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ABSTRACT

It is often suggested that strange attractors occur abundantly in nature.
In this review we consider a possible definition of a strange attractor and
apply it to a gengralized version of the Birkhoff attractor (from now on

‘referred to as Birkhoff set) of a dissipative map from S1 X R“'1 to itself. We
specialize this study ton =2 and n = 3.

The first main result is that if there is a "rotationally" strange
attractor, for n = 2, then the Birkhoff set is contained in it. It is pointed
out, however, that not all irregular behavior is contained in the Birkhoff
set.

Properties of accessible points are discussed and the importance of the
concept of rotation number and the twist condition are reviewed.

Examples of Birkhoff sets in three dimensions are given. For a three-
dimensional version of the standard map we prove that order preserving orbits
persist for small enough coupling.

Note: In this manuscript we have used a "c" for the set theoretic inclusion,
and a "A" for set theoretic intersection.



I INTRODUCTION

In some cases, attractors can be easily described by ;1mosc any
definition that intuitively captures the meaning of that word. Such cases are,
in dissipative systems, simple sinks or attracting curves. However, physical
reality indicates, that the objects we wish to call strange attractors in, for
instance, dissipative fluid flows can be objects much more complicated than
these, moreover with complicated dynamics governing the motion on the
attractor. (Note that the motion on complicated sets can be simple, as on
Aubry Mather sets in two-dimensional area-preserving twist maps. The opposite

is also possible as on the unit circle in the complex plane under the

transformation z -+ 22.

In physical systems, one would like to think about the object in phase
space, and its dynamics, that one observes after transients have died out
(Eckmann and Ruelle, 1985). There is little or no general theory about such
objects.

Our approach in this work, is to study the simplest (non-trivial) cases.
The consequence is, of course, that results might be difficult to generalize.

Problems arise from the outset. It is not clear what the ideal definition
is (Milnor, 1985, Eckmann and Ruelle, 1985). Furthermore, with any reasonably
precise definition, it appears difficult to establish existence of strange
attractors. B

We will illustrate this in section 3 by applying a 'reasonable’

definition to a two-dimensional twist map, making use of strong mathematical
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results that exist in this case. The "Birkhoff attractor" (definition given
below) cannot be proven to be equal to a (rotationally) strange attractor. To
avoid confusion, we will therefore denote this set from now on by the Birkhoff
set or f.

It will result, however, that there is at most one strange sttractor,
that the Birkhoff set is unique, and that the latter is contained in the
strange attractor if there is one. We will therefore review some of the
theorems known about Birkhoff sets. Some of the results referred to are joint
work of Martin Casdagli and the author.

In section 4, we propose a generalization of the Birkhoff set to three
dimensions. We will prove that this object is non-vacuous. We will reflect on
what properties of the two dimensional case carry over to three dimensions.

Sections 2 and 3 will partly have the function of a review of this
subject, although it should be pointed out that our discussion of Birkhoff
sets is done in much more general terms than the treatments given by other
workers. Not all results mentioned are original work of the author, references

will be mentioned.
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I1 SEPARATING SETS

We consider C2 diffeomorphisms of Sl x R x R“'2 (we will restrict this
later to n = 2 and n = 3) to itself. Denmote the angular coordinate by ¢ and

the others by r and z, respectively. In addition f satisfies the following:

- f is uniformly dissipative: 0 < |[Df| =<1,

1

- there exists an trapping strip s = S1 x [-M, M] x R™ " such that f(s) ¢ s ,

- there exists a closed and bounded trapping region t = S1 x [-M, H]n'l such

that £(t) c ¢ ,
- Any invariant separating set (a definition will be given below) intersected
with t has zero Lebesgue measure.
Examples of such diffeomorphisms are given in sections 3 and 4. Note that the
second and third requirement coincide if n = 2. In that case, the last
requirement is trivial. In this work, we will restrict ourselves to the study
of separating sets contained in some fixed trapping strip s.

To each point in t we assign a rotation number iff the following limit

n
exists: p(8,r,z) = %32 SREEECEE

(Similarly, a backward rotation number can be defined when n = -« .) An orbit
is called well-ordered if f preserves the cyclic order on its projection to
the #-axis.

Here is the definition of attractor that we will work with. A compact set

a that satisfies f(a) = a is called :
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- attracting: if there is a neighborhood u of a such that a = iZO fi(u)

- attractor: if a is attracting and contains a point whose forward orbit is

dense in a.
. strange attractor: if o is an attractor and contains at least two orbits
with different rational rotation numbers.
Note that our definitions are not precisely the same as the ones in
Casdagli (1988). In the proof of the main result there is a little extra work

that we do in the following lemma:

Lemma 2.1: If a is attracting, then every open neighborhood v of a contains a

neighborhood u' of a, such that:
n: K tlw) -a

t11): f(u') c v’

Proof: Choose a neighborhood g of @ with g ¢ v and let u’ = g A u. Then

i, @ Ao
150 f(u') ¢ 150 £ (u) a
i i, .,
and a-izof(a)gizof(u),
which proves i). To prove ii), observe that (Milnor, 1985b) for every

neighborhood n, there is an Ny such that for all m > ngy. fm(u) ¢ n. So take n
to be u and define u’ = 130 fi(u). Then

fy - B £ o ) HORLE



which proves i1). [s]

We remark that this definition of a strange sttractor is a dynamical ome.
The dynamics on a has to be strange, not necessarily its geometry. The unit
circle is a strange attractor for the following (non-invertible) map on the
eylinder:

o - 28
' o=A(r-l) , 0<2A<1/2

Back to diffeomorphisms, note that a two-dimensional twist map of the cylinder
can be made to contract to any smooth invariant curve c. Then c, of course, is
attracting. Suppose points on ¢ have irrational rotation number and that the
non-wandering set of f restricted to ¢ is a Cantor set s (as in Denjoy
counterexamples). It is easy to see that ¢ is also attracting, but it is not
an attractor.

We proceed with the definition of the Birkhoff set f. An invariant set X
contained in s is called separating, if s\A has at least two connected
components, one containing r = +M, the other containing r = -M . It is clear,

that there is such a separating set, namely:

Lemma 2.2: The set X = 120 Ei(s) is separating.

Proof: First of all, we note that iZofl(s) is closed, so that its complement

{s open. Thus, the connectedness of this complement is equivalent to the

arcwise connectedness.



By definition of s, f(s) is contained in s. Let k be a closed connected

set which is contained in f(s) and contains fz(s), so that all its iterates

are separating. Let y be a curve connecting r = -M with r = +M. Denote the
n -1 n n

part of y\(f (k) A vy) that maps to r > M (r < M) under f by Yext (7int)‘

<

Then, for all n,m > O: Y:xt A 7?nt = ¢, and are open. Let

n n
Yext ' Yint

© n @ n
Text = H Yext and Yint ~ g Yint -

@ @ 2 Py :
Then Yint and Yoxt are open and disjoint in 7. Hence y contains a point that

belongs to neither. o
Remark: Any invariant set in t is contained in A.

Denote the two components of s\\ by xext and Ainc’ respectively.

Generalizing the definitions of Le Calvez (1986) and Casdagli (1988) we define

the Birkhoff set §:

ﬁs = xim: A Aext
B = ps At (2.1)
In other words, we can characterize B as those points in t for which every

neighborhood contains points that under f'l escape from the trapping strip s

past r = -M as well as points that escape past r = +M.

Lemma 2.3: ﬁs is non-empty and separating.
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Proof: If ﬂs is not separating (or if it is empty), then, using the
conventions of the last proof, there is a curve vy such that v A ﬂs -¢.

Now, v lies entirely in iin; U i;;; , because if not, then oné constructs
an open set contained in A violating the requirement that invariant separating
sets have measure zero. Both sets y U %7 and vy U A___ are closed in y and

int ext

their complement is empty, therefore they intersect in a non-empty set. O

It is clear that s\ﬂs consists of exactly two components (the complement
of ﬁs cannot have bounded invariant components because volumes are

contracted), which, using similar notation as before, will be written as

and B_ We have the following theorem of which a two dimensional

ps,int ,ext’

version was stated in Le Calvez [1986]:

Theorem 2.4: 1) B¢ 555'1nc = Sﬂs,ext ’

ii) ﬁs is the unique smallest closed invariant separating set contained in s.

Proof: i): Any X € Gﬂs int cannot lie in ﬂs ext °F ﬁs int’ therefore by

definition of ﬂs ext or ﬂs int it lies in ps.



346

Vice versa, according to (2.1), any x ¢ ﬂs lies in sxext A sxint. But
8xext contains both Gps,ext (by the definition of B) and 6ﬂs,int (by the
definition of B and the fact that 6ﬂs,int c Bs)

ii): Suppose ﬂ; is a different Birkhoff set in s. Note that to be invariant,

' . : o i < . .
ﬁs must be contained in iAO f7(s) . Then ﬂs has points, say, in ﬁs.int'

Therefore ﬂs ex and B! have at least one open set contained in s in their

t s,int

intersection. The union of such sets together with ﬂs and ﬁ; is an invariant

separating set in s contained in 130 fi(s). This contradicts the requirement

that the measure of such sets be zero. [s]

We end this section with two remarks. The first one is that B or ﬁs are

not necessarily attractors, as the example with the invariant curve, given
earlier, shows. The second is that A, as we defined it here, is in fact the

basin boundary between two sinks (at r = +w and r = -®) of f-l.
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TWO ONA!

In this section, we describe some of the main features of the Birkhoff
set in two dimensions. In particular, we relate it to the existence of a

strange attractor. In this case, we can identify s and t, and ﬂs and B.

We now consider C2 diffeomorphisms of the cylinder S1 x R to itself.

Projections to these coordinates are LY resp. 7,.

An example of a diffeomorphism that satisfies the requirements of section

2 is the dissipative (0 <A <1, k > 0) standard map f with lift:

' k c
§' = 8 + w+ Axr - 3% sin(2x0)

r’' = Ar - ;i sin(2x8)

It is easy to check that S1 x [-M,M] is a trapping region iff M > K e-ic .
Note that the determinant of Df equals X.

Whenever necessary we will work with the 1lift F of f to RZ. In this case
we will generally use capitals to avoid confusion. Note that F commutes with
the unit translation R in the ¢ direction.

The following proposition results from joint work of Casdagli (see
Casdagli (1988)) and the author. it is in fact a disclaimer: Not all chaotic
behavior (here meaning transversal homoclinic points) is necessarily contained

in g !
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Proposition 3.1 (Casdagli, Veerman): There exists a dissipative twist map,
with a hyperbolic fixed point x, such that:
-the invariant manifolds intersect transversally, in a homotopically non-
trivial way.

-x is not in 8.

Proof: One starts with a conservative map of the cylinder having small
nonlinearity and a hyperbolic fixed point, such as the above standard map for
A = 1. Theorems of Mather (1986) and Katok (1982) insure that there are

heteroclinic orbits. If the intersections are not transversal, one can make

them transversal by applying an arbitrarily (Cr-) small (area preserving)
perturbation (Robinson, 1970). The nonlinearity, k, is small, so that by the
KAM theorem there are many invariant curves left. Now, compose f with a
contraction to r = ¢ in the r direction. Here, ¢ is chosen so that between r =
c and r = x there is at least one invariant curve I' in the area preserving
case. The contraction can be chosen so small that existence and hyperbolicity
of x and transversality of its invariant manifolds are conserved, and so that
x does not cross I'. Then the region between I and r = M (M sufficiently large)

is a trapping region not containing x. s}

The following pr(position is one of the main results of this section. It
is based on a lemma of Casdagli (1988) and joint work of Casdagli and the

author.
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Theorem 3.2 (Casdagli, Veerman): If there exists a strange attractor a, then
i): Bca
ii): If B is attracting, then a = 8

iii): If a » B, then either a\B ¢ Bint or a\B c ﬁext'

Proof: i): By definition a is invariant and compact and we only have to show
that it is separating (see theorem 2.4). It is enough to prove that the lift A
of a is connected (A commutes with the unit translation R : (#,r) = (6+l,r) ).
In the following, we suppose that this is not the case.

By translation invariance, A falls apart in compact disjoint sets Ai' The

index i will be used to express translation invariance. Since two closed sets

must be a non-zero distance apart, there is a disjoint covering Vi of Ag such

that Vi = RiVO. Then, by lemma 2.1, U Vi contains an open disjoint subcovering

U U, of A, with:
i i

i
Ui =R U0

f(u) cu

(u is the projection of Ui on the cyliﬁder). Furthermore, because each Ay is
compact, U1 has at most finitely many components Uij' It follows directly that

there exist p, q, i, and j such that

dp-P
F'R (uij) c Uij' (3.1)
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By translation symmetry this holds for all i. Alsc, since a has a dense orbit,
fl(uj) for 1 in (0,...,q) runs through all cowponents of u. Therefore, these

components form a periodic Morbit" under f. So, relation (3.1) holds for all
components, and all rotation numbers are equal to p/q, which contradicts
assumptions on a.

ii): This follows from the definition of attracting and lemma 2.1. There is an
open neighborhood n of B whose forward images converge to B. Since a is
invariant (f(e)=a), a\B is empty or is contained in the complement of n. An
orbit that is dense in B cannot approximate a\B.

iii): This is proven by first observing that ﬂint and pext are invariant, and

then, that no orbit can arbitrarily well approximate points on the two sides

of B simultaneously. o

This proposition does not establish the existence of a strange attractor.
This illustrates the point made in the introduction, that with a reasonably
precise definition, existence of strange attractors is hard to establish. The
easiest case seems to be when B is attracting. There one needs to establish
the existence of a dense orbit in B. These questions are still open, as far zs

we know. (Note that A is attracting by definition.)

Corollary 3.3 (MacKay, personal communication): f has at most one strange

attractor in t.

Proof: Attractors are disjoint and Birkhoff sets are unique in t (lemma 2.4).0
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We now change to another main theme of this exposition, namely rotation
numbers and well-ordered orbits. First, we define accessible points of B.
These are the points of g that can be joined to r = +/-M by a finite curve not
intersecting B. The points that are accessible with a vertical line will be

denoted by ﬁ+ and B _.
In addition to the requirements of section 2, we demand the following:
- f is uniformly twist: gg > 0 where §' = xlf(d,r).

A curve v is called 'of positive cilt’ if its integrated angle with a vertical
oriented upward is always positive (not necessarily smaller than 2=, see Le
Calvez 1986b for more details). An example is any forward iterate of a
vertical line under f. From the twist property of f one can prove the

following statements.

Lemma 3.4 (Le Calvez, 1986): Every point of ﬂint and every point of B

accessible from below, is accessible with a curve of positive tilt starting

from r = -M. Similarly for points accessible from above.

Lemma 3.5 (Birkhoff, 1932): f-l restricted to ﬂ+/_ is a non-decreasing circle

map, with at most countably many discontinuities. Discontinuities occur if

p(B) * p(B).
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Here, p(ﬂ_/+) is minus the rotation number of p_/+ under f'l, which, one knows

by virtue of lemma 3.5, exists.

Proposition 3.6 (Le Calvez, 1986): The Birkhoff set has well ordered orbits of

all rotation numbers in the interval [p(B), p(B)].

These three statements seem to indicate that there is a parallel between
the dynamics on the Birkhoff set and that on the circle under a non-invertible
circle map. This parallel breaks down when one considers the following

counter-example.

Lemma 3.7 (Le Calvez, 1986): There is a continuous one-parameter family of

maps fA' such that px(ﬂ_) has discontinuities.

It is not clear how often these discontinuities arise, since Le Calvez’ proof
is partly constructive and partly based on contradiction. It is worth noting,

that under some condition (absence of invariant curves ?), 2\ might be

continuous. These ideas have been pursued in Casdagli (1988).
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IV_BIRKHOFF SETS IN THREE DIMENSIONS

In this section, we study examples of Birkhoff sets in three dimensions.
The fact that we have only one angular coordinate makes that properties of
rotation numbers are somewhat easier to study than, say, in the case of two
coupled dissipative standard maps.

We consider a two-dimensional twist map coupled to a third dimension, in
such a way that we obtain a C! diffeomorphism (which could be a model for a
four-dimensional dissipative flow). Rather than stating abstract requirements,

we give an example:

A {0 + w + Ar - 5%

k sin(2x8) + :z} mod 1

f : r' = Ar - ;; sin(2x6)

2t = (1 - )z + €Or - 5= sin(@x0))

2
The determinant of f now equals M(1 - ¢). By considering first the r-

equation and then the z-equation, it is easy to see that, for any
M > k/2x(1 - A), there is a trapping strip s = S1 x [-M,M] xR and a trapping

region t = S1 x [-M,M] X [-M,M]. The validity of the assumption that A A t has

measure zero will be proven in lemma &4.1.
Now, observe that although s\ﬂs consists of precisely two components, the
same is not necessarily true for t\B. The reason is that there might be

tongues emanating from the large z region protruding into t. This situation is

depicted in figure 4.1. This would not be possible if ps were a graph for
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|z| > M . We will assume that this is so (otherwise one can adapt the

definitions).

Lemma 4.1: The Lebesgue measute.of AAt, u(A At), is zero.

Proof: In the two dimensional case, this is obvious. However, here we do not

necessarily have that f(A A t) = A A t.

Define the half-strips sz and 56:

s;-(’il lr] <M, z> 44 ),
- -
so= (x| |r| =M, z< -M ),

and define for i > 0:
stV e Rep eI g0 for all § > i and not for § < i )
These regions are disjoint, because f is invertible. To prove that for each i,

n(s;(')) = 0, just suppose that it is equal to some ¢ > 0. Then, under

backward iterates of f:

-(n+l) , _+(-)
lim uif (31 )} 1 -1 (4.1)
me LSRR T igititey - IDE
n{f (s4 )}
On the other hand, since r remains bounded between -M and +M and z grows

asymptotically at most as 1/(1 - ¢), one also has:

(n+1) | _+(-)
’.‘{- B 3} 1 %.2)

{f (s+( ) } €
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Clearly, (4.1) and (4.2) are contradictory, unless u(sj\ ’) = 0. Now, f
consists of a countable union of si's plus a set that never leaves t under

-1

£ *. Therefore, u(A A t) = 0. (s}

If ¢ = 0, the three dimensional space is foliated by invariant surfaces z
- constant on the dynamics as discussed in the previous section. Suppose one
projects to the z = 0 plane. In what sense does this projection resemble the ¢

- 0 case, if ¢ is positive but small ? The following proposition gives a clue.

Proposition 4.2: Let y be a q periodic orbit in t for ¢ = 0, which is
hyperbolic in the two dimensional system (z = 0). There exist e(y) > 0, such

that for all € < e¢(vy), there exists a q periodic orbit v, whose prcjection (in

the z = 0 plane) is close to 7.

Proof: Denote the projection to the z = 0 plane by x3. Define

H(e,z;0,x) = x3fg(0,r.z) - (8,r).
Then, H(O,zo;oo,ro) = 0 , for all LN in R.
Let f be the two dimensional projection of f wﬁen e = 0. Since £9 has a
hyperbolic fixed point at (ao,ro), we can do a linear coordinate
transformation that diagonalizes DE Call the eigenvalues By and By Since

the determinant is an invariant, one gets:
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195 H(O0.25:00,x0)] = (b - Dy - 1),

which is not equal to zero. Then the implicit function theorem applies. For
each zo, there are open neighborhoods A of (e-O,z—zo) and B of (0-00,r-r0)
such that for (e,z) in A

H(e,z;0(e,2),r(e,2)) =0

where 6(e,z), r(e,z)
are C1 functions and unique. But we know there is a solution for each pair
(0,20) and so, for constant ¢ there is a C1 curve c of solutions as in figure

4.2. This curve can be parametrized by its z-coordinate. It is the locus of
points in t which, under q iterates of f, don't change their #- and r-

coordinates.

Define A(z) as the z-coordinate of fq(ﬂ(c(z)),r(c(z)),z). Since we

consider points in the region S1 X [-M,M] X R, one can deduce from the
defintion of f, that for large enough z, A(z) < z. By the same token, for z

negative with large enough modulus, one has A(z) > z. So, somewhere in between

A(z) equals z, which is the locus of the fixed point of f£9. o

This proposition implies that all orbits, including the ones that are
well ordered, up to a certain period, survive for ¢ small enough, and stay in
roughly the same location, and well ordered.

In the following result we use the notation of the last proposition.
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Theorem &4.3: If, for ¢ = 0, there exists a strange attractor a, then for each
hyperbolic periodic orbit in a there exists an n(y) such that for all

e < n(y): i) the projections of v and v, are close,

ii) if v ¢ B , then Y, € B .

Proof: The first part of this theorem is just the previous proposition.

For the second part, observe that Ve € B is equivalent to the statement
that Ve has a stable branch extending into r < -M and one into r > M.

Since a cannot contain sinks, we have that, at ¢ = 0, one eigenvalue is

smaller than 1, one is greater than 1 (hyperbolicity), and one equals 1. One
then proves easily that the eigenvalues and eigenvectors of ng are continuous

at € = 0. Therefore, for ¢ small, the local invariant manifolds change

continuously as a function of e. The inverse iterates of the local stable
manifolds are also continuous. So, if, for ¢ = 0, stable branches are not
contained in s, then for ¢ small enough, they are not bounded by |r| = M

either. o

Here starts the speculative part of this review. What we are really
after, are answers to the questions: What sort of notions can be generalized
from two to three dimensions, and what new phenomena come into existence ? The
results seem to indicate that the projection of B changes very little as long
as € is small. One would expect, then, that the limit set w(B) changes its

appearance little for small ¢. For ¢ = 0, if p = a, then 8 = w(B). Does that
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mean that the strange attractor for small ¢ has the same appearance ? This
similarity of appearance might break down either at high periods, to be seen
by magnifying, or else at some finite value for ¢. In the latter case one
might expect some transition to more complicated behavior, from chaotic ’in
two dimensions' to chaotic ‘in three dimensions’. It is possible that for
instance the Hausdorff dimension of w(f) changes suddenly. In the former case,
maybe more plausible, there might still be cross-over phenomena.

Whatever the case may be, we have to take into account,that we proved

existence of at least one 7, for each hyperbolic Yo (for small enough €). But

in fact, it does not appear unlikely that there are many more, though
typically finitely many. In this sense, behavior is somewhat more complicated
than in the ¢ = 0 case.

Is it possible to define a notion of vertical accessibility, with which

vertically accessible points under f'l are well ordered ? Then one could

define a rotation interval [p(ﬂ_).p(ﬁ+)]. Are the boundaries of this interval

always or almost always (see lemma 3.7) phase-locked ? Do there exist
(possibly well ordered) orbits for all rotation numbers in that interval (as

in proposition 3.6) ? It is almost clear that lemma 3.4 cannot be generalized.
By writing down the partial derivatives of f, one notes that a vector v whose

projection under x3 has no component in the ¢ direction, does not necessarily
have an image under Df whose projection makes a positive angle with the

vertical. So, what remains of the advantages of twist ?
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Finally, the question we started with, of course, is: What is the
connection between a and B, or a and w(B) ? Theorem 3.2 cannot be extended

easily. The reasoning of its proof yields the following:

Proposition 4.4: If there is a strange attractor, it contains a connected,

homotopically nontrivial set.

Proof: As theorem 3.2. o

However, it is not clear, whether B (or w(B)) contains (or is) the unique

smallest invariant connected homotopically nontrivial set. Still, we speculate
that something like proposition 3.2 will hold with B replaced with w(B). It is
our also our suspicion, that for e small enough, ‘strangeness’ can be defined

as in section 2.
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Figure 3.1: The invariant curve T of a conservative twist map becomes the
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boundary of a trapping region if dissipation is added.
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Figure 4.1: If a tongue emanates from the large z region into t, then it is

possible that t\B separates t in three components.
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Figure 4.2: The application of the implicit function theorem in the proof of

proposition 4.2.





