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Solar Energy! 

• More energy from sunlight strikes 
the earth in 1 hour than all the energy 
consumed on the planet in 1 year! 
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Powering the Planet: A Center for Chemical Innovation 



Biological Catalysis	



•  Active site of Fe2–H2ase  

•  TOF = 9000 s–1 at 30 °C 

Frey, M. ChemBioChem 2002, 3, 153.  
Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Chem. Rev. 2007, 107, 4273. 
Shriver, D. F.; Atkins, P. W.; Overton, T. L.; Rourke, J. P.; Weller, M. T.; Armstrong, F. A. Inorganic Chemistry, Fourth Edition 2006.  



 H2 Evolving Catalysts 
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Cobalt Catalyzed H2 Evolution at Low Overpotentials 
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E˚(CoII/I) = -0.55 V vs. SCE 
CoII(dpg•BF2)2(MeCN)2 

E˚(CoII/I) = -0.28 V vs. SCE 
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 H2 Evolution Pathways 

e- e- e- HA 



Mechanism of H2 Evolution 

kH2=	
  4.2	
  x	
  104	
  M-­‐1
	
  s-­‐1	
  

kp=	
  3.0-­‐4.7	
  x	
  109	
  M-­‐1
	
  s-­‐1	
  

kred=	
  5.7	
  x	
  106	
  M-­‐1
	
  s-­‐1	
  



Dempsey, J.L.; Brunschwig, B.S; Winkler, J.R.; Gray, H.B. Acc. Chem. Res., 2009, 42, 1995–2004 
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Tripodal Phosphine Cobalt Complexes 
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•   The ligand framework 
allows for facile tuning of 
the reduction potential.   

•  The ligand framework 
allows for attachment to 
Si surface.   

X = anionic ligand 

Sacconi, L.; Ghilardi, C. A.; Mealli, C.; Zanobini, F. Inorg. Chem. 1975, 14, 1380.  
Heinze, K.; Huttner, G.; Zsolnai, L.; Schober, P. Inorg. Chem. 1997, 36, 5457. 
Ghilardi, C. A.; Midollini, S.; Sacconi, L. Inorg. Chem. 1975, 14, 1790. 
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Reduction of Protons by Cobalt(I) 	



Selected distances (Å): 
 
Co(1)–N(1) = 1.919(2) Å 
 
Co(1)–O(1) = 1.9849(17) Å 
 
Co(1)–P(1) = 2.2788(8) Å 
 
Co(1)–P(2) = 2.2101(8) Å 
 
Co(1)–P(3) = 2.2207(8) Å 
 
N(1)–C(42) = 1.133(3) Å 
 
C(42)–C(43) = 1.452(4) Å 

•  Can we observe 
any intermediates?  



NMR Spectroscopic Evidence for CoIII-H 	
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Second Order Decay of CoIII-H 	
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Dempsey, J.L.; Brunschwig, B.S; Winkler, J.R.; Gray, H.B. Acc. Chem. Res., 2009, 42, 1995–2004 
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Catalysis 
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Integrated Systems 



Powering the Planet 

Challenge: Water Oxidation!! 
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Tungsten Oxide Photoanodes 



 
Water vs Anion Oxidation 



Solar Fuels 

The OEC Active Site of PSII (Imperial College structure) 

PCET 

Multi-e Multiple Bond 
Atom Transfer 

Oxos in Nature 
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                    Water Oxidation 
 
Kanan, M. W.; Nocera, D. G. In Situ Formation 
of an Oxygen-Evolving Catalyst in Neutral 
Water Containing Phosphate and Co2+

 
Science, 2008, 321, 1072-1075. 

Risch, M.; Khare, V.; Zaharieva, I.; 
Gerencser, L.; Chernev, P.; Dau, H. 
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Chem. Soc. 2009, 131, 6936-6937.. 

McAlpin, J. G.; Surendranath, Y.; Dinca, M.; 
Stich, T. A.; Stoian, S. A.; Casey, W. H.; 
Nocera, D. G.; Britt, R. D. EPR Evidence for 
Co(IV) Species Produced During Water 
Oxidation at Neutral pH. J. Am. Chem. Soc., 
2010, 132, 6882-6883. 



 
Water Oxidation 
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Better Catalysts? 



Robust	
  Catalysts	
  

Millions	
  of	
  Combina0ons!	
  



THE SOLAR ARMY 
Powering the Planet 

CCI	
  Solar	
  A	
  Center	
  for	
  Chemical	
  Innova4on	
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  Solar	
  

Na0onal	
  Science	
  Founda0on	
  

US	
  Government	
  

17	
  University	
  Research	
  Groups	
  

other	
  research	
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  SHArK	
  Students	
  

Hundreds	
  of	
  Talented	
  Young	
  Researchers	
  
Discovering	
  Materials	
  for	
  Solar	
  Water	
  
SpliJng-­‐	
  Interac0ng	
  via	
  Web	
  Forum	
  

}	
  The	
  Solar	
  
Army	
  



	
  	
  	
  Solar	
  Army	
  Brigades	
  



Summer	
  2010	
  Caltech	
  Solar	
  Army	
  Brigade	
  



Solar	
  Army	
  Kit	
  

•  Metal	
  precursors	
  are	
  
deposited	
  onto	
  FTO-­‐
conduc0ve	
  glass	
  
–  PipeJng	
  or	
  spray	
  
deposi0on	
  

•  Metal	
  precursors	
  are	
  
pyrolyzed	
  to	
  metal	
  oxides	
  
–  Fired	
  at	
  500°C	
  for	
  2-­‐12	
  hrs	
  

•  Photoac0vity	
  is	
  
determined	
  
–  LED	
  scan	
  sta0on	
  

Winkler,	
  G.R.	
  &	
  Winker,	
  J.	
  R.	
  Rev.	
  Sci,	
  Inst.	
  2011,	
  82,	
  114101	
  



Results	
  

Signal-­‐averaged	
  data	
  from	
  ten	
  scans	
  of	
  the	
  iron	
  oxide	
  test	
  
plate.	
  The	
  applied	
  poten0al	
  was	
  0.1	
  V.	
  	
  

Winkler,	
  G.R.	
  &	
  Winker,	
  J.	
  R.	
  Rev.	
  Sci,	
  Inst.	
  2011,	
  82,	
  114101	
  



Solar	
  Materials	
  Discovery	
  Website	
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Better Photoanodes? 



Powering the Planet 

                                   Band Gap Tuning 
Optical and Photoelectrochemical Properties of Thermally 

Stable Clathrates of Dinitrogen in Tungsten Trioxide  
 

Qixi Mi,1 Yuan Ping,2 Yan Li,3 Bruce S. Brunschwig,1 Giulia A. Galli,2,* Harry B. Gray1,* 
and Nathan S. Lewis1,* 
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Powering the Planet 

Making Cobalt Oxide Nanoparticle Catalysts 
Astrid Mueller, Daniel Konopka, Tania Darnton, Jay Winkler, Bruce Brunschwig 



Pulsed Laser Ablation in Liquids 

Pulsed laser hits solid target 
Plasma confined by liquid: 

~5000K, ~10GPa 

Condensation of nanoparticles 
when plasma expands 



TEM & ED of Co3O4 NPs 

⇒  aggregated <10 nm particles 
⇒  randomly oriented crystals 

100 nm 20 nm 

Nd:YAG laser: 355 nm, 8 ns pulse length, 30mJ/pulse 



XPS of Cobalt Oxide NPs 

sample preparation BE / eV Co2p3/2 sat-2p3/2 Co2p1/2 sat-2p1/2 

CoO lit. 780.5 785.5 796.6 802.1 

Co3O4 lit. 779.8 – 795.7 – 

NPs 780.3 – 795.6 – 

⇒ Co3O4 
MA Langell, J. Vac. Sci. Technol. A 2004, 22, 1690. 

spot 1 spot 2 



OER Photoelectrochemistry 

NP synthesis: 355 nm Nd:YAG laser,  
8 ns pulse length, 30mJ/pulse 



Making Oxygen 

Conditions: 

Method: A. Harriman et al., J. Chem. Soc., Faraday Trans. 1, 84, 2795 (1988). 
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