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Abstract

Measuring the concentration of random variables is a fundamental concept in probability and
statistics. Here, we explore a type of concentration measure for continuous random variables
with bounded support and use it to provide a notion of stochastic order by concentration. We
give an application to the Beta family of distributions, and especially to the one-parameter
subfamily with constant mean.
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1 Motivation and Introduction

A fundamental focus in probability theory lies in examining the degree of concentration of a random
variable. This concept involves investigating how closely or loosely the values of a random variable
cluster around a specific value, often its central measure, such as the mean or median. The degree
of concentration provides insights into the variability and predictability of the variable’s outcomes.
Understanding concentration is essential in various fields, including statistics, economics, and risk
analysis, as it enables us to assess the reliability and stability of the random variable in question.

There are several ways to measure the concentration of random variables. One of them is
through concentration inequalities, which provide valuable bounds on how much random variables

∗Stat. Depts., Portland State University and Univ. of Illinois; e-mail: sport2@psu.edu
†Math. Dept., Universidad Autónoma de Madrid and Instituto de Ciencias Matmáticas, 28049 Madrid; e-mail:
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deviate from a specific value, typically the expected value. These inequalities are instrumental in
helping us to measure the degree of concentration within a given distribution and understand how
well the data points cluster around a specific value. They play a crucial role in diverse fields, from
probability theory to statistics and machine learning, by allowing us to make informed assessments
of the variability and stability of random variables and their associated distributions. In particular,
concentration inequalities can be divided into two major groups: those that are distribution-free and
those that are dependent on a specific distribution. In the first group, we encounter well-known
inequalities such as Chebyshev’s inequality, Markov’s inequality, Chernoff’s inequality, Hoeffding’s
inequality, and Bernstein’s inequality, to name a few. Chebyshev’s inequality provides an upper
bound for the probability that a random variable deviates by more than a certain number of standard
deviations from its mean. Markov’s inequality, on the other hand, offers an exonential upper bound
and focuses on the probability that a non-negative random variable is greater than or equal to
a specific value. In contrast, Chernoff’s and Hoeffding’s inequalities are designed for independent
random variables, aiming to quantify the probability that the sum of these random variables deviates
from its mean. Bernstein’s inequality serves as a generalization of Hoeffding’s inequality and provides
bounds for the probability that the sum of independent random variables significantly deviates from
its mean.

In the second group, Chvátal’s conjecture focussed on the Binomial distribution and has re-
cently attracted the attention of several researchers. Specifically, Chvátal conjectured that for any
given n, the probability of a binomial random variable B(n,m/n) with integer expectation m is
smallest when m is the integer closest to 2n/3. [14] showed that this holds when n is large. [24]
proved that the sequence qk = 1 − pk = P{B(n, kn) ≥ k + 1} is strictly unimodal with the mode
k0 being the integer closest to 2n/3 for any fixed n ≥ 2. [4] established that Chvátal’s conjecture is
indeed true for every n ≥ 2. Motivated by these works, [19] studied the cases of Poisson, geometric,
and Pascal distributions.

Another way to measure the concentration of a random variable is to examine whether the
probability that the random variable is less than or equal to a specific value exhibits a monotonic
behavior. Apparently, the first work discussing such monotonicity properties was [11], which pro-
vided results for the Chi-square, Fisher-Snedecor F, and Student’s t-distributions. Subsequently, [1]
explored the case of the incomplete Beta function. A recent work studying the case of the gamma
distribution is [22]. Furthermore, the concentration of two random variables can be compared using
certain stochastic orders, such as the convex, dispersive, and right spread orders. To explore these
and other stochastic orders, refer to Shaked and Shanthikumar’s monograph [23]. Some works where
characterizations and applications of these orders are studied include the following. [5] characterized
the right spread order through the increasing convex order. [21] investigated convex orders for linear
combinations of random variables. In [17], they study the convex order between convolution polyno-
mials of finite Borel measures. [6] explored the increasing concave orderings of linear combinations
of ordered statistics, applying them to issues related to social well-being. In [7], they examine two
categories of optimal insurance decision problems associated with the convex order, where the ob-
jective function or the premium valuation is a general function of the expected value, Value-at-Risk,
and Average Value-at-Risk of the loss variables.

In this work, we investigate a type of concentration measure for continuous random variables
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with bounded support within the interval [0, 1] which we refer to as the bunching property. Specif-
ically, we demonstrate that under certain conditions, there exists a unique point x∗ around which
the distribution is more bunched (or concentrated). Additionally, we study a continuity and mono-
tonicity property of such a point. The structure of this article is as follows. Section 2 presents the
definitions that will be employed throughout the manuscript. Section 3 is devoted to the main results
for continuous random variables with bounded support within the interval [0, 1]. In Section 4, we
present an application to Beta distributions.

2 Definitions

In this section, we present a comprehensive set of foundational definitions that contribute to a precise
understanding of the key concepts and terminologies that will be employed throughout the article.

One of the main tools we use are the well-known inverse probability transform or the push-
forward of the measure and the operation it induces on the corresponding density.

Definition 2.1 Suppose we have a probability measure P on a space X and a continuous function
y : X → Y . The push-forward P̃ of P is a measure on the space Y defined as follows:

P̃ (S) := P (y−1(S)),

for a (measurable) set S ⊆ Y.
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Figure 2.1: Definition of the pushforward P̃ by y : X → Y of a measure P . The measure of P̃ ([y1, y2])
is set equal to that of P ([x1, x2]) where yi := y(xi).

For the restricted setting: X = Y = [0, 1] , y : X → Y invertible, and with c.d.f. F (on X ),
the push-forward is just the usual probability transform

F̃ (u) = F (y−1(u)). (2.1)
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Now let’s assume in addition that F and F̃ and y are continuously differentiable and y′(x) > 0.

The derivatives of F and F̃ are probability densities and will be denoted by f and f̃ , respectively,
satisfying

f̃(y) =
f(x)

y′(x)
where x = y−1(x). (2.2)

In this study, we confine our focus to continuous random variables with bounded support
within the interval [0, 1] such that their probability densities are contained in the class Fa defined as
following.

Definition 2.2 For a in some interval A ⊂ R+, we say fa (or Fa) is in Fa if fa : [0, 1] → R is a
continuous, positive probability density with fa(x) > 0 for all x ∈ (0, 1) and a ∈ A.

Next, we present a brief review of some notions of stochastic orders (see [23] for an overview
of the different notions of ordering).

Definition 2.3 Let X and Y be univariate random variables with cumulative distribution functions
(c.d.f.’s) F and G, survival functions F̄ (= 1− F ) and Ḡ (= 1−G).

i) X is said to be smaller than Y in the usual stochastic order, denoted by X ≤st Y , if E[φ(X)] ≤
E[φ(Y )] for all increasing functions φ : R→ R, provided the expectations exist.

ii) X is said to be smaller than Y in the convex order, denoted by X ≤cx Y , if E[φ(X)] ≤ E[φ(Y )]
for all convex functions φ : R→ R, provided the expectations exist.

iii) X is said to be smaller than Y in the concave order, denoted by X ≤cv Y , if E[φ(X)] ≤ E[φ(Y )]
for all concave functions φ : R→ R, provided the expectations exist.

iv) X is said to be smaller than Y in the increasing convex order, denoted by X ≤icx Y , if
E[φ(X)] ≤ E[φ(Y )] for all increasing convex functions φ : R → R, provided the expectations
exist.

v) X is said to be smaller than Y in the increasing concave order, denoted by X ≤icv Y , if
E[φ(X)] ≤ E[φ(Y )] for all increasing concave functions φ : R → R, provided the expectations
exist.

In broad terms, when X ≤cx Y is satisfied, there is a greater propensity for Y to adopt extreme
values compared to X. This implies that Y exhibits higher variability than X. Furthermore, it follows
that E[X] ≤ E[Y ] and V ar[X] ≤ V ar[Y ], given that V ar[Y ] <∞. Moreover, X ≤cx Y if, and only
if, X ≥cv Y , since if φ is convex, then −φ is concave. On the other hand, if X ≤icx Y then X is
both smaller and less variable than Y in some stochastic sense. It follows that X ≤icx Y implies
E[X] ≤ E[Y ]. It is clear that X ≤st Y implies X ≤icx Y and X ≤cx Y also implies X ≤icx Y . In
particular, if E[X] = E[Y ], then X ≤cx Y if, and only if, X ≤icx Y (see section 3.A in [23]). Both
increasing order relations are related by X ≤icv Y if, and only if, −Y ≤icx −X. It is worth mentioning
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that the usual stochastic order is known in economics and finance as the first stochastic dominance
(FSD), while the increasing concave order is referred to as the second stochastic dominance (SSD).

Next, we recall a characterization of increasing convex and concave orders based on the number
of crossings of distribution or density functions (see [23] or [18]). Let us denote the number of sign
changes of a function, g, defined on an interval, I, with

S−(g) = S−(g(x)) = supS−[g(x1), . . . , g(xn)]

where S−[y1, . . . , yn] is the number of sign changes of the sequence, y1, . . . , yn, where the zero terms
are omitted, and the supremum is extended over all x1 < x2 < . . . < xn (xi ∈ I), n <∞.

Lemma 2.4 Let X and Y be univariate random variables with cumulative distribution functions
(c.d.f.’s) F and G, density functions f and g, respectively, with finite means.

i) If S−(F − G) ≤ 1 and the sign sequence starts with −, then X ≥icv Y if and only if E(X) ≥
E(Y ), while Y ≥icx X if and only if E(Y ) ≥ E(X).

ii) Let S−(f − g) ≤ 2 and the sign sequence begins with −. Then, X ≥i cvY if and only if
E(X) ≥ E(Y ), while Y ≥icx X if and only if E(Y ) ≥ E(X).

3 Bunching

We introduce a novel form of stochastic order based on concentration, which we call the ”Bunching
Property”. The main aim is to provide reasonable conditions under which two distributions are
ordered according to bunching. We focus on distributions in the smooth family Fa of Definition 2
above, and provide the following developments.

3.1 Basic results

Proposition 3.1 Let fa1 , fa2 ∈ Fa. Then, for all a1 and a2 in A, there is a unique diffeomorphism
y : (0, 1)→ (0, 1) such that

fa2(y(x))y′(x) = fa1(x) .

Furthermore, y can be extended to a continuous function from [0, 1] to itself and y(0) = 0 and
y(1) = 1.

Proof From the definition (2.1) of the push-forward, we see that y is defined as the solution of

H(x, y) :=

∫ y

0

fa2(u) du−
∫ x

0

fa1(v) dv = Fa2(y)− Fa1(x) = 0 .

Since both densities are positive, it follows that y(0) = 0 and y(1) = 1. Now for every given x, by
continuity (and positivity of both densities), we see that there must be a unique y. Furthermore, since
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both ∂xH and ∂yH are non-zero in (0, 1)2, a straightforward application of the implicit function theo-
rem, tells us that there are differentiable functions y(x) and x(y) so that H(x, y(x)) = H(x(y), y) = 0.
Naturally, these are inverses of one another, and so y(x) is a diffeomorphism on (0, 1). Differentiating
H(x, y(x)) with respect to x gives the well-known formula in the proposition.

For the next result, we first need a simple convexity lemma.

Lemma 3.2 Let g : R→ R be twice differentiable on some interval I. If x1 < x2 < x3 and

g(x3)− g(x2)

x3 − x2
≤ g(x2)− g(x1)

x2 − x1
,

then there is a point x ∈ I where g′′(x) ≤ 0.

Proof The proof is elementary and consists of applying the mean value theorem repeatedly.

Lemma 3.3 Let fa1 and fa2 two twice differentiable densities belong to Fa with a2 > a1 and a push-
forward y as in Proposition 3.1. Suppose they satisfy the additional requirements that limx↘0 y

′(x) and
limx↗1 y

′(x) are greater than one (or tend to infinity) and that the second derivative of fa1(x)/fa2(x)
is strictly positive on (0, 1). Then:

i) y(x)− x = 0 if and only if x ∈ {0, x∗, 1} and

ii) ∀x ∈ (0, x∗) : y(x)− x > 0 and ∀x ∈ (x∗, 1) : y(x)− x < 0 and

iii) fa1(x
∗) ≤ fa2(x

∗) .

Proof It is sufficient to prove that y has a unique fixed point (i.e. y(x) = x) in (0, 1). We fol-
low standard procedure and rewrite the differential equation in Proposition 3.1 as a 2-dimensional
autonomous system on (0, 1)× (0, 1) with reparametrized time:{

ẋ = fa2(y)

ẏ = fa1(x)
(3.1)

The RHS of this system is continuously differentiable in (ε, 1− ε)× (ε, 1− ε) for any positive ε. We
know from Proposition 3.1 that there is a unique solution (x, y(x)) such that y(0) = 0 and y(1) = 1.
By hypothesis, for x close to zero, y(x)−x > 0, and so y(x) starts out above the diagonal. Similarly,
for x close to 1, y(x)− x < 0 by the boundary conditions limx↗1 y

′(x) and y(1) = 1.

We now study the intersections of γ(x) := (x, y(x)) with the diagonal. The tangent of the

vector field along the diagonal (x, x) in the RHS of (3.1) is t(x) :=
fa1 (x)

fa2 (x)
. By hypothesis we have

t′′(x) > 0 . (3.2)

Set f(x) := y(x)−x. Now let us suppose there are three distinct points 0 < x1 < x2 < x3 < 1 in the
open interval (0, 1) where f(xi) = 0. Then by Lemma 3.2, there is a point v where t′′(v) ≤ 0, which
contradicts (3.2).
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Figure 3.1: A non-simple intersection of y(x) and the diagonal at x1. A local twice continuously
differentiable nearby solution resolves this into two simple intersections.

The conclusion of this reasoning is that there are at most two distinct points where y(x) = x.
Since near x = 0, γ is above the diagonal, and near x = 1 below it, there must be (by the intermediate
value theorem) at least one crossing at x∗ from above to below the diagonal.

The only possibilities this leaves is either a unique crossing at x∗ or else a crossing at x∗ plus
a point x1 where γ is tangent to the diagonal. We have to rule out the latter. So suppose this is the
case and assume x1 < x∗ as in Figure 3.1a. Now solutions to the ODE of (3.1) are unique and cannot
cross [3, 13]. Furthermore, nearby solutions approximate one another. So a solution that starts at
(x−1 , x

+
1 ) very close to γ as illustrated Figure 3.1b, must cross the diagonal again at x+1 > x1 but very

close to it. This again gives three distinct points 0 < x−1 < x+1 < x∗ < 1 such that, respectively,

t(x−1 ) ≤ 1 , t(x+1 ) ≥ 1 , t(x∗) ≤ 1 .

Lemma 3.2 yields a value x∗∗ where t′′(x∗∗) ≤ 0. Thus the intersection of γ with the diagonal in
(0, 1) is unique and this gives us items i and ii of the proposition. Item (iii) follows from the fact
that y(x) is differentiable and crosses the diagonal in the downward direction.

Next, we present a formal statement of the Bunching Property.

Theorem 3.4 (The Bunching Property) Fix 0 < a1 < a2 and let Fa1 , Fa2 ∈ Fa such that they
satisfy the conditions of Lemma 3.3. There is a unique x∗ ∈ (0, 1) so that for all x1 and x2 with
0 < x1 < x∗ < x2 < 1, we have Fa1(x1) > Fa2(x1) and 1− Fa1(x2) > 1− Fa2(x2). Thus, we may say
that Fa2 is more bunched around x∗ than is Fa1.

Remark 3.5 Observe that, from Theorem 3.4, we get S−(Fa2−Fa1) = 1 and the sign sequence starts
with −. Therefore, if Xa1 and Xa2 be two random variables with distribution functions Fa1 and Fa2 ,
respectively, from Lemma 2.4(i), we obtain that Xa2 ≥icv Xa1 if and only if E(Xa2) ≥ E(Xa1), while
Xa1 ≥icx Xa2 if and only if E(Xa1) ≥ E(Xa2). �
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3.2 The Continuity Property

In this subsection, we present a continuity property for the point x∗ where one distribution is more
bunched than the other.

Lemma 3.6 Let f and g be two probability densities that are positive on (0, 1). Set t(x) := f(x)
g(x)

and
suppose that t is positive and strictly convex with

lim
x→0

t(x) = lim
x→1

t(x) =∞ .

Then f(x) = g(x) in exactly two distinct points in (0, 1).

Proof By the strict convexity, it is clear that t(x) intersects the line y = 1 either twice or not at all
But in the latter case, f(x) is strictly larger than g(x), which conflicts with the fact that both are
probability densities (integrating to 1).

Proposition 3.7 Let Fn and Gn be c.d.f.’s with densities fn and gn continuous in n and satisfying
Lemma 3.6. Assume the conditions for Bunching (Theorem 3.4) and let x∗ be the unique solution of

Fn(x)−Gn(x) =

∫ x

0

(fn(t)− gn(t)) dt = 0 .

Then x∗ depends continuously on n.

Proof We first show fn(x∗) 6= gn(x∗) . Suppose otherwise. Then there must be a 0 < x− < x∗ such
that fn(x−) = gn(x−), for otherwise one density would dominates the other, and so the integrals
could not be equal. Similarly, since 1 − Fn(x∗) = 1 − Gn(x∗) , the densities must be equal at some
point x+ ∈ (x∗, 1). This would provide three points where the densities are equal, contradicting
Lemma 3.6. Thus fn(x∗) 6= gn(x∗) . Now (by continuity of fn and gn in n ), a small change in n will
cause a small change in the integral:∫ x∗

0

(fn′(t)− gn′(t)) dt = δ .

Since near x∗ and for n′ close enough to n, the measures are not equal, a small adjustment in x∗ will
bring the integral back to zero.

3.3 A Monotonicity Property

To provide the main result of this subsection, consider a family of distribution functions {Fa;n,m} ⊂ F
(see Definition 2.2 ) depending on two additional real parameters: n ≥ m > 0 .
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Condition 3.8 Given 0 < a1 < a2 and n ≥ m > 0. Let Fa(x) and its derivative fa(x) be c.d.f.’s
and densities as described above. Furthermore, for x ∈ (0, 1) :

i: If n = m, fa(x) is symmetric under x↔ 1− x and

ii: ∂nfa(x) is negative and increasing on (0, 1) and

iii: ∂a∂nfa(x) < 0 .

Lemma 3.9 (See also Proposition 3.7.) Assume the hypotheses for Bunching (Theorem 3.4) and
for Lemma 3.6, Let x∗ in (0, 1) be the unique point where y(x∗) = x∗. Then

fa2(x
∗) > fa1(x

∗) .

Proof. At the point where y(x∗) = x∗, we have Fa2(x
∗) − Fa1(x∗) = 0. By Lemma 3.3, fa1(x

∗) ≤
fa2(x

∗) and so we only have to rule out the possibility that they are equal. By Lemma 3.6, fa2(x) =
fa1(x) in exactly two distinct points in (0, 1), say x1 and x2 as in Figure 3.2. But since the fai are
densities (i.e. they integrate to 1), it impossible for Fa2(x) and Fa1(x) to be equal at either x1 or x2.

 

 

x1 x2x*

Figure 3.2: Two Beta densities ordered by Bunching. Under conditions, if a2 > a1 > 0, fa1 and fa2
intersect in exactly two points {x1, x2} ⊂ (0, 1). At x∗, we have that

∫ x∗
0
fa1 dt =

∫ x∗
0
fa2 dt .
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In what follows, we will always assume that a2 > a1 > 0 and n > m > 0. From the previous
section, we know that there is unique solution for x of

Fa2(x)− Fa1(x) = 0 .

We will track this solution as function of n and x, holding fixed all the other parameters. To facilitate
this, we define

J(n, x) := Fa2(x)− Fa1(x) .

Proposition 3.10 Assume Condition 3.8 and the hypotheses for Bunching (Theorem 3.4) and for
Lemma 3.6. Fix 0 < a1 < a2 and n ≥ m > 0. We vary n and hold m and the ai constant. For
n = m, the locus x∗(n) of the unique zero of J(n, x) equals 1/2. We have that x∗ is a differentiable
function satisfying x∗(m) = 1/2 and ∂nx

∗ > 0.

Proof. By the symmetry of f (see Condition 3.8, (ii)) we have that if n = m, then x(n) = 1/2. We
also have

d

dn
J(n, x) = ∂xJ

dx

dn
+ ∂nJ = 0 . (3.3)

Now,
∂xJ(n, x) = fa2(x)− fa1(x) .

By Lemma 3.9, have fa2(x
∗) > fa1(x

∗) or

∂xJ > 0 .

The implicit function theorem now says that near this point there is differentiable function h such
that J(n, h(n)) = 0. By Condition 3.8(iii),we also have

∂nJ =

∫ x

0

(∂nfa2(t)− ∂nfa1(t)) dt < 0 . (3.4)

Together with (3.3), this establishes that the function x∗(n) is differentiable and strictly increasing,
as required.

4 Applications to Beta distributions

In this section, we present an application of the main results to a beta distribution defined in the
interval [0, 1]. To do this, let us recall the definition of this distribution. Here we denote the density
function of a Beta distribution with parameters α > 0 and β > 0 as

fα,β(x) =
xα−1(1− x)β−1

B(α, β)
with B(α, β) =

∫ 1

0

fα,β(x) dx.
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In what follows, we will focus on Beta distributions with parameters na and ma for fixed n and m
with a > 0. That is, the density and distribution functions of a random variable X ∼ Beta(na,ma)
are denoted:

pa(x) = fna,ma(x) and Fa(x) =

∫ x

0

pa(t) dt , (4.1)

respectively. Note that the notation suppresses dependence on n and m; but when needed we may
write pa;n,m(x) and Fa;n,m(x). From (4.1), we see that

E[X] =
n

n+m
and V [X] =

nm

(n+m)2(na+ma+ 1)
.

So the mean is constant and the variance decreases with a. This would seem to imply that the
distribution becomes more and more concentrated around the mean.

Next, we prove that the Beta distributions of equation (4.1) satisfy the requirements of Propo-
sition 3.1 and Lemma 3.3. First, we need a little lemma.

Lemma 4.1 Let t(x) = x−p(1− x)−q. If p and q are both positive, then t is strictly convex on [0, 1].

Proof. A tedious, but straightforward, computation gives

t′′(x) =
qx2 + p(1− x)2 + (qx− p(1− x))2

x2+p(1− x)2+q
,

and the result follows immediately.

Remark. It is easy to see that the product of two monotone increasing (or decreasing) convex
functions is again convex. In our case, t is the product of one increasing and one decreasing convex
function. It is by no means obvious the the product should be convex. In fact, p = q = −1 gives a
counter-example.

Lemma 4.2 Let {pa} be the family of Beta densities (see equation 4.1) and fix a2 > a1. Define

t(x) :=
pa1 (x)

pa2 (x)
. Then for y in Proposition 3.1

i : pa(x) > 0 for x ∈ (0, 1)

ii : lim
x↘0

y′(x) = lim
x↗1

y′(x) =∞

iii : t′′(x) > 0 for x ∈ (0, 1)

iv : lim
x↘0

t(x) = lim
x↗1

t(x) =∞ .
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Proof. The first statement is obvious.

The approximate solution for x and y very close to zero can be found by neglecting the (1−x)
terms in the integration (since they are going to be very close to 1). So

G(x, y) ≈
∫ y
0
una2−1 du

B(na2,ma2)
−
∫ x
0
vna1−1 dy

B(na1,ma1)
= 0 ⇐⇒ yna2

na2B2

≈ xna1

na1B1

.

(Here we abbreviated B(nai,mai) as Bi.) This gives

y ≈
(
a2B2

a1B1

)1/na2

xa1/a2 .

The first limit follows from a2 > a1. The second limit can be evaluated in the same way by changing
variables x̃ = 1− x and ỹ = 1− y. This proves the second statement.

Note that t(x) = Kx−n(a2−a1)(1 − x)−m(a2−a1). The third statement follows from Lemma 4.1.
The fourth statement follows directly from the expression for t(x) just given.

Theorem 4.3 Let {Fa(x)} denote the Beta distributions in (4.1), and fix 0 < a1 < a2 and n ≥ m >
0. There is a unique x∗ ∈ (0, 1) so that for all x1 and x2 with 0 < x1 < x∗ < x2 < 1, we have
Fa1(x) > Fa2(x) and 1 − Fa1(x) > 1 − Fa2(x). Thus, we may say that Fa2 is more bunched around
x∗ than is Fa1.

Proof. The situation is exactly as sketched in Figure 2.1 with pa2 on the vertical axis being the
push-forward by x → y(x) of pa1 . In a case like this, the bunching property described in Theorem
3.4 holds. This is most easily seen by noting that the theorem implies that for y1 ∈ (0, x∗):

Fa2(y1) = Fa1(x1) < Fa1(y1) where y = y(x).

The latter inequality holds because we also know that 0 < x < y(x) < x∗ and pa1(x) > 0 on [x, y(x)].
Similarly, one shows that for x∗ < y2 < 1, 1− Fa2(y2) < 1− Fa1(y2).

For the family of Beta distributions, the following result is known (see, e.g., [2] or [20]).

Proposition 4.4 Let X ∼ Beta(α1, β1) and Y ∼ Beta(α2, β2), then Y ≤st X if, and only if,
α1 ≥ α2 and β1 ≤ β2.

In our case, αi = nai and βi = mai for i = 1, 2 and n,m > 0 two real numbers fixed. Therefore,
it is evident that Y �st X and Y �st X. Note that, from Theorem 4.3, we have S−(Fa2 − Fa1) = 1
and the sign sequence starts with −. Therefore, from Lemma 2.4(i), we have the following result.
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Corollary 1 Let Xai ∼ Beta(nai,mai) for i = 1, 2 and n,m > 0. Then, Xa2 ≥icv Xa1 for 0 < a1 <
a2.

It is worth mentioning that the previous corollary coincides with Theorem 2 in [8], as Xai

satisfies the conditions of that result for i = 1, 2. Therefore, Theorem 2 in [8] can be viewed as a
special case of our Theorem 3.4 for Beta distributions (under certain conditions).

Moreover, since the Beta distributions satisfy all our hypotheses (see Lemma 4.1), the conti-
nuity property holds for them.

Proposition 4.5 Let {Fa(x)} denote the beta distributions in (4.1), and fix 0 < a1 < a2 and n ≥
m > 0. The location of x∗ is a continuous function of n.

5 Conclusions and Motivating Problem

We have introduced a novel form of stochastic order based on concentration. Basically, we say that
one distribution is more bunched that another if there is a point x∗ such that interval probabilities
both to the left and right of x∗ are smaller (for the more-bunched distribution). We have provided
sufficient conditions for the existence of x∗ and give conditions for some continuity and monotonicity
properties.

While these results are of general interest, it may be noted that there was a specific motivating
problem: a colleague, Subhash Kochar, asked if we could show that Pa( 1

2
) is monotonically decreasing

in a > 0 if n > m for the restricted Beta subfamily. Apparently, the earliest paper discussing this
monotonicity result is a Clemson University Technical Report, Alam [1], which motivates the problem
in terms of Ranking and Selection probabilities. The problem also arises in comparing Gamma
distributions in reliability theory: if U and V have Gamma distributions with mean parameters
nα and mα respectively, then Pr{U < V } = Pα( 1

2
) . This suggested a possible connection to

stochastic dominance within the restricted beta family.

Specifically, if one could prove that x∗(n) > 1
2

for n > m in this restricted beta family,
then monotonicity of Pa( 1

2
) would follow immediately from Bunching for the family (Theorem 4.3).

Unfortunately, it has not been possible to show that Condition 3.8 holds for the Beta subfamily. It
is possible to show that an alternative sufficient condition would be ∂n∂aFa;n,m(x) > 0 for x = x∗
andn > m , but this also has not been shown for the Beta subfamily, and so the desired monotonicity
of Pa( 1

2
) remains conjectural.

Finally, on generalizing these ideas: clearly our results on Bunching do not depend on the
specific domain interval, but do require a one-dimensional (smooth) family in order to apply the
”push-forward” probability transform. In multivariate situations, this can often be replaced by
measure transport. See [12] for a summery of some recent statistical work using this concept. We
conjecture that it is possible to develop reasonable conditions for smooth multivariate distributions
under which there is a unique point such that the probabilities are monotonically decreasing for
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all closed convex sets not containing the point. Such case would clearly provide a definition for
multivariate bunching.
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