (Cnr), and is thus
potentially more interesting, it has been selected as the Cdg
best model.
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TABLE III. shows the conditional probability distribution,

apic P(Cdg | Pij Pye Cnr), for the data and for this best model. The

DV states, Cdgo and Cdg;, mean low and high Digit Symbol
scores, respectively, so a high probability of Cdgy indicates a
cognitive deficit. Alongside the conditional probability values,
the table lists, for each composite IV state, the probability of a
high score divided by the probability of a low score, namely

Odds = p(Cdg; | Pij Pye Cnr) / p(Cdgy | Pij Pye Cnr).

High Odds values are good outcomes, low Odds are poor
outcomes, while Odds near 1 have IV conditional probabilities
that are close to the marginal probabilities for the whole
sample. To the right of the Odds column is the p-value that
assesses the significance of the difference between conditional
and marginal probabilities.

Comparing the (shaded) 3™ and 4" rows of TABLE III.
shows that for orthopedic (control) injuries and high education,
difference in performance (in bold) on the Reaction-time Test
(Cnr) does not predict any difference in the Odds. Comparing
the (shaded) 3™ and 7" rows shows that for high education and
fast reaction time, difference in injury type (Pij) — either head
injury or merely orthopedic (in italics) —also does not predict
an Odds difference. All three of these rows (IV states) have the
same Odds, namely 2.7.

This table can be summarized in the decision tree shown in
Fig. 2. The leaves of the tree are the Odds values followed by
the p-value. Odds with significant p-values (at or near a 0.05
cutoff level) are shown in larger font. The decision tree can be
summarized verbally as follows. For all patients, education
predicts performance on the Digit Symbol Substitution Test:
more education predicts better performance. Education is thus
a confounding variable for the Digit Test in discriminating
concussion, and must be controlled for. This is not surprising,
given the complexity of the DSST. For orthopedic injury
patients, reaction time does not predict digit symbol score. For
patients with mild head injury, fast reaction time predicts better
digit symbol performance beyond the influence of education

TABLE III. BEST (BIC) CDG MODEL
Conditional probabilities of DV
IV states Data Model
Pij Pye Cnr N Cdg, Cdg, | Cdg, Cdg; Odds P
orthop  low fast 18 0.5 0.5 0.59 0.41 0.7 0.41

orthop low slow 22 0.68 0.32 0.59 0.41 0.7 0.36
high fast 38 0.21 0.79 0.27 0.73 2.7 0.01
orthop  high  slow 20 0.35 0.65 0.27 0.73 2.7 0.05
head low fast 15 0.53 047 0.59 0.41 0.7 045
head low slow 24 0.88 0.13 0.86 0.14 02 0.00
head high fast 18 033 0.67 0.27 0.73 2.7 0.06
head high  slow 20 0.6 0.4 0.62 0.38 0.6 0.26
175 0.49 0.51 0.49 0.51 1.00

orthop

Vs Pjj (patient injury type): orthopedic (control) vs head injury

Pye (years of education): low vs high

Cnr (Normalized Reaction-time Test): fast (normal) vs slow (deficit)
DV Cdg (Digit Symbol Test): Cdgo low (deficit) vs Cdg1 (high, normal)



low
Years education

control
(orthopedi

Patient injury low

mild head

Years education

Fig. 2. Decision tree for BIC best Cdg model

B.  Predicting performance on the Normalized Reaction Test

TABLE 1V. shows results of coarse, fine, ultra-fine
searches for the Normalized Reaction-time Test (Cnr) after this
DV has been rebinned to two equally sampled bins.

For the coarse search, the table lists models selected by the
three criteria, rather than tabulating the best single predictors.
Three IVs show up in these models: Cdg, performance on the
Digit Symbol Substitution Test (since Cnr predicts Cdg, it’s
not surprising that Cdg also predicts Cnr); Gpt, amnesia; and,
for the IncrP model, also Pph, previous head injury. These IVs
show up as 3- and 4-way joint interaction effects.

The fine search BIC model, Cdg Cnr : Gpt Cnr, includes
Cdg and Gpt as separate rather than as joint predictors, but, the
more aggressive AIC and IncrP criteria highlight a Cdg Gpt
Cnr interaction effect, and also add Pph plus two additional IVs
not found in the best coarse models: Pri, recent illness, in the
AIC model, and Pye, years of education, in the IncrP model.

TABLE IV. CNR MODEL SEARCHES
Model Adf p %AH %¢c N=175
REFERENCE
Cnr 0 100 00 509
COARSE
Cdg Gpt Cnr 3 000 106 646 BIC AIC
Pph Cdg Gpt Cnr 7 000 131 669 IncrP
FINE
Cdg Cnr: Gpt Cnr 000 88 64.6 BIC
Pri Cnr : Pph Cnr: Cdg Gpt Cnr 0.00 147 703 AIC
Pye Cnr : Pph Cnr: Cdg Gpt Cnr 000 129 674 IncrP
ULTRA-FINE
Pphi Cdg1 Cnr : Cdgo Gpt1 Cnr 2 000 124 648 BIC

Cdg = Digit Symbol Substitution Test Pri=recent illness

Gpt = amnesia; Pye = years education

Pph =previous head injury
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The ultra-fine search retains several of the IVs found in the
coarse search, but indicates specific states of these variables:
Pph, is previous head injury, Cdg; is high Digit Test score;
Gpt, is the absence of amnesia. Note that this Adf=2 ultra-fine
BIC model has a higher uncertainty reduction (%AH = 12.4)
than the more complex (Adf=3) coarse BIC model (%AH =
10.6) and the equally complex (Adf=2) fine BIC model (%AH
= 8.8). Adding back IV: Cnr, the independence part of the
ultra-fine model, the full state-based model is

IV : Cnr : Pphi Cdg: Cnr : Cdgo Gpti Chr.
This is selected as the best Cnr model.

TABLE V. shows the conditional probability distribution
for this model. The Odds value is the probability of fast
(normal) reaction time divided by the probability of slow
reaction time, given a particular I'V state, , i.c.,

Odds = p(Cnro | Pph Cdg Gpt) / p(Cnry | Pph Cdg Gpt).

Again, high values of Odds are good, low values point to a
deficit, and values near 1 indicate similarity to the marginal
probability distribution of the overall sample.

Comparing the (shaded) 2nd and 4th rows of TABLE V.
shows that for those patients who score low on the Digit
Symbol Substitution Test and have amnesia, the presence or
absence (in bold) of a previous head injury does not matter:
both have Odds = 0.2. Comparing the shaded 7th and 8th rows
shows that if the patient has had a previous head injury and
scores high (normal) on the Digit Symbol Test, the absence or
presence (in italics) of amnesia also does not matter: both have
Odds =2.7.

The table can be summarized in the decision tree shown in
Fig. 3 which shows Odds followed by p-values. To summarize
this decision tree: for low performance on Digit Symbol Test,
amnesia predicts slow reaction time. For normal performance
on Digit Symbol Test, previous head injury increases the
probability of fast (normal) reaction time; this latter result is
anomalous.

TABLE V. BEST (BIC) CNR MODEL
Conditional probabilities of DV
1V states Data Model
Pph Cdg Gpt N Cnry, Cnr; | Cnry Cnr; Odds p

no low no 20 04 0.6 0.52 0.48 1.1 0.92
no low yes 19 0.16 0.84 0.16 0.84 0.2 0.00
yes low no 30 0.57 0.43 0.52 0.48 1.1 0.90
yes low yes 18 0.17 0.83 0.16 0.84 0.2 0.00
no high no 24 0.50 0.50 0.52 0.48 1.1 0.91
no high yes 13 0.61 0.39 0.52 0.48 1.1 0.93
yes high no 38 0.76 0.23 0.73 0.27 2.7 0.01
yes high yes 14 0.64 0.36 0.73 0.27 2.7 0.09

176 0.51 0.49 0.51 0.49 1.0

IVs  Pph (previous head injury): no vs yes
Cdg (Digit Symbol Substitution Test): low(deficit) vs high (normal)
Gpt (amnesia): no vs yes

DV  Car(Reaction-time Test): Cnro fast (normal) vs Cnri slow (deficit)



1.1 .92,.90
Amnesia
.2 00
Digit symbol score
1.1 .91,.93
Previous head injury
2.7 01,09

Fig. 3. Decision tree for BIC best Cnr model

IV. SUMMARY

This analysis of Preece data is a test bed for future analyses
of other TBI data, which hopefully will include other types of
IVs, such as imaging, genomic, and proteomic measures.
Specific findings reported here are tentative and should be
subjected to confirmatory tests with new data. This is
particularly true of the anomalous finding in the Cnr model in
which previous head injury predicted better reaction-time
scores than the absence of previous injury. One possible
explanation of this anomaly is that prior exposure to the
Reaction Time test introduces a practice effect. But if reaction
time is so vulnerable to a practice effect that it no longer
discriminates concussed from non-concussed, then it’s
probably not an appropriate measure for this purpose. Another
finding of potential interest is the indication by the Cdg model
that level of education may be a confounding factor in
assessing TBI patients with the Digit Symbol Test.

This illustrates the type of results that can be obtained from
exploratory modeling with RA and demonstrates the possibility
of using RA to better understand — and potentially to improve —
clinical outcomes. Analyses can be done at three different
levels of refinement. Models are conditional probability
distributions of a DV given the states of IV predictors,
distributions that are readily summarized with -easily
interpretable decision trees. Since RA is conceptually
transparent and can handle both nominal and continuous data
and both deterministic and stochastic relations, it is well-suited
for exploratory analyses of biomedical data.
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