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1 Introduction

Given a metric space (X, d) and two distinct points p, q ∈ X, the mediatrix of p and q, which
we’ll denote Lpq, is

Lpq := {x ∈ X|d(p, x) = d(q, x)}.

In other work it is also known as an equidistant set, bisector, ambiguous locus, midset,
medial axis, or central set ([3],[13]). In Brillouin spaces, a large class of metric spaces
which includes all Riemannian manifolds, it was shown in [19] that all mediatrices have the
following minimal separating property:

Definition 1.1. A subset M ⊂ X of a topological space X is called a separating set if X \M
is disconnected. M is minimal separating in X if M is a separating set for X and for any
M ′ ⊊M , X \M ′ is connected.

Additionally, it is shown in [1] that when X is a compact Riemann surface then Lp,q

is a finite topological graph. Then, in [3], this result is generalized to show that for any
compact 2-dimensional Alexandrov space X and any {p, q} ⊂ X, Lp,q is a finite topological
graph. That leads us to investigate which topological graphs can be realized as minimal
separating sets in surface of genus g. (From here on unless otherwise specified, surface is
taken to mean a connected compact oriented surface without boundary).

In this paper, we will provide a classification of precisely when a graph embedded in a
surface is a minimal separating set and then use that result to classify the topological graphs

*This work was made possible in part thanks to Research Computing at Portland State University and
its HPC resources acquired through NSF grant numbers 2019216 and 1624776.
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which can be realized as minimal separating sets in a surface of genus g. We then use this
classification to write a computer program which determines the number of homeomorphism
classes of minimal separating sets in surfaces of genus at most 4.

In section 2 we define useful terminology, and establish a simple but useful lemma.
Then in section 3, we prove a lemma relating minimal separating embeddings with more
commonly studied cellular embeddings and then use this to establish a relationship between
general (potentially disconnected) minimal separating sets in a surface and connected min-
imal separating sets, which are more easily compute. Section 4 introduces the language of
topological and combinatorial maps to describe embeddings of connected graphs, and then
more general objects called hypermaps, which we can use to speed up our computation.
Section 5 describes an algorithm to find all homeomorphism classes of graphs which embed
as minimal separating sets in a surface and has computational results from using that algo-
rithm to find all graphs that embed as minimal separating sets in surfaces of genus at most
4.

Reframing the problem in terms of combinatorial maps presents an interesting connec-
tion to existing work in map enumeration, particularly the enumeration of unrooted maps
discussed in [11], [14], and [15] which we discuss in the concluding remarks. We require an
actual list of maps in order to determine numbers of homeomorphism classes of minimal sep-
arating sets for a given genus, which makes the purely enumerative methods in those papers
insufficient here, but the particular set of combinatorial maps we consider presents some
difficulties in applying their methods and provides a set to consider for map enumeration
problems.

2 Background and Definitions

As observed in [1], a graph G embeds as a minimal separating set in a surface S of genus
g, then it also embeds as a minimal separating set in any surface of genus greater than g.
Such an embedding can be constructed by taking a minimal separating embedding η of G
in S and adding handles within a component of S \ η(G) until the resulting surface has the
desired genus.

Given this observation, we define the following three sets:

Definition 2.1.
i) Mg is the set of all graphs which can be realized as minimal separating sets in a surface
of genus g.
ii) Lg is the set of all graphs which can be realized as minimal separating sets in a surface
of genus g, but not in a surface of genus g − 1. We say they have least separating genus g.
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iii) Cg is the set of all connected graphs with least separating genus g.1

We restate the observation from [1] as Lg = Mg \Mg−1. The relationship between Lg

and Cg is more involved and we return to it later. For now we merely remark that it is often
easier to deal with connected graphs so it will be convenient to focus on the connected case.

Much of what follows will consider graphs as combinatorial objects so we should men-
tiona a key distinction between topological graphs and combinatorial graphs which is the
distinction between homeomorphism and graph isomorphism.

Any topological graph G with a vertex v of degree 2 is homeomorphic to another
topological graph Ĝ where v and its 2 incident edges are replaced by a single edge. So,
given a connected topological graph G (with no component homeomorphic to a circle), we
can find a unique topological graph Ĝ, homeomorphic to G, and with no degree 2 vertices,
which we can construct by replacing all degree 2 vertices by single edges. Also, given any G
we can construct an infinite family of graphs which are homeomorphic to G by repeatedly
replacing single edges with 2 edges subdivided by a vertex. This means that every mediatrix
is homeomorphic to infinitely many topological graphs, so, when we talk about topological
graphs, we always implicitly talk about equivalence classes of graphs up to homeomorphism,
and identify each equivalence class with its unique representative with no degree 2 vertices
(except in the case of circles, which we identify with the graph composed of a single vertex
with a loop).

For the circle, we can see immediately that this embeds as a minimal separating set
any surface, and in [1] it’s shown that any minimal separating set in a surface of genus 0 is
homeomorphic to such a graph. Thus C0 = M0 consists of the graph with one vertex and
one loop, and for all g ≥ 1, we identify elements of Cg with their unique representative with
no degree 2 vertices.

Whether a graph can be realized as a minimal separating set for a surface X is a
question about embeddings of a graph, so we introduce some terminology to discuss graph
embeddings.

Definition 2.2. An embedding of a (topological) graph G into a surface S is a continuous
function η : G → S such that η is a homeomorphism onto its image. We say an embedding
is a cellular embedding or a topological map2 if X \ η(G) is homeomorphic to a collection of
open discs.

Given a surface X, a topological graph G may have numerous embeddings, some of
which are minimal separating sets, some of which are non-separating, and some of which
are separating but not minimal separating. Consider the examples in Figure 1.

1M for minimal separating, L for least separating genus, and C for connected
2The name ‘map’ emphasizes that these look like maps in the sense of cartography. The components of

X \ η(G) are the countries and the edges of G are the borders between them.
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Figure 1: Three embeddings of the figure 8 in the torus. Each is shown drawn on the standard
square torus with sides identified (upper) and on the torus as a donut. The left is minimal separating
and the other two are not.

Because of this, we aim first to classify minimal separating sets in terms of equivalent
embeddings. Then, a topological graph will be realizable as a minimal separating set in a
surface S if it has such an embeding. Obtaining an actual list of such graphs can then be done
as follows: Use the classification to obtain a complete list of equivalent minimal separating
embeddings, then construct a list of minimal separating sets up to graph homeomorphism
by testing the graphs underlying the embeddings for graph isomorphism on a computer.
This notion of equivalence is formalized with the following defintion.

Definition 2.3. Let G be a topological graph, X be a surface, and η : G → X, ψ : G →
X be embeddings of G into X. We say η and ψ are equivalent embeddings if there is a
homeomorphism f : X → X such that ψ = f ◦ η. We say that two minimal separating
sets M1,M2 ⊂ X are equivalent minimal separating sets if they can be realized as equivalent
embeddings of the same topological graph.

From now on, we’ll freely use the phrase minimal separating set in place of the more
precise but tediously long equivalence class of minimal separating sets.

Since the underlyling surface of an embedding is oriented, given an edge e of G, it
makes sense to speak of the two sides of η(e). Thinking of starting at a point in η(e) and
walking along η(e) towards one of the two endpoints of η(e), the two sides are the left and
right of the walker.

We can now immediately state the following result about when a graph embedding in
a surface is minimal separating:
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Lemma 2.1. An embedding η(G) of a graph G in a surface X is minimal separating in X
if and only if X \ η(G) has two connected components, A and B, and for every edge e of G,
η(e) has A on one side and B on the other.

Proof. If η(G) is minimal separating, then certainly X \ η(G) has at least two components,
which we call A,B, . . .. By minimality, for any edge e of G, (X \ η(G)) ∪ η(e) is not
separated. Thus η(e) is incident to all the components of X \ η(G). Thus there are exactly
two components A and B of X \ η(G) with A lying to one side of η(e) and B lying to the
other.

Now assume η(G) is an embedding with X \ η(G) having two disjoint components A
and B, and for all edges e of G, η(e) is incident to A on one side and B on the other. η(G)
is clearly separating so we just need to address minimality. Since each edge e satisfies η(e)
is incident to A on one side and B on the other, for any point x ∈ η(e), there is a path in A
from any point in A to x, and a path in B from any point in B to x. Thus X \ (η(G) \ x)
is connected and η(G) is minimal separating.

3 Disconnected Graphs and Non-Cellular Embeddings

We wish to use powerful existing tools for working with cellular embeddings of connected
graphs, but in general, the graph embeddings which give us minimal separating sets are
neiher connected nor cellular. As an example, consider the left embedding from Figure 1.

Definition 3.1. Given a graph G and an embedding η : G→ X.
i) The ribbon graph R(η) is a collared neighborhood of η(G) that is small enough to retract
to η(G).
ii) Xη is the surface obtained by gluing discs onto the boundary components of R(η).

We obtain the following results relating Lg with the sets Ch for h ≤ g.

Theorem 3.1. Let G be a topological graph which is the disjoint union of graphs G1 and
G2. Then

G ∈ Lg ⇐⇒ Gi ∈ Lgi with g = g1 + g2 + 1 .

Proof. Let G ∈ Lg and η be a minimal separating embedding of G into a surface X with
genus g. We’ll let η1 and η2 be the restriction of η to G1 and G2 respectively. Consider
the decomposition of X into R(η) = R(η1) ∪ R(η2) and the two connected components of
X \ R(η) as shown in Figure 2. As in the figure, we color one component white and the
other black. The white punctured sphere has a hole for each white boundary component of
R(η) similar for the black punctured sphere. By cutting both the black cylinder along the
red curve Cb, and cutting the white cylinder along the red curve Cw, and “plugging” the
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Figure 2: An example where G1 is a single loop, G2 is a pair of loops, and gluing the components
together recovers a minimal separating embedding of G = G1 ∪G2 in a surface.

new holes by gluing on discs, when we glue the spheres back onto R(η), we see that we now
have two surfaces, X1 and X2 with ηi minimally separating in Xi. Define gi and χ(Xi) to
be the genus and Euler characteristic of Xi.

Now suppose we reassemble X from X1 and X2 by cutting out an open disc from the
black components of X1 and X2 and identifying the boundaries (along Cb). Similarly for the
white components (identifying along Cw). Then we have (taking into account that we took
out two open “white” disks and two “black” ones.)

χ(X) = (χ(X1)− 2) + (χ(X2)− 2)− 0

2− 2g = 2− 2g1 + 2− 2g2 − 4 .

from which the condition on the gi follows. If, for example, g1 is not the least separating
genera of G1, then it can be embedded in a surface of genus h1 < g1. That surface can be
joined to X2 to get a minimal separating embedding of G in a surface of genus

h1 + g2 + 1 < g

which is impossible by hypothesis. The same reasoning works for g2. This proves “=⇒”.
Now we prove “⇐=”. Let both Gi are in Lgi . The same method of puncturing the

surfaces and gluing them together produces a minimal separating embedding of G of genus
g = g1 + g2 + 1. Assume g there is an embedding of G in a surface of genus g′ < g.
Then cutting up the surface again — exactly as before — we will obtain minimal separating
embeddings in two surfaces X ′

i with genera g′i such that at least one of these satisfies g′i < gi,
contradicting the assumption of the gi.
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Corollary 3.1.1. Let G ∈ Lg and let G1, . . . , Gk be the connected components of G. Then
there exist g1, . . . , gk such that for each i ∈ 1, 2, . . . , k we have Gi ∈ Cgi and g = (k − 1) +∑k

i=1 gi.

Proof. The proof follows from Theorem 3.1 by induction on the number of connected com-
ponents of G.

With this result, we now know that the contents of the sets Ch for all h ≤ g determine
the contents of Lg and in Section 5 we’ll use this to compute |Lg| in terms of the |Ch| for
h ≤ g. So, from here on we restrict our investigation to the sets Cg, the connected graphs.

4 Topological and Combinatorial Maps

Given a topological map or equivalently a cellular embedding, there is discrete data called a
combinatorial map which allows us to recover G,X, and η up to equivalence of embeddings.
These objects are equivalently known as rotation systems, fat graphs, ribbon graphs3, or
dessins d’enfants ([4], [12],[10]). Precise definitions vary a bit from source to source based
on the types of embeddings of interest to the author (particularly if the author is interested
in non-orientable surfaces). We use the following definition.

Definition 4.1. [10] A combinatorial map is an ordered triple4 (σ, α, φ)5 of permutations
in S2n (the symmetric group on 2n elements), such that

i) α is an involution with no fixed points.

ii) The permutation group ⟨σ, α⟩ = ⟨σ, α, φ⟩ acts transitively on the set {1, 2, . . . , 2n}.
iii) σαφ = 1.

The second condition is equivalent to the underlying graph being connected.
We give an example of the correspondence between combinatorial maps and connected

topological maps (see Definition 2.2). For a proof of this, see [10]. Given a connected
graph G and a cellular embedding of G into an orientable surface X, the following four-step
reasoning associates a combinatorial map to our embedding of G (see Figure 3).

1. Assign labels to the edge ends and mark them on the surface X as described above.

2. Define α as the involution that swaps the two ends of each edge. The number c(α) of
cycles of α gives the number of edges.

3However, we use the term ribbon graph exclusively as in Definition 3.1.
4Or, equivalently, an ordered pair (σ, α).
5The letters σ, α, φ come from the French sommet for vertex, arc for edge and face for face[5].
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Figure 3: An embedding of a graph in the plane is shown on the left, and the same em-
bedding equipped with a labelling of the edge ends is shown on the right. Each label is im-
mediately clockwise of its corresponding edge end. The corresponding combinatorial map is
σ = (1, 2, 3)(4, 8, 7)(5, 6, 9, 10), α = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10), φ = (1, 8, 9)(2, 6, 10, 4)(3, 7)(5).

3. Define σ as the permutation that assigns the next (counterclockwise) edge at each
vertex. The number c(σ) of cycles of σ gives the number of vertices.

4. Then φ = (σα)−1 turns out to be (see below) the ‘boundary walk’. That is: the cycles
of φ are precisely the edges that form the boundary of each component (or cell) of the
complement of the graph. The number c(φ) of cycles of φ gives the number of faces.

The procedure above certainly gives a way to associate a triple of permutations in S2n

to any connected graph with n edges. Since G is connected it’s possible to walk from any
edge end to any other one by travelling to the opposite end of the edge (applying α), then
moving to another edge end incident to the current vertex (applying σ) and repeating. This
shows that ⟨σ, α⟩ acts transitively on {1, . . . , 2n}. It remains to verify that φ in Definition
4.1 is really a boundary walk. We illustrate this with a simple picture looking at two vertices
with an edge between them, see Figure 4.

Notice that given any connected graph G and an embedding η : G → X (cellular or
not) we can construct a combinatorial map with the same ribbon graph as η by steps 1-3
of the procedure described above, but if the embedding isn’t cellular then point 4 will not
be true. Thus for any embedding of a connected graph we can talk about the combinatorial
map associated to the embedding.

Lemma 4.1. Given a combinatorial map η := (σ, α, φ) of a cellular embedding η, we have
that the genus gη of the cellular surface is given by

2− 2gη = V − E + F = c(σ)− c(α) + c(φ).

Proof. This follows directly from the four points listed above.
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Figure 4: With counterclockwise as the positive orientation we have α(4) = 3 and σ(3) = 1, so
(σα)(4) = 1. Then (σα)−1(1) = 4, and the edge with label 4 is the edge following the edge with
label 1 in counterclockwise order about their shared face.

To deal with the matter of a choice of labelling, there is the notion of isomorphism of
combinatorial maps, again following [10]. It captures the idea that two combinatorial maps
arising from different choices of labelling on the same topological map are really the same
object. In terms of the S2n action on {1, . . . , 2n}, relabeling can be thought of as conjugation
by the relabelling permutation ρ, and we arrive at the following definition:

Definition 4.2. We say ρ ∈ S2n is an isomorphism between combinatorial maps (σ1, α1, φ1)
and (σ2, α2, φ2) if

ρ−1σ1ρ = σ2, ρ−1α1ρ = α2.

And this, of course, implies that ρ−1φ1ρ = φ2.

There is one more attribute of combinatorial and topological maps which we must
introduce, the dual. This is generalization of the dual of a graph embedded in the plane (or
sphere) to a graph cellularly embedded in an arbitrary surface.

Definition 4.3. The geometric dual of a topological map M is the map M∗ constructed as
follows: We place a single vertex of M∗ inside each face of M . Then, for every edge e in
M , we place an edge in M∗ running between the vertices of M∗ corresponding to the faces
of M incident to e, with new new edge passing through the midpoint of e.

Corollary 4.1.1. If (σ, α, φ) is combinatorial map with M the corresponding topological
map, then (φ, α, σ) is the combinatorial map corresponding to M∗ [10].

Proof. Definition 4.3 immediately implies that the faces of the dual of M correspond to the
vertices of M and so forth.

So far, all of the sets of minimal separating sets we’ve discussed are very difficult to
enumerate directly. We now introduce a set that will be easier to directly enumerate, and
which we will use to determine the contents of Cg,Lg, and Mg.
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Definition 4.4. We define the set6 Eg to be the set of all isomorphism classes of combinato-
rial maps (Definition 4.1) (σ, α, φ) such that (σ, α, φ) is the combinatorial map of a minimal
separating set in a surface of genus g, but not in any surface of genus less than g.

We’ll abuse language in the future and refer to a combinatorial map (σ, α, φ) as an
element of Eg when we really mean the isomorphism class of combinatorial maps with rep-
resentative (σ, α, φ). We now aim to enumerate the elements of the sets Eg.

Lemma 4.2. Let G be a connected graph and η : G → X be an embedding of G in a
surface X such that X \η(G) has two connected components. Let Xw, Xb, Xη be the surfaces
constructed as described in the previous section. Let g, gw, gb, gη be the genera of X,Xw, Xb,
and Xη respectively (with the holes plugged). Then

g = gη + gw + gb + c(φ)− 2 =
c(φ) + c(α)− c(σ)

2
+ gw + gb

where c(φ) is the number of (white plus black) faces of Xη and gη is given by Lemma 4.1

Proof. We obtain X from Xη by gluing Xw and Xb along the boundary of the ribbon graph
R(η) corresponding to the embedding η. R(η) is a surface of genus gη from which Fη

faces have been removed. By Definition 4.1, Fη = c(φ). So its Euler characteristic equals
2 − 2gη − c(φ). Similarly, Xw and Xb had nw, resp. nb disks removed and so they have
Euler characteristic 2 − 2gw − nw and 2 − 2gb − nb, where, of course, nw + nb equals c(φ),
the number of holes in R(η). Since the Euler characteristic is additive, we obtain

2− 2g = 2− 2gη − c(φ) + 2− 2gw − nw + 2− 2gb − nb = 2− 2(gη + gw + gb + c(φ)− 2) ,

which implies the lemma.

Clearly, the least separating genus is obtained from Lemma 4.2 by setting gw = gb = 0.
This yields the following corollary.

Corollary 4.2.1. For g > 0, a combinatorial map (σ, α, φ) is in Eg if and only if it has no
degree 2 vertices, the dual map (φ, α, σ) is a combinatorial map of a bipartite graph, and

g =
c(φ) + c(α)− c(σ)

2
− 1 .

Proof. The equation for g is obtained from Lemma 4.2 by setting gw = gb = 0. The no
degree 2 vertices condition is a consequence of our choice in section 2 to identify connected
minimal separating sets with a representative without degree 2 vertices (for g > 0). The
condition that (φ, α, σ) is bipartite is equivalent to Lemma 2.1.

6E for embedding
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Lemma 4.3. If (σ, α, φ) ∈ Eg, and the underlying graph has E edges, then 1 + g ≤ E ≤ 4g
for all g > 0.

Proof. Recall (from section 2) that for g > 0, we can assume there are no degree 2 vertices
in a minimal separating set.

Additionally, since each edge is incident to both components of the separated surface
the degree of each vertex must be even. Thus every vertex has degree at least 4 and we get
E ≥ 2V or V ≤ E

2
. By separating there must at least be two faces, F ≥ 2. So using the

language of Definition 4.1 and Corollary 4.2.1 we have

g =
E + c(φ)− V

2
− 1 ≥

E + 2− E
2

2
− 1

which gives the second inequality of the lemma.
From Corollary 4.2.1 we obtain that

c(α) = 2g − c(η) + c(σ) + 2 .

By Lemma 4.1, g = gφ + c(η)− 2. Substitute this in the above expression to get

c(α) = g + (gφ + c(η)− 2)− c(η) + c(σ) + 2 = g + gφ + c(σ) .

Since gφ ≥ 0 and c(σ) ≥ 1, the first inequality follows.

As we’ll see in the next section, we can construct an algorithm to enumerate the
elements of Eg with a computer, but we can make a much faster algorithm if we introduce
the following generalization of combinatorial maps:

Definition 4.5. A hypermap is a triple of permutations (ψ, ρ, θ)7 in Sn such that
i) ⟨ψ, ρ, θ⟩ acts transitively on {1, . . . , n}
ii) ψρθ = 1.

Note that this definition is effectively a relaxation of Definition 4.1, since it no longer
requires that one of the permutations be a fixed-point-free involution. Dropping that re-
quirement means we need no longer require the set of labels has an even number of elements.
Hence the other change: considering permutations in Sn for any n, rather than only even n.

Given a 2-colored bipartite combinatorial map (σ, α, φ), we construct the corresponding
hypermap by considering the colored labelled topological map corresponding to (σ, α, φ). We
remove the label from one end of each edge so that now we have one label per edge (see

7Traditionally, the letters (σ, α, φ) are used for hypermaps, just as for combinatorial maps, but since we’ll
be discussing the two together, we use (ψ, ρ, θ) for hypermaps and (σ, α, φ) for combinatorial maps.
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Figure 5: On the left is a drawing of the combinatorial map σ = (1, 2, 3, 4)(6, 7), α =
(1, 5)(2, 6)(3, 7)(4, 8), φ = (1, 8, 4, 7, 2, 5)(3, 6), and on the right is the corresponding hypermap
ψ = (1, 2, 3, 4), ρ = (2, 3), θ = (1, 4, 2).

Figure 5). If σ, α, φ were elements of S2n, we now have n labels remaining. If needed,
change the labels to be the numbers {1, 2, . . . , n}. Now the cycles of ψ correspond to the
black vertices of the map, and the cycle corresponding to a vertex is the list of incident
edges in order as we travel around the vertex. The cycles of ρ are defined similarly, but for
the white vertices instead of the black vertices. This defines θ, since θ = (ψρ)−1, but the
cycles of θ correspond to the faces of the map, but each cycle has half the length of the
corresponding cycle in φ. The genus of (ψ, ρ, θ) is equal to the genus of (σ, α, φ) and also
satisfies the formula:

2− 2g = c(ψ) + c(ρ)− n+ c(θ)

where ψ, ρ, θ ∈ Sn. For proofs of these properties and more details, see [10] and [20]. It’s
a result of [20] that there is a one to one correspondence between isomorphism classes of
2-colored combinatorial maps of bipartite graphs on n edges and isomorphism classes of
hypermaps (ψ, ρ, θ) ∈ S3

n.
Isomorphisms of hypermaps are defined analogously to isomorphisms for combinatorial

maps:

Definition 4.6. An isomorphism between two hypermaps (ψ1, ρ1, θ1) and (ψ2, ρ2, θ2) in Sn,
is a permuation γ ∈ Sn with

γ−1ψ1γ = ψ2, γ−1ρ1γ = ρ2, γ−1θ1γ = θ2.

Note that as an immediate consequence, any automorphism γ of a hypermap (ψ, ρ, θ)
must commute with each of ψ, ρ, and θ.

Translating Corollary 4.2.1 into terms of hypermaps we have
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Theorem 4.4. A combinatorial map (σ, α, φ) is an element of Eg if and only if its dual map
(φ, α, σ) corresponds to a hypermap (ψ, ρ, θ) satisfying

g =
c(ψ) + c(ρ) + n− c(θ)

2
− 1

where n is the number of edges of the combinatorial map and θ has no fixed points.

Proof. From the construction of the hypermap corresponding to a colored bipartite map, we
have c(φ) = c(ψ)+ c(ρ), c(α) = n, and c(σ) = c(θ). Similarly, θ has a fixed point (a 1-cycle)
if and only if σ has a 2-cycle (a degree 2 vertex). Then the proof follows immediately from
Corollary 4.2.1.

5 Computation and Results

Here we introduce an algorithm to enumerate the elements of Eg. Then we use the results
of the previous section to determine the sizes of |Cg|, |Lg|, and |Mg|.

At this point we’ve bounded the number of edges by g + 1 ≤ E ≤ 4g so we could
search all combinatorial maps in S2E to try and find all of the minimal separating ones.

Here’s a possible approach. For each E with g + 1 ≤ E ≤ 4g, we construct all
fixed-point-free involutions in S2E as candidate αs, and then for every σ ∈ S2E we check if
(σ, α, (σα)−1) is in Cg using Corollary 4.2.1. We can fix a choice of α (fixing the choice of
labels attached to each edge) and can use the fact that all cycles of σ have even length of
at least 4 to reduce our search space.

From Definition 4.4, we can determine the elements of Cg if we know the contents of
Eh for all h ≤ g. Each element of Eh has an underlying graph G. So, for each element of Eg
we check the sets Eh for h < g, and see if any contain another combinatorial map with the
same underlying graph. If not, then g is the least separating genus of G and G ∈ Cg.

Just for genus 3, this would involve an enormous search, (S24 has 24! ∼ 6.2 × 1024

elements and 24!
6!

∼ 8.6×1020 candidate σs once we fix α). But we would like to eliminate as
much computational work as possible, so we take advantage of the correspondence between
2-colored bipartite combinatorial maps and hypermaps due to Walsh[20]. Translating to the
language of hypermaps allows us to effectively trade the “all cycles of σ have even length”
condition for smaller symmetric groups to search, saving a great deal of computing time.

Here is the algorithm we use: For each E with g + 1 ≤ E ≤ 4g, we construct list
of triples (P,R, T ) of possible cycle types for a hypermap (ψ, ρ, θ) satisfying the conditions
of Theorem 4.4. In the correspondence between 2-colored maps and hypermaps, ψ and ρ
correspond to the two colors of vertex, and the actual choice of coloring doesn’t matter
to us, so we always pick P and R so that ρ has no fewer cycles than ψ. In all the most
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computationally demanding cases this results in there being more permutations with cycle
type P than with either R or T . Since our assignment of labels is free, so for each triple we
fix a permutation of cycle type P to be ψ. Since ψρθ = 1, the choice of any two elements
of (ψ, ρ, θ) determines the third uniquley. Then from R and T , we select whichever cycle
type corresponds to the smallest number of permutations. Again, without loss of generality,
assume that it is R. Rather than look at every permutation with cycle type R, we note that
we’re only interested in isomorphism classes, and whenever a permutation γ commutes with
ψ, we can see from Definition 4.6 that (ψ, ρ, θ) is isomorphic to (ψ, γ−1ργ, γ−1θγ) for any ρ, θ.
So, we find a representative from each orbit of the permutations with cycle type R under
conjugation by the centralizer of ψ, and check each representative ρ to see of (ψ, ρ, (ψρ)−1)
forms a hypermap satisfying the conditions of Theorem 4.4. This generates a complete list
of isomorphism classes of hypermaps corresponding to the elements of Eg. Unfortunately,
for the purposes of finding |Eg|, we’ve overcounted, since Walsh’s correspondence is between
2-colored bipartite maps and hypermaps, and the choice of how to assign the colors means
that most elements of Eg correspond to two distinct hypermaps. Since we always choose
cycle-type R to have at least as many cycles as P , we only run the risk of double-counting
when P and R have the same number of cycles. In that case, the only time an element of Eg
doesn’t correspond to two isomorphism classes of hypermaps in our count is when switching
the coloring gives an isomorphic hypermap. I.e., (ψ, ρ, θ) is isomorphic to (ρ, ψ, θ). So for
each hypermap (ψ, ρ, θ) that our search returns, if it has the potential to be double counted,
we check if (ρ, ψ, θ). If it isn’t, then it’s been double counted and we subtract 1/2 from out
count (1/2 from each time it’s counted to cancel the out the double count).

From Definition 4.4, we can similarly determine the elements of Cg if we know the
elements of Eh for all h ≤ g. Once Eh has been computed for all h ≤ g, we can inductively find
the elements of Cg by taking the underlying graphs of each map in Eg and graph isomorphism
testing them against the elements of Ch for h ≤ g. A computer program to compute the
values of Eg and Cg using this method can be found at this GitHb link.

Then, by Corollary 3.1.1, we know that the elements of Lg are unions of elements in
the sets Ch (for h ≤ g) satisfying the genus sum condition from the corollary. The following
lemma gives an explicit formula for |Lg| when g ≤ 4.
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Lemma 5.1. The values of |L1|, |L2|, |L3|, and |L4| are given by the following:

|L1| = |C1|+
(
|C0|+ 2− 1

2

)
|L2| = |C2|+ |C1| · |C0|+

(
|C0|+ 3− 1

3

)
|L3| = |C3|+ |C2| · |C0|+

(
|C1|+ 2− 1

2

)
+ |C1|

(
|C0|
2

)
+

(
|C0|+ 4− 1

4

)
|L4| = |C4|+ |C3| · |C0|+ |C2| · |C1|+ |C2| ·

(
|C0|+ 2− 1

2

)
+

(
|C1|+ 2− 1

2

)
· |C0|

+ |C1| ·
(
|C0|+ 3− 1

3

)
+

(
|C0|+ 5− 1

5

)
Proof. An immediate consequence of Corollary 3.1.1 is that any graph in |Lg| has at most
g+1 connected components. Then every graph in L1 is either connected or has 2 connected
components. The connected elements of L1 are by definition C1. If G ∈ L1 has 2 components,
then by Corollary 3.1.1 they must both be elements of C0. The number of graphs with two
components, each in C0 is equal to the number of ways to choose, with replacement, 2
elements of C0. By [18], the number of ways to choose k elements with replacement from a
set of size n is

(
n+k−1

k

)
, so we have the formula

|L1| = |C1|+
(
|C0|+ 2− 1

2

)
For L2, we need to consider graphs with up to 3 components. Again, the subset of L2 with
one component form C2. By Corollary 3.1.1, if G ∈ L2 has 2 connected components, then
they are elements of some Ci, Cj where i + j + 1 = 2. This means {i, j} = {0, 1}, so G is
the union of a graph in C1 and a graph in |C0|. There are exactly |C1| · |C0| ways to pick the
components of G.
Finally, we consider graphs with 3 components. By the corollary, such a graph must have
all 3 components in C0, so there are

(|C0|+3−1
3

)
such graphs. This gives

|L2| = |C2|+ |C1| · |C0|+
(
|C0|+ 3− 1

3

)
.

For L3, we can use the same reasoning but need to consider graphs with up to 4 components.
The graphs with one component form C3. If G ∈ L3 has 2 components, they’re elements of
Ci and Cj with i+ j + 1 = 3, so i+ j = 2. This means either G has 1 component in C2 and

1 in C0, or both components from C1. The are |C2| · |C0| +
(|C1|+2−1

2

)
ways to construct such
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a graph.
Next we consider graphs G ∈ L3 with 3 connected components. By Corollary 3.1.1 these
are elements of Ci, Cj, Ck with i+ j+ k+2 = 3, so i+ j+ k = 1. This means one component

comes from C1, and the other two come from C0. There are |C1| ·
(|C0|+2−1

2

)
such graphs.

Finally, we consider graphs in L4 with 4 connected components. By the corollary, all these
components are in C0, so there are

(|C0|+4−1
4

)
such graphs. We now have

|L3| = |C3|+ |C2| · |C0|+
(
|C1|+ 2− 1

2

)
+ |C1| ·

(
|C0|+ 4− 1

4

)
.

Only L4 remains. The connected elements form C4. By the corollary, any G ∈ L4 with two
components has one component each from Ci, Cj where i + j + 1 = 4. This means either
{i, j} = {0, 3} or {i, j} = {1, 2}, so there are |C3| · |C0|+ |C2| · |C1| such graphs.
By the same type of reasoning the graphs with 3 connected components either have one
component from C2 and two components from C0 or two components from C1 and one com-
ponent from C0. This means there are |C2| ·

(|C0|+2−1
2

)
+
(|C1|+2−1

2

)
· |C0| such graphs.

For graphs in L4 with 4 components, the only way to satisfy Corollary 3.1.1 is by having
one component from C1 and 3 from C0. So there are |C1| ·

(|C0|+3−1
3

)
of these.

Finally, if a graph in L4 has 5 connected components, then all 5 are from C0, so there are(|C0|+5−1
5

)
of these. Together this gives

|L4| = |C4|+ |C3| · |C0|+ |C2| · |C1|+ |C2|
(
|C0|+ 2− 1

2

)
+

(
|C1|+ 2− 1

2

)
· |C0|

+ |C1| ·
(
|C0 + 3− 1

3

)
+

(
|C0|+ 5− 1

5

)
.

From Definition 2.1, knowing the elements of Lh for all h ≤ g is enough to know the
elements of Mg, and |Mg| = |Mg−1|+ |Lg|.

Here are the results of running this algorithm for g ≤ 4:

g |Eg| |Cg| |Lg| |Mg|
0 1 1 1 1
1 3 3 4 5
2 31 17 21 26
3 1831 164 191 217
4 462645 3096 3338 3555
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6 Concluding Remarks

A search of the OEIS does not find any sequences matching any of the sequences Eg, Cg,Lg,
or Mg. It thus appears unlikely that any currently known formula will yield correct values
for the cardinalities of these sets.

At this point, we do not see any way forward towards a method to directly determine
the values of |Cg|, |Lg|, or |Mg| without the computationally intensive process of directly
them. It would be interesting to attempt to find a recursive formula for the values of
|Eg| using some of the techniques for enumerating isomorphism classes of similar flavors
of nonplanar hypermaps and combinatorial maps developed in [14] and [15]. The general
method used there is to use the fact that it’s easier to counted rooted maps and hypermaps
(maps/hypermaps with a distinguished edge) directly than to count unrooted ones, and
the authors develop formulae to convert counts of rooted maps/hypermaps into counts of
unrooted maps and hypermaps. This is done by considering rooted objects which can be
realized as quotients under an automorphism of the unrooted objects in question. For formal
definitions and more details on quotients of maps see [6] or [11] or the unpublished [16].

There are, however, two important distinctions between the sets considered in those
papers and the Eg we consider. The first is that the families of maps and hypermaps
considered in those papers are closed under quotients by map automorphisms. An example
of the set of maps hypermaps considered in [15] may help to clarify this. The authors
enumerate the number of hypermaps of genus g with n edges. If M is a hypermap of
with genus g with n edges, and f is an automorphism of M , then the quotient M/f is a
hypermap with genus at most g and at most n edges (strictly fewer unless f is the identity).
So, if we proceed inductively with respect to genus and number of edges, we will have
already considered these maps. As observed in [11] this property is extremely useful for
such enumeration problems. Without this property one needs to determine precisely which
rooted objects arise as quotients of the unrooted ones being counted and then enumerate
those. The difficulty with using those techniques to enumerates elements of Eg arises here.
The quotient of a map in Eg is not generally another map in Eg, or even a map which be
embedded as a minimal separating set in any surface. As an example, consider the map and
its quotient shown in Figure 6 (for details on quotients of maps see [11] or [16]).

The map on the left is an element of E2, but the quotient map cannot be minimal
separating in any genus. Additionally, such a method would require a formula enumerating
the numer of rooted versions of the relevant hypermaps (which is as yet unknown). To
the best of our knowledge, in all existing work enumerating unrooted maps and hypermaps
using the tools developed in [14], [15], and [11] the familes of objects being considered tend
to either count all maps/hypermaps with a given genus and edge count or to heavily restrict
to counting only regular maps/hypermaps ([7],[8],[9]). The case of all maps/hypermaps puts

17



Figure 6: The combinatorial map σ = (1, 2, 3, 6)(4, 5, 7, 8), α = (1, 2)(3, 4)(5, 6)(7, 8) (left) and its
quotient under the automorphism ρ = (1, 7)(2, 8)(3, 4)(5, 6). The unlabelled edge ends that occur
are called singular edges in [11] and the desire to admit singular edges in combinatorial maps is why
the definition of map used in [14] only requires that α is an involution, rather than a fixed-point
free involution as in the definition we use

no restrictions on cycle types of the permutations, while a requiring a map to be k-regular for
some k fully determines the cycle types of σ and α. In our case, there are some restrictions
on cycle types, but nothing nearly as strong as regularity. It remains to be seen whether
these obstruction can be worked around and the techniques developed in [14] and [15] can
the be applied to enumerate Eg but suggests they may form an interesting class of maps for
further study of these methods.

References

[1] James Bernhard and J.J.P. Veerman. The topology of surface mediatrices. Topology
and its Applications, 154(1):54–68, January 2007.

[2] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh
approach to numerical computing. SIAM Review, 59(1):65–98, 2017.

[3] Logan S Fox and J J P Veerman. Equidistant sets on alexandrov surfaces. arXiv
Preprint, May 2022. arXiv: 2205.09155.

[4] Ruben A. Hidalgo. Bipartite graphs and their dessins d’enfants. arXiv:1611.02901
[math], August 2017. arXiv: 1611.02901.

[5] Alain Jacques. Constellations et propriétés algébriques des graphes topologiques. Theses,
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