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Abstract: Brillouin zones were introduced by Brillouin [Br] in the thirties to describe quantum mechanical properties
of crystals, that is, in a lattice iR™. They play an important role in solid-state physics. It was shown by Bieberbach [Bi]
that Brillouin zones tile the underlying space and that each zone has the same area. We generalize the notion of
Brillouin zones to apply to an arbitrary discrete set in a proper metric space, and show that analogs of Bieberbach'’s
results hold in this context.

We then use these ideas to discuss focusing of geodesics in spaces of constant curvature. In the particular case of
the Riemann surfacé®/I'(k) (k = 2,3, or 5), we explicitly count the number of geodesics of lengthat connect
the point; to itself.

1. Introduction

In solid-state physics, the notion of Brillouin zones is used to describe the behavior of an electron in a perfect crystal.
In a crystal, the atoms are often arranged in a lattice; for example, in NaCl, the sodium and chlorine atoms are arranged
along the points of the simple cubic lattiZé. If we pick a specific atom and call it the origin, fisst Brillouin zone

consists of the points iR® which are closer to the origin than to any other element of the lattice. This same zone can
be constructed as follows: for each elemernn the lattice, letL,, be the perpendicular bisecting plane of the line
betweerD anda (this plane is called a Bragg plane). The volume about the origin enclosed by these intersecting planes
is the first Brillouin zonep, (0). This construction also allows us to define the higher Brillouin zones as well: a point

x is in b, if the line connecting it to the origin crosses exaatly- 1 planesLy,, counted with multiplicity.

This notion was introduced by Brillouin in the 1930s ([Br]), and plays an important role in solid-state theory
(see, for example, [AM, Jo2, Ti]). The construction which gives rise to Brillouin zones is not limited to consideration
of crystals, however. For example, in computational geometry, the notion of the Voronoi cell corresponds exactly
to the first Brillouin zone described above (see [PS]). We shall also see below how, after suitable generalization,
this construction coincides with the Dirichlet domain of Riemannian geometry, and in many cases, with the focal
decomposition introduced in [Pel] (see also [Pe3]).

With some slight hypotheses (see Sect. 2), we generalize the construction of Brillouin zones to any disSrete set
in a path-connected, proper metric spaceWe generalize the Bragg planes above as mediatrices, defined here.

Definition 1.1. For ¢ andb distinct points inS, define thenediatrix (also called theequidistant setor bisector) L
of ¢ andb as:
Ly ={zr € X |d(z,a) =d(z,b)}.

Now choose a preferred poing in S, and consider the collection of mediatri({e[sxo’s}ses. These partitiorX into
Brillouin zones as above: roughly, th&" Brillouin zone B,, () consists of those points ik which are accessible
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Fig. 1.1. On the left are the Brillouin zones for the lattizé in R2. On the right is the outer boundary of the third Brillouin zone for the latfite
inR3.

from zo by crossing exactly, — 1 mediatrices. (There is some difficulty accounting for multiple crossings— see
Def. 2.6 for a precise statement.)
One basic property of the zoné, is that they tile the spack:

U Bu(@) =X and  By(xo) N By(21) is small.
x; €ES

Here, with some extra hypotheses, “small” means of measure zero. Furthermore, again with some extra hypothesis,
each zon&3,, has the same area. (This property was “obvious” to Brillouin.) Both results were proved by Bieberbach

in [Bi] in the case of a lattice ifR*. Indeed, he proves (as we do) that each zone forms a fundamental set for the
group action of the lattice. His arguments rely heavily on planar Euclidean geometry, although he remarks that his
considerations work equally well iR and can be extended to “groups of motions in non-Euclidean spaces”. In
[Jo1], Jones proves these results for latticeBfnas well as giving asymptotics for both the distance fitBmto the
basepoint, and for the number of connected components of the inted®y. dfi Sect. 2, we show that the tiling result

holds for arbitrary discrete sets in a metric space. If the discrete set is generated by a group of isometries, we show
that eachB,, forms a fundamental set, and consequently all have the same area (see Prop. 2.10).

We now discuss the relationship of Brillouin zones and focal decomposition of Riemannian manifolds.

If z1(t) andx2(t) are two solutions of a second order differential equation witf0) = x2(0) and there is some
T # 0 sothatz,(T) = z2(T), then the trajectories; andz are said tdocusat timeT'. One can ask how the number
of trajectories which focus varies with the endpairtf”’)— this gives rise to the concept offacal decomposition
(originally called asigma decompositiof. This concept was introduced in [Pel] and has important applications
in physics, for example when computing the semiclassical quantization using the Feynman path integral method (see
[Pe3]). There is also a connection with the arithmetic of positive definite quadratic forms (see [Pe2,KP, Pe3]). Brillouin
zones have a similar connection with arithmetic, as can be seen in Sect. 4 as well as [Pe3].

More specifically, consider the two-point boundary problem

j:f(taxai)7 l’(to):l’o, ‘T(tl):wla fZ?,t,jE,IiER.

Associated with this equation, there is a partitioriRdfinto setsX),, where a poin{zg, z1, to, t1) is in Xy if there
are exactlyk solutions which connedtcy, t9) to (1, t1). This partition is the focal decomposition with respect to the
boundary value problem. In [PT], several explicit examples are worked out, in particular the fundamental example of
the penduluni = — sin z. Also, using results of Hironaka ([Hi]) and Hardt ([Ha]), the possibility of a general, ana-
Iytic theory was pointed out. In particular, under very general hypotheses, the focal decomposition yields an analytic
Whitney stratification.

Later, in [KP], the idea of focal decomposition was approached in the context of geodesics of a Riemannian man-
ifold M (in addition to a reformulation of the main theorem of [PT]). Here, one takes a basepomthe manifold
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M two geodesics; and~y; focusat some poinyy € M if 11 (T) = y = v2(T"). This gives rise to a decomposition of
the tangent space @ff atz into regions where the same number of geodesics focus.

In order to study focusing of geodesics on a manifdifl g) with metricg via Brillouin zones, we do the following.
Choose a base-poipt in M and construct the universal covat, lifting py to a pointxy in X. Lety be a smooth
curve in M with initial point po and endpoinp. Lift v to 4 in X with initial point x,. Its endpoint will be some
x € 7~ 1(p). The metricg on M is lifted to a metricj on X by settingg = 7*g. Under the above conditions, the group
G of deck transformations is discontinuous andrsd (pg) C X is a discrete set. One can ask how many geodesics
of lengtht there are which start at, and end irp, or translated t¢.X, %), this becomestiow many mediatrices, s
intersect atr, ass ranges ovetr ! (pg)?

Notice that if the universal cover df/ coincides with the tangent spa@&\/,, the focal decomposition of [KP]
and that given by Brillouin zones will be the same. If the universal cover and the tangent space are homeomorphic (as
is the case for a manifold of constant negative curvature), the two decompositions are not identical, but there is a clear
correspondence. However, if the universal cover of the manifold is not homeomorphic to the tangent space at the base
point, the focal decomposition and that given by constructing Brillouin zones in the universal cover are completely
different. For example, led/ be S™, and letz be any point in it. The focal decomposition with respectrtgives
a collection of nested — 1-spheres centered at on each of these infinitely many geodesics focus (each sphere is
mapped by the exponential to eitheror its antipodal point). Between the spheres are bands in which no focusing
occurs. (See [Pe3]). However, using the construction outlined in the previous paragraph gives a very different result.
SinceS™ is simply connected, it is its own universal cover. There is only one point in our discrete set, and so the entire
sphereS” is in the first zoneB;.

The organization of this paper is as follows. In Sect. 2, we set up the general machinery we need, and prove the
main theorems in the context of a discreteSéb a proper metric space.
Section 3 explores this in the context of manifolds of constant curvature. The universal diieBis or H", and
the groupG of deck transformations is a discrete group of isometries (see, for example, [doC]). The discfeie set
the orbit of a point not fixed by any element@funder this discontinuous group. It is easy to see that the mediatrices
in this case are totally geodesic spaces. From the basic property explained above, one can deduct'tBatlthen
zone is a fundamental region for the gratipn X.
In Sect. 4, we calculate exactly the number of geodesics of leniiilt connect the origin to itself in two cases:
the flat torusR? /Z? and the Riemann surfacE /I"(p), for p € {2,3,5}. While these calculations could, of course,
be done independent of our construction, we find that the Brillouin zones help visualize the process.
In the final section, we give a nontrivial example in the case of a non-Riemannian metric, and mention a connection
to the question of how many integer solutions there are to the equdtiery” = n, for fixed k.

Acknowledgementlt is a pleasure to acknowledge useful conversations with Federico Bonetto, Johann Dupont, Irwin Kra, Bernie Maskit, John
Milnor, Chi-Han Sah, and Duncan Sands. Part of this work was carried out while Peter Veerman was visiting the Center for Physics and Biology at
Rockefeller University and the Mathematics Department at SUNY Stony Brook; the authors are grateful for the hospitality of these institutions.

2. Definitions and Main Results

In this section, we prove that under very general conditions, Brillouin zones tile (as defined below) the space in which
they are defined, generalizing an old result of Bieberbach [Bi]. With stronger assumptions, we prove that these tiles
are fairly well-behaved sets (see Prop. 2.13).

NotationThroughout this paper, we shall assuiigs a path connected, proper (see below) metric space (with metric
d(-,-)). We will make use of the following notation:

o Write an openr-neighborhood of a pointy asN,.(zg) = {z € X | d(zg,z) < r}.
o Define the circumference &%.(xo) = {z € X | d(zo,x) =7}.
o The closed disk of radius, denoted byD,.(x¢) = {z € X | d(xo,x) < r}, is their union.
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Definition 2.1. A metric spaceX is proper if the distance functiod(z, -) is a proper map for every fixed € X.
In particular, for everyz € X andr > 0, the closed balD,.(z) is compact. Such a metric space is also sometimes
called ageometry(see [Ca]).

Note if X is proper, path-connected metric space, it is locally compact and complete. By the Hopf-Rinow Theorem,
the converse also holds K is a geodesic metric space, also called a “length space” (see [Gr]). A metric space is a
length space if the distance between any two points coincides with the infimum of the lengths of curves joining them.
Although the notions do not quite coincide, metrically consistent spaces (defined below) are closely related to length
spaces.

Definition 2.2. The spaceX is calledmetrically consistentif, for all « in X, all R > r > 0 in R with » sufficiently
small, and for eacla € Cr(x), there is az € C,.(x) satisfyingNy(. q)(2) € Nr(z) andCy(; q)(2) N Cr(z) = {a}.

Metric consistency ensures some regularity properties, which we need to use only in Proposition 2.13. We note that
every Riemannian metric space is metrically consistent.

Any mediatrixL,, ; separates(, that is: X ~\ L,; contains at least two components (one containing the pand
the othem). Another regularity condition that we will sometimes want is for the complemenhttofhaveexactlytwo
components, and fat to be minimal:

Definitiop 2.3. We say that the mediatrik,; is minimally separating if for any subsef. C L, with L # Ly, the
setX — L has one component.

We will use the notation
Ly, ={x € X 1d(0,z) — d(a,z) < 0} and Lara ={x € X |d(0,z) — d(a,z) > 0}

for the two components ok ~ L,; we will sometimes omit the subscripts and just use and L~. Note that a
minimally separating sel is contained both in the closure &f~ and in the closure of. ™. To see this, let/ be an
open set contained ih. ThenL~ UV and L™ are disjoint open sets. Consequently,. (L N V') separates, which

contradicts the minimality of..

Usually, there will be a discrete set of poirfis= {z;},.,; in X which will be of interest. By discrete we mean that
any compact subset df contains finitely many points . Note that iﬂing iréf d(a,b) > 0, thenS is discrete.
a,be

Definition 2.4. We say a proper, path connected metric spAces Brillouin if it satisfies the following conditions:

1: X is metrically consistent.
2: Forall g, bin X, the mediatriced.,;, are minimally separating sets.

The second condition in the above definition may be weakened to apply only to those mediafied®rea and
b are inS. In this case, we will say that is Brillouin over S, if it is not obvious from the context.

Example 2.5.EquipR? with the “Manhattan metric”, that isi(p, q) = |p1 — ¢1| + |p2 — ¢=|. The Manhattan metric

is not metrically consistent: a circl€,.(p) is a diamond of side lengthy/2 centered ap, and the definition fails
because’y. ,)(z) N Cr(x) is a segment rather than a point. Neither are the mediatrices minimally separating: if the
coordinates of a point are equal, thet,, consists of a line segment and two quarter-planes (see Fig. 2.1). Even if the
discrete seb contains no such points, we can still run into strange situations. For example, the medla(mg $.4)

andL g 0),(4,6) both contain the ray(t,1) | t > 4} (Fig. 2.2). But, if we are careful, we can avoid this(0f 0) is the
basepoint, we must have that for all pajts, az) and(by,be) in S, a3 — as # by — by. FoOr example, take& to be

an irrational lattice such a§(m,nv/2) | m,n € Z}. (From this example, we see that to do well in Manhattan, one
should be carefully irrational.) It is interesting to note that while this example is not metrically consistent and hence
not Brillouin, all the conclusions of this section (in particular, Prop. 2.13) still hold.



On Brillouin Zones 5

°

|

Fig. 2.1. The setl (g o), (a,qa) CONtAINS two quarter-planes.

\ \ 1 \ \
Fig. 2.3. The mediatriced.o, for R? with the Manhattan metric andin the lattice

Fig. 2.2. L(o,0),(4.6) (thin solid line) andL o, 2.0y 1™V}
(thick grey line) have open segments in common.

As mentioned in the introduction, for eaeh € S, the mediatriced.,,, give a partition ofX. Informally, those
elements of the partition which are reached by crossing 1 mediatrices fromz, form the n** Brillouin zone,
B, (xo). This definition is impractical, in part because a path may cross several mediatrices simultaneously, or the
same mediatrix more than once. Instead, we will use a definition given in terms of the number of elenSentsatf
are nearest ta. In many cases, this definition is equivalent to the informal one. See the remarks at the end of this
section for more details. We use the notatj(S) to denote the cardinality of the s&t

Definition 2.6. Letz € X, letn be a positive integen < #(S5), and letr = d(x, zo). Then define the sebs ()
and B,,(x¢) as follows:

o x€by(xg) <= # (N (z)NS)=n—-1 and C.(z)NS = {x0}.
o 2 € Bu(zg) <= #(N.(x)NS)=m and #(C.(x)NS)=¢>1, wherel,m € Z withm +1<n<m+/.

Here the pointz, is called thebase point and the sef3,, (1) is then'” Brillouin zone with base point,. Note
that in the second part,if = n—1 and¢ = 1, thenx € b, (). S0b,, (z9) C B, (o). Note also that the complement
of b, (o) In By, (z0) consists of subsets of mediatrices (see Def. 1.1). Note alsd,thag) is open and thaB,, (o)
is closed. Finally, observe that for fixed the sets,,(x() are disjoint, but the setB,,(z() are not.
The following lemma, which follows immediately from Def. 2.6, explains a basic feature of the zones, namely that
they are concentric in a weak sense. This property is also apparent from the figures.

Lemma 2.7. Any continuous path fromy to B,, (o) intersectsB,,_1 ().
The Brillouin zones actually form a covering &f by non-overlapping closed sets in various ways. This is proved
in parts. The next two results assert that the zahesver X, but the zones do not. The first of these is an immediate

consequence of the definitions. The second is more surprising and ultimately leads to Corollary 3.5, the generalization
of Bieberbach’s “equal area” result.

Lemma 2.8. For fixed n the Brillouin zones til& in the following sense:

UBi(zn) =X and  bi(wn) Nbj(wn) =0 ifi # 4.

In addition, B;(z,,) N bj(z,,) = 0 if i # j.
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Fig. 2.4. Here we illustrate the definition of the séis(xo) and By, (zo) for the latticeZ? in R2. In both pictures, the CIrcl€y(; 4) (@) is
drawn, and the basepoint, lies in the center of the square at the lower left. On the left side, the paimtarked by a small cross) lies i,
and# (Nr(xz) NS) = 4, while zq is the only point ofS on the circle. On the right, we have = 4 and? = 8, soz lies in all of the sets
Bs, Bs, . . ., Bi2.

N s 7
. ] .
anuRy, SN \

Fig. 2.5. This example illustrates Lemma 2.8 and Theorem 2.9.9 ke the discrete sgt(m,0)} U {(0,n)},m,n € Z in the Euclidean plane.
On the left is the tiling given byB; (0, 0) and in the middle is the tiling by, (2, 0). In both cased)s is shaded. On the right is the tiling given by
Ba(z;) as in Thm. 2.9. The sets (0, 0), b2(1, 0), andb2(2, 0) have been shaded. Note that thisloes not correspond to a group, nor does it
satisfy the hypotheses of Prop. 2.10, because there are no isometries which geendtdo not fix the origin.

Theorem 2.9. Let X be a proper, path-connected metric space andblet {x;}, , be a discrete set. Then, for fixed
n < #(9), the setg B, (z;) },, tile X in the following sense:

UBn(z:) =X and  bu(2:) Nby(x;) =0 ifi# 4.

Proof. First, we show that for any fixed > 0 and each: € X, there is anc; € S with x € B, (z;). Re-indexS so
that if S = {z1, 22, x3,...} andi < j, thend(z, z;) < d(z, z;). This can be done; sincg s a discrete subset and
closed ballsD.(z;) are compact, the subsets®fvith d(z, z;) < c are all finite. Let; = d(x, =;). We will show that
x € By(zy,).

Note thatr,, > r,_;. Suppose first that, > r,_1, thenN, (z) N S contains exactly: — 1 points, andx,, €
C,, (x)NS.Thusz € B, (z,). Note that ifr,,; > r,, then we would have € b, (z,) C B,(z,).

If, on the other hand;,, = r,,_1, thenthereis& > 0 sothatr, =r,_1 = ... = r,_;, and so# (N, (z) N S) =
n—k—1<n-—1. Butthen# (C,, (z)NS)>k~+1,and hence € B,(z,) as desired.
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For the second part, we show thigt(z;) N b, (z;) =
r; = rj, thenz; = x;, because by the deflnltlon of, (
casex; € D, (x) C N, (x) . Thus, since# (N, (r)N S
contradiction. O

(0. If not, then there is a point in their intersection. If
xg), {z } = C,.(z) N S. If not, thenr; < r;. In this
) = n — 1, N, (z) must contain at least points of S, a

The next result indicates how this notion of tiling is related to the notion of a fundamental set.

Proposition 2.10. Let S be a discrete set in a metric spadgas in Thm. 2.9. Suppose that for eachin S there is
an isometryg; of X such thatg;(xo) = x;, g; permutesS and the onlyg; which leavese fixed is the identity. Then
there is a sef” (the fundamental set), satisfying:

bn(xg) € F C Bp(zg) with

Ugyz(F):X and g;(F)Ng;(F) =0 (i # j).

Proof. Suppose that € b, (xo). From Def. 2.6 and the fact that tlye are isometries, we see that this is equivalent
to gi () € by (x;). Thusg; (b, (o)) = bn(z;). Now apply Theorem 2.9. A similar reasoning proves the statement for
Bn (SC()) (]

Remark 2.11.The fundamental seft is not necessarily connected. Also, note that it follows from this proposition that
B, (o) is scissors congruent 18, (x() (see [Sah] for a discussion of scissors congruence). In particular, this implies
immediately that the3, all have the same area. Note that this result does not héldsiinot generated by a group of
isometries. See, for example, Fig. 2.5.

In many examples,, is the closure o0b,,. However, this need not always be the case, even if we assume the space
is Brillouin, as the example below shows. We will give additional, more involved examples in a forthcoming work.

Example 2.12L et X be the flat cylinder obtained by identifying opposite sides of the .Xl
strip{z| — 1 < Re(z) < 1} in the usual way. We will denote points in the cylinder by
a corresponding complex number. gt = 1, 1 = 4, andzs = —i. Each mediatrix
L; is a topological circle consisting of a pair of segments meeting at right angles.T|
first zoneb; (x¢) is the part of the cylinder wherém (z) | < |Re(z) |, (zg)is @
the closure ob,. The second zone is the complemenbpin the cylinder, and- is its
interior. HoweverBs = {0} andb; is empty. Note that in this examplB; is contained
in the closures ob; andb,.

Despite the fact that the zonék are not always the closure of their interiorsXifis a Brillouin space, thé3; are
still fairly well behaved sets, as the next proposition shows.

Proposition 2.13. If X is Brillouin over S, then

(i) Interior points of B,,(zo) are inb,,(x).
(i) By (zo) is contained in the closure &f (zp) U - - - U by, ().

Proof. Without loss of generality, we can restrict our attentiorBig(x¢), which we will denoteB,, throughout the
proof. Sinceb,, C B,,, with b,, open andB,, closed, it is obvious that, C B,,.

Letz be a pointinB,, \. b,,. By Definition 2.6,z € By,+1NBmnt2N...NBpyye, With £ > 2andm+1 < n < m+-~.
The pointz lies on the intersection df — 1 mediatrices, that iy, ) (z) N S consists of points.

Supposex is an interior point ofB,,, 4 for somed € {1,---¢}. LetV be an arbritrary, small neighborhood af
so thatV’ C B,, 4. Continuity of the metric allows us to chooges V' such thatNy, ., (y) N S containsm points,
and using metric consistency we can ensuredhyf ..., (y) NS contains exactly one point, namety. Thus, we have
Yy e bm+1-
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Supposer, # g is a pointinCy(,, ) (z) N .S. By the same reasoning as aboVemust contain a point such that
Ny(z.2.)(2) NS containsm points, andCy; ,.)(z) NS = {xo}. Thusd(z,x0) > d(z,x,) and SONy(; ) (z) N S
contains at least: + 1 points. This implies that € B, 12 U -+ U B, 44.

Sincey andz are inV C B, 4, We have that for somé > 1, B,, 14 N b1 @andB,, 14 N (B2 U -+ Byye)
are both non-empty. In view of Lemma 2.8 this is a contradiction.

To prove the second statement, we start again by observing thistdf point inB,, \. b,,, thenx € B, 11N B, 12N
...N By,+e. Exactly as above, we note that any neighborhoad afntains points 06,,,.1. O

Remark 2.14.In practice, using Definition 2.6 directly can be unwieldy. It is typically easier to identify the various
b,, using the informal definition, counting the number of mediatrices crossed by a path which stgrtSapposeX
is such that between, and any point ob,,, one can find a path so that if L; and L; are distinct mediatrices, then
v N L; # v N Lj. In this case, it follows immediately that a point istip if and only if such a path crosses exactly
n — 1 mediatrices. If the path crosses the same mediatrix more than once, we must use a signed notion of crossing.
This allows us to account only for those crossings which are essential.
However, such a process is not always possible— we can not always push a path off a point where several medi-
atrices intersect. One way around this is to adjust the definition of “cross”.
As in [Pel], we assign to each poinits Brillouin index:

B(z) = max{n |z € B,(zg)}.

From Lemma 2.8, we see that this is a well defined function which is constanton). If L = L, ., is a mediatrix,

we say thaty crossesL if y(1) € L} , , the component containing,. (Recall thaty(0) € L, by definition.)

Notice that this definition only makes sens&if— L has two components, which is always the cask i6 Brillouin.
With this definition of “cross”, then there is always a patfrom x to z, which crosses exactly — 1 mediatrices if

and only ifz € b, (xo).

3. Brillouin Zones in Spaces of Constant Curvature

In this sectionX will be assumed to be one &", S”, or H", all equipped with the standard metric, and d&be

a discontinuous group of isometries &. Denote the quotienX /G with the induced metric byM, g). Then the
construction of lifting to the universal cover, as outlined in the introduction, applies naturdfly tg). In this section
we describe focusing of geodesics (i, g) by Brillouin zones inX. The discrete se$' is given by the orbit of
a chosen point inX (which we will call the origin) under the group of deck-transformatiéhsThe fact that the
Brillouin zones are fundamental sets is now a direct corollary of Prop. 2.10.

The regularity conditions of Def. 2.4 are easily verified in the present context. We do this first.

Lemma 3.1. If X is eitherR", S”, or H", then a mediatrixL,; in X is an (n — 1)-dimensional, totally geodesic
subspace consisting of one component, &nd L,; has two components.

Proof. This is easy to see if we change coordinates by an isometky, pluttinga andb in a convenient position, say
asz and—z. The mediatrixL,, _, is easily seen to satisfy the conditions (in the casgofit is the equator, and for
the others, it is a hyperplane). The conclusion follows.

Proposition 3.2. All such spaces( are Brillouin (see Definition 2.4).

Proof. As remarked before, the first condition is satisfied for any Riemannian metric. The second condition is also
easy. It suffices to observe that the subspaces of Lemma 3.1 are minimally separating.

Remark 3.3.Note that in the Riemannian case, mediatrices always cross transversally.dhd Ly, coincide in an
open set, then their tangent spaces also coincide at some point. Uniqueness of solutions of second order differential
equations then implieg, = Lqp.

Recall that a metric spack is calledrigid if the only isometry which fixes each point of a nonempty open subset
of X is the identity. It is not hard to see th&t, H", andR" are rigid spaces. See [Ra] for more details of rigid metric
spaces and for the proof of the following result. Recall that the stabilizér af a pointx € X consists of those
elements of~ that fix x.
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Proposition 3.4. Let G be a discontinuous group of isometries of a rigid metric sp&c& hen there exists a poipt
of X whose stabilizet+,, consists of the identity.

We now return to Brillouin zones as defined in the last section. Recallihata group of isometries ok that
acts discontinuously on points K. Let 2y be a point inX whose stabilizer under the action 6fis trivial. For
anyz € X, let [z, 2] be a geodesic segment of minimal length whose endpoints@aadz. ThenB,,(x¢), the
n*" Brillouin zone relative tary, is the set of points in X such that the geodesic segmény, z] intercepts exactly
n — 1 mediatricesL,, ,, wherey is in the orbit ofzy under the groug-. Proposition 2.10 immediately implies the
most important fact about Brillouin zones in this setting.

Corollary 3.5. Let X beR"™, S", or H", and letG be a discontinuous group of isometries®f Letzy € X be
such that its stabilizetz,, underG is trivial. Then for every positive integer, the n'" Brillouin zone B,, () is a
fundamental set for the action 6f on points inX. Its boundary is the union of pieces of totally geodesic subspaces
and equals the boundary of its interior.

Fig. 3.1. Brillouin zones forPSL(2,7Z) in the hyperbolic disk. We have transported the “usual” upper half-plane representation using the map
z % On the left are the set8,, (), which give fundamental sets as in Cor. 3.5. On the rigli, taken as a basepoint. Since the origin has
a non-trivial stabilizer, the corresponding Brillouin zones give a double cover of the fundamental sets.

Remark 3.6.The above corollary is the generalization of Bieberbach’s main result on Brillouin zones [Bi]. The first
Brillouin zone B4 (0) is the usual Dirichlet fundamental domain for the actiorGofFurthermore, even whef,,, is
not trivial, B,,(xo) is ak-fold cover of a fundamental region.

As pointed out in the introduction, the number of geodesics that focus in a certain point is counted in the lift. So if
a given pointz € X is intersected by. mediatrices, it is reached by+ 1 geodesics of lengtti(0, =) emanating from
the reference point (the origin). In the next section, we give more specific examples of this.

Finally, we state a conjecture.

Conjecture 3.7.Let (X, g) be the universal cover of é&dimensional smooth Riemannian manifdldi/, g) as de-
scribed in the construction. For a generic megrian M, no more thanr! mediatrices intersect in any given poinof
X.

This conjecture acquires perhaps even more interest (and certainly more structure), when one restricts the collection
of metrics on)M to conformal ones ([Mas]). A result in this direction faf = R?/Z? can be found in [Jo1].
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4. Focusing in Two Riemannian Examples

In this section, we give two examples (one of them new as far as we know) of focusing. Supposethatgeodesics

start emanating in all possible directions from a point. At certain titpels, ...., we may see geodesics returning to

that point. We derive expressions for the number of geodesics returnindratwo cases. First, as an introductory

example we will discuss this for the case of the flat, square tbfus: R2/22 (a more complete discussion of this

example can be found in [Pe3]). Second, we will deal with a much more unusual example, Adreel§i® /I"(k),

wherel'(k) is a subgroup ofPSL(2,Z) called the principal congruence subgroup of levétiefined in more detail

below). We note that it seems to be considerably harder to count geodesics that focus in points other than our basepoint.
Before continuing, consider the classical problem of counity@n), the number of solutions iAi* of

P +¢=n
Let

k 4
n:2aHpiz‘ Hqil
=1 j=1

be the prime decomposition of the numberwherep; = 1(mod4) andg; = 3(mod4). The following classical
result of Gauss (see, for example, [NZM]) will be very useful.
Lemma4.1. R,(n) is zero whenever is not an integer, or any of the; is odd. Otherwise,

k

Ry(n) =4+ 8).

=1
Example 4.2.Choose an origin id/ = R?/Z? and lift it to the origin inR?. Our discrete se§ is thenZ?. Let p, (t)
be the number of geodesics of lengtthat connect the origin to the pointe M.

Proposition 4.3. In the flat torusR? /Z?, the number of geodesics of lengtihat connect any point to itself js (t) =
Ry (t%).

Proof. Notice that by definition geodesics of lengtleaving from the origin irR? reach the points containeddr (0).

Only if t2 is an integer does this circle intersect point<Zdf Because of the homgeneity of the flat, square torus, it
does not matter where we choose the originl

Example 4.4.We now turn to the next example. Recall ta$ L.(2, Z) can be identified with the group of two by two
matrices with integer entries and determinant one, and with multiplicatienltys equivalence. For eaéhthe group
I'(k) is the subgroup oPSL(2,Z) given by

(k) = {(g Z) € PSL(2,7)

a=d=1(modk), bECEO(modk)}.

This group has important applications in number theory. The actidi(bf on H? is given by the Mbbius transfor-

mations
az+b ab

g(z) = ot d where (C d) e I'(k).

We point out that folk: = 2, 3, or 5, the surfacéll® /I"(k) is a sphere with 3, 4, or 12 punctures (see [FK]).

We will find it more convenient to work in the hyperbolic di&K, which is the universal cover @ /I"(k). We
shall choose a representation Bfk) in the disk so that € H* corresponds to the origin. This will allow us to
determine the focusing of the geodesics which emanatefrdfute that the surfadd? /I"(k) has special symmetries
with respect ta: for example; is the unique point fixed by the ord2relement ofPSL(2,7Z).

Lemma 4.5. The action of the fundamental group of the surféiég I'(k) can be represented as

r—is p+iq
p—iq r+1is

acting onD?. We shall denote this particular representation as the grouipk).

PP +1=12+52
r+p=1(modk), r—p=1(modk) ;,
s+¢qg=0(mod k), s—¢q=0(mod k)
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Fig. 4.1. The orbit ofi under’(2) transported to the hyperbolic disk, and the corresponding Brillouin zones. EactBzoftems a fundamental
domain for a 3-punctured sphere.

Proof. Following the conventions in [Be], define

z+1
—z+1

¢:D? > HZ, ¢(z) =i

Push back the transformatigne I'(k) from H? to D? by ¢ — ¢~'¢¢ to obtain a representation gfc I'(k) as a
transformation acting of?. The matrix representation of this transformation is given by:

a+d -b—c a—d - b+4c
7 T3

A —

g =

2
a—d :b+c  a+td -b—c
7 T3 2

wheredet A, = 1, since this matrix is conjugate tg whose determinant is equal toLet

p=(a—d)2 q=—(b+c)/2
r=(a+d)/2 s=—(b—c¢)/2

andA, now written as
A (7 15 p+1iq
9 \p—ig r+is )’
Here the numbers, g, r, s are inZ and must satisfy the following congruence conditions:

r+p=1(modk), r—p=1(mod k),
s+¢=0(mod k), s—¢q=0(mod k).

Since the determinant of, is equal tol, we must also have
PHE+1=r 44
O
We need another auxiliary result before we state the main result of this section.
Lemma 4.6. Let (p, q) and (r, s) be two points inZ® such that the integersl = p> + ¢> and B = 2 + 52 are

relatively prime, and lep be a rotation fixing the origin. Now(p, ) = (¢, ¢') ande(r, s) = (', s') are inZ* if and
only if ¢ is a rotation by an integer multiple af/2.
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Proof. Let c be the cosine of the angle of rotation. We have

pp+qq r'r+s's
c= = .
A B

Thus ifp’p 4+ ¢’q andr’r + s’s are not both equal to zero,

pPp+dq A

r'r+s's B’

Becaused and B are relatively prime and surely’p + ¢'q| is less than or equal td, and similarly forB, we have
that
p'p+qq==+A and 7'r 4+ s's = £B.

This implies the result. O

Now we define a counter just as before. Choose a liftlof= D? /I3, (k) so that) € M lifts to 0 € D?. Letv,(t)
be the number of geodesics of lengtthat connect the origin to the poiate M.

512f 1 512} e
256} 1 256} o i
=
128} 1 128} e
6af 1 eaf e
32- L 32- +_-
16F + o+ o+t F+ EH Rt 4+ A e+ o 16F - ——
st Tt HE HE R A H R b e L st e S —-
4F b H B S S + L A A = L 4F v+
012345678 910111213141516171819202122232425 012345678

Fig. 4.2. The non-zero values @i (¢) for ¢t < 25 (left) andvo(t) for ¢ < 8 (right), which count how many geodesics of lengttonnect the origin
to itself in theR? /2 andD? /1% (2), respectively.

Theorem 4.7. In the surfacel® /I"(k), the number of geodesics of lengtivhich connect the pointe H? to itself is
given by
%Rg(cosh2 t —1)R,(cosh®t) fork = 2,

iR, (%) R,(cosh®t) for k = 3,

LR, (I5=L) Ry (cosh®t) for k= 5.

Note that in all cases, the number is nonzero oniypih? ¢ € N.

Proof. We shall work in the disk, rather than i*. Let S be the orbit of0 € D? under} (k). Then the number of
such geodesics is exactly the number of distinct pointS afich lie on the circleC;(0) of radiust and centered at
the origin. ‘
If 2 € S, then by Lemma 4.5, it is of the forfi=2 with p, ¢, 7, s integers satisfying® + ¢> = r> + s> — 1. Letn
be their common value, that is,
n=p*+¢=r>+s>—-1.

We will first count the number of 4-tupld®, ¢, r, s) that solve this equation, momentarily ignoring the congruence
conditions.
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Note that the point has Euclidean distance to the origin given by

P+¢ n

2
z|? = = .
e r24+s2 n+1

The hyperbolic length of the geodesic which connects the origin is arctanh (|z|.). Consequentlyyo(t) is only
non-zero when = arctanh \/n/(n + 1), or, equivalently, whem = cosh®t — 1.
To count the number of intersections@f(0) with .S for these values of, observe that we can use Gauss’ result to
count the number of pair®, ¢) such thap? + ¢* = n. This number is given by?, (n). For each such paip, ¢), we
have a number of choices to form ]
P+
T = —.
T +1S
By the above, this number is equal®y(n + 1). Thus,yy(t) is at mostR,(n)R,(n + 1).
However, we have over-counted: some of our choice®fgrr, s represent the same pointe S, and some of
them may not satisfy the congruence conditions, which we have so far ignored. We will first account for the multiple
representations, and then account for the congruence relations.
Letp,q,r,s € Z be as above, giving a point = ‘T’ij‘j which is at distanceé = arctanh /n/(n + 1) from
the origin. If we multiply the numerator and denominatordfy e, thenz will remain unchanged. Because of the
requirement thap? 4 ¢ = r2 + s — 1 = n, this is the only invariant, and by Lemma 4éemust be a multiple of
for the numerator and denominator to remain Gaussian integers. We see that in our counting, we have represented our
pointz in 4 different ways:

r4+is —s4+ir —r—is s—ir’
meaning we have over-counted by a factor of at least 4.
Now we account for the congruence conditions.
First, consider the cage= 2. Note thaty+s = 0 ( mod 2) ifand only ifp+r = 1 ( mod 2), becaus@?+¢*+1 =
r2 + 52, so we need only check this one condition. If the representﬁg{éﬁfails to satisfy our parity condition, then

¢+ s = 1(mod 2) and consequently+r = 0 (mod 2). This means that the representat@ﬁ% of this same point
does satisfy the parity conditions, giving exactly

L, ptie _—qtip —p—ig _q—ip

1
zRg(cosh2 t — 1)R,(cosh® t)

distinct points ofS at distance from the origin.
If £ = 3, then sincek is odd, the congruence conditions gry, r, ands imply that

r=1(mod3) and p=gqg=s=0(mod3).

Note that the equation
pP’+¢>=n and p=q=0(mod3)
will be satisfied exactly?, (n/3%) times. (Recall that if. is not divisible by9, thenR,(n/9) is 0.)
For fixedn, let (p, ¢) be any one of the solutions. We need to decide how many solutions the equation

r+s>=n+1 with r=1(mod3) and s=0(mod3)

admits. The solution of the first equation implies that 3 divideShusr? + s = 1 (mod 3). Consequently, we have
4 choicesmod3 for the pair(r, s), namely(0, 1), (1, 0), (0,2), and(2,0).

Let (p,q,r,s) € Z* x Z* be any solution tov = p® + ¢> = r?> + s> — 1 with p = ¢ = 0(mod 3). For each
choice of(p, ¢), we have exactlyR?,(n + 1) choices of(r, s). Now let R denote the product of the rotations hy2
on each of the components @f x Z?. Using Lemma 4.6, we see that all such solutions can be obtained from just
one by applyingR repeatedly. It is easy to check that each quadruple of solutions thus constructed runs exactly once
through the above list. Since precisely one out of the four associated solutions is compatible with the conditions, the
total number of solutions is exactly:

1 n

Using the relationship between the Euclidean distance and the Roiecath as before gives the result.

If & =5, the proof fork = 3 can be literally transcribed to obtain the resul
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Remark 4.8.Note that the above results do not hold:ifs not one of the cases mentioned. The primary difficulty is
that for primek > 7, there are solutions which are not related by applying the rotdtioHowever, the argument
does give an upper bound &R, ((cosh®t — 1)/k?) Ry (cosh? ¢) for H* /T'(k) whenk is an odd prime. Note that the

surfaceH? /I"(k) is of genug) if and only if k < 5 (see [FK]).

5. Non-Riemannian Examples

The present context is certainly not restricted to Riemannian metrics. As an indicator of this we now discuss a different
set of examples.
Let k be a positive number greater than one. EdRiipwith the distance function

1/k
Lz —yll= (Jz1 — 91| + [ — gal¥)

and let the discrete sét be given byZ?. For k not equal to 2, this is not a Riemannian metric, yet all conclusions
of Sect. 2 hold. In particular, each Brillouin zone forms a fundamental domain. Note that determining the zones by
inspecting the picture requires close attention!

HaNn

N

X -1
-2 -‘1 6 -10 -5 0 5 10
X x

Fig. 5.1. Brillouin zones for the lattic&? in R? with the metric(|z1 — y1|* + |v2 — y2|4)1/4. See also Fig. 2.3 and Example 2.5, which deal
with the caseé: = 1, the “Manhattan metric”.

Now the problem of determining(0) N.S for any givent is unsolved for generdl. In fact, even for certain integer
values ofk greater than 2, it is not known wheth@§(0) N S ever contains at least two points that are not related by
the symmetries of the problem. Fbr= 4, the smallest for which C;(0) N S has at least two (unrelated) solutions is
given by

t* = 133* 4+ 134* = 158* + 59*.
However, fork > 5, it unknown whether this can happen at all (see [SW]).
There are some things that can be said, however. In the situation Wwhefg the mediatrices intersect the coordi-

nate axes only in irrational points or in multiplesioR. For if z = (p/q,0) is a point of a mediatrixt ¢ o), (a,,a,)» W€
have

pl* = Ip — qa1|* + |azql” (p#0,q#0)
By Fermat's Last Theorem, this has no solution unless ejtherqa; or a; = 0. In the first caseg = +as, Which
can only occur if the lattice point is of the for(as, £as). If as = 0, then§ = 4. In particular, there is no nontrivial
focusing along the axes.
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To compute Fig. 5.1, we took advantage of the smoothness of the metric. Not all metrics are sufficiently smooth
for this procedure to work. Even for Riemannian metrics, in general the distance function is only Lipschitz, which will
not be sufficiently smooth.

For eachu = (a;,a2) € 72, define a Hamiltonian:

Ho(z) =[[z—all = =]

The mediatrixLo,, corresponds to the level sEt, (z) = 0. Becausé1,(z) is smooth, we have uniqueness of solutions
to Hamilton’s equations. In the current situation, where the dimension is two, the level set consists of one orbit. Thus,
one can produce the mediatrix by numerically tracing the zero energy orbits of the above Hamiltonian.

As mentioned above, for a general Riemannian metric, the distance function is only Lipschitz. This means we have
no guarantee that the solutions of the above differential equation are unique. Indeed, there are examples of multiply
connected Riemannian manifolds with self-intersecting mediatrices, as will be shown in a forthcoming work.
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