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ABSTRACT. We give a complete and self-contained proof
of a folklore theorem which says that in an Alexandrov
space the distance between a point γ(t) on a geodesic γ
and a compact set K is a right-differentiable function of t.
Moreover, the value of this right-derivative is given by the
negative cosine of the minimal angle between the geodesic
and any shortest path to the compact set (Theorem 4.3).
Our treatment serves as a general introduction to metric
geometry and relies only on the basic elements, such as
comparison triangles and upper angles.

1. Introduction. Let (X, d) be a metric space. Given a compact
set K ⊆ X and a geodesic γ : [0, T ]→ X, the distance from γ to K at
any given time is defined by the function

`(t) = d(γ(t),K).

In an Alexandrov space (see Section 3 for definition), if we replace the
compact set with a point, K = {p}, it is well known that

(1.1) lim
t→0+

`(t)− `(0)

t
= − cos(∠min)

where ∠min is the infimum of angles between γ and any distance
minimizing path connecting γ(0) to p. This result is commonly known
as the First Variation Formula (after the similar result for Riemannian
manifolds) and can be found in [ABN86, Proposition 3.3], [BH91,
Corollary II.3.6], [BBI01, Corollary 4.5.7], and [Pla02, Corollary 62].

It is asserted, in publications such as [BBI01, Exercise 4.5.11] and
[BGP92, Example 11.4], that the first variation formula (1.1) still
holds for the distance to an arbitrary compact set K, with ∠min repre-
senting the infimum of angles between γ and any distance minimizing
path connecting γ(0) to K. However, neither of these sources ([BBI01]
and [BGP92]) provide a proof. On the other hand, there is a proof of
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the first variation formula in [Lyt04, Proposition 9.4], which is further
generalized to hold in a class of geometric metric spaces broader than
Alexandrov spaces. This generalization, however, is achieved at the
cost of some very technical machinery. Namely, it involves construct-
ing a tangent space at every point p via the ultralimit of blow-ups of the
pointed space (X, p). Further, the angle between geodesics may not be
well defined in this context, so Lytchak is required to make use of Buse-
mann functions to form a metric on this tangent space, much like the
law of cosines in the Euclidean case. In this more general formulation,
the right-hand side of (1.1) is replaced by a Busemann function.

Our goal is to present a complete and self-contained proof of (1.1),
which relies solely on the fundamentals of metric geometry. As such,
this article may also serve as a gentle yet rigorous introduction to
the theory of Alexandrov spaces. Our approach is largely based on
techniques presented in [BBI01], with insights taken from [BH91],
[Pla02], [Shi93], and others.

1.1. Background and Motivation. Loosely speaking, an Alexan-
drov space is metric space which satisfies enough structural require-
ments for some classic geometric notions such as geodesics, angles,
and curvature make sense. In this context, curvature is based on a
local bound, which is obtained through comparison to one of the two-
dimensional space forms - hyperbolic, spherical, or Euclidean space.

The importance of Alexandrov spaces can be seen through a few
examples. First and foremost, all Riemannian manifolds are in fact
Alexandrov spaces. On the other hand, limits of Riemannian manifolds
(in the Gromov-Hausdorff metric) with lower-bounded curvature and
upper-bounded diameter are not necessarily Riemannian manifolds, but
are always Alexandrov spaces (this is Gromov’s compactness theorem).
A simple example is the surface of an n-dimensional cube in Rn+1.
The surface of a cube is clearly not a smooth manifold, as it has sharp
corners and edges; however, it is an Alexandrov space and can be
attained as the limit as q tends to infinity of the smooth spherical
n-manifolds {x ∈ Rn+1 : |x1|q + · · · + |xn+1|q = 1}, each of which has
non-negative curvature.

Another reason that Alexandrov spaces are significant, is that certain
general characteristics or properties that we generally associate with
smoothness - or smooth structures - in fact hold in a more general
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context. This is somewhat akin to observing that at a local extremum
of a smooth function from R to itself, this function admits a horizontal
tangent line. With a careful definition of tangent line, this is true in a
more general setting. Similarly, in this case we have that (1.1) is not
only true for Riemannian manifolds (with their smooth metric), but
also in a broader set of spaces. Studying geometry in a ‘weaker’ setting
gives insight into both the properties in question, and the smooth
structures themselves.

The first variation formula, in particular, is a fundamental property
of distances in Alexandrov space, and has found numerous applications
in geometry. We name a few applications here. In [ST96], the
authors use the first variation formula to study cut-loci on spheres in
Alexandrov space. In the paper [PP94], the authors use this theorem
to prove that the length of convex curves is preserved when taking limits
of Alexandrov spaces under suitable conditions. Another consequence
of note is that the first variation formula allows one to introduce a
metric on the space of directions emanating from a point to a compact
set, which is fundamental in studying tangent cones (see [Bus70]).
Finally, in [Pet97] a version of the first variation formula is used to
prove a deep glueing theorem for Alexandrov spaces with boundary
(informally: if X and Y are Alexandrov spaces with boundary and of
curvature ≥ k, then gluing X and Y along their boundaries produces
an Alexandrov space of curvature ≥ k).

Our own motivation is twofold. It is well known ([Vee20] and
references therein) that if K is a convex set in Rn, then the derivative of
`(t) equals the negative cosine of the angle between γ and the distance
minimizing path connecting γ(0) to K. The result considered here is
a strong generalization of that fact. Additionally, the result is crucial
for the study of mediatrices; that is, for fixed points p, q ∈ X, the set
{x ∈ X : d(x, p) = d(x, q)}. In [HPV17], the first variation formula
(for distance to a point) is used to show that mediatrices on compact
Riemannian surfaces have a Lipschitz structure. There is a natural
generalization of mediatrices as the equidistant set between disjoint
compact subsets, and the result we prove here is a necessary step in
extending [HPV17] to this case.

2. Fundamentals of Metric Geometry. This section begins with
two of the most basic notions of metric geometry: length and compar-
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ison configurations; followed by a survey of (upper) angles between
geodesics. Although the use of angles has somewhat faded in the mod-
ern theory (for generalizations beyond Alexandrov spaces), it can aid
geometric intuition, especially to the beginner. The definitions and
results presented in this section are well-established, and can also be
found in the introductory chapters of [AZ67], [BBI01], [BN93], and
[BH91].

2.1. Length Spaces. In order to establish a synthetic geometry in
a metric space, we rely on paths in the space to get from one point
to another. To that end, the metric needs to align with our intuitive
idea of how distance is measured; the distance between any two points
is the length of a ‘straight line’ connecting them. Here we build the
vocabulary and structure for these kinds of metric spaces, known as
length spaces.

Let (X, d) be a metric space. A path (or curve) in X is a continuous
injective function γ : [a, b]→ X where [a, b] is an interval of R (possibly
degenerate). We define the length of any path γ as the supremum of
the distance along finite partitions of the path:

L(γ) = sup

{ n−1∑
k=1

d
(
γ(tk), γ(tk+1)

)
: a = t1 < t2 < · · · < tn = b

}
.

If for all x, y ∈ X,

d(x, y) = inf{L(γ) : γ is a path connecting x and y}

then the metric d is said to be intrinsic. A path-connected metric space
with an intrinsic metric is known as a length space.

Two paths, γ : [0, T ] → X and η : [0, S] → X, which have the
same image but are not the same function are said to have different
parameterizations. A path γ : [0, T ] → X is parameterized by arc-
length (or unit-speed, for short) if for any t, t′ ∈ [0, T ],

L(γ|[t,t′]) = |t′ − t|.

A sequence of paths {γn}∞n=1 is said to converge uniformly to a path
γ if each γn admits a parameterization such that {γn}∞n=1 converges
uniformly to some parameterization of γ.
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Finally, a shortest path is a unit-speed curve γ : [0, T ] → X such
that the length of γ is precisely the distance between its endpoints;
L(γ) = d(γ(0), γ(T )) = T . Any curve which is locally a shortest path
is known as a geodesic. In a length space which is both complete and
locally compact, we make use of the Hopf-Rinow Theorem, although
we will not reference it directly.

Theorem 2.1 (Hopf-Rinow). If X is a complete and locally compact
length space, then every closed and bounded subset of X is compact;
and any two points in X can be connected by a shortest path.

2.2. Comparison Triangles. We denote by M2
k the 2-dimensional

simply-connected space form1 of curvature k, equipped with intrinsic
metric dk induced by the Riemannian metric. The diameter of the
space M2

k is denoted Dk and defined by

Dk = sup{dk(x, y) : x, y ∈M2
k} =

{
π/
√
k for k > 0

∞ for k ≤ 0.

Given any three points x, y, z ∈ X with d(x, y)+d(y, z)+d(x, z) < Dk,
we can fix three points x̄, ȳ, and z̄ in M2

k such that

(2.1) d(x, y) = dk(x̄, ȳ), d(x, z) = dk(x̄, z̄), and d(y, z) = dk(ȳ, z̄).

The points x̄, ȳ, and z̄, together with the shortest paths joining them,
form a geodesic triangle in M2

k , which we call the comparison triangle

and denote it ∆(x, y, z). Such a comparison triangle is unique up to
isometry. The interior angle in the geodesic triangle ∆(x, y, z) (in M2

k )
with vertex x̄ is denoted ∠kx(y, z) and referred to as the k-comparison
angle.

2.3. Upper Angles. If γ : [0, T ] → X and η : [0, S] → X are
shortest paths in X with γ(0) = η(0), then for any sufficiently small2

t ∈ (0, T ] and s ∈ (0, S], we can consider the comparison triangle

1A space form is a complete Riemannian manifold of constant sectional curva-
ture.

2Sufficiently small meaning the inequality d(γ(0), γ(t)) + d(γ(0), η(s)) +
d(γ(t), η(s)) < 2Dk is satisfied.
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∆
(
γ(0), γ(t), η(s)

)
. The upper angle between γ and η is defined as

∠+
γ(0)(γ, η) = lim sup

t,s→0+

∠kγ(0)(γ(t), η(s))

= lim
ε→0

sup
{
∠kγ(0)(γ(t), η(s)) : 0 < s, t ≤ ε

}
.

When it is understood that γ(0) is the point at which we are mea-
suring the angle, the subscript for the vertex is often omitted (i.e.
∠+
γ(0)(γ, η) = ∠+(γ, η) and ∠kγ(0)(γ(t), η(s)) = ∠k(γ(t), η(s))).

Besides the upper angle, one may also consider the lower an-
gle between two shortest paths, which is defined as ∠−(γ, η) =
lim infs,t→0+ ∠k(γ(t), η(s)). If the upper angle and lower angle are
equal, then we say the angle exists and denote it by ∠(γ, η). We note
that the upper and lower angles are indeed independent of the cur-
vature of the space form chosen (as per [Pla02], all space forms are
infinitesimally Euclidean; see also Appendix C.1).

The following proposition is commonly referred to as the triangle
inequality for angles. The proof given here the same as that found in
[BH91].

Proposition 2.2. Let X be a length space and let γ, η, and σ be
shortest paths in X with γ(0) = η(0) = σ(0). Then ∠+(γ, η) ≤
∠+(γ, σ) + ∠+(σ, η).

Proof. If ∠+(γ, σ) + ∠+(σ, η) ≥ π, then the result is trivial, so we
assume that ∠+(γ, σ)+∠+(σ, η) < π. By way of contradiction, suppose
that there is an ε > 0 such that

(2.2) ∠+(γ, η) > ∠+(γ, σ) + ∠+(σ, η) + ε.

By the definition of lim sup there is a δ > 0 such that

∠k(γ(t), η(r)) > ∠+(γ, η)− ε/3 for some t, r < δ(2.3)

∠k(γ(t), σ(s)) < ∠+(γ, σ) + ε/3 for all t, s < δ(2.4)

∠k(σ(s), η(r)) < ∠+(σ, η) + ε/3 for all s, r < δ.(2.5)

Fix t and r satisfying (2.3) and let p̄, t̄, r̄ ∈M2
k be such that t = dk(t̄, p̄),

r = dk(r̄, p̄), and

∠k(γ(t), η(r)) > θt̄,r̄ > ∠
+(γ, η)− ε/3
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where θt̄,r̄ is the angle between p̄t̄ and p̄r̄ in M2
k . The left side of he

above ineqality tells us that d(γ(t), η(r)) > dk(t̄, r̄). Combining the
right side of the above inequality with (2.2), we have

θt̄,r̄ > ∠
+(γ, σ) + ∠+(σ, η) + 2ε/3.

Therefore, we can fix s̄ ∈M2
k along the path t̄r̄ such that

θt̄,s̄ > ∠(γ, σ) + ε/3 and θs̄,r̄ > ∠(σ, η) + ε/3.

Set s = dk(s̄, p̄). Since dk(s̄, p̄) ≤ max{dk(t̄, p̄), dk(r̄, p̄)} < δ, by (2.4)
and (2.5) we have

θt̄,s̄ > ∠
k(γ(t), σ(s)) and θs̄,r̄ > ∠

k(σ(s), η(r)).

It follows that dk(t̄, s̄) > d(γ(t), σ(s)) and dk(s̄, r̄) > d(σ(s), η(r)).
Thus, we have

d(γ(t), η(r)) > dk(t̄, r̄) = dk(t̄, s̄)+dk(s̄, r̄) > d(γ(t), σ(s))+d(σ(s), η(r))

which contradicts the triangle inequality. �

2.4. Two Results for Thin Triangles. The next lemma is arguably
the crux of this work. As observed above, it is clear that small triangles
in space forms are essentially Euclidean. However, what we need here
are the properties of long, thin triangles, that is: triangles with only one
small side (and two long sides). The surprising — and perhaps counter-
intuitive — fact is that these also behave like Euclidean triangles!

Lemma 2.3. Let X be a length space and let γ : [0, T ] → X and
η : [0, S] → X be shortest paths such that γ(0) = η(0). Then for fixed
s such that 0 < s < Dk,

lim
t→0+

∣∣∣∣cos
(
∠k(γ(t), η(s))

)
− s− d(γ(t), η(s))

t

∣∣∣∣ = 0.

Proof. We first look at k = 0 and summarize the proof found
in [BBI01, Lemma 4.5.5]. For simplicity of notation, let θ =
∠k(γ(t), η(s)) and d = d(γ(t), η(s)). Recall that t = d(γ(0), γ(t)) and
s = d(γ(0), η(s)). Employing the Euclidean law of cosines, we find

d2 = s2 + t2 − 2st cos(θ).
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A trivial computation confirms that∣∣∣∣cos(θ)− s− d
t

∣∣∣∣ =

∣∣∣∣s− dt · d− s
2s

+
t

2s

∣∣∣∣ .
By the triangle inequality, |s− d| = |d− s| ≤ t, which gives the desired
result.

We next consider the case k > 0. If we radially project the triangle
with sides of lengths s, t, and d to the unit-sphere, we can use the
spherical law of cosines to derive

cos(θ) =
cos(d

√
k)− cos(t

√
k) cos(s

√
k)

sin(t
√
k) sin(s

√
k)

=
cos(d

√
k)− cos(s

√
k)

sin(t
√
k) sin(s

√
k)

+
cos(s

√
k)(1− cos(t

√
k))

sin(t
√
k) sin(s

√
k)

.

Recall from the trigonometric relations that

cos(d
√
k)− cos(s

√
k) = 2 sin

(
(s+ d)

√
k

2

)
sin

(
(s− d)

√
k

2

)
,

1− cos(t
√
k) = 2 sin2

(
t
√
k

2

)
,

and sin(t
√
k) = 2 sin

(
t
√
k

2

)
cos

(
t
√
k

2

)
.

Combining all of the above, we get

cos(θ) =

(
sin
( (s+d)

√
k

2

)
sin(s

√
k)

)(
2 sin

( (s−d)
√
k

2

)
sin(t
√
k)

)
+

cos(s
√
k) sin

(
t
√
k

2

)
sin(s

√
k) cos

(
t
√
k

2

) .
Note that d→ s as t→ 0. Using the limit of sin x

x , we find

lim
t→0+

sin
( (s+d)

√
k

2

)
sin(s

√
k)

= 1,

lim
t→0+

2 sin
( (s−d)

√
k

2

)
sin(t
√
k)

= lim
t→0+

s− d
t

,

and lim
t→0+

cos(s
√
k) sin

(
t
√
k

2

)
sin(s

√
k) cos

(
t
√
k

2

) = 0
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which gives us limt→0+

∣∣cos(θ)− s−d
t

∣∣ = 0.

The proof for k < 0 follows from the relationships cos(ix) = cosh(x)
and sin(ix) = i sinh(x) and is very similar. It can be found in [Ale51,
p. 11] and [Shi93, Lemma 4.1]. �

Lemma 2.4. If X is a length space, then for all shortest paths γ :
[0, T ] → X and η : [0, S] → X with γ(0) = η(0), for every fixed s > 0,
we have

lim sup
t→0+

∠k(γ(t), η(s)) ≤ ∠+(γ, η).

Proof. If s′ < s, then by the triangle inequality

s− s′ ≥ d
(
γ(t), η(s)

)
− d
(
γ(t), η(s′)

)
which gives us

s− d
(
γ(t), η(s)

)
≥ s′ − d

(
γ(t), η(s′)

)
.

Substituting this into Lemma 2.3, we see that

lim inf
t→0+

cos
(
∠k(γ(t), η(s))

)
≥ lim inf

t→0+
cos
(
∠k(γ(t), η(s′))

)
.

As cosine is nonincreasing on [0, π], we have

cos

(
lim sup
t→0+

∠k(γ(t), η(s))

)
≥ cos

(
lim sup
s,t→0+

∠k(γ(t), η(s))

)
.

The right hand equals cos(∠+(γ, η)). �

3. Alexandrov Spaces. Here we give an account of metric spaces
which exhibit bounded curvature in the sense of Alexandrov, which
most nearly resemble Riemannian maifolds with bounded sectional
curvature. The idea of bounded curvature in a metric space is certainly
not unique to Alexandrov spaces; another common example is that
developed by Busemann for non-positive curvature (see for example
[Pap05]). Even recently, new characterizations for spaces of bounded
curvature, such as in [BHJ+15] and [JJ19], have given rise to further
possibilities in the application of metric geometry.
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3.1. Bounded Curvature. A length space X is said to be of curva-
ture bounded above (or curvature ≤ k) if there is a k ∈ R for which
the following holds: At every point in X there is a neighborhood U
such that for every geodesic triangle ∆ ⊆ U with comparison triangle
∆ ⊆M2

k ,

(3.1) d(u, v) ≤ dk(ū, v̄)

for all u, v ∈ ∆ and their comparison points ū, v̄ ∈ ∆ (see Figure 1).
Similarly, X is said to be of curvature bounded below (or curvature ≥ k)
if d(u, v) ≥ dk(ū, v̄). In either case, the neighborhood U is referred to
as a region of bounded curvature.

x

y

z

u

v

x̄

ȳ

z̄

ū

v̄

Figure 1. A geodesic triangle with vertices x, y, and z in a length
space (left) and the respective comparison triangle ∆(x, y, z) in M2

0

(right). The points ū and v̄ are chosen to satisfy d(x, u) = dk(x̄, ū) and
d(x, v) = dk(x̄, v̄).

An Alexandrov space is a complete and locally compact length space
with curvature bounded either above or below. It should be noted that
this definition of Alexandrov space (which comes from [Shi93]) is not
necessarily the uniformly accepted definition, but is necessary for our
main theorem. In [BBI01], an Alexandrov space is simply a length
space with curvature bounded above or below. Due to the Hopf-Rinow
Theorem, our additional requirement that the space be complete and
locally compact allows us to avoid continually addressing the existence
of shortest paths in the hypothesis of every proposition; however, it
does limit the scope of some of the following preliminary results. In
any case, a more general treatment of spaces of bounded curvature (in
the sense of Alexandrov) can be found in [BBI01] or [BH91].



ONE-SIDED DERIVATIVE OF DISTANCE TO A COMPACT SET 11

3.2. Properties of Alexandrov Spaces. It is well known that for
Alexandrov spaces, the angle between two geodesics emanating from a
common point always exists.

Lemma 3.1. Let X be an Alexandrov space. If γ : [0, T ] → X and
η : [0, S]→ X are shortest paths with γ(0) = η(0) then the angle ∠(γ, η)
exists and

∠(γ, η) = lim
t→0+

∠k(γ(t), η(t)).

Proof. Suppose that X is of curvature ≤ k. Fix s ∈ (0, S] and
a, b ∈ (0, T ] such that a < b. We will consider two distinct comparison
triangles in M2

k . For simplicity of notation, we will denote them

∆(a) := ∆
(
γ(a), γ(0), η(s)

)
and ∆(b) := ∆

(
γ(b), γ(0), η(s)

)
.

From the definition of ∆(a) we have (see Figure 2)

dk(γ(a), η(s)) = d(γ(a), η(s)).

Let ã be the comparison point of γ(a) in ∆(b) (as opposed to γ(a),
which is the comparison point in ∆(a)). The upper bound k for the
curvature gives

d(γ(a), η(s)) ≤ dk(ã, η(s)).

Thus3 dk
(
γ(a), η(s)

)
≤ dk

(
ã, η(s)

)
, which in turn implies

∠k
(
γ(a), η(s)

)
≤ ∠k

(
γ(b), η(s)

)
.

Thus, for any fixed s0 ∈ (0, S], the map t 7→ ∠k(γ(t), η(s0)) is
monotonically nondecreasing. By the same reasoning the map s 7→
∠k(γ(t0), η(s)) is nondecreasing for any fixed t0 ∈ (0, T ]. It follows
from the monotonicity in both coordinates4 that

∠+(γ, η) = lim sup
s,t→0+

∠k(γ(t), η(s)) = lim inf
s,t→0+

∠k(γ(t), η(s)) = ∠−(γ, η).

We conclude that the angle ∠(γ, η) exists and is equal to limt→0+ ∠k(γ(t), η(t)).

3Note that the left distance is in ∆(a) while the right distance is in ∆(b).
4For clarification on monotonicity in functions of two variables, see Proposition

B.1 of the Appendix.
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γ(b)

η(s)
γ(0)

γ(a)

η(s)γ(0)
β

β = � k

γ(0)(γ(b), η(s)) α = � k

γ(0)(γ(a), η(s))

α

∆(γ(b), γ(0), η(s))
∆(γ(a), γ(0), η(s))

ã

Figure 2. An illustration of the comparison triangles
∆(γ(0), γ(b), η(s)) and ∆(γ(0), γ(b), η(s)) from Lemma 3.1.

If X is of curvature ≥ k, the same method of proof applies, but
the inequalities are reversed and the maps t 7→ ∠k(γ(t), η(s0)) and
s 7→ ∠k(γ(t0), η(s)) are monotonically nonincreasing. �

Corollary 3.2. Let X be an Alexandrov space of curvature ≤ k (resp.
≥ k). If the shortest paths γ : [0, T ] → X and η : [0, S] → X (with
γ(0) = η(0)) are contained in a region of bounded curvature, then

∠(γ, η) ≤ ∠k(γ(t), η(s))
(

resp. ∠(γ, η) ≥ ∠k(γ(t), η(s))
)

for any s, t > 0.

Proof. By Lemma 3.1, if X is of curvature ≤ k (resp. ≥ k) the
map t 7→ ∠k(γ(t), η(t)) is nondecreasing (resp. nonincreasing). It
follows immediately that ∠(γ, η) ≤ ∠k(γ(t), η(s)) (resp. ∠(γ, η) ≥
∠k(γ(t), η(s))) for any t ∈ (0, T ] and s ∈ (0, S]. �

While spaces of curvature bounded above and below share many
properties, the following lemma gives an example of a property of spaces
of curvature ≥ k which is not valid in spaces of curvature ≤ k. This
lemma also makes use of notation we shall need again, so we introduce
it here. Let γ : [0, T ]→ X be a path and fix t ∈ (0, T ). The path γ|[t,0]

is defined by γ|[t,0](s) = γ(t− s) for s ∈ [0, t]. In other words, γ|[t,0] is
the path that runs backwards along γ from γ(t) to γ(0).
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Lemma 3.3. If X is an Alexandrov space of curvature bounded below,
γ : [0, T ] → X is a shortest path, 0 < t < T , and σt : [0, S] → X is a
shortest path with σt(0) = γ(t) then

∠γ(t)

(
γ|[t,T ], σt

)
+ ∠γ(t)

(
γ|[t,0], σt

)
= π.

In other words, adjacent angles along a shortest path sum to π.

Proof. By Proposition 2.2, we know that

∠γ(t)

(
γ|[t,T ], σt

)
+ ∠γ(t)

(
γ|[t,0], σt

)
≥ ∠γ(t)

(
γ|[t,T ], γ|[t,0]

)
= π

so it suffices to prove the reverse inequality.

Fix a small δ > 0. We will consider a configuration of comparison
points in M2

k for the points γ(t− δ), γ(t), γ(t+ δ), and σt(δ).

First, consider the comparison triangle ∆(γ(t−δ), σt(δ), γ(t+δ) with

the comparison point γ(t). Second, consider the comparison triangle

∆(γ(t), σt(δ), γ(t + δ)) with the points γ(t) and γ(t+ δ) aligned as in
Figure 3. Given that each triangle has a vertex representing σt(δ), we

have labeled them σt(δ) and σ̂t(δ) respectively, to distinguish them.

γ(t) γ(t+ δ)γ(t− δ)

σt(δ)

̂σt(δ)

Figure 3. The comparison point construction of Lemma 3.3.

By the definition of curvature ≥ k, we know that

dk
(
σt(δ), γ(t)

)
≤ dk

(
σ̂t(δ), γ(t)

)
= d
(
σt(δ), γ(t)

)
.
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Considering that

dk
(
σt(δ), γ(t+ δ)

)
= dk

(
σ̂t(δ), γ(t+ δ)

)
and dk

(
γ(t), γ(t+ δ)

)
= dk

(
γ(t), γ(t+ δ)

)
,

we have an inequality between the interior angles at γ(t);

∠kγ(t)

(
σt(δ), γ(t+ δ)

)
= ∠k

γ(t)

(
σ̂t(δ), γ(t+ δ)

)
≤ ∠k

γ(t)

(
σt(δ), γ(t+ δ)

)
.

Applying the analogous argument to ∆(γ(t−δ), σt(δ), γ(t)), we see that

∠kγ(t)

(
σt(δ), γ(t− δ)

)
+∠kγ(t)

(
σt(δ), γ(t+ δ)

)
≤ ∠kγ(t)

(
γ(t− δ), γ(t+ δ)

)
.

Taking the limit as δ → 0+ yields the result. �

Proposition 3.4 (Semi-continuity of angles). Let X be an Alexan-
drov space of curvature bounded above (resp. below). Suppose that
the sequences of shortest paths {γn}∞n=1 and {σn}∞n=1, with γn(0) =
σn(0) for all n, converge uniformly to shortest paths γ and σ re-
spectively. Then ∠(γ, σ) ≥ lim supn→∞ ∠(γn, σn) (resp. ∠(γ, σ) ≤
lim infn→∞∠(γn, σn)).

Proof. First, suppose that X is of curvature ≤ k. For any t ∈ [0, T ],
since γn → γ uniformly, γn(t)→ γ(t); and the same can be said for the
path σ. By Lemma 3.1 and Corollary 3.2,

∠(γ, σ) = lim
t→0+

∠kγ(0)

(
γ(t), σ(t)

)
(3.2)

= lim
t→0+

(
lim
n→∞

∠kγn(0)

(
γn(t), σn(t)

))
(3.3)

≥ lim
t→0+

(
lim sup
n→∞

∠(γn, σn)

)
.(3.4)

As the final quantity above is independent of t, we have ∠(γ, σ) ≥
lim supn→∞∠(γn, σn).

Alternatively, if we suppose that X is of curvature ≥ k. Then
(3.2) and (3.3) above still hold, but in (3.4) we make use of the other
inequality of Corollary 3.2 to obtain ∠(γ, σ) ≤ lim infn→∞∠(γn, σn).

�



ONE-SIDED DERIVATIVE OF DISTANCE TO A COMPACT SET 15

4. Right-Derivative of Distance to a Compact Set. In any
metric space, it is an easy application of the triangle inequality to show
that distance to a set is 1-Lipschitz. It follows that distance along
a geodesic is differentiable almost everywhere in the domain of the
geodesic. In this section, we prove an explicit value for this (one-sided)
derivative, when the distance is taken to a compact set. Even more
than finding the derivative of distance along a geodesic, if we think of
the geodesic γ as representing a direction in an Alexandrov space, this
formula is akin to the directional derivative of distance in the direction
γ. This idea serves as a precursor to developing gradients of functions
on Alexandrov spaces, which is explored in more detail in [Pla02,
Section 7.4], and in a more general setting of ‘geometric’ metric spaces
beyond Alexandrov spaces in [Lyt04].

Lemma 4.1. If X is an Alexandrov space, γ : [0, T ]→ X is a shortest
path, and p is an element of X such that γ(0) 6= p, then

lim sup
t→0+

d(γ(t), p)− d(γ(0), p)

t
≤ − cos

(
∠min

)
where ∠min is the infimum of angles between γ and shortest paths from
γ(0) to p.

Proof. Let η : [0, S] → X be a shortest path connecting γ(0) to p.
Using Lemma 2.4 and the fact that − cos is nondecreasing on [0, π],

− cos
(
∠(γ, η)

)
≥ lim sup

t→0+

(
− cos

(
∠k(γ(t), p)

))
= lim sup

t→0+

−d(γ(0), p) + d(γ(t), p)

t
,

where the last equality comes from Lemma 2.3. Therefore,

lim sup
t→0+

d(γ(t), p)− d(γ(0), p)

t
≤ − cos

(
∠(γ, η)

)
.

Given that this holds for any shortest path η connecting γ(0) to p, we
can replace ∠(γ, η) above with ∠min. �

Lemma 4.2. Let X be an Alexandrov space, K a compact set in X,
and γ : [0, T ] → X a shortest path such that γ(0) /∈ K. For each
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t ∈ [0, T ] let σt be a shortest path connecting γ(t) to K. If there is a
sequence {tn}∞n=1 such that tn → 0 and the sequence of shortest paths
{σtn}∞n=1 converges to σ0, then

lim sup
n→∞

∠kγ(tn)

(
γ(0), σtn(s)

)
≤ π − ∠(γ, σ0)

for all sufficiently small s > 0. (See Figure 4.)

Proof. Begin by fixing N ∈ N and s′ ∈ (0, S] such that γ(0), γ(tn),
and σtn(s) all lie in a region of bounded curvature whenever n ≥ N
and s ≤ s′. For simplicity of notation let sn = σtn(s) for some fixed
s > 0.

Suppose X is of curvature ≥ k. Then

lim sup
n→∞

∠kγ(tn)(γ(0), sn) ≤ lim sup
n→∞

∠γ(tn)(γ|[tn,0], σtn)

= π − lim inf
n→∞

∠γ(tn)(γ|[tn,T ], σtn)

≤ π − ∠(γ, σ0)

by Corollary 3.2, Lemma 3.3, and Proposition 3.4, respectively.

γ(T ) K

γ(tn)

γ(0)

pn

p

σ0

σtnγ

α

αn

βn

α = � (γ, σ0)

αn = � (γ|[tn,T ], σtn)

βn = � (γ|[tn,0], σtn)

sn

σ0(s)

Figure 4. An illustration of the paths, points, and angles in the proof
of Lemma 4.2 and Theorem 4.3.

Next, suppose X is of curvature ≤ k. For each n, let ηn be a
shortest path connecting γ(0) to sn (see Figure 5). By Corollary



ONE-SIDED DERIVATIVE OF DISTANCE TO A COMPACT SET 17

3.2, ∠(ηn, σ0) ≤ ∠kγ(0)(sn, σ0(s)) for all n. Since σtn → σ0, we have

∠kγ(0)(sn, σ0(s))→ 0 and so ∠(ηn, σ0)→ 0. By Proposition 2.2 twice,

∠(γ, σ0) ≤ ∠(γ, ηn) + ∠(ηn, σ0) ≤ ∠(γ, σ0) + 2∠(ηn, σ0).

So, as ∠(ηn, σ0) → 0, we have ∠(γ, ηn) → ∠(γ, σ0). Thus, using
Corollary 3.2 again

(4.1) ∠(γ, σ0) = lim inf
n→∞

∠(γ, ηn) ≤ lim inf
n→∞

∠kγ(0)(γ(tn), sn).

γ(tn)

γ(0)

σ0

σtnγ

ηn

sn

σ0(s)

Figure 5. The relationship between the paths γ, ηn, and σ0.

Now let δ > 0 be given. By the fact that infinitesimal triangles are
Euclidean, we know that in the comparison triangle ∆(γ(tn), sn, γ(0)),
we have for n large enough

(4.2) ∠kγ(0)(γ(tn), sn) + ∠kγ(tn)(γ(0), sn) + ∠ksn(γ(tn), γ(0)) < π + δ.

Since ∠ksn(γ(tn), γ(0))→ 0, with (4.1) this gives

lim sup
n→∞

∠kγ(tn)(γ(0), sn) < π+δ−lim inf
n→∞

∠kγ(0)(γ(tn), sn) ≤ π+δ−∠(γ, σ0)

Letting δ > 0 go to zero gives the desired result. �

Theorem 4.3. Let X be an Alexandrov space, γ : [0, T ]→ X a shortest
path, and K a compact set not containing γ(0). If `(t) = d(γ(t),K),
then

lim
t→0+

`(t)− `(0)

t
= − cos(∠min)

where ∠min is the infimum of angles between γ and any shortest path
of length `(0) which connects γ(0) to K.
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Proof. First, let η0 be a shortest path connecting γ(0) to K and let
a ∈ K be the endpoint of η0. Note that for each t > 0, `(t) ≤ d(γ(t), a).
Therefore, by Lemma 4.1,

lim sup
t→0+

`(t)− `(0)

t
≤ lim sup

t→0+

d(γ(t), a)− d(γ(0), a)

t
≤ − cos

(
∠min

)
.

To get the reverse estimate, let {tn}∞n=1 be a sequence in (0, T ] such
that tn → 0 and

lim
n→∞

`(tn)− `(0)

tn
= lim inf

t→0+

`(t)− `(0)

t
.

Similar to Lemma 4.2, for each n let σtn be a shortest path connecting
γ(tn) to K. Since K is compact, the length of each path in the
sequence {σtn}∞n=1 is uniformly bounded. Therefore, by the Arzela-
Ascoli Theorem,5 {σtn}∞n=1 contains a subsequence which converges
uniformly to a shortest path σ0 connecting γ(0) to K. Without loss
of generality, we assume that the sequence {σtn}∞n=1 is this uniformly
convergent subsequence.

Fix s sufficiently small to satisfy the hypothesis of Lemma 4.2. For
simplicity of notation let pn ∈ K be the endpoint of σtn , let p ∈ K
be the endpoint of σ0, and let sn = σtn(s) (see Figures 4 and 5). By
Lemma 2.3,

(4.3) lim inf
n→∞

s− d(sn, γ(0))

tn
= lim inf

n→∞
cos
(
∠kγ(tn)(γ(0), sn)

)
.

Note that `(tn) = s+ d(sn, pn) and

`(0) ≤ d(γ(0), pn) ≤ d(γ(0), sn) + d(sn, pn).

Combining these observations with (4.3), we get

lim inf
n→∞

`(tn)− `(0)

tn
≥ lim inf

n→∞
cos
(
∠kγ(tn)(γ(0), sn)

)
= cos

(
lim sup
n→∞

∠kγ(tn)(γ(0), sn)
)
.

Then by Lemma 4.2,

cos
(

lim sup
n→∞

∠kγ(tn)(γ(0), sn)
)
≥ cos

(
π − ∠(γ, σ0)

)
= − cos

(
∠(γ, σ0)

)
.

5see Appendix B.2 for clarification on how Arzela-Ascoli is used here.
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Thus,

lim inf
t→0+

`(t)− `(0)

t
= lim inf

n→∞

`(tn)− `(0)

tn

≥ − cos
(
∠(γ, σ0)

)
≥ − cos(∠min)

which is the desired reverse estimate. �

A. Counterexamples.

A.1. Upper Angle 6= Lower Angle. Consider R2 with the metric
d(x, y) = |x1 − y1|+ |x2 − y2|, known as the `1 metric, or the ‘taxicab’
metric. The space (R2, d) is a complete and locally compact length
space.

Let γ : [0, 1]→ R2 be defined by γ(t) = (t, t) and let η : [0, 1]→ R2

be defined by η(s) = (s, 0). Note that these are both shortest paths
with

L(γ) = 2 = d
(
(0, 0), (1, 1)

)
and L(η) = 1 = d

(
(0, 0), (1, 0)

)
Since γ(0) = η(0), we may consider the upper and lower angle between
them.

γ(0) = η(0) = (0, 0) η(1) = (1, 0)

γ(1) = (1, 1)

γ(t)

η(s)

Figure 6. The paths γ and η.

First, let s = t. Then (see Figure 6),

d
(
γ(0), γ(t)

)
= 2t and d

(
η(0), γ(t)

)
= d
(
γ(t), η(t)

)
= t.
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Therefore, ∠0(γ(t), η(t)) = 0 for all t. It follows that

∠−(γ, η) = lim inf
s,t→0+

∠0(γ(t), η(s)) ≤ lim
t→0+

∠0(γ(t), η(t)) = 0

Furthermore, as 0 is the minimum possible angle, we have ∠−(γ, η) = 0.

Next, consider t = s2. We have

d
(
γ(0), γ(s2)

)
= 2s2

d
(
η(0), η(s)

)
= s

and d
(
γ(s2), η(s)

)
= s− s2 + s2 = s.

Note that the (Euclidean) comparison triangle ∆(γ(0), γ(t), η(s)) is
isosceles with a very small base. Using elementary plane geometry, one
easily derives that cos

(
∠0(γ(s2), η(s))

)
= s. Since cosine is continuous

and nonincreasing on the interval [0, π], we see that

cos
(
∠+(γ, η)

)
≤ lim
s→0+

cos
(
∠0(γ(s2), η(s))

)
= lim
s→0+

s = 0.

Thus we have ∠+(γ, η) ≥ π/2. In fact, we can show that the upper
angle equals π/2.

If the upper angle were greater than π/2, then there would have
to be points s, t ∈ [0, 1] such that d(γ(t), η(s)) is greater than both
d(γ(0), γ(t)) and d(η(0), η(s)). However, this is impossible since
d(η(0), η(s)) = s, d(γ(0), γ(t)) = 2t, and

d(γ(t), η(s)) = |s− t|+ |t− 0| = t+ |s− t|

which cannot be simultaneously greater than s and 2t for any s, t ∈
[0, 1].

A.2. Unbounded Curvature. Consider again the length space (R2, d)
from Appendix A.1. While we could use the result of the previous sec-
tion combined with Lemma 3.1 to establish that (R2, d) does not have
bounded curvature, we instead provide here a direct proof using the
definition of bounded curvature given in Section 3.

Given any neighborhood U in R2, and any k ∈ R, we can find three
points x, y, z ∈ U such that

d(x, y) = d(x, z) = d(y, z)
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and d(x, y) < Dk/2, which forms an equilateral comparison triangle
∆(x, y, z) ⊆M2

k .

x y

z

x y

zua va

ub vb

Figure 7. The geodesic triangles A (left) and B (right) with vertices
x, y, and z in the ‘taxicab’ space (R2, d).

While there are many geodesic triangles in (R2, d) with vertices x,
y, and z, we will only consider two. First, we choose the shortest paths
which form a rectangle around the points and call this triangle A (left
side of Figure 7). We may fix points ua, va ∈ A on each side of the point
z such that d(ua, va) = d(z, ua) + d(z, va). However, in our comparison
triangle ∆(x, y, z), we have

dk(ūa, v̄a) < dk(ūa, z̄) + dk(z̄, v̄a) = d(ua, z) + d(z, va) = d(ua, va).

Since d(ua, va) > dk(ūa, v̄a), the curvature of (R2, d) cannot be ≤ k.

Second, we consider the geodesic triangle B consisting of three
branching geodesics (right side of Figure 7). Let ub, vb ∈ B be such
that d(ub, z) = d(vb, z) > 0 and d(ub, vb) = 0. We know that the points
ub and vb exist since the shortest paths connecting z to x and z to y
are branches from a common geodesic. Recalling that our comparison
triangle ∆(x, y, z) is equilateral, we have

dk(ūb, v̄b) > 0 = d(ub, vb)

so the curvature of (R2, d) cannot be ≥ k. As no neighborhood U can
satisfy the definition of curvature bounded above or below by any k,
the space (R2, d) is not of bounded curvature.

A.3. Supplementary Upper Angles May Not Sum to π. If on
a geodesic γ : [−T, T ] 7→ X where X is Alexandrov with lower bound
on the curvature, we choose 3 nearby points b = γ(−t), a = γ(0), and
c = γ(t), then the upper angle ∠+

γ(0)

(
γ|[0,t], γ|[0,−t]

)
equals π. This

follows immediately from the definition of angles. See Figure 8.
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θ

β
α

a

b

d

c

Figure 8

However, spaces without lower bound on the curvature, such as the
space (R2, d) from Appendix A.1, have the property that two geodesics
that agree on a segment may bifurcate. Thus, suppose in Figure 8, bad
and dac are geodesics. By the previous observation all three angles α,
β, and θ are equal to π, and we have a counter example to Lemma
3.3. Notice that it also follows that if there is a lower bound on the
curvature, then geodesics cannot bifurcate.

B. Results in Analysis.

B.1. Monotonicity in Functions of Two Real Variables. Let
f : R2 → R be a function. We say that f is component-wise
monotonic if for any constant r ∈ R, the maps x 7→ f(x, r) and
x 7→ f(r, x) are both nondecreasing or both nonincreasing. We further
define the right-sided limit superior of f at a as

lim sup
x,y→a+

f(x, y) = lim
ε→0

sup{f(x, y) : a < x, y ≤ a+ ε}.

Similarly, the right-sided limit inferior of f at a is given by

lim inf
x,y→a+

f(x, y) = lim
ε→0

inf{f(x, y) : a < x, y ≤ a+ ε}.

Lemma B.1. If f : R2 → R is component-wise monotonic, then for
any a ∈ R,

lim sup
x,y→a+

f(x, y) = lim inf
x,y→a+

f(x, y).
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Proof. Let f : R2 → R be given and assume that f is component-
wise nondecreasing (the result for nonincreasing follows by symmetry).
If we fix x1 < x2, then by our assumptions,

f(x1, x1) ≤ f(x1, x2) ≤ f(x2, x2).

Therefore, for any a ∈ R, it follows from the monotonicity of x 7→
f(x, x) that

lim sup
x→a+

f(x, x) = lim inf
x→a+

f(x, x) = lim
x→a+

f(x, x).

Denote the limit by f(a)+. To finish the proof, it suffices to show that

lim sup
x,y→a+

f(x, y) ≤ f(a)+ ≤ lim inf
x,y→a+

f(x, y).

Let {xn} and {yn} be sequences such that xn, yn > a for all n
and xn, yn → a. For each n, define mn = min{xn, yn} and Mn =
max{xn, yn}. Then

lim sup
n→∞

f(xn, yn) ≤ lim
n→∞

f(Mn,Mn)

= f(a)+

= lim
n→∞

f(mn,mn)

≤ lim inf
n→∞

f(xn, yn). �

B.2. The Arzela-Ascoli Theorem for Paths. While there are
many equivalent statements of the Arzela-Ascoli Theorem, the version
which best fits our needs is that found in [BH91].

Theorem B.2 (Arzela-Ascoli). If X is a compact metric space and
Y is a separable metric space, then every sequence of equicontinuous
maps fn : Y → X contains a uniformly convergent subsequence.

Corollary B.3. If X is a compact metric space and {γn}∞n=1 is
a sequence of paths in X with uniformly bounded lengths, then the
sequence {γn}∞n=1 contains a uniformly convergent subsequence.

Proof. Without loss of generality, we may assume that each γn is
constant-speed with domain [0, 1]. Since the length of the paths is
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uniformly bounded by, say M ∈ R, for all t, t′ ∈ [0, 1]

d
(
γn(t), γn(t′)

)
≤M |t− t′|

so {γn}∞n=1 is equicontinuous. As [0, 1] is separable and X is compact,
by Theorem B.2 {γn}∞n=1 contains a uniformly convergent subsequence.

�

C. A Geometric Observation.

C.1. Space Forms are Infinitesimally Euclidean.

Lemma C.1. The upper angle is independent of the curvature of M2
k .

Proof. There are many ways of proving this. The first is by using the
geodesic equation to establish that the smaller the domain, the closer a
geodesic crossing it resembles a ”straight line”. This is made rigorous
in [BV07] (Proposition 1.10).

Another more informal way is to realize that instead of shrinking a
triangle with sides of lengths a, b, and c in M2

k by a factor of, say ε, we
might equally well define a new space M by changing coordinates in M2

k

from x to x̄ = x/ε. Now consider a triangle with those same lengths a,
b, and c again. Gauss’ original definition of (Gaussian) curvature is

k = lim
A→0

A′

A

where A is the area of a small disk in M2
k and A′ is the area in the

unit sphere swept out by the unit normals in A. Clearly, in our rescaled
space A′ has been shrunk by a factor ε2 while A changes very little. �
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BH91. Martin R. Bridson and André Haefliger. Metric Spaces of Non-

Positive Curvature. Springer, 1991.
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