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s and nonlinear dynami
al systems.Abstra
t. { A simple model is presented for the gravity-driven motion of a parti
le in atwo-dimensional verti
al 
hannel with rough walls, where the dynami
s is des
ribed by a 2Dnonlinear mapping. It is shown that if the 
ollisions with the 
hannel walls are inelasti
 then theparti
le rea
hes a steady state where it falls with a 
onstant average velo
ity. If the 
ollisionsare elasti
, then the dynami
s is governed by a 2D area-preserving mapping that exhibits a
omplex behavior in phase spa
e. The model is then extended to in
lude the 
ase of severalverti
al plates falling under gravity inside a 
hannel, where a steady state is rea
hed with aparaboli
 velo
ity pro�le a
ross the 
hannel.The gravity-driven motion of grains in a 
on�ned geometry, su
h as granular 
ows in ahopper, is not only of pra
ti
al importan
e to many te
hnologi
al pro
ess but also of greats
ienti�
 interest. In fa
t, a 
hara
terization of the full range of grain dynami
s during su
h
ows remains a 
hallenge, both experimentally [1,2℄ and theoreti
ally [3℄. From a theoreti
ian'sviewpoint, perhaps the simplest approa
h to ta
kle su
h diÆ
ult problem is to treat the grainsas non-intera
ting parti
les and study the 
orresponding parti
le dynami
s in the geometry ofinterest. Single-parti
le models have, indeed, be used with some su

ess to des
ribe the graindynami
s during gravity-driven granular 
ows on an in
lined rough surfa
e [4{8℄.In this Letter we present a simple model for the gravity-driven motion of a single graininside a two-dimensional verti
al 
hannel. In our model, the grain is treated as a point parti
leand moves downward through a sequen
e of ballisti
 
ights and inelasti
 
ollisions with the
hannel walls, whi
h may be either smooth or `rough' (in a sense to be made more pre
isebelow). It is shown that when the walls are rough the parti
le will in general rea
h a steadystate where it falls with a 
onstant average velo
ity, whi
h 
an be 
omputed analyti
ally interms of the model parameters (the 
oeÆ
ients of restitution and the roughness parameter).When the walls are smooth a steady state is still possible in the parti
ular 
ase that the
ollisions are elasti
 with respe
t to the normal velo
ity 
omponent but inelasti
 regardingthe tangential velo
ity, otherwise the parti
le a

elerates. We also brie
y dis
uss the situationwhen the 
ollisions are elasti
 (and the walls rough), in whi
h 
ase the system is des
ribed by a(�) E-mail: giovani�lft
.ufpe.br
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2 EUROPHYSICS LETTERS2D area-preserving mapping that exhibits a 
omplex dynami
s with islands of near-integrable
urves surrounded by a sea of 
haoti
 orbits. The 
ase where the wall roughness parameter isallowed to vary randomly is also 
onsidered and it is seen that the mean downward velo
ityin
reases as the degree of irregularity in
reases.We shall also brie
y present an extension of our single-parti
le where we 
onsider themotion of N verti
al plates falling under gravity inside a 
hannel with smooth walls. As theplates move downward they 
ollide inelasti
ally with their neighbors (or with the 
hannelwalls in the 
ase of the leftmost and rightmost plates). Eventually a steady state is rea
hedwhere the velo
ity distribution a
ross the 
hannel assumes a paraboli
 pro�le. The velo
ity
u
tuation, on the other hand, is minimum at the 
entral region and displays a peak near thewalls|a behavior also seen in 2D simulations of gravity-driven granular 
ow in a tube [3℄.The model we 
onsider �rst is illustrated in Fig. 1. We imagine a grain parti
le movingunder gravity inside a two-dimensional verti
al 
hannel formed by two parallel rough wallspla
ed a distan
e L apart of one another. The parti
le is laun
hed at the top of the 
hannelwith a given initial velo
ity that we assume has a nonzero horizontal 
omponent, otherwisethe motion would be trivial. The parti
le then moves inside the 
hannel through a su

essionof ballisti
 
ights and inelasti
 
ollisions with the rough walls. For simpli
ity, the roughnessof the 
hannel walls is represented by extensionless fa
ets, the so-
alled `mi
rofa
ets' [4, 6℄,whi
h are atta
hed to the walls forming an angle � with the verti
al; see Fig. 1. We assumethat after a 
ollision with a mi
rofa
et the parti
le velo
ity 
hanges a

ording to the followingsimple rule: v0t = etvt; (1)v0n = �envn; (2)where vt and vn are the velo
ity 
omponents tangential and normal to the mi
rofa
et, respe
-tively, with prime denoting post-
ollisional velo
ities, and et and en are the 
orrespondingtangential and normal 
oeÆ
ients of restitution, taking values in the interval (0; 1℄.Let us introdu
e a system of 
oordinates where the y axis is along the left wall and theorigin is pla
ed at an arbitrary position; see Fig. 1. Thus, at 
ollisions with a mi
rofa
eton the left wall, the transformation from the x{y velo
ity 
omponents, v = (vx; vy), to thevelo
ity 
omponents tangential and normal to the mi
rofa
et, v = (vt; vn), is ena
ted by a
lo
kwise rotation of �=2� �, whi
h in matrix notation reads� vtvn � = � sin� � 
os�
os� sin� �� vxvy � : (3)For 
ollisions with the mi
rofa
ets on the right wall, however, it is more 
onvenient to workwith a system of axes x0 and y0 that are mirror images of the axes x and y; see Fig. 1. (Similarde�nition applies to the normal and tangential dire
tions n0 and t0.) The advantage of this
hoi
e is that the transformation from the velo
ity 
omponents (vx0 ; vy0) to (vt0 ; vn0) is givenby exa
tly the same relation shown in (3) and hen
e we need to make no distin
tion betweenright and left walls. A

ordingly, we will drop the prime notation for the 
oordinates at theright wall, with the understanding that the velo
ity 
omponents before and after any given
ollision will be written in the lo
al system of 
oordinates atta
hed to that parti
ular wall.Let us now denote by v = (u; v) the parti
le x-y velo
ity 
omponents after the last 
ollisionwith a given wall. The parti
le then undergoes a ballisti
 
ight during the time t = L=u, until
olliding with the opposite wall. The parti
le velo
ity 
omponents v
 = (u
; v
) just beforethis new 
ollision thus read u
 = �u; (4)
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Fig. 2Fig. 1 { Model for a single grain moving in a 2D verti
al rough 
hannel.Fig. 2 { Traje
tories in the (u; v) plane for en = et = 1 and � = 18Æ.v
 = v � 1u: (5)Here we have applied a 
oordinate transformation u ! u=pgL and v ! v=pgL, so that thequantities in (4) and (5) are all dimensionless. If we now express the velo
ity v
 in the rotatedframe via (3), apply the 
ollision rule (1){(2), and then rotate ba
k to the x-y system of
oordinates, we 
an readily obtain the new post-
ollisional velo
ity v0 = (u0; v0). Performingthis 
al
ulation we obtain the following two-dimensional mapping� u0v0 � = F � uv � = 0� au� bv + bubu+ 
v � 
u 1A ; (6)where the 
oeÆ
ients a, b, and 
 are given bya = en 
os2 �� et sin2 �; b = (en + et) sin� 
os�; 
 = et 
os2 �� en sin2 �: (7)We note, for later use, that during a ballisti
 
ight the velo
ity 
omponent vy 
hanges linearlyin time, so that the average verti
al velo
ity V �< vy > between two 
onse
utive 
ollisionsequals the arithmeti
 mean of the velo
ities at the beginning and end of the 
ight, that is,V = 12 (v + v
), whi
h yields V = v � 12u: (8)There is a �nal 
aveat about the map above. In obtaining the mapping F given in (6),we have impli
itly assumed that upon 
ollision the parti
le boun
es ba
k toward the oppositewall, and so we must have u0 > 0 at all times. Of 
ourse, this 
ondition 
an be violatedfor an ill-suited initial 
ondition. For example, when en = et = e (in whi
h 
ase we have
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ular re
e
tion) su
h a violation happens if the in
oming velo
ity v
 makes an angle� > �2 � 2� above the horizontal. If were to apply (6) blindly to this 
ase, it would meanthat the parti
le would penetrate the wall and reappear on the other side. Su
h an unphysi
alsituation 
omes about, of 
ourse, be
ause of the extensionless nature of the mi
rofa
ets and
ould be averted by imposing an extra 
ondition, say, applying the 
ollision 
ondition on
eagain or simply reverting the sign of u0. We have de
ided, however, to take a simpler approa
h:To prevent the problem from o

urring we will 
onsider only initial 
onditions for whi
h an`unphysi
al 
ollision' (i.e., u0 < 0) never happens. As we will see below, for angles in the range0 < � < �=4, there is always a large (and more physi
ally relevant) region in the (u; v) phaseplane where the orbits never violate the 
ondition u0 > 0. We shall hen
eforth be 
on
ernedonly with su
h physi
ally a

eptable orbits. Before dis
ussing the general map (6), however,we shall �rst 
onsider the espe
ial situation when the 
hannel walls are smooth, i.e., � = 0,in whi
h 
ase the dynami
s 
an be solved exa
tly.After setting � = 0 in (6) we obtainu0 = enu; (9)v0 = etv � etu : (10)The �rst equation above has a trivial solution and, after inserting this solution into (10), these
ond equation 
an also be solved exa
tly. One then �ndsuk = eknu0 (11)vk = ekt v0 � enet(e�kn � ekt )(1� enet)u0 ; (12)where (u0; v0) is the parti
le initial velo
ity and (uk; vk) is the velo
ity after k 
ollisions withthe 
hannel walls. From (11) it also follows that the the total elapsed time tk until the k-th
ollision is tk = k�1Xj=0 1uj = en(e�kn � 1)(1� en)u0 : (13)It is now an easy matter to determine the parti
le long-time dynami
s, i.e., for k !1. Herethere are three situations to 
onsider: i) the 
ase 0 < en < 1, when for k ! 1 one getsu = en(1�en)t and v = � et(1�en)1�enet t, where we have dropped the k subs
ripts; ii) the 
ase en = 1and et < 1, for whi
h the parti
le rea
hes a steady state where u = u0 and v = � et(1�et)u0 , sothat it falls with a 
onstant average velo
ity V = 1+et2(1�et)u0 ; and iii) the 
ase of elasti
 
ollisions,en = et = 1, where we �nd u = u0 and v = v0� t, thus showing that the parti
le is e�e
tivelyin a free fall, as expe
ted. It is worth pointing out that the 
ondition en = 1 and et = � < 1for 
ollisions with the walls (and et = 1 and en = � for inter-grain 
ollisions) was used in thenumeri
al simulations of gravity-driven granular 
ows in a 2D 
hannel re
ently performed byDenniston and Li [3℄. There they found that, overall, the 
olumn of grains behaves like a solidsliding down the tube with an e�e
tive fri
tion for
e at the walls balan
ing o� the for
e ofgravity, whi
h is pre
isely the s
enario predi
ted by our model with smooth walls for en = 1and et < 1.Now we 
onsider the general 
ase � > 0. We start our analysis by looking for �xed pointsof the map (6). Solving the �xed point equations u0 = u = u� and v0 = v = v� yieldsu� = � (en + et) sin 2�2 [1 + enet � (en + et) 
os 2�℄�1=2 (14)
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hannel 5v� = 2enet + en � et � (en + et) 
os 2�p2(en + et) sin 2�[1 + enet � (en + et) 
os 2�℄ : (15)The stability of the �xed point is determined by the eigenvalues �� of the Ja
obian matrix�(u0;v0)�(u;v) evaluated at (u�; v�). We will spare the reader the details of this 
al
ulation andsimply quote the result for the eigenvalues�� = 12 h�� �p�2 � 4eneti ; (16)where � = 1 + enet � 2(en + et) 
os 2�: (17)We thus see that depending on the value of the angle � the eigenvalues 
an be both real or
omplex 
onjugates. One 
an show, however, that the moduli of the eigenvalues (be they realor 
omplex) are always smaller than unity for 0 < � < �4 and enet 6= 1. In other words,for angles in the range 0 < � < �4 , the �xed point is an attra
tor of the dynami
s so longas the 
ollisions have some (any) degree of inelasti
ity. [Numeri
al simulations support the
onje
ture that the �xed point is the only attra
tor in this 
ase.℄At the �xed point, the parti
le falls downward with a 
onstant average speed V � whi
h
an be easily obtained by inserting (14) and (15) into (8). Upon doing this and performingsome simpli�
ation one �ndsV � = (1� en)(1 + et)p2 sin 2�(en + et)[1 + enet � (en + et) 
os 2�℄ : (18)We thus see that, ex
ept for the parti
ular 
ase en = 1, the rougher the 
hannel walls (i.e., thegreater �), the smaller the average velo
ity V �, as one would expe
t. Note also that if en = 1then V � = 0. In this 
ase the �xed point 
orresponds to the physi
al situation where the
ollisions with the mi
rofa
ets are always frontal, so that the parti
le remains `suspended' inthe 
hannel in the sense that it moves ba
k and forth between the two walls always retra
ingthe same parabola. If et < 1 this �xed point is an attra
tor of the dynami
s sin
e j��j < 1,whereas for et = 1 the �xed point be
omes ellipti
 and a rather 
omplex dynami
s emerges,as shown next.From (6) one 
an easily verify that if en = et = 1 then the determinant of the Ja
obianmatrix of F is pre
isely equal to 1, hen
e F is an area-preserving mapping in this 
ase.Furthermore, one �nds that �� = e�i� , where 
os� = 2 
os 2� � 1, so that the �xed pointis ellipti
ally stable, as already mentioned. A detailed study of the map F with en = et = 1will be left for a forth
oming publi
ation. Here we simply wish to mention that, as illustratedin Fig. 2, this system exhibits the usual dynami
al features of 2D area-preserving nonlinearmappings [9℄, among whi
h we 
ite: i) a large region around the ellipti
 �xed point 
ontainingnear-integrable 
urves, the so-
alled `KAM 
urves'; ii) 
hains of islands of near-integrable
urves at whose 
enters we �nd periodi
 orbits of higher period (
learly seen in Fig. 2 areislands asso
iated with a periodi
 orbit of period q = 13); and iii) a `sea' of 
haoti
 orbitssurrounding the islands.We now wish to dis
uss the 
ase in whi
h the orientation of the mi
rofa
ets is allowedto vary randomly from pla
e to pla
e. For simpli
ity, we will 
onsider the situation wherethe angle � is distributed uniformly around a given mean value �. More spe
i�
ally, we willassume that at ea
h new 
ollision the angle � is 
hosen a

ording to the following pres
ription� = �+ Æ (�� 0:5) ; (19)



6 EUROPHYSICS LETTERSwhere Æ is a given number, to be referred to as the `noise amplitude', and � is a randomnumber uniformly distributed in the interval [0; 1℄. We have found that the parti
le meanverti
al velo
ity V in
reases roughly quadrati
ally with the noise amplitude Æ: V � V � / Æ2.(Re
all that V � is the average downward velo
ity in homogeneous 
ase, i.e., for Æ = 0.) Inparti
ular, we �nd that when en = 1 the parti
le falls downward with a small but nonzerovelo
ity for any Æ > 0, thus showing that any amount of noise will destroy the `suspended'stationary state existent in the homogeneous 
ase for en = 1.One natural way to extend the model above (whi
h treats the grains as non-intera
tingparti
les) to render it more realisti
 is to 
onsider several grains inside the 
hannel and takeinto a

ount pair 
ollisions. Here, however, we shall seek a multi-parti
le model that buildsupon our understanding of the single-grain model rather than resort to a full-
edged granular
ow simulation [3℄. Our starting point in this dire
tion is the observation [1, 3℄ that granular
ows in a tube tend to be `
olumnar' in the sense that the grains are highly 
onstrained bytheir neighbors so that there is little transversal motion [3℄. In order to mimi
 the motionof su
h `
olumns of grains' we 
onsider the problem of N parallel verti
al plates of width afalling under gravity inside a verti
al 
hannel of length L, with Na < L. (We shall againwork in dimensionless units where g = L = 1). Interplate 
ollisions are inelasti
 but 
onservemomentum. For simpli
ity, the 
ollisions between plates as well as between a plate and a
hannel wall are des
ribed by the same set of restitution 
oeÆ
ients en and et. (Lifting thisrestri
tion does not signi�
antly alter the main results.) On the basis of our previous single-parti
le model (with smooth walls) we know that a steady state 
an be a
hieved only if en = 1and so we will 
on
ern ourselves solely with this 
ase.Owing to la
k of spa
e, we report here only the main features of the multiplate model.More details will be presented elsewhere [10℄. A typi
al result for the velo
ity distribution(in the stationary regime) a
ross the 
hannel is shown in Fig. 3, where it is plotted both themean verti
al velo
ity Vi �< viy > and the velo
ity 
u
tuation �Vi �q< (viy)2 > �V 2i as afun
tion of the plate label i = 1; :::; N for the 
ase N = 100, a = 0:0098, and et = 0:9. (Inour simulations the plates were initially pla
ed at equal distan
e from one another and givenrandom velo
ities, with the statisti
s being performed after a long transient had elapsed.)In Fig. 3a we see that the velo
ity pro�le is paraboli
|that is, we have a Poiseuille-like 
owinside the 
hannel. This is in 
ontrast with experiments [1,11℄ and numeri
al simulations [3℄ ofgravity-driven granular 
ow in a tube, where the velo
ity pro�le is 
onsiderably 
at a
ross thetube, ex
ept for a thin boundary layer. The 
attening of the velo
ity pro�le in su
h granular
ows thus seems to be a dire
t 
onsequen
e of the `granularity' of the medium, whi
h allowsfor transfer of momentum between the verti
al and horizontal dire
tions during intergrain
ollisions. (Su
h possibility is nonexistent in our plate model.) This me
hanism would thustend to render the velo
ity distribution more uniform a
ross the tube. We also note thatthe velo
ity 
u
tuation in our multiplate model is minimum in the 
entral region and exhibit
hara
teristi
 peaks near the walls, as shown in Fig. 3b. (Similar behavior was also seenin the 2D granular 
ow simulations performed by Denniston add Li [3℄, although there the
u
tuation pro�le is 
atter in 
entral region.) Noti
e, however, that the velo
ity 
u
tuationis mu
h smaller than the mean velo
ity.In 
on
lusion, we have introdu
ed a 
lass of simple models for the gravity-driven motionof a single grain (or a 
olle
tion of nonintera
ting grains) in a two-dimensional 
hannel. Themodel has the advantage of being analyti
ally treatable so that the 
ondition for the parti
leto attain a steady state and its velo
ity in su
h regime 
an be worked out exa
tly. In spiteof its simpli
ity, the model might provide a theoreti
al framework in whi
h 
ertain aspe
tsof the grain dynami
s during granular 
ows in a tube 
an be understood. For instan
e, the
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Fig. 3 { Velo
ity distribution in the multiplate model: (a) mean downward velo
ity Vi as a fun
tionof the position i along the 
hannel and (b) velo
ity 
u
tuation �Vi as a fun
tion of i. Here N = 100,a = 0:0098, en = 1, et = 0:9, and the initial velo
ities were randomly 
hosen in the interval [�1; 1℄.
ase when both walls are smooth (with en = 1 and et < 1) may des
ribe the overall motionof the 
olumn of grains down the tube, whereas the 
ase of a parti
le in a rough 
hannelmight be seen as a simpli�ed model for the a
tual motion of grains in the tube 
entral region.Similarly, the grain dynami
s in the boundary layer near the tube walls 
an be qualitativelyunderstood in terms of a variant of our model where one wall is smooth and the other oneis rough. We have also 
onsidered an extension of our model where intergrain 
ollisions aretake into a

ount in a rather simpli�ed manner. Here the idea was to model the 
olumns ofgrains formed in a
tual gravity-driven granular 
ows in a tube as verti
al plates falling undergravity inside a 
hannel and subje
ted to inelasti
 
ollisions amongst themselves and with the
hannel walls. In our multiplate model the velo
ity pro�le a
ross the 
hannel is paraboli
,while the velo
ity 
u
tuation is minimum at mid
hannel and displays a peak near ea
h wall.� � �This work was partially supported by the Brazilian agen
ies CNPq and FINEP, and byBrazil's spe
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