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Abstract—Reconstructability Analysis (RA) is an information- and 
graph-theory-based method which has been successfully used in 
previous genomic studies.  Here we apply it to genetic (14 SNPs) and 
non-genetic (Education, Age, Gender) data on Alzheimer disease in a 
well-characterized Case/Control sample of 424 individuals.  We 
confirm the importance of APOE as a predictor of the disease, and 
identify one non-genetic factor, Education, and two SNPs, one in 
BINI and the other in SORCS1, as likely disease predictors.  
SORCS1 appears to be a common risk factor for people with or 
without APOE.  We also identify a possible interaction effect between 
Education and BINI.  Methodologically, we introduce and use to 
advantage some more powerful features of RA not used in prior 
genomic studies.  

Keywords: Reconstructability Analysis, Alzheimer Disease, 
genetics, bioinformatics, OCCAM 

I.  INTRODUCTION 
The genetic component to complex human diseases can 

include direct effects of single genes or multiple genes acting 
independently, the epistatic interaction of multiple genes, and 
the interaction of genes with the environment. Detecting these 
interactions with standard statistical tools is difficult, because 
effects may be small or very complex or because there may be 
interaction effects where there are minimal or no main effects. 

Significant advances have been made over the last two 
decades in developing analytic methods and bioinformatics 
tools for detecting single genes that are necessary for, or 
contribute to, human diseases. For the most part, however, 
diseases with a “simple” genetic etiology are relatively rare. 
Common diseases (e.g., hypertension, cancer, dementia) are the 
result of DNA sequence variations in multiple genes, at least 
some of which may interact in a non-additive, or epistatic, 
fashion, and thus have a substantially more complex genetic 
etiology. Early genome-wide association results have identified 

associations with only modest main effects. To account for 
highly familial traits, there are many more loci with very 
modest main effects, more rare variants with larger effects, or 
gene-gene and/or gene-environment interactions that are a 
more prominent element of the genetic component of these 
diseases.  For example, despite recent advances in the use of 
genome-wide association studies (GWAS) to identify genetic 
variants, or SNPs, associated with Alzheimer disease (AD), 
variants identified to date have modest main effects and 
account for only a fraction of the genetic risk.  

Reconstructability Analysis (RA) is an information- and 
graph-theory-based method that is superior to current methods 
in several respects. Prior work has shown that RA is capable of 
detecting low levels of genetic interactions, despite high noise 
levels, in simulated data, reliably detecting interactions in 
heritabilities as low as 0.008, with as many as 50 noise genes 
[1]. RA outperformed earlier work which used neural nets [2] 
and multifactor dimension reduction [3].  Further, in single 
SNP tests on real data on diabetes, RA closely approximated 
results obtained by traditional linkage analysis in predicting 
both case/control status [4] and non-parametric linkage (NPL) 
categories [5]. In cross-chromosome tests [6], RA confirmed 
the association between the chr2 NIDDM1 region and the chr15 
CYP19 region, and detected a multi-SNP association between 
NIDDM1 and CAPN3 on chr15 [7], supporting the suggestion 
that CAPN3 contributes to susceptibility to diabetes [8]. Based 
on  our past success with the diabetes dataset, in this paper we 
use RA to investigate genetic and non-genetic factors and gene-
gene epistasis in AD.  Our goal is to extend our understanding 
of Alzheimer disease and to confirm earlier studies that 
demonstrated the usefulness of RA. 
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II. RECONSTRUCTABILITY ANALYSIS 
Reconstructability analysis (RA) is an information- and 

graph-theoretic methodology originated by Ashby [9] and 
further developed by others [10]-[17]. An account of its origin 
[18] and compact summaries [19], [20] are also available. In 
RA, a probability or frequency distribution or a set-theoretic 
relation is decomposed into component distributions or 
relations [21]. When applied to the decomposition of frequency 
distributions, RA does statistical multivariate analysis and 
resembles log-linear (LL) methods [22], used widely in the 
social sciences, and closely related logistic regression (LR) 
techniques. RA also overlaps with Bayesian networks (BN).  
Where these methodologies overlap, they are mathematically 
equivalent. However, RA, LL, and BN each have unique 
capacities not commonly available in the other two [23]. For 
example, RA, but not LL or BN, can be applied to set-theoretic 
relations and to arbitrary functions of nominal variables; RA 
also has a state-based version [24], [25], a finer-grained 
modeling approach than the standard variable-based approach, 
and also a Fourier version [26]. RA and LL, but not BN, can 
utilize models with loops and can address not only problems 
where IVs (independent variables, inputs) and DVs (dependent 
variables, outputs) are distinguished (called directed systems), 
but also problems where this distinction is not made (neutral 
systems). LR, as implemented in PLINK [27], which is widely 
used for genomic analysis, is less general than RA. Both RA 
and BN explicitly conceptualize the lattice of graphical models 
and have been computationally adapted for exploratory 
modeling, which is not as easily done in LL and LR. However, 
all these methodologies are inherently designed for nominal 
variables, and are thus natural for analyzing genomic data. 
(They can also be applied to quantitative or ordinal variables by 
binning.)  By contrast, certain other machine learning methods 
such as neural nets [2], [28] or support vector machines [29], 
presuppose metric information and are thus less inherently 
suited for genomic analyses. 

     The following discussion summarizes the basic ideas 
of RA. Consider a directed system with IVs (genes or SNPs or 
covariates) A, B, C, and D, and DV the disease status Z. 
Consider an observed frequency distribution f(A, B, C, D, Z) 
which we write as ABCDZ. RA decomposes such a 
distribution into projections such as ABCD and ABZ, which 
when taken together define an RA model m = ABCD:ABZ that 
is less complex (fewer degrees of freedom) than the data. This 
model defines a calculated frequency (or probability) 
distribution ABCDZm, obtained by maximum entropy 
composition of ABCD and ABZ, which is compared with the 
observed ABCDZ. While the data itself, ABCDZ, also called 
the “saturated model,” allows all four IVs to jointly predict Z, 
the ABCD:ABZ structure allows only A and B to jointly 
predict Z, with C and D having no predictive relationship with 
Z. A and B predict Z via the conditional probabilities pm(Z|AB) 
derived from the ABCDZm distribution. (In all models, the 
order of the components and the order of the variables within 
each component is arbitrary, so, for example, ABCD:ABZ = 
BZA:CDBA.) The ABCD component of ABCD:ABZ assures 
that models that will be compared to one another all involve the 
same set of variables and will be hierarchically related; it also 
allows – but does not identify – associations between the IVs 

themselves. For visual simplicity, this component that includes 
all the IVs is omitted in models described below. 

      If ABCD:ABZ is a good model, one can equivalently 
say that the “transmission” or “mutual information” Tm(AB:Z) 
= H(Z) – Hm(Z|AB) is high, while the transmission Tm(CD:Z) 
is low. H is uncertainty (Shannon entropy), so transmission 
here is reduction of uncertainty about Z.  Dividing Tm(AB:Z) 
by H(Z) (and multiplying by 100) gives %ΔHm(Z|AB), the 
%uncertainty reduction of Z, knowing A and B. Uncertainty 
reduction for nominal variables is analogous to %variance 
explained for continuous variables, but one difference between 
the two is that because of the logarithm term in the expression 
for Shannon entropy even a small uncertainty reduction can 
correspond to a large effect size. For the reference 
“independence” model ABCD:Z, in which no IV predicts Z, 
%ΔHm(Z) = 0. Uncertainty reduction can be assessed for 
statistical significance with the Chi-square distribution. 

  Because uncertainty reduction is an information 
theoretic measure of predictive efficacy that is not calculated 
by most other methods, it is useful to supplement it with 
%correct, a generic measure of predictive accuracy that is 
commonly produced by most modeling methods.  %correct 
roughly follows uncertainty reduction, but the two are not 
precisely co-linear.   

      For the purposes of this study, there are three different 
classes of RA models: variable-based (VB) models without 
loops, variable-based models with loops, and state-based  (SB) 
models.  These allow coarse, refined, and ultra-refined 
modeling, respectively, graphically depicted in Figure 1 [23]. 
Conversely, these three classes are applicable to many 
variables, a modest number of variables, and few variables, 
respectively. The bold lines in the figure indicate how complex 
a model might be acceptable using each class of model   

 

 

 

 

 

Figure 1. Degrees of refinement of RA models. 

Models such as ABCDZ, ABCD:ABZ, and AB:Z each 
have a “single predicting component,” i.e., a component that 
includes Z and only one subset of the IVs and whose 
probability distribution is used to predict Z. Such models are 
loopless, and do “feature selection” or “dimensionality 
reduction.”  By contrast, consider model ABCD:ABZ:CDZ; its 
the second and third components allow Z to be predicted by A 
and B jointly and also, separately, by C and D jointly. The two 
predicting components are integrated by a maximum entropy 
algorithm, and from the integrated (calculated) distribution, one 
obtains the conditional distribution for the model, 
pm(Z|ABCD).  This conditional distribution is different from 
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the conditional distribution obtainable directly from the data, 
and it is the calculated distribution that is used for prediction. 

 Since a model includes a non-predicting component 
containing all the IVs (e.g., ABCD in model ABCD:ABZ), 
models with more than one predicting component necessarily 
have loops.  (The simplest example of a two predicting 
component model that has a loop is BA:AZ:ZB.) For loopless 
models with a small number of predicting IVs, one can easily 
examine all possible structures. However, with more than a few 
variables, exhaustive evaluation of all models becomes 
prohibitive if models with loops are considered, since these 
models do not have algebraic solutions but require iterative 
computation [26] . 

   The models discussed above are “variable based”, i.e., 
defined in terms of subsets of variables.  RA also includes 
“state-based” models [24], such as ABCD:A1B2Z:B1C3Z, 
which are instead defined at least partially in terms of 
information-rich specific states of variables, the states being 
indicated by subscripts. In this study, a SNP state codes a 
diploid genotype, i.e., the genotype homozygous in one allele is 
coded as state 1, heterozygous genotypes as state 2, and the 
genotype homozygous in the other allele as state 3.  Z encodes 
case (Z=1) vs. control (Z=0). The A1B2Z component in the 
above model means that pm(Z1|A1B2) is significantly different 
than p(Z1) i.e., that genotype A1B2 is at higher or lower risk for 
disease than average. (This could be expressed in terms of 
p(Z0); since Z has two states, pm(Z0| A1B2) = 1- pm(Z1|A1B2).) 
State-based RA resembles multifactor dimensionality reduction 
(MDR), which has been used to study epistasis [30], and some 
implementations of logistic regression. Most state-based 
models have loops, but a definitive algorithm for loop detection 
in this class of models has not yet been established. 

Variable-based models with or without loops and state-
based models can be evaluated in terms of uncertainty 
reduction, which is tested for significance relative to 
independence with a Chi-square p-value. Consider choosing 
the model with the greatest uncertainty reduction that is 
significant in this way.  This “Cumulative-p” criterion, 
however, always overfits, and needs to be augmented by the 
more stringent condition that every step from independence is 
statistically significant.  This is one way to select a best model, 
namely the most uncertainty-reducing model which is 
cumulatively significant and whose path from the 
independence model is also significant at every step.  We call 
this the “Incremental-p best model.”  We also use two other 
criteria to define best models: BIC, the Bayesian Information 
Criterion [31], and AIC, the Akaike Information Criterion [32].  
All three criteria penalize the model for complexity (Δdf 
relative to independence), i.e., trade off uncertainty reduction 
and model simplicity, in different ways.  AIC and BIC integrate 
these two considerations linearly, quite different from the way 
they are integrated in a Chi-square p-value calculation.  Of 
these three criteria, BIC is the most conservative, penalizing 
complexity the most severely, so the interactions in the BIC 
best model are the most reliable. Incremental-p and AIC are 
less conservative criteria that select more complex models; 
sometimes Incremental-p selects a more complex model than 
AIC; sometimes the reverse is true.  BIC never overfits; AIC or 
Incremental-p sometimes overfit.  In this study, what is actually 

calculated is ΔAIC = AIC(reference) – AIC(model), similarly 
for ΔBIC; good models have high ΔAIC or ΔBIC.  

Like other methods, RA allows one to control for particular 
IVs.  For example, a high T(A:Z) says that A predicts Z, while 
a high TC(A:Z) = T(AC:CZ) says that A predicts Z even when 
controlling for C.  TC(A:Z) = H(Z|C) – H(Z|AC), so A predicts 
Z even when controlling for C when the uncertainty of Z 
knowing C is reduced by knowing also A.  The significance of 
this reduction can be assessed by a Chi-square p-value.  
Controlling for some variables while calculating associations 
between others is easiest to grasp for loopless models, but it 
can also be applied to models with loops. 

Calculations were done using the RA software program 
developed at Portland State University (Portland, Oregon) 
called OCCAM (named for the principle of parsimony and also 
“Organizational Complexity Computation and Modeling”). The 
earliest program was developed by Zwick and Hosseini [33]; 
reviews of RA methodology [19], [20], a list of recent RA 
papers, an OCCAM manual [34] and a description of OCCAM 
architecture [35] are available. 

III. METHODOLOGY 

A. The Data 
Subjects were recruited from aging research cohorts 

collected over twenty years at the Layton Aging and 
Alzheimer’s Center at Oregon Health & Science University 
(OHSU) (Portland, Oregon). Stringent criteria were used to 
ascertain well-characterized cases and controls. All subjects 
were deceased and had been evaluated for cognitive decline 
and dementia within 12 months prior to death. In addition, all 
were at least 65 years of age at the time of death, had an 
autopsy, were of Caucasian ancestry and had DNA available 
for SNP genotyping. Controls were defined as clinically non-
demented individuals with autopsy confirmation of no AD 
neuropathology, and cases were defined as clinically demented 
individuals with autopsy-confirmed high levels of AD 
neuropathology. A total of 437 individuals met these criteria. 
The study was approved by the IRB at OHSU. 

Genome-wide SNP data for all subjects was obtained from 
the NIH-sponsored Alzheimer Disease Genetics Consortium 
(ADGC). Imputed genotypes, provided by the ADGC, were 
used to replace any missing data. For this study, we selected 15 
SNPs , most of which represent genes that have been reported 
to be associated with AD in published genome-wide 
association studies (GWAS) (as summarized  on the Alzforum 
website, www.alzgene.org). One SNP and 13 subjects were 
dropped due to excessive missing data, yielding an initial data 
set with a sample size of 424, including 221 cases and 203 
controls. Missing data for which no imputed data was available 
were then handled in two different ways: (1) they were 
excluded from the data, i.e., these subjects were also dropped, 
slightly reducing the sample size further, or (2) they were 
treated as a fourth genotype.  When (1) was used, this is noted 
in results below; otherwise (2) was done. 

B. Analysis 
Our strategy involved the following four steps.  
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Step 1: We looked at variable-based loopless models to see 
what these models suggest about the most predictive single 
IVs. 

Step 2: We then searched among variable-based models 
with loops, and proposed three best models for the AD data 
using the three criteria of BIC, AIC, and Incremental-p. These 
models are the principal results of this study. 

Step 3: In the models of Step 2, both direct and indirect 
effects of the IVs on Z (CaseControl) can contribute to the 
interactions that were found, so we did a series of calculations 
where we controlled for one or more of the IVs while looking 
for associations of the remaining IVs with Z. 

TABLE I.  VARIABLES 

Variable 
Name 

ID Gene Chromosome Comment 

APOE Ap APOE 19 1 = Allele 4 present;  
0 = absent 

Gender Sx n/a  1= M, 0 = F 

Education Ed n/a  Grade: 0 = <9, 1 = 9-12,   
2 = >12 years 

Age at last 
examination 

Ag n/a  0 = 60<75, 1 = 75<90,  
2 = 90+ years 

rs1801133 A MTHFR 1  

rs3818361 B CR1 1 Missing 3 

rs7561528 C BIN1 2  

rs744373 D BIN1 2  

rs6943822 E RELN 7  

rs4298437 F RELN 7  

rs7012010 G CLU 8  

rs11136000 H CLU 8  

rs10786998 J SORCS1 10 Missing 9 

rs11193130 K SORCS1 10 Missing 11 

rs610932 L MS4A6A 11  

rs3851179 M PICALM 11  

rs3764650 N ABCA7 19 Missing 2 

rs3865444 P CD33 19 Missing 9 

CaseControl Z n/a  Case =1, Control = 0 

 
Step 4:  Finally, narrowing our IV set to the four salient 

predictors from the previous three steps, we looked at state-
based models to see if these models suggested interaction 
effects. Since state-based models are more refined (specific) 
and thus more powerful than variable-based models even with 
loops, it is possible that these models can pick out interactions 
that are too subtle to be detected with variable-based models. 

All statistical tests in this paper used a 0.05 cut-off for 
significance. The p values reported in the tables below are 
“cumulative” p-values, i.e., tested for the model compared to 
the independence model. The tables also indicate whenever 

models listed are not incrementally significant, i.e., significant 
for each step ascending from the reference of independence. 

This study differs methodologically from our previous use 
of RA to analyze diabetes data [7] in two ways: (1) There we 
utilized only variable-based models without loops, while here 
we exploit the more powerful variable-based models with loops 
and state-based models. (2) Here we also use RA methods for 
controlling for some variables by looking at conditional 
associations and by partitioning the data into separate values of 
important variables, specifically Ap. 

IV. RESULTS 
Step 1. An examination of the simplest loopless models, 

namely those with a single predicting IV, yielded the following 
table (Table II) of the reduction of the uncertainty of Z, given 
the IV. The table reports all IVs whose p-value ≤ 0.05.  As 
expected, APOE (Ap) is the top uncertainty reducer. The next 
most predictive IV, Education, reduces uncertainty much less.  

TABLE II.  BEST SINGLE  IV PREDICTORS OF CASECONTROL 

IV %ΔH(Z|IV) p %correct 

Ap 9.1 0.000 67.3 

Ed 3.5 0.000 56.7 

C 2.6 0.001 57.9 

K 2.5 0.001 56.4 

J 1.5 0.015 54.7 

Ag 1.2 0.036 55.7 

L 1.1 0.047 54.5 

none -- -- 51.8 
Subjects with missing J and K values were excluded here; sample size =  413. 

After that, SNPs C and K are less predictive than Ed. This 
is followed by Age and SNP L.  The next best predictors, SNPs 
A and G (these are variable names, not alleles), with p � 0.05, 
are weaker still; these are not included in the table, but do show 
up in a model discussed below.  In addition to reporting 
uncertainty reductions, we report the %correct that predictions 
achieve. The bottom entry of the table indicates that the 
independence model (which doesn’t reduce uncertainty of Z at 
all) has %correct = 51.8; this is the result of always predicting 
the majority state of Z, which in our data is Control.  

Of the seven IVs listed in the table, J and K, which are in 
the same gene, are extremely tightly associated, with %ΔH of 
89.2% or 88.4%, depending on which of the two is used to 
predict the other, and with %correct in predictions (both ways) 
of 97.3%.  Despite this close association K is a better predictor 
of Z than J.  (That this shows up much more strongly in %ΔH 
than in %correct is due to the log term in the former measure.) 
Given this tight association, one of the two can be omitted from 
further consideration; we chose J to be dropped.  Each of the 
SNP pairs, C and D, E and F, and G and H are similarly in a 
single gene and are tightly associated; again, one of each pair is 
more predictive of Z, namely C, E, and G. 
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Step 2. Searching among models with loops yielded the best 
variable-based models listed in Table III. (For visual simplicity, 
in this table and in the rest of this paper, the model component 
that includes all the IVs is omitted.) The BIC model is the most 
solid result of this study. If we had considered only models 
without loops, the BIC model would have been simply ApZ, 
i.e., we would have missed the importance of Ed and K. This 
illustrates the point made by Figure 1. 

TABLE III.  
BEST VARIABLE-BASED MODELS USING THE THREE CRITERIA

a 

Criterion Model %ΔH % 
Correct 

Δdf p
b 

BIC ApZ:EdZ:KZ 15.6 70.5  5 0.00 

AIC ApAZ:EdZ:KZ:CZ 19.8 73.4 11 0.00 

Incremental-p ApZ:EdZ:KZ:CZ:LZ 18.3 71.2  9 0.00 
a. Subjects missing K values were excluded; sample size = 413. b. The p-value is the cumulative p 

relative to independence. All three models are incrementally significant. 

The BIC model includes the 1st, 2nd, and 4th best single IV 
predictors of Z shown in Table II.  The two less conservative 
criteria, namely AIC and Incremental-p, add A, C, and L as 
possible predictors; of these, considering Table II and also 
results presented below, C is the most likely to be reliable. 

Step 3. Since we are concerned about possible associations 
among the IVs, we did a series of calculations that illuminate 
the effects of such associations. Some of these calculations 
explicitly or implicitly controlled for some IVs while looking at 
associations of other IVs with Z.  We considered four types of 
control calculations, summarized as follows. 

3.1 Control for all other (17) IVs, while looking at the 
association of one IV with Z. 

3.2 Control for the covariates, Ag, Ed, Sx, and for Ap, or 
subsets of these four IVs, using loopless models. 

3.3 Control for the covariates, Ag, Ed, Sx, and for Ap, or 
subsets of these four IVs, using models with loops. 

3.4  RA analysis for the two specific values of Ap.  

3.1. Calculations that control for some IVs while looking at 
associations of other IVs with Z do so by comparing two 
different models.  Because of our small sample size, such 
comparisons were not statistically significant when association 
of any individual IV with Z was controlled for all other 17 IVs. 

3.2.  Our small sample size also did not indicate any 
significant predictor of Z when controlling for the three 
covariates and Ap.  This calculation compares model 
ApAgEdSxZ with model ApAgEdSxYZ, where Y is one other 
IV.  None of these comparisons was significant.  However, 
controlling for fewer IVs yielded results.  Controlling for Ag, 
Ed, and Sx, we found that Ap, not surprisingly, is a significant 
predictor, and the only one.  Controlling for Ap and Ed, we 
found C to be the only significant predictor.  Controlling for Ap 
alone, Ed, C, K, and A were all significant individual 
predictors, in that order. These results are consistent with those 
of Tables II and III. 

3.3. It is possible to control for IVs also using models with 
loops by selecting a reference model that has the IVs one wants 

to control for, and testing whether adding a new IV is 
significant.  To obtain this reference model, an analysis was 
first done on the four IVs, Ap, Ag, Ed, and Sx, that we want to 
control for.  The results are shown in Table IV. 

TABLE IV.  SELECTING A MODEL WITH  LOOPS FOR CONTROL 
CALCULATIONS 

Criterion Model %ΔH % 
Correct

Δdf p 

BIC ApZ:EdZ 11.3 70.0 3 0.00 

AIC 
ApSxZ:EdZ:AgZ

a 13.2 70.0 7 0.00 

Incremental-p ApZ:EdZ:AgZ 12.3 70.0 5 0.00 
a. Not incrementally significant (sample size 424)  

We selected the Incremental-p model, ApZ:EdZ:AgZ, 
which is intermediate in complexity, as the reference for 
control calculations, and searched for additional IV predictors 
that are significant relative to this reference.  We found that 
adding one predictor, K or C or J, was incrementally 
significant; adding two sequentially, either K and C, or C and J, 
was also significant, not surprisingly since J and K are tightly 
associated. If we instead select the BIC model, ApZ:EdZ, as 
the reference model for these control calculations, the best 
predictors to add to this model are K or C or J, in that order. If 
we select an even simpler model, namely ApZ, as the 
reference, the best predictor to add are Ed or K or C or J, in that 
order.  These results are consistent and support the proposition 
that of the IVs in the best models reported in Table III, the 
predictive effects of K and C are independent of and not due to 
associations with Ap and Ed. 

With the exception of the AIC model in Table III, which is 
not incrementally significant, in all of the models we have 
considered so far, the effect of each IV is independent of the 
effects of the other IVs.  That is, so far, we do not see any 
interaction (epistatic) effects; each component of all of these 
models involves only one IV and Z.  In Step 3.4 and in Step 4, 
however, we do find such interaction effects. 

3.4. Finally, we repeated the RA analysis setting Ap=0 or 
Ap=1, and the results are shown in Table V.  We note that 
since Ed, K, or C showed up as predictors in this analysis for 
Ap=0, this cannot be due to association with Ap, since here Ap 
is fixed.  Second, K occurs as a shared risk factor for both 
people who have APOE and those who do not, but these two 
groups seem also to have some different specific risk factors, 
namely Ed, C, and Ag for those who do not have APOE, and A 
and G (these are variable names, not alleles) for those who do.  
Third, the predictive power of Ap=1 models is stronger than 
the predictive power of Ap=0 models, as expected since the 
Ap=1 models are dominated by the risk allele. (The  predictive 
power of Ap=1 models is also stronger than the models of 
Table III, all of which include Ap as a variable). The Ap=0 
models are a little more heterogeneous with respect to what’s 
causing AD, since these models  doesn’t include the APOE risk 
factor.  Fourth, both the Ap=0 and Ap=1 results suggest 
interaction effects; EdC and AgK in the former, and AK in the 
latter; and these effects are in models that are incrementally 
significant.   
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TABLE V.  BEST VARIABLE-BASED MODELS FOR SUBJECTS WITHOUT OR 

WITH APOE 

Criterion Model %ΔH % 
Correct 

Δdf p 

Ap = 0 

BIC EdZ:CZ 9.4 69.3 4 0.00 

AIC EdCZ:AgKZ 19.1 75.7 16 0.00 

Incremental-p EdCZ:AgKZ 19.1 75.7 16 0.00 

Ap = 1 

BIC AKZ 23.5 79.5 8 0.00 

AIC 
AKZ:AgZ

a 32.8 80.8 14 0.00 

Incremental-p AKZ 23.5 79.5 8 0.00 
a. Not incrementally significant 

 

Step 4.  Finally, we analyzed the data also with state-based 
(SB) RA models, restricting the analysis to only the four IVs, 
Ap, Ed, K, and C, where missing K values were excluded 
(sample size 413). In the results obtained, all three best models 
(BIC, AIC, and Incremental-p) were the same, namely the 
Δdf=5 model (omitting for clarity the ApEdCK:Z part of the 
model), 

Ap0Z : Ap0Ed0Z : K2Z : Ap0Ed2C2Z : Ap0Ed1C2K1Z 

This model has 5 specific states added in the order listed to 
the independence model ApEdCK:Z.  This model is better than 
the Δdf=5 BIC model of Table III, namely ApZ:EdZ:KZ.  It 
has a higher uncertainty reduction (%ΔH(Z|ApEdCK)=  19.4% 
compared to %ΔH(Z| ApEdK) = 15.6% for the earlier BIC 
model), a higher ΔBIC value (80.7 here, compared to 59.1 for 
the earlier model), and a very slightly higher %correct (70.7 
compared to 70.5).  The SB model has a p-value relative to the 
reference of 0.00, and the incremental p-values in the five steps 
are all 0.000, except for the 5th step, which is 0.003. 

One should not be confused by the SB analysis picking out 
Ap0 rather than Ap1; a state is information-rich if it either 
increases or decreases penetrance over 'the average'.  Because 
the model actually includes the IV component, ApEdCK, and 
the marginals, Z, which together constitute the independence 
model, and because the cardinalities of both Ap and Z are 2, the 
first interaction here, Ap0Z, is equivalent to a simple ApZ 
variable-based component, which adds only 1 degree of 
freedom to the independence model.  The third component, 
K2Z, is also simple, but it is a real state-based component since 
the cardinality of K is 3; knowing K2Z and also ApEdKC and Z 
does not tell us p(K0Z) or p(K1Z).  It was noted above that K is 
predictive of Z; this SB model tells us more specifically that it 
is K2 that is especially predictive. 

This SB model is also interesting because it includes in 
components #2, 4, and 5, interaction effect between states of 
Ap, Ed, and Z, between states of Ap, Ed, C, and Z, and 
between states of Ap, Ed, C, K, and Z. The last of these 
interaction effects is especially  complex.  Since this is our first 
application of state-based RA modeling to genomic data, and 
since our sample size is small, we hesitate to make assertions 
based on these findings.  We note, however, that this SB model 

supports the interaction effect between Ed and C that was 
found in the variable-based models for Ap=0 in Table V 

V. DISCUSSION 
In summary, our results suggest that: 

1. APOE genotype, education level and SORCS1 (K) are 
solid predictors of case/control status, because they appear in 
the most conservative (BIC) best model. SORCS1 also gains 
support because it appears in both Ap=0 and 1 models.  
Although SORCS1 has not been implicated as a susceptibility 
gene for AD in any GWAS studies, its potential importance in 
the pathophysiology of AD has been reported in two studies 
[36], [37]. 

2. BIN1 (C) is the next most likely predictor, since it 
appears in the Incremental-p and AIC best models of Table III, 
as well as the Ap=0 results of Table V.  BIN1 has been reported 
to be a susceptibility gene for AD, and has been replicated in at 
least two independent GWAS studies (see www.alzforum.org) 

3. Calculations that control for APOE genotype, education 
level and age suggest that SORCS1 and BIN1 do not derive 
their predictive power indirectly via their associations with 
these controlling variables, but have independent predictive 
power as originally suggested by the models of Table III.  BIN1 
has been associated with lower episodic memory [38] and the 
effects of age on episodic memory are reported to be smaller in 
subjects with high educational levels compared to those with 
lower levels [39]. These reports lend support to our findings of 
an interaction between BIN1 and education level. 

4. MS4A6A, MTHFR and CLU appear as possible predictors 
in models of Table III and Table V. Since these predictors were 
not supported by multiple different calculations, they must be 
regarded as only tentative.  

5. The main models proposed here (Table III) do not show 
evidence of interaction effects between the genes we 
investigated.  However, there are suggestions of such effects  
between Education and BINI (C) in both the analyses for 
APOE=0 (Table V) and in the state-based analysis.  These 
suggestions must also be regarded as tentative. 

A number of the SNPs we included in this study, for which 
significant associations with AD have been reported and 
replicated in previous GWAS studies, did not appear as 
predictors of AD. This may be due, at least in part, to the fact 
that in the GWAS studies, based on thousands of cases and 
controls, the majority of controls were still living and, thus, no 
neuropathological confirmation of control status was available.  

Methodologically, we demonstrate the analytical 
capabilities of Reconstructability  Analysis, and extend its uses 
beyond our earlier genomic studies. 
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