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Dynamics of particles in a vertical rough channel

RoGERIO L. Costal, J. J. P. VEERMAN? and G. L. VASCONCELOS! (*)

L' Laboratério de Fisica Tedrica e Computacional, Departamento de Fisica, Universi-
dade Federal de Pernambuco, 50670-901, Recife, Brazil.
2 Mathematical Sciences, Portland State University, Portland, OR 97207, USA.

PACS. 45.70.-n — Granular systems.
PACS. 83.80.Fg — Granular solids.
PACS. 05.45.-a — Nonlinear dynamics and nonlinear dynamical systems.

Abstract. — A simple model is presented for the gravity-driven motion of a particle in a
two-dimensional vertical channel with rough walls, where the dynamics is described by a 2D
nonlinear mapping. It is shown that if the collisions with the channel walls are inelastic then the
particle reaches a steady state where it falls with a constant average velocity. If the collisions
are elastic, then the dynamics is governed by a 2D area-preserving mapping that exhibits a
complex behavior in phase space. The model is then extended to include the case of several
vertical plates falling under gravity inside a channel, where a steady state is reached with a
parabolic velocity profile across the channel.

The gravity-driven motion of grains in a confined geometry, such as granular flows in a
hopper, is not only of practical importance to many technological process but also of great
scientific interest. In fact, a characterization of the full range of grain dynamics during such
flows remains a challenge, both experimentally [1,2] and theoretically [3]. From a theoretician’s
viewpoint, perhaps the simplest approach to tackle such difficult problem is to treat the grains
as non-interacting particles and study the corresponding particle dynamics in the geometry of
interest. Single-particle models have, indeed, be used with some success to describe the grain
dynamics during gravity-driven granular flows on an inclined rough surface [4-8].

In this Letter we present a simple model for the gravity-driven motion of a single grain
inside a two-dimensional vertical channel. In our model, the grain is treated as a point particle
and moves downward through a sequence of ballistic flights and inelastic collisions with the
channel walls, which may be either smooth or ‘rough’ (in a sense to be made more precise
below). It is shown that when the walls are rough the particle will in general reach a steady
state where it falls with a constant average velocity, which can be computed analytically in
terms of the model parameters (the coefficients of restitution and the roughness parameter).
When the walls are smooth a steady state is still possible in the particular case that the
collisions are elastic with respect to the normal velocity component but inelastic regarding
the tangential velocity, otherwise the particle accelerates. We also briefly discuss the situation
when the collisions are elastic (and the walls rough), in which case the system is described by a
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2D area-preserving mapping that exhibits a complex dynamics with islands of near-integrable
curves surrounded by a sea of chaotic orbits. The case where the wall roughness parameter is
allowed to vary randomly is also considered and it is seen that the mean downward velocity
increases as the degree of irregularity increases.

We shall also briefly present an extension of our single-particle where we consider the
motion of NV vertical plates falling under gravity inside a channel with smooth walls. As the
plates move downward they collide inelastically with their neighbors (or with the channel
walls in the case of the leftmost and rightmost plates). Eventually a steady state is reached
where the velocity distribution across the channel assumes a parabolic profile. The velocity
fluctuation, on the other hand, is minimum at the central region and displays a peak near the
walls—a behavior also seen in 2D simulations of gravity-driven granular flow in a tube [3].

The model we consider first is illustrated in Fig. 1. We imagine a grain particle moving
under gravity inside a two-dimensional vertical channel formed by two parallel rough walls
placed a distance L apart of one another. The particle is launched at the top of the channel
with a given initial velocity that we assume has a nonzero horizontal component, otherwise
the motion would be trivial. The particle then moves inside the channel through a succession
of ballistic flights and inelastic collisions with the rough walls. For simplicity, the roughness
of the channel walls is represented by extensionless facets, the so-called ‘microfacets’ [4, 6],
which are attached to the walls forming an angle o with the vertical; see Fig. 1. We assume
that after a collision with a microfacet the particle velocity changes according to the following
simple rule:

v = ey, (1)
Uy, = —€ntn, (2)

where v; and v,, are the velocity components tangential and normal to the microfacet, respec-
tively, with prime denoting post-collisional velocities, and e; and e,, are the corresponding
tangential and normal coefficients of restitution, taking values in the interval (0, 1].

Let us introduce a system of coordinates where the y axis is along the left wall and the
origin is placed at an arbitrary position; see Fig. 1. Thus, at collisions with a microfacet
on the left wall, the transformation from the z—y velocity components, v = (v,,vy), to the
velocity components tangential and normal to the microfacet, v = (v, v,,), is enacted by a
clockwise rotation of 7/2 — @, which in matrix notation reads

on . sina —cosa Vg
<vn>_<cosa sin o ><Uy> (3)

For collisions with the microfacets on the right wall, however, it is more convenient to work
with a system of axes «’ and y' that are mirror images of the axes x and y; see Fig. 1. (Similar
definition applies to the normal and tangential directions n’ and ¢'.) The advantage of this
choice is that the transformation from the velocity components (var,vyr) to (ver,vnr) is given
by exactly the same relation shown in (3) and hence we need to make no distinction between
right and left walls. Accordingly, we will drop the prime notation for the coordinates at the
right wall, with the understanding that the velocity components before and after any given
collision will be written in the local system of coordinates attached to that particular wall.

Let us now denote by v = (u,v) the particle z-y velocity components after the last collision
with a given wall. The particle then undergoes a ballistic flight during the time ¢ = L/u, until
colliding with the opposite wall. The particle velocity components v. = (u.,v.) just before
this new collision thus read

ue = —u, (4)
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Fig. 1 — Model for a single grain moving in a 2D vertical rough channel.
Fig. 2 — Trajectories in the (u,v) plane for e, = ¢; = 1 and o = 18°.
1
Ve = U — —. )
c= v (5)

Here we have applied a coordinate transformation u — u/+/gL and v — v/y/gL, so that the
quantities in (4) and (5) are all dimensionless. If we now express the velocity v, in the rotated
frame via (3), apply the collision rule (1)—(2), and then rotate back to the z-y system of
coordinates, we can readily obtain the new post-collisional velocity v/ = (u',v"). Performing
this calculation we obtain the following two-dimensional mapping

o u au—bv+%
(v)=r(2)- 7 ®
v v
bu + cv —

where the coefficients a, b, and ¢ are given by

gla

a=epcos’a—esin®a, b= (e,+e)sinacosa, c=e; cos’a—e,sin’a. (7

We note, for later use, that during a ballistic flight the velocity component v, changes linearly

in time, so that the average vertical velocity V =< v, > between two consecutive collisions

equals the arithmetic mean of the velocities at the beginning and end of the flight, that is,

V = 1 (v + v.), which yields

1

V=v——. 8

54 (8)

There is a final caveat about the map above. In obtaining the mapping F' given in (6),

we have implicitly assumed that upon collision the particle bounces back toward the opposite

wall, and so we must have u’' > 0 at all times. Of course, this condition can be violated

for an ill-suited initial condition. For example, when e, = ¢; = ¢ (in which case we have
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specular reflection) such a violation happens if the incoming velocity v. makes an angle
6 > % — 2a above the horizontal. If were to apply (6) blindly to this case, it would mean
that the particle would penetrate the wall and reappear on the other side. Such an unphysical
situation comes about, of course, because of the extensionless nature of the microfacets and
could be averted by imposing an extra condition, say, applying the collision condition once
again or simply reverting the sign of u'. We have decided, however, to take a simpler approach:
To prevent the problem from occurring we will consider only initial conditions for which an
‘unphysical collision’ (i.e., u' < 0) never happens. As we will see below, for angles in the range
0 < a < /4, there is always a large (and more physically relevant) region in the (u,v) phase
plane where the orbits never violate the condition u’ > 0. We shall henceforth be concerned
only with such physically acceptable orbits. Before discussing the general map (6), however,
we shall first consider the especial situation when the channel walls are smooth, i.e., a = 0,
in which case the dynamics can be solved exactly.
After setting @ = 0 in (6) we obtain

u' = epu, (9)

/ €t
= - =, 10
v e — - (10)

The first equation above has a trivial solution and, after inserting this solution into (10), the
second equation can also be solved exactly. One then finds

up = efug (11)
—k _ ok
Vp = efvo — —enet(en et) (12)

(1 —ener)up

where (ug, vp) is the particle initial velocity and (ug,vg) is the velocity after k collisions with
the channel walls. From (11) it also follows that the the total elapsed time ¢ until the k-th

collision is
k—1

1 en(e;*—1)
j;o u;j (1 —en)uo
It is now an easy matter to determine the particle long-time dynamics, i.e., for £k — co. Here

there are three situations to consider: i) the case 0 < e, < 1, when for k& — 0o one gets
er(l—en)

oo b where we have dropped the k subscripts; ii) the case e, = 1

_ __en _
U= e and v =

and e; < 1, for which the particle reaches a steady state where u = ug and v = —u_iﬁ, SO
that it falls with a constant average velocity V = Mffﬁ; and iii) the case of elastic collisions,

en, = e = 1, where we find u = ug and v = vg — ¢, thus showing that the particle is effectively
in a free fall, as expected. It is worth pointing out that the condition e,, =1 and e, = p < 1
for collisions with the walls (and e; = 1 and e;, = u for inter-grain collisions) was used in the
numerical simulations of gravity-driven granular flows in a 2D channel recently performed by
Denniston and Li [3]. There they found that, overall, the column of grains behaves like a solid
sliding down the tube with an effective friction force at the walls balancing off the force of
gravity, which is precisely the scenario predicted by our model with smooth walls for e,, = 1
and e; < 1.

Now we consider the general case a > 0. We start our analysis by looking for fixed points
of the map (6). Solving the fixed point equations v’ = u = v* and v’ = v = v* yields

. (en + €¢) sin 2a 1/2 (14)
[T ——
2[1+ ener — (e, + €) cos 2a]
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. 2ener + e, — e — (e, + et) cos 2a (15)
vt o= .
V2(en + €r) sin2afl + ener — (en + €) cos 2]

The stability of the fixed point is determined by the eigenvalues A+ of the Jacobian matrix
88(&75)) evaluated at (u*,v*). We will spare the reader the details of this calculation and

simply quote the result for the eigenvalues

Ay = % [—7) vV — 4enet} , (16)

where
n=1+eper — 2(e, + ;) cos 2a. (17)

We thus see that depending on the value of the angle « the eigenvalues can be both real or
complex conjugates. One can show, however, that the moduli of the eigenvalues (be they real
or complex) are always smaller than unity for 0 < a < 7 and e,e; # 1. In other words,
for angles in the range 0 < a < 7, the fixed point is an attractor of the dynamics so long
as the collisions have some (any) degree of inelasticity. [Numerical simulations support the
conjecture that the fixed point is the only attractor in this case.]

At the fixed point, the particle falls downward with a constant average speed V* which
can be easily obtained by inserting (14) and (15) into (8). Upon doing this and performing

some simplification one finds

B (1—e,)(1+4e)
\/2 sin2a(ey, + e)[1 + ener — (en + €) cos 20[]'

v (18)

We thus see that, except for the particular case e,, = 1, the rougher the channel walls (i.e., the
greater «), the smaller the average velocity V*, as one would expect. Note also that if e,, = 1
then V* = 0. In this case the fixed point corresponds to the physical situation where the
collisions with the microfacets are always frontal, so that the particle remains ‘suspended’ in
the channel in the sense that it moves back and forth between the two walls always retracing
the same parabola. If e; < 1 this fixed point is an attractor of the dynamics since |[AL| < 1,
whereas for e; = 1 the fixed point becomes elliptic and a rather complex dynamics emerges,
as shown next.

From (6) one can easily verify that if e,, = ¢, = 1 then the determinant of the Jacobian
matrix of F' is precisely equal to 1, hence F' is an area-preserving mapping in this case.
Furthermore, one finds that Ay = e** where cos f = 2cos2a — 1, so that the fixed point
is elliptically stable, as already mentioned. A detailed study of the map F with e, = e; = 1
will be left for a forthcoming publication. Here we simply wish to mention that, as illustrated
in Fig. 2, this system exhibits the usual dynamical features of 2D area-preserving nonlinear
mappings [9], among which we cite: i) a large region around the elliptic fixed point containing
near-integrable curves, the so-called ‘KAM curves’; ii) chains of islands of near-integrable
curves at whose centers we find periodic orbits of higher period (clearly seen in Fig. 2 are
islands associated with a periodic orbit of period ¢ = 13); and iii) a ‘sea’ of chaotic orbits
surrounding the islands.

We now wish to discuss the case in which the orientation of the microfacets is allowed
to vary randomly from place to place. For simplicity, we will consider the situation where
the angle « is distributed uniformly around a given mean value @. More specifically, we will
assume that at each new collision the angle « is chosen according to the following prescription

a=a+6(e—0.5), (19)
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where 0 is a given number, to be referred to as the ‘noise amplitude’, and € is a random
number uniformly distributed in the interval [0,1]. We have found that the particle mean
vertical velocity V increases roughly quadratically with the noise amplitude 6: V — V* o §2.
(Recall that V* is the average downward velocity in homogeneous case, i.e., for § = 0.) In
particular, we find that when e,, = 1 the particle falls downward with a small but nonzero
velocity for any § > 0, thus showing that any amount of noise will destroy the ‘suspended’
stationary state existent in the homogeneous case for e, = 1.

Oune natural way to extend the model above (which treats the grains as non-interacting
particles) to render it more realistic is to consider several grains inside the channel and take
into account pair collisions. Here, however, we shall seek a multi-particle model that builds
upon our understanding of the single-grain model rather than resort to a full-fledged granular
flow simulation [3]. Our starting point in this direction is the observation [1,3] that granular
flows in a tube tend to be ‘columnar’ in the sense that the grains are highly constrained by
their neighbors so that there is little transversal motion [3]. In order to mimic the motion
of such ‘columns of grains’ we consider the problem of N parallel vertical plates of width a
falling under gravity inside a vertical channel of length L, with Na < L. (We shall again
work in dimensionless units where ¢ = L = 1). Interplate collisions are inelastic but conserve
momentum. For simplicity, the collisions between plates as well as between a plate and a
channel wall are described by the same set of restitution coefficients e, and e;. (Lifting this
restriction does not significantly alter the main results.) On the basis of our previous single-
particle model (with smooth walls) we know that a steady state can be achieved only ife,, =1
and so we will concern ourselves solely with this case.

Owing to lack of space, we report here only the main features of the multiplate model.
More details will be presented elsewhere [10]. A typical result for the velocity distribution
(in the stationary regime) across the channel is shown in Fig. 3, where it is plotted both the
mean vertical velocity V; =< v} > and the velocity fluctuation AV; = /< (v)? > —V? as a
function of the plate label i = 1,..., N for the case N = 100, a = 0.0098, and ¢; = 0.9. (In
our simulations the plates were initially placed at equal distance from one another and given
random velocities, with the statistics being performed after a long transient had elapsed.)
In Fig. 3a we see that the velocity profile is parabolic—that is, we have a Poiseuille-like flow
inside the channel. This is in contrast with experiments [1,11] and numerical simulations [3] of
gravity-driven granular flow in a tube, where the velocity profile is considerably flat across the
tube, except for a thin boundary layer. The flattening of the velocity profile in such granular
flows thus seems to be a direct consequence of the ‘granularity’ of the medium, which allows
for transfer of momentum between the vertical and horizontal directions during intergrain
collisions. (Such possibility is nonexistent in our plate model.) This mechanism would thus
tend to render the velocity distribution more uniform across the tube. We also note that
the velocity fluctuation in our multiplate model is minimum in the central region and exhibit
characteristic peaks near the walls, as shown in Fig. 3b. (Similar behavior was also seen
in the 2D granular flow simulations performed by Denniston add Li [3], although there the
fluctuation profile is flatter in central region.) Notice, however, that the velocity fluctuation
is much smaller than the mean velocity.

In conclusion, we have introduced a class of simple models for the gravity-driven motion
of a single grain (or a collection of noninteracting grains) in a two-dimensional channel. The
model has the advantage of being analytically treatable so that the condition for the particle
to attain a steady state and its velocity in such regime can be worked out exactly. In spite
of its simplicity, the model might provide a theoretical framework in which certain aspects
of the grain dynamics during granular flows in a tube can be understood. For instance, the
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Fig. 3 — Velocity distribution in the multiplate model: (a) mean downward velocity V; as a function
of the position ¢ along the channel and (b) velocity fluctuation AV; as a function of ¢. Here N = 100,
a = 0.0098, e, =1, e, = 0.9, and the initial velocities were randomly chosen in the interval [—1,1].

case when both walls are smooth (with e,, = 1 and e; < 1) may describe the overall motion
of the column of grains down the tube, whereas the case of a particle in a rough channel
might be seen as a simplified model for the actual motion of grains in the tube central region.
Similarly, the grain dynamics in the boundary layer near the tube walls can be qualitatively
understood in terms of a variant of our model where one wall is smooth and the other one
is rough. We have also considered an extension of our model where intergrain collisions are
take into account in a rather simplified manner. Here the idea was to model the columns of
grains formed in actual gravity-driven granular flows in a tube as vertical plates falling under
gravity inside a channel and subjected to inelastic collisions amongst themselves and with the
channel walls. In our multiplate model the velocity profile across the channel is parabolic,
while the velocity fluctuation is minimum at midchannel and displays a peak near each wall.

X X X

This work was partially supported by the Brazilian agencies CNPq and FINEP, and by
Brazil’s special program PRONEX. J. J. P. V. would like to thank the Physics Department
at UFPE for its hospitality during his stay there in the early stages of this work.

REFERENCES

[1] MENON N. and DURIAN D., Science, 275 (1997) 1920.

[2] DuriaN D. J., J. Phys.: Condes. Matter, 12 (2000) A507.

[3] DEn~NisTON C. and L1 H., Phys. Rev. E, 59 (1999) 3289.

[4] VALANCE A. and BIDEAU D., Phys. Rev. E, 57 (1998) 1886.

[6] VascoNceLos G. L. and VEERMAN J. J. P.; Phys. Rev. E, 59 (1999) 5641; Physica A, 271
(1999) 251.

[6] Marcon! U. M. B., CoNTI M. and VULPIANI A., Europhys. Lett., 51 (2000) 685.

[7] VasconcieLos G. L., CuNHA-JR. F. V. and VEERMAN J. J. P., Physica A, 295 (2001) 261.

[8] VEERMAN J. J. P., CuNHA, JR. F. V. and VASCONCELOS G. L., Physica D, 168 (2002) 220.

[9] LICHTENBERG A. J. and LIBERMAN M. J., Regular and Stochastic Motion (Springer-Verlag, New
York) 1983.

[10] Costa R.L. and VASCONCELOS G. L., in preparation.

[11] PoULIQUEN O. and GUTFRAIND R., Phys. Rev. E, 53 (1996) 552.



