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Abstract: Brillouin zones were introduced by Brillouin [Br] in the thirties to describe quantum mechanical properties
of crystals, that is, in a lattice inRn. They play an important role in solid-state physics. It was shown by Bieberbach [Bi]
that Brillouin zones tile the underlying space and that each zone has the same area. We generalize the notion of
Brillouin zones to apply to an arbitrary discrete set in a proper metric space, and show that analogs of Bieberbach’s
results hold in this context.

We then use these ideas to discuss focusing of geodesics in spaces of constant curvature. In the particular case of
the Riemann surfacesH2/Γ (k) (k = 2, 3, or 5), we explicitly count the number of geodesics of lengtht that connect
the pointi to itself.

1. Introduction

In solid-state physics, the notion of Brillouin zones is used to describe the behavior of an electron in a perfect crystal.
In a crystal, the atoms are often arranged in a lattice; for example, in NaCl, the sodium and chlorine atoms are arranged
along the points of the simple cubic latticeZ3. If we pick a specific atom and call it the origin, itsfirst Brillouin zone
consists of the points inR3 which are closer to the origin than to any other element of the lattice. This same zone can
be constructed as follows: for each elementa in the lattice, letL0a be the perpendicular bisecting plane of the line
between0 anda (this plane is called a Bragg plane). The volume about the origin enclosed by these intersecting planes
is the first Brillouin zone,b1(0). This construction also allows us to define the higher Brillouin zones as well: a point
x is in bn if the line connecting it to the origin crosses exactlyn− 1 planesL0a, counted with multiplicity.

This notion was introduced by Brillouin in the 1930s ([Br]), and plays an important role in solid-state theory
(see, for example, [AM,Jo2,Ti]). The construction which gives rise to Brillouin zones is not limited to consideration
of crystals, however. For example, in computational geometry, the notion of the Voronoi cell corresponds exactly
to the first Brillouin zone described above (see [PS]). We shall also see below how, after suitable generalization,
this construction coincides with the Dirichlet domain of Riemannian geometry, and in many cases, with the focal
decomposition introduced in [Pe1] (see also [Pe3]).

With some slight hypotheses (see Sect. 2), we generalize the construction of Brillouin zones to any discrete setS
in a path-connected, proper metric spaceX. We generalize the Bragg planes above as mediatrices, defined here.

Definition 1.1. For a andb distinct points inS, define themediatrix (also called theequidistant setor bisector) Lab

of a andb as:
Lab = {x ∈ X d(x, a) = d(x, b)} .

Now choose a preferred pointx0 in S, and consider the collection of mediatrices{Lx0,s}s∈S . These partitionX into
Brillouin zones as above: roughly, thenth Brillouin zoneBn(x0) consists of those points inX which are accessible
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Fig. 1.1. On the left are the Brillouin zones for the latticeZ2 in R2. On the right is the outer boundary of the third Brillouin zone for the latticeZ3

in R3.

from x0 by crossing exactlyn − 1 mediatrices. (There is some difficulty accounting for multiple crossings— see
Def. 2.6 for a precise statement.)

One basic property of the zonesBn is that they tile the spaceX:

⋃

xi∈S

Bn(xi) = X and Bn(x0) ∩Bn(x1) is small.

Here, with some extra hypotheses, “small” means of measure zero. Furthermore, again with some extra hypothesis,
each zoneBn has the same area. (This property was “obvious” to Brillouin.) Both results were proved by Bieberbach
in [Bi] in the case of a lattice inR2. Indeed, he proves (as we do) that each zone forms a fundamental set for the
group action of the lattice. His arguments rely heavily on planar Euclidean geometry, although he remarks that his
considerations work equally well inRd and can be extended to “groups of motions in non-Euclidean spaces”. In
[Jo1], Jones proves these results for lattices inRd, as well as giving asymptotics for both the distance fromBn to the
basepoint, and for the number of connected components of the interior ofBn. In Sect. 2, we show that the tiling result
holds for arbitrary discrete sets in a metric space. If the discrete set is generated by a group of isometries, we show
that eachBn forms a fundamental set, and consequently all have the same area (see Prop. 2.10).

We now discuss the relationship of Brillouin zones and focal decomposition of Riemannian manifolds.
If x1(t) andx2(t) are two solutions of a second order differential equation withx1(0) = x2(0) and there is some

T 6= 0 so thatx1(T ) = x2(T ), then the trajectoriesx1 andx2 are said tofocusat timeT . One can ask how the number
of trajectories which focus varies with the endpointx(T )— this gives rise to the concept of afocal decomposition
(originally called asigma decomposition). This concept was introduced in [Pe1] and has important applications
in physics, for example when computing the semiclassical quantization using the Feynman path integral method (see
[Pe3]). There is also a connection with the arithmetic of positive definite quadratic forms (see [Pe2,KP,Pe3]). Brillouin
zones have a similar connection with arithmetic, as can be seen in Sect. 4 as well as [Pe3].

More specifically, consider the two-point boundary problem

ẍ = f(t, x, ẋ), x(t0) = x0, x(t1) = x1, x, t, ẋ, ẍ ∈ R.

Associated with this equation, there is a partition ofR4 into setsΣk, where a point(x0, x1, t0, t1) is in Σk if there
are exactlyk solutions which connect(x0, t0) to (x1, t1). This partition is the focal decomposition with respect to the
boundary value problem. In [PT], several explicit examples are worked out, in particular the fundamental example of
the pendulum̈x = − sinx. Also, using results of Hironaka ([Hi]) and Hardt ([Ha]), the possibility of a general, ana-
lytic theory was pointed out. In particular, under very general hypotheses, the focal decomposition yields an analytic
Whitney stratification.

Later, in [KP], the idea of focal decomposition was approached in the context of geodesics of a Riemannian man-
ifold M (in addition to a reformulation of the main theorem of [PT]). Here, one takes a basepointx0 in the manifold
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M : two geodesicsγ1 andγ2 focusat some pointy ∈ M if γ1(T ) = y = γ2(T ). This gives rise to a decomposition of
the tangent space ofM atx into regions where the same number of geodesics focus.

In order to study focusing of geodesics on a manifold(M, g) with metricg via Brillouin zones, we do the following.
Choose a base-pointp0 in M and construct the universal coverX, lifting p0 to a pointx0 in X. Let γ be a smooth
curve inM with initial point p0 and endpointp. Lift γ to γ̃ in X with initial point x0. Its endpoint will be some
x ∈ π−1(p). The metricg onM is lifted to a metric̃g onX by settingg̃ = π∗g. Under the above conditions, the group
G of deck transformations is discontinuous and soπ−1(p0) ⊂ X is a discrete set. One can ask how many geodesics
of lengtht there are which start atp0 and end inp, or translated to(X, γ̃), this becomes:How many mediatricesLx0,s

intersect atx, ass ranges overπ−1(p0)?
Notice that if the universal cover ofM coincides with the tangent spaceTMx, the focal decomposition of [KP]

and that given by Brillouin zones will be the same. If the universal cover and the tangent space are homeomorphic (as
is the case for a manifold of constant negative curvature), the two decompositions are not identical, but there is a clear
correspondence. However, if the universal cover of the manifold is not homeomorphic to the tangent space at the base
point, the focal decomposition and that given by constructing Brillouin zones in the universal cover are completely
different. For example, letM be Sn, and letx be any point in it. The focal decomposition with respect tox gives
a collection of nestedn − 1-spheres centered atx; on each of these infinitely many geodesics focus (each sphere is
mapped by the exponential to eitherx or its antipodal point). Between the spheres are bands in which no focusing
occurs. (See [Pe3]). However, using the construction outlined in the previous paragraph gives a very different result.
SinceSn is simply connected, it is its own universal cover. There is only one point in our discrete set, and so the entire
sphereSn is in the first zoneB1.

The organization of this paper is as follows. In Sect. 2, we set up the general machinery we need, and prove the
main theorems in the context of a discrete setS in a proper metric space.

Section 3 explores this in the context of manifolds of constant curvature. The universal cover isRn, Sn, orHn, and
the groupG of deck transformations is a discrete group of isometries (see, for example, [doC]). The discrete setS is
the orbit of a point not fixed by any element ofG under this discontinuous group. It is easy to see that the mediatrices
in this case are totally geodesic spaces. From the basic property explained above, one can deduce that thenth Brillouin
zone is a fundamental region for the groupG in X.

In Sect. 4, we calculate exactly the number of geodesics of lengtht that connect the origin to itself in two cases:
the flat torusR2/Z2 and the Riemann surfacesH2/Γ (p), for p ∈ {2, 3, 5}. While these calculations could, of course,
be done independent of our construction, we find that the Brillouin zones help visualize the process.

In the final section, we give a nontrivial example in the case of a non-Riemannian metric, and mention a connection
to the question of how many integer solutions there are to the equationak + bk = n, for fixedk.

Acknowledgement.It is a pleasure to acknowledge useful conversations with Federico Bonetto, Johann Dupont, Irwin Kra, Bernie Maskit, John
Milnor, Chi-Han Sah, and Duncan Sands. Part of this work was carried out while Peter Veerman was visiting the Center for Physics and Biology at
Rockefeller University and the Mathematics Department at SUNY Stony Brook; the authors are grateful for the hospitality of these institutions.

2. Definitions and Main Results

In this section, we prove that under very general conditions, Brillouin zones tile (as defined below) the space in which
they are defined, generalizing an old result of Bieberbach [Bi]. With stronger assumptions, we prove that these tiles
are fairly well-behaved sets (see Prop. 2.13).

Notation.Throughout this paper, we shall assumeX is a path connected, proper (see below) metric space (with metric
d(·, ·)). We will make use of the following notation:

◦ Write an openr-neighborhood of a pointx0 asNr(x0) = {x ∈ X d(x0, x) < r}.
◦ Define the circumference asCr(x0) = {x ∈ X d(x0, x) = r}.
◦ The closed disk of radiusr, denoted byDr(x0) = {x ∈ X d(x0, x) ≤ r}, is their union.
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Definition 2.1. A metric spaceX is proper if the distance functiond(x, ·) is a proper map for every fixedx ∈ X.
In particular, for everyx ∈ X andr > 0, the closed ballDr(x) is compact. Such a metric space is also sometimes
called ageometry(see [Ca]).

Note if X is proper, path-connected metric space, it is locally compact and complete. By the Hopf-Rinow Theorem,
the converse also holds ifX is a geodesic metric space, also called a “length space” (see [Gr]). A metric space is a
length space if the distance between any two points coincides with the infimum of the lengths of curves joining them.
Although the notions do not quite coincide, metrically consistent spaces (defined below) are closely related to length
spaces.

Definition 2.2. The spaceX is calledmetrically consistent if, for all x in X, all R > r > 0 in R with r sufficiently
small, and for eacha ∈ CR(x), there is az ∈ Cr(x) satisfyingNd(z,a)(z) ⊆ NR(x) andCd(z,a)(z) ∩ CR(x) = {a}.

Metric consistency ensures some regularity properties, which we need to use only in Proposition 2.13. We note that
every Riemannian metric space is metrically consistent.

Any mediatrixLa,b separatesX, that is:XrLab contains at least two components (one containing the pointa and
the otherb). Another regularity condition that we will sometimes want is for the complement ofL to haveexactlytwo
components, and forL to be minimal:

Definition 2.3. We say that the mediatrixLab is minimally separating if for any subset̂L ⊂ Lab with L̂ 6= Lab, the
setX − L̂ has one component.

We will use the notation

L−0a = {x ∈ X d(0, x)− d(a, x) < 0} and L+
0a = {x ∈ X d(0, x)− d(a, x) > 0}

for the two components ofX r L0a; we will sometimes omit the subscripts and just useL+ andL−. Note that a
minimally separating setL is contained both in the closure ofL− and in the closure ofL+. To see this, letV be an
open set contained inL. ThenL− ∪ V andL+ are disjoint open sets. Consequently,Lr (L ∩ V ) separatesX, which
contradicts the minimality ofL.

Usually, there will be a discrete set of pointsS = {xi}i∈I in X which will be of interest. By discrete we mean that
any compact subset ofX contains finitely many points ofS. Note that iflim inf

a,b∈S
d(a, b) > 0, thenS is discrete.

Definition 2.4. We say a proper, path connected metric spaceX is Brillouin if it satisfies the following conditions:

1: X is metrically consistent.
2: For all a, b in X, the mediatricesLab are minimally separating sets.

The second condition in the above definition may be weakened to apply only to those mediatricesLab wherea and
b are inS. In this case, we will say thatX is Brillouin over S, if it is not obvious from the context.

Example 2.5.EquipR2 with the “Manhattan metric”, that is,d(p, q) = |p1 − q1| + |p2 − q2|. The Manhattan metric
is not metrically consistent: a circleCr(p) is a diamond of side lengthr

√
2 centered atp, and the definition fails

becauseCd(z,a)(z) ∩ CR(x) is a segment rather than a point. Neither are the mediatrices minimally separating: if the
coordinates of a pointa are equal, thenL0a consists of a line segment and two quarter-planes (see Fig. 2.1). Even if the
discrete setS contains no such points, we can still run into strange situations. For example, the mediatricesL(0,0),(2,4)

andL(0,0),(4,6) both contain the ray{(t, 1) t ≥ 4} (Fig. 2.2). But, if we are careful, we can avoid this. If(0, 0) is the
basepoint, we must have that for all pairs(a1, a2) and(b1, b2) in S, a1 − a2 6= b1 − b2. For example, takeS to be
an irrational lattice such as

{
(m,n

√
2) m, n ∈ Z}

. (From this example, we see that to do well in Manhattan, one
should be carefully irrational.) It is interesting to note that while this example is not metrically consistent and hence
not Brillouin, all the conclusions of this section (in particular, Prop. 2.13) still hold.
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Fig. 2.1. The setL(0,0),(a,a) contains two quarter-planes.

Fig. 2.2. L(0,0),(4,6) (thin solid line) andL(0,0),(2,4)
(thick grey line) have open segments in common.

Fig. 2.3. The mediatricesL0a for R2 with the Manhattan metric anda in the latticen
(m, n

√
2)
o

.

As mentioned in the introduction, for eachx0 ∈ S, the mediatricesLx0a give a partition ofX. Informally, those
elements of the partition which are reached by crossingn − 1 mediatrices fromx0 form the nth Brillouin zone,
Bn(x0). This definition is impractical, in part because a path may cross several mediatrices simultaneously, or the
same mediatrix more than once. Instead, we will use a definition given in terms of the number of elements ofS which
are nearest tox. In many cases, this definition is equivalent to the informal one. See the remarks at the end of this
section for more details. We use the notation#(S) to denote the cardinality of the setS.

Definition 2.6. Let x ∈ X, let n be a positive integer,n ≤ #(S), and letr = d(x, x0). Then define the setsbn(x0)
andBn(x0) as follows:

◦ x ∈ bn(x0) ⇐⇒ #(Nr(x) ∩ S) = n− 1 and Cr(x) ∩ S = {x0}.
◦ x ∈ Bn(x0) ⇐⇒ #(Nr(x) ∩ S) = m and #(Cr(x) ∩ S) = ` ≥ 1, wherel, m ∈ Z+ withm + 1 ≤ n ≤ m + `.

Here the pointx0 is called thebase point, and the setBn(x0) is thenth Brillouin zone with base pointx0. Note
that in the second part, ifm = n−1 and` = 1, thenx ∈ bn(x0). Sobn(x0) ⊆ Bn(x0). Note also that the complement
of bn(x0) in Bn(x0) consists of subsets of mediatrices (see Def. 1.1). Note also thatbn(x0) is open and thatBn(x0)
is closed. Finally, observe that for fixedx0 the setsbn(x0) are disjoint, but the setsBn(x0) are not.

The following lemma, which follows immediately from Def. 2.6, explains a basic feature of the zones, namely that
they are concentric in a weak sense. This property is also apparent from the figures.

Lemma 2.7. Any continuous path fromx0 to Bn(x0) intersectsBn−1(x0).

The Brillouin zones actually form a covering ofX by non-overlapping closed sets in various ways. This is proved
in parts. The next two results assert that the zonesB coverX, but the zonesb do not. The first of these is an immediate
consequence of the definitions. The second is more surprising and ultimately leads to Corollary 3.5, the generalization
of Bieberbach’s “equal area” result.

Lemma 2.8. For fixed n the Brillouin zones tileX in the following sense:
⋃

i

Bi(xn) = X and bi(xn) ∩ bj(xn) = ∅ if i 6= j.

In addition,Bi(xn) ∩ bj(xn) = ∅ if i 6= j.
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x0 x0

Fig. 2.4. Here we illustrate the definition of the setsbn(x0) andBn(x0) for the latticeZ2 in R2. In both pictures, the circleCd(x,x0)(x) is
drawn, and the basepointx0 lies in the center of the square at the lower left. On the left side, the pointx (marked by a small cross) lies inb5,
and#(Nr(x) ∩ S) = 4, while x0 is the only point ofS on the circle. On the right, we havem = 4 and` = 8, sox lies in all of the sets
B5, B6, . . . , B12.

Fig. 2.5. This example illustrates Lemma 2.8 and Theorem 2.9. LetS be the discrete set{(m, 0)} ∪ {(0, n)} , m, n ∈ Z in the Euclidean plane.
On the left is the tiling given byBi(0, 0) and in the middle is the tiling byBi(2, 0). In both cases,b2 is shaded. On the right is the tiling given by
B2(xi) as in Thm. 2.9. The setsb2(0, 0), b2(1, 0), andb2(2, 0) have been shaded. Note that thisS does not correspond to a group, nor does it
satisfy the hypotheses of Prop. 2.10, because there are no isometries which permuteS and do not fix the origin.

Theorem 2.9. LetX be a proper, path-connected metric space and letS = {xi}i∈I be a discrete set. Then, for fixed
n ≤ #(S), the sets{Bn0(xi)}i∈I tile X in the following sense:

⋃

i

Bn(xi) = X and bn(xi) ∩ bn(xj) = ∅ if i 6= j.

Proof. First, we show that for any fixedn > 0 and eachx ∈ X, there is anxi ∈ S with x ∈ Bn(xi). Re-indexS so
that if S = {x1, x2, x3, . . .} andi < j, thend(x, xi) ≤ d(x, xj). This can be done; sinceS is a discrete subset and
closed ballsDc(xi) are compact, the subsets ofS with d(x, xi) ≤ c are all finite. Letri = d(x, xi). We will show that
x ∈ Bn(xn).

Note thatrn ≥ rn−1. Suppose first thatrn > rn−1, thenNrn(x) ∩ S contains exactlyn − 1 points, andxn ∈
Crn(x) ∩ S. Thusx ∈ Bn(xn). Note that ifrn+1 > rn, then we would havex ∈ bn(xn) ⊂ Bn(xn).

If, on the other hand,rn = rn−1, then there is ak > 0 so thatrn = rn−1 = . . . = rn−k, and so#(Nrn(x) ∩ S) =
n− k − 1 ≤ n− 1. But then#(Crn(x) ∩ S) ≥ k + 1, and hencex ∈ Bn(xn) as desired.
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For the second part, we show thatbn(xi) ∩ bn(xj) = ∅. If not, then there is a pointx in their intersection. If
ri = rj , thenxi = xj , because by the definition ofbn(xk), {xk} = Crk

(x) ∩ S. If not, thenri < rj . In this
case,xi ∈ Dri

(x) ⊂ Nrj
(x) . Thus, since#(Nri

(x) ∩ S) = n − 1, Nrj
(x) must contain at leastn points ofS, a

contradiction. ut

The next result indicates how this notion of tiling is related to the notion of a fundamental set.

Proposition 2.10. Let S be a discrete set in a metric spaceX as in Thm. 2.9. Suppose that for eachxi in S there is
an isometrygi of X such thatgi(x0) = xi, gi permutesS and the onlygi which leavesx0 fixed is the identity. Then
there is a setF (the fundamental set), satisfying:

bn(x0) ⊆ F ⊆ Bn(x0) with
⋃

i

gi(F ) = X and gi(F ) ∩ gj(F ) = ∅ (i 6= j).

Proof. Suppose thatx ∈ bn(x0). From Def. 2.6 and the fact that thegi are isometries, we see that this is equivalent
to gi(x) ∈ bn(xi). Thusgi(bn(x0)) = bn(xi). Now apply Theorem 2.9. A similar reasoning proves the statement for
Bn(x0). ut

Remark 2.11.The fundamental setF is not necessarily connected. Also, note that it follows from this proposition that
Bi(x0) is scissors congruent toBj(x0) (see [Sah] for a discussion of scissors congruence). In particular, this implies
immediately that theBi all have the same area. Note that this result does not hold ifS is not generated by a group of
isometries. See, for example, Fig. 2.5.

In many examples,Bn is the closure ofbn. However, this need not always be the case, even if we assume the space
is Brillouin, as the example below shows. We will give additional, more involved examples in a forthcoming work.

Example 2.12.Let X be the flat cylinder obtained by identifying opposite sides of the
strip{z − 1 ≤ Re(z) ≤ 1} in the usual way. We will denote points in the cylinder by
a corresponding complex number. Letx0 = 1, x1 = i, andx2 = −i. Each mediatrix
Li is a topological circle consisting of a pair of segments meeting at right angles. The
first zoneb1(x0) is the part of the cylinder where|Im (z) | < |Re(z) |, andB1(x0) is
the closure ofb1. The second zone is the complement ofb1 in the cylinder, andb2 is its
interior. However,B3 = {0} andb3 is empty. Note that in this example,B3 is contained
in the closures ofb1 andb2.

x1

x0

x2

x0

L1

L2

Despite the fact that the zonesBi are not always the closure of their interiors, ifX is a Brillouin space, theBi are
still fairly well behaved sets, as the next proposition shows.

Proposition 2.13. If X is Brillouin over S, then

(i) Interior points ofBn(x0) are in bn(x0).
(ii) Bn(x0) is contained in the closure ofb1(x0) ∪ · · · ∪ bn(x0).

Proof. Without loss of generality, we can restrict our attention toBn(x0), which we will denoteBn throughout the
proof. Sincebn ⊂ Bn, with bn open andBn closed, it is obvious thatbn ⊆ Bn.

Letx be a point inBnrbn. By Definition 2.6,x ∈ Bm+1∩Bm+2∩. . .∩Bm+`, with ` ≥ 2 andm+1 ≤ n ≤ m+`.
The pointx lies on the intersection of̀− 1 mediatrices, that is,Cd(x,x0)(x) ∩ S consists of̀ points.

Supposex is an interior point ofBm+d for somed ∈ {1, · · · `}. Let V be an arbritrary, small neighborhood ofx,
so thatV ⊂ Bm+d. Continuity of the metric allows us to choosey ∈ V such thatNd(y,x0)(y) ∩ S containsm points,
and using metric consistency we can ensure thatCd(y,x0)(y)∩S contains exactly one point, namelyx0. Thus, we have
y ∈ bm+1.
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Supposexs 6= x0 is a point inCd(x,x0)(x)∩S. By the same reasoning as above,V must contain a pointz such that
Nd(z,xs)(z) ∩ S containsm points, andCd(z,xs)(z) ∩ S = {x0}. Thusd(z, x0) > d(z, xs) and soNd(z,x0)(z) ∩ S
contains at leastm + 1 points. This implies thatz ∈ Bm+2 ∪ · · · ∪Bm+`.

Sincey andz are inV ⊂ Bm+d, we have that for somed ≥ 1, Bm+d ∩ bm+1 andBm+d ∩ (Bm+2 ∪ · · ·Bm+`)
are both non-empty. In view of Lemma 2.8 this is a contradiction.

To prove the second statement, we start again by observing that ifx is a point inBnrbn, thenx ∈ Bm+1∩Bm+2∩
. . . ∩Bm+`. Exactly as above, we note that any neighborhood ofx contains points ofbm+1. ut

Remark 2.14.In practice, using Definition 2.6 directly can be unwieldy. It is typically easier to identify the various
bn using the informal definition, counting the number of mediatrices crossed by a path which starts atx0. SupposeX
is such that betweenx0 and any point ofbn, one can find a pathγ so that ifLi andLj are distinct mediatrices, then
γ ∩ Li 6= γ ∩ Lj . In this case, it follows immediately that a point is inbn if and only if such a path crosses exactly
n− 1 mediatrices. If the pathγ crosses the same mediatrix more than once, we must use a signed notion of crossing.
This allows us to account only for those crossings which are essential.

However, such a process is not always possible— we can not always push a path off a point where several medi-
atrices intersect. One way around this is to adjust the definition of “cross”.

As in [Pe1], we assign to each pointx its Brillouin index:

β(x) ≡ max {n x ∈ Bn(x0)} .

From Lemma 2.8, we see that this is a well defined function which is constant onbn(x0). If L = Lx0,xs is a mediatrix,
we say thatγ crossesL if γ(1) ∈ L+

x0,xs
, the component containingxs. (Recall thatγ(0) ∈ L−x0,xs

by definition.)
Notice that this definition only makes sense ifX −L has two components, which is always the case ifX is Brillouin.
With this definition of “cross”, then there is always a pathγ from x to x0 which crosses exactlyn − 1 mediatrices if
and only ifx ∈ bn(x0).

3. Brillouin Zones in Spaces of Constant Curvature

In this sectionX will be assumed to be one ofRn, Sn, or Hn, all equipped with the standard metric, and letG be
a discontinuous group of isometries ofX. Denote the quotientX/G with the induced metric by(M, g). Then the
construction of lifting to the universal cover, as outlined in the introduction, applies naturally to(M, g). In this section
we describe focusing of geodesics in(M, g) by Brillouin zones inX. The discrete setS is given by the orbit of
a chosen point inX (which we will call the origin) under the group of deck-transformationsG. The fact that the
Brillouin zones are fundamental sets is now a direct corollary of Prop. 2.10.

The regularity conditions of Def. 2.4 are easily verified in the present context. We do this first.

Lemma 3.1. If X is eitherRn, Sn, or Hn, then a mediatrixLab in X is an (n − 1)-dimensional, totally geodesic
subspace consisting of one component, andX − Lab has two components.

Proof. This is easy to see if we change coordinates by an isometry ofX, puttinga andb in a convenient position, say
asx and−x. The mediatrixLx,−x is easily seen to satisfy the conditions (in the case ofSn, it is the equator, and for
the others, it is a hyperplane). The conclusion follows.ut
Proposition 3.2. All such spacesX are Brillouin (see Definition 2.4).

Proof. As remarked before, the first condition is satisfied for any Riemannian metric. The second condition is also
easy. It suffices to observe that the subspaces of Lemma 3.1 are minimally separating.ut
Remark 3.3.Note that in the Riemannian case, mediatrices always cross transversally. IfL0a andL0b coincide in an
open set, then their tangent spaces also coincide at some point. Uniqueness of solutions of second order differential
equations then impliesL0a = L0b.

Recall that a metric spaceX is calledrigid if the only isometry which fixes each point of a nonempty open subset
of X is the identity. It is not hard to see thatSn,Hn, andRn are rigid spaces. See [Ra] for more details of rigid metric
spaces and for the proof of the following result. Recall that the stabilizer inG of a pointx ∈ X consists of those
elements ofG that fixx.
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Proposition 3.4. LetG be a discontinuous group of isometries of a rigid metric spaceX. Then there exists a pointy
of X whose stabilizerGy consists of the identity.

We now return to Brillouin zones as defined in the last section. Recall thatG is a group of isometries ofX that
acts discontinuously on points inX. Let x0 be a point inX whose stabilizer under the action ofG is trivial. For
any x ∈ X, let [x0, x] be a geodesic segment of minimal length whose endpoints arex0 andx. ThenBn(x0), the
nth Brillouin zone relative tox0, is the set of pointsx in X such that the geodesic segment[x0, x] intercepts exactly
n − 1 mediatricesLx0,y, wherey is in the orbit ofx0 under the groupG. Proposition 2.10 immediately implies the
most important fact about Brillouin zones in this setting.

Corollary 3.5. Let X beRn, Sn, or Hn, and letG be a discontinuous group of isometries ofX. Let x0 ∈ X be
such that its stabilizerGx0 underG is trivial. Then for every positive integern, thenth Brillouin zoneBn(x0) is a
fundamental set for the action ofG on points inX. Its boundary is the union of pieces of totally geodesic subspaces
and equals the boundary of its interior.

Fig. 3.1. Brillouin zones forPSL(2,Z) in the hyperbolic disk. We have transported the “usual” upper half-plane representation using the map
z 7→ iz+1

z+i
. On the left are the setsBn( i

4
), which give fundamental sets as in Cor. 3.5. On the right,0 is taken as a basepoint. Since the origin has

a non-trivial stabilizer, the corresponding Brillouin zones give a double cover of the fundamental sets.

Remark 3.6.The above corollary is the generalization of Bieberbach’s main result on Brillouin zones [Bi]. The first
Brillouin zoneB1(0) is the usual Dirichlet fundamental domain for the action ofG. Furthermore, even whenGx0 is
not trivial, Bn(x0) is ak-fold cover of a fundamental region.

As pointed out in the introduction, the number of geodesics that focus in a certain point is counted in the lift. So if
a given pointx ∈ X is intersected byn mediatrices, it is reached byn+1 geodesics of lengthd(0, x) emanating from
the reference point (the origin). In the next section, we give more specific examples of this.

Finally, we state a conjecture.

Conjecture 3.7.Let (X, g̃) be the universal cover of ad-dimensional smooth Riemannian manifold(M, g) as de-
scribed in the construction. For a generic metricg onM , no more thand mediatrices intersect in any given pointy of
X.

This conjecture acquires perhaps even more interest (and certainly more structure), when one restricts the collection
of metrics onM to conformal ones ([Mas]). A result in this direction forM = R2/Z2 can be found in [Jo1].
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4. Focusing in Two Riemannian Examples

In this section, we give two examples (one of them new as far as we know) of focusing. Suppose that att = 0 geodesics
start emanating in all possible directions from a point. At certain timest1, t2, ...., we may see geodesics returning to
that point. We derive expressions for the number of geodesics returning attn in two cases. First, as an introductory
example we will discuss this for the case of the flat, square torusM = R2/Z2 (a more complete discussion of this
example can be found in [Pe3]). Second, we will deal with a much more unusual example, namelyM = H2/Γ (k),
whereΓ (k) is a subgroup ofPSL(2,Z) called the principal congruence subgroup of levelk (defined in more detail
below). We note that it seems to be considerably harder to count geodesics that focus in points other than our basepoint.

Before continuing, consider the classical problem of countingRg(n), the number of solutions inZ2 of

p2 + q2 = n.

Let

n = 2α
k∏

i=1

pβi

i

∏̀

j=1

qγi

i

be the prime decomposition of the numbern, wherepi ≡ 1(mod4) andqi ≡ 3(mod4). The following classical
result of Gauss (see, for example, [NZM]) will be very useful.

Lemma 4.1. Rg(n) is zero whenevern is not an integer, or any of theγi is odd. Otherwise,

Rg(n) = 4
k∏

i=1

(1 + βi).

Example 4.2.Choose an origin inM = R2/Z2 and lift it to the origin inR2. Our discrete setS is thenZ2. Let ρx(t)
be the number of geodesics of lengtht that connect the origin to the pointx ∈ M .

Proposition 4.3. In the flat torusR2/Z2, the number of geodesics of lengtht that connect any point to itself isρ0(t) =
Rg(t2).

Proof. Notice that by definition geodesics of lengtht leaving from the origin inR2 reach the points contained inCt(0).
Only if t2 is an integer does this circle intersect points ofZ2. Because of the homgeneity of the flat, square torus, it
does not matter where we choose the origin.ut
Example 4.4.We now turn to the next example. Recall thatPSL(2,Z) can be identified with the group of two by two
matrices with integer entries and determinant one, and with multiplication by−1 as equivalence. For eachk, the group
Γ (k) is the subgroup ofPSL(2,Z) given by

Γ (k) =
{(

a b
c d

)
∈ PSL(2,Z) a ≡ d ≡ 1 (mod k), b ≡ c ≡ 0 (mod k)

}
.

This group has important applications in number theory. The action ofΓ (k) onH2 is given by the M̈obius transfor-
mations

g(z) =
az + b

cz + d
where

(
a b
c d

)
∈ Γ (k).

We point out that fork = 2, 3, or 5, the surfaceH2/Γ (k) is a sphere with 3, 4, or 12 punctures (see [FK]).
We will find it more convenient to work in the hyperbolic diskD2, which is the universal cover ofH2/Γ (k). We

shall choose a representation ofΓ (k) in the disk so thati ∈ H2 corresponds to the origin. This will allow us to
determine the focusing of the geodesics which emanate fromi. Note that the surfaceH2/Γ (k) has special symmetries
with respect toi: for example,i is the unique point fixed by the order2 element ofPSL(2,Z).

Lemma 4.5. The action of the fundamental group of the surfaceH2/Γ (k) can be represented as




(
r − is p + iq
p− iq r + is

) p2 + q2 + 1 = r2 + s2

r + p ≡ 1 (mod k), r − p ≡ 1 (mod k)
s + q ≡ 0 (mod k), s− q ≡ 0 (mod k)



 ,

acting onD2. We shall denote this particular representation as the groupΓ̄ (k).
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Fig. 4.1. The orbit ofi underΓ (2) transported to the hyperbolic disk, and the corresponding Brillouin zones. Each zoneBn forms a fundamental
domain for a 3-punctured sphere.

Proof. Following the conventions in [Be], define

φ : D2 → H2, φ(z) = i
z + 1
−z + 1

.

Push back the transformationg ∈ Γ (k) from H2 to D2 by g → φ−1gφ to obtain a representation ofg ∈ Γ (k) as a
transformation acting onD2. The matrix representation of this transformation is given by:

Ag =




a+d
2 + i b−c

2
a−d

2 − i b+c
2

a−d
2 + i b+c

2
a+d
2 − i b−c

2


 ,

wheredetAg = 1, since this matrix is conjugate tog, whose determinant is equal to1. Let

p = (a− d)/2 q = −(b + c)/2
r = (a + d)/2 s = −(b− c)/2

andAg now written as

Ag =
(

r − is p + iq
p− iq r + is

)
.

Here the numbersp, q, r, s are inZ and must satisfy the following congruence conditions:

r + p ≡ 1 (mod k), r − p ≡ 1 (mod k),
s + q ≡ 0 (mod k), s− q ≡ 0 (mod k).

Since the determinant ofAg is equal to1, we must also have

p2 + q2 + 1 = r2 + s2.

ut
We need another auxiliary result before we state the main result of this section.

Lemma 4.6. Let (p, q) and (r, s) be two points inZ2 such that the integersA = p2 + q2 and B = r2 + s2 are
relatively prime, and letϕ be a rotation fixing the origin. Nowϕ(p, q) = (p′, q′) andϕ(r, s) = (r′, s′) are inZ2 if and
only if ϕ is a rotation by an integer multiple ofπ/2.
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Proof. Let c be the cosine of the angle of rotation. We have

c =
p′p + q′q

A
=

r′r + s′s
B

.

Thus ifp′p + q′q andr′r + s′s are not both equal to zero,

p′p + q′q
r′r + s′s

=
A

B
.

BecauseA andB are relatively prime and surely|p′p + q′q| is less than or equal toA, and similarly forB, we have
that

p′p + q′q = ±A and r′r + s′s = ±B.

This implies the result. ut
Now we define a counter just as before. Choose a lift ofM = D2/Γ̄ (k) so that0 ∈ M lifts to 0 ∈ D2. Let γx(t)

be the number of geodesics of lengtht that connect the origin to the pointx ∈ M .

0����1����2����3����4����5����6����7����8����9����10���11���12���13���14���15���16���17���18���19���20���21���22���23���24���25���

4����

8����

16���

32���

64���

128��

256��

512��

0����1����2����3����4����5����6����7����8����

4����

8����

16���

32���

64���

128��

256��

512��

Fig. 4.2. The non-zero values ofρ0(t) for t ≤ 25 (left) andγ0(t) for t ≤ 8 (right), which count how many geodesics of lengtht connect the origin
to itself in theR2/Z2 andD2/Γ̄ (2), respectively.

Theorem 4.7. In the surfaceH2/Γ (k), the number of geodesics of lengtht which connect the pointi ∈ H2 to itself is
given by

1
4Rg(cosh2 t− 1)Rg(cosh2 t) for k = 2,

1
4Rg

(
cosh2 t−1

9

)
Rg(cosh2 t) for k = 3,

1
4Rg

(
cosh2 t−1

25

)
Rg(cosh2 t) for k = 5.

Note that in all cases, the number is nonzero only ifcosh2 t ∈ N.

Proof. We shall work in the disk, rather than inH2. Let S be the orbit of0 ∈ D2 underΓ̄ (k). Then the number of
such geodesics is exactly the number of distinct points ofS which lie on the circleCt(0) of radiust and centered at
the origin.

If x ∈ S, then by Lemma 4.5, it is of the formp+iq
r+is with p, q, r, s integers satisfyingp2 + q2 = r2 + s2 − 1. Let n

be their common value, that is,
n = p2 + q2 = r2 + s2 − 1.

We will first count the number of 4-tuples(p, q, r, s) that solve this equation, momentarily ignoring the congruence
conditions.
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Note that the pointx has Euclidean distance to the origin given by

|x|2e =
p2 + q2

r2 + s2
=

n

n + 1
.

The hyperbolic length of the geodesic which connectsx to the origin is arctanh (|x|e). Consequently,γ0(t) is only
non-zero whent = arctanh

√
n/(n + 1), or, equivalently, whenn = cosh2 t− 1.

To count the number of intersections ofCt(0) with S for these values oft, observe that we can use Gauss’ result to
count the number of pairs(p, q) such thatp2 + q2 = n. This number is given byRg(n). For each such pair(p, q), we
have a number of choices to form

x =
p + iq

r + is
.

By the above, this number is equal toRg(n + 1). Thus,γ0(t) is at mostRg(n)Rg(n + 1).
However, we have over-counted: some of our choices forp, q, r, s represent the same pointx ∈ S, and some of

them may not satisfy the congruence conditions, which we have so far ignored. We will first account for the multiple
representations, and then account for the congruence relations.

Let p, q, r, s ∈ Z be as above, giving a pointx = p+iq
r+is which is at distancet = arctanh

√
n/(n + 1) from

the origin. If we multiply the numerator and denominator ofx by eiθ, thenx will remain unchanged. Because of the
requirement thatp2 + q2 = r2 + s2 − 1 = n, this is the only invariant, and by Lemma 4.6,θ must be a multiple ofπ2
for the numerator and denominator to remain Gaussian integers. We see that in our counting, we have represented our
pointx in 4 different ways:

x =
p + iq

r + is
=
−q + ip

−s + ir
=
−p− iq

−r − is
=

q − ip

s− ir
,

meaning we have over-counted by a factor of at least 4.
Now we account for the congruence conditions.
First, consider the casek = 2. Note thatq+s ≡ 0 ( mod 2) if and only ifp+r ≡ 1 ( mod 2), becausep2+q2+1 =

r2 + s2, so we need only check this one condition. If the representationp+iq
r+is fails to satisfy our parity condition, then

q + s ≡ 1 (mod 2) and consequentlyp+ r ≡ 0 (mod 2). This means that the representation−q+ip
−s+ir of this same point

does satisfy the parity conditions, giving exactly

1
4
Rg(cosh2 t− 1)Rg(cosh2 t)

distinct points ofS at distancet from the origin.

If k = 3, then sincek is odd, the congruence conditions onp, q, r, ands imply that

r ≡ 1(mod 3) and p ≡ q ≡ s ≡ 0(mod 3).

Note that the equation
p2 + q2 = n and p ≡ q ≡ 0 (mod 3)

will be satisfied exactlyRg(n/32) times. (Recall that ifn is not divisible by9, thenRg(n/9) is 0.)
For fixedn, let (p, q) be any one of the solutions. We need to decide how many solutions the equation

r2 + s2 = n + 1 with r ≡ 1 (mod 3) and s ≡ 0 (mod 3)

admits. The solution of the first equation implies that 3 dividesn. Thusr2 + s2 ≡ 1 (mod 3). Consequently, we have
4 choicesmod3 for the pair(r, s), namely(0, 1), (1, 0), (0, 2), and(2, 0).

Let (p, q, r, s) ∈ Z2 × Z2 be any solution ton = p2 + q2 = r2 + s2 − 1 with p ≡ q ≡ 0(mod 3). For each
choice of(p, q), we have exactlyRg(n + 1) choices of(r, s). Now letR denote the product of the rotations byπ/2
on each of the components ofZ2 × Z2. Using Lemma 4.6, we see that all such solutions can be obtained from just
one by applyingR repeatedly. It is easy to check that each quadruple of solutions thus constructed runs exactly once
through the above list. Since precisely one out of the four associated solutions is compatible with the conditions, the
total number of solutions is exactly:

1
4
Rg

(n

9

)
Rg(n + 1).

Using the relationship between the Euclidean distance and the Poincaré length as before gives the result.

If k = 5, the proof fork = 3 can be literally transcribed to obtain the result.ut
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Remark 4.8.Note that the above results do not hold ifk is not one of the cases mentioned. The primary difficulty is
that for primek ≥ 7, there are solutions which are not related by applying the rotationR. However, the argument
does give an upper bound of1

4Rg

(
(cosh2 t− 1)/k2

)
Rg(cosh2 t) for H2/Γ (k) whenk is an odd prime. Note that the

surfaceH2/Γ (k) is of genus0 if and only if k ≤ 5 (see [FK]).

5. Non-Riemannian Examples

The present context is certainly not restricted to Riemannian metrics. As an indicator of this we now discuss a different
set of examples.

Let k be a positive number greater than one. EquipR2 with the distance function

‖ x− y ‖= (|x1 − y1|k + |x2 − y2|k
)1/k

and let the discrete setS be given byZ2. For k not equal to 2, this is not a Riemannian metric, yet all conclusions
of Sect. 2 hold. In particular, each Brillouin zone forms a fundamental domain. Note that determining the zones by
inspecting the picture requires close attention!

x

210-1-2

y

2

1

0

-1

-2

x

1050-5-10

y

10

5

0

-5

-10

Fig. 5.1. Brillouin zones for the latticeZ2 in R2 with the metric
�|x1 − y1|4 + |x2 − y2|4

�1/4. See also Fig. 2.3 and Example 2.5, which deal
with the casek = 1, the “Manhattan metric”.

Now the problem of determiningCt(0)∩S for any givent is unsolved for generalk. In fact, even for certain integer
values ofk greater than 2, it is not known whetherCt(0) ∩ S ever contains at least two points that are not related by
the symmetries of the problem. Fork = 4, the smallestt for whichCt(0) ∩ S has at least two (unrelated) solutions is
given by

t4 = 1334 + 1344 = 1584 + 594.

However, fork ≥ 5, it unknown whether this can happen at all (see [SW]).
There are some things that can be said, however. In the situation wherek ≥ 3, the mediatrices intersect the coordi-

nate axes only in irrational points or in multiples of1/2. For if x = (p/q, 0) is a point of a mediatrixL(0,0),(a1,a2), we
have

|p|k = |p− qa1|k + |a2q|k (p 6= 0, q 6= 0) .

By Fermat’s Last Theorem, this has no solution unless eitherp = qa1 or a2 = 0. In the first case,pq = ±a2, which
can only occur if the lattice point is of the form(a2,±a2). If a2 = 0, thenp

q = a1
2 . In particular, there is no nontrivial

focusing along the axes.



On Brillouin Zones 15

To compute Fig. 5.1, we took advantage of the smoothness of the metric. Not all metrics are sufficiently smooth
for this procedure to work. Even for Riemannian metrics, in general the distance function is only Lipschitz, which will
not be sufficiently smooth.

For eacha = (a1, a2) ∈ Z2, define a Hamiltonian:

Ha(x) =‖ x− a ‖ − ‖ x ‖ .

The mediatrixL0a corresponds to the level setHa(x) = 0. BecauseHa(x) is smooth, we have uniqueness of solutions
to Hamilton’s equations. In the current situation, where the dimension is two, the level set consists of one orbit. Thus,
one can produce the mediatrix by numerically tracing the zero energy orbits of the above Hamiltonian.

As mentioned above, for a general Riemannian metric, the distance function is only Lipschitz. This means we have
no guarantee that the solutions of the above differential equation are unique. Indeed, there are examples of multiply
connected Riemannian manifolds with self-intersecting mediatrices, as will be shown in a forthcoming work.
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