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Asymptotic Geometry of Hyperbolic
Well-Ordered Cantor Sets
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In this paper we study the well-ordered Cantor sets in hyperbolic sets on the
line and the plane. Examples of such sets occur in circle maps and in area-
preserving twist maps. We set up a renormalization scheme employing in both
cases the first return map. We prove convergence of this scheme. The con-
vergence implies that the asymptotic geometry of such a well-ordered set with
irrational rotation number and their nearby well-ordered orbits is determined
by the Lyapunov exponent of this set.

KEY WORDS: Renormalization, hyperbolic Cantor sets, Lyapunov expo-
nents, bounded nonlinearity, Denjoy-Koksma, Aubry-Mather sets, asymptotic
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0. INTRODUCTION

In this paper we study analytic aspects of well-ordered Cantor sets in one-
and two-dimensional hyperbolic sets. The general problem is the following.
Such well-ordered Cantor sets have a well-defined rotation number. Each
such well-ordered Cantor set can be approximated by well-ordered periodic
orbits. If one chooses the rotation number of these periodic orbits to
approximate the rotation number of the given Cantor set very well, one
then expects that the corresponding periodic set approximates the Cantor
set very well. Moreover, in the hyperbolic setting this convergence should
be controlled by the positive Lyapunov exponent A(E) of the Cantor set
E.U% In this paper we study a class of such hyperbolic sets, arising from
maps for which well-orderedness can be defined. Now fix an irrational
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minimal well-ordered Cantor set in this hyperbolic set. We set up a
renormalization scheme defined by the symbolic dynamics at special points
in the Cantor set. The sequence of renormalized maps is constructed by
considering first return maps, as it is done for one-dimensional maps.
It turns out this sequence depends essentially only on the Lyapunov
exponents of the well-ordered set. We show that the sequence of renor-
malizations converges at a superexponential rate to the sequence of renor-
malizations of a linear map (Theorems 2.8 and 3.8). For the definition of
convergence of renormalizations see the Appendix. Here we assume that
the maps under consideration are of class C2 In the one-dimensional case
C'** suffices. (We say that the asymptotic geometry of the original Cantor
set 1s linear.) As a corollary of this method one obtains:

Theorem 2.4. (One-dimensional.) Let E, be a well-ordered minimal
Cantor set for a smooth (C'*#) one-dimensional expanding map of
rotation number a. Let p/g be a rational approximant of x. Let E,, be the
approximating well-ordered periodic orbit of rotation number p/q. Then

dH(Ep/q9 E:)eqi(a)

is uniformly in ¢ bounded away from zero and infinity.

Here dy; denotes the Hausdorff distance on sets.

This paper was written as a sequel ro ref. 15. In that paper we study
hyperbolic Aubry—Mather sets for area-preserving monotone twist maps.
We show there how, under certain geometric assumptions, one can define
a renormalization scheme for such hyperbolic Aubry—Mather sets. Using
the results of ref. 16, we can prove that these assumptions are satisfied for
the standard map with large nonlinearity parameter. The results of the
present paper imply convergence of this renormalization scheme.

In the area-preserving case the stable and unstable Lyapunov
exponents 4° and A* of a minimal hyperbolic set are the same in absolute
value. One then obtains the analogous statement to Theorem 2.4
concerning the speed of convergence of certain well-ordered periodic orbits
to Aubry-Mather sets of irrational rotation number. More precisely:

Corollary. Let E, be a hyperbolic Aubry-Mather set of rotation
number « for the standard map (with large nonlinearity parameter). Let
p/q be a rational approximant of a. Let E,, be the approximating well-
ordered periodic Aubry—Mather set of rotation number p/q. Then

dH(Ep/q’ Ez) eq}."(a)/Z

is uniformly in ¢ bounded away from zero and infinity.
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The setup of this paper is as follows. In Section I we recall the con-
struction of the symbolic dynamics for such well-ordered Cantor sets. In
Section 2 we study the analysis in the one-dimensional setting. In Section 3
we study the two-dimensional case.

1. SYMBOLIC DYNAMICS OF EXPANDING WELL-ORDERED
SETS

In this section we review for future purposes the symbolic dynamics of
well-ordered Cantor sets. We introduce at the end of this section the
topological format of a renormalization scheme.

Consider disjoint intervals I,, I, = /<R and expanding, orientation-
preserving homeomorphisms

.fl 11_’./‘1(11)=1’ l=051

Define f: I,ul, = I as f|, = f;. We assume that f, fixes the left endpoint
of I,, and f, fixes the right endpoint of /,. Assume that fis C' and
I £ >y>1 Then, as is well known, the nonwandering set A(f) is a
Cantor set.

Definition. An f-invariant set E in A(f) is well ordered if flg
extends as a monotone circle map to / with the endpoints identified.

Each well-ordered set then has a well-defined rotation number in R/Z.
The following proposition has been discovered by many people. (+:10:12:13)

Proposition 1.1. If f preserves orientation, then for all 250 in
R/Z, f has a unique well-ordered minimal set E, in A(f) of rotation
number «.

Such minimal sets are constructed as follows: Denote by
h: Z=1{0,1}N > A(f)
the standard conjugacy between the shift map ¢ on 2 and f on 4( I
B(Sqs Sysens Spoe) = [} foabo oo o f 1)
i=0
Here /! denote the two right inverses of f.

Remark. Provided the context is clear, we name a subset in A(f) by
the corresponding set of sequences in Z.

Provide X with the dictionary topology (0 <1). Provided that 7, is to
the right of I,, h is order preserving, since f is orientation preserving.
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For a real number x define /(x) to be its integer value = max{n|n < x}.

Fix 2 # 0. For 0 <d < 1, consider the line with equation y=ax +d. To
each such d we will associate a sequence of zeros and ones, which we
denote by s, (d). The ith symbol of this sequence is defined as follows:

s(d); =i+ 1)+d)— I(ai + d)

In other words, zero or one, depending on whether the integer value
changes (see Fig. 1). So we have a map s,: [0, 1]/o-, = Z. Define 5, . by
the analogous receipe where one changes the definition of integer value to
max {n|n < x }. For sake of completeness we summarize the main observations:

. (Monotonicity.) For « fixed, s, is monotone in d. For d fixed, s,(d)
is monotone in 2.

2. s,oR,=0os, (translate unity to the left). Here R,(d)=d+ . One
has the analogous conjugacy for s, «.

3. The set of d for which the line y =ax +d contains a lattice point
in Z* x Z* makes up precisely the points of discontinuity and s, is right

continuous, s, . is /eft continuous.

4. Denote by E, the closure of the image of s,; E, is a minimal set
for a.

5. The rotation number « of E, is the average number of ones in a
string for a point in E,.

(8,8) (1,8)

8, (8) = B1118111. ..
2o (d) = 11101118 .

Fig. 1. The definition of s,(d).
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6. Define the endpoints of E, to be those points which are not both
right and left accumulation points. Since E, is ordered, it makes sense to
speak of gaps. For d a point of discontinuity, one has that 5.(d) denotes the
left endpoint of the gap.

7. For « rational, E, is a periodic orbit.

Fix « irrational, 2 = [aq,....d,,...]. We introduce the following notation.
The sequence of continued fraction approximants to z is denoted by
{P./q.}. One has

pn+2=an+2pn+l+pn’ qn+.’.=an+2qn+l+qn

The following proposition describes how well the orbit s, . (0)
approximates s,(0).

Proposition 1.2. Let n be even, p,/q, <a; then
inf{ilsp,,/q,,(o)i # sz(o)i} = qn+ 2 2 2qn

Proof. This follows directly from the property of continued fractions
as described, for example, in ref. 1. This can be proven as follows. We are
considering two lines through the origin, one with slope =z, the other with
slope p./q,. For continued fractions one has the following estimate on the
denominators:

Gns224ns1 + 9,224,

Since (g, .2, Pn+2) is the first closest lattice point below the line slope « to
the right of (g,, p,), the proposition follows. [

We want to describe the Cantor set E, as an intersection of nested
collections I, of intervals in . We have E,=(),1, . Here each [, is a
collection of intervals in X, determined by certain symbol sequences of
length g, constructed as follows.

Definition. I,= {seX|first K digits of s equal first K digits of
s5,(d) for some d}.

Consider the point s, (0). From the previous proposition it follows
that this approximates the point 5,(0) very well. The extent to which its
orbit approximates E, is the content of the following lemma.

Lemma 1.3.

1. Every interval in [/, _, contains a single point in the orbit of
Spwan(0)-

2. All but one of the intervals in /, contain a point in the orbit of
Spwanl0)-

Proof. See the Appendix in ref. 15. [

822/59/1-2-20
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For later reference we want to understand how to construct the
symbol sequence of s, , . Denote by T, the segment of period g, in its
sequence.

Proposition 1.4. We have

dn + 2

for neven T,,,=T,Tr}

for n odd T a=T05T,

Proof. We will prove the first case. Consider the triangle with ver-
tices (0, 0), (¢,, p,), and (g, .2, Pn+2)- This triangle contains no lattice
point in its interior. The result then follows from the definition of 5,(0).

Remark. These points are placed as follows:

2n *221+2  *x 2143 *m41
We have denoted points by their subscripts.

We finish this section with a combinatorial version of renormalization
in our setting. We will describe the construction of closest return maps on
intervals bounded by periodic points. Pick two rational numbers 0 < p/q <
r/s < 1. Consider the periodic points P,, respectively P,, corresponding to
5,,4(0) and s,,,(0). Their orbits are, by definition, well ordered. Consider the
interval J in / bounded by these two periodic points. Define J,, respec-
tively J,, to be the intervals f~?J N J, respectively f~*JnJ. Now we can
define new maps on Jou J, to J as f? on Jg and f* in J,. Denote this map
by R(f, J), the renormalization of f to the interval J, and rescale J affinely
to the unit interval. This renormalized map satisfies the same assumptions
as our original map f. The map R(f, J) is the (rescaled) first return map for
those points in J which return in g or s iterates. For R(f, J) we can define
well-ordered sets, symbolic dynamics, etc.

Proposition 1.5. Assume det| ;| = 1. Every minimal well-ordered
set of R(f, J) is in J contained in a minimal well-ordered set for f.

Proof. Let 4, be a well-ordered set for R(f,J) in J of rotation
number § with respect to J. By iterating this set under f finitely many
times, one obtains a minimal f-invariant set E.

We have to show that it is well ordered. The collection of symbolic
sequences for E can be obtained as follows. Let s.be a string for a point in
Ag. Associate to s a new string s* by substituting for each 0 in s the finite
string for Py, for each 1 the finite string for P,. This defines a map * from

tc
CC
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the symbolic sequences of A, into Z. In terms of rotation numbers, the
action of the map * is described by the following linear map 4:

-5 e LR
1 q 1 s
By assumption, this linear transformation has determinant one.

Denote A[B/1] by . Then 4 maps the line y = fix to the line y = f'x.
Since A preserves orientation, lattice points above (below) the line y = fx
are mapped to lattice points above (below) y = f'x. Since this unimodular
transformation A moreover maps the Farey tree into a subtree of itself,
continued fraction approximants to f are mapped to continued fraction
approximants to f'. Therefore s4(0)* =s4(0). Since the set of symbolic
sequences for E equals the closure of the union of all shifts of s4(0)*, we
obtain that E=Eg. |

This proposition implies that one can analyze well-ordered sets
for f, using this renormalization construction, if one chooses approxi-
mating rationals suitably. For example, consecutive continued fraction
approximants or consecutive Farey approximants satisfy the assumption of
the proposition. In the next section we discuss analytic properties of these
renormalizations.

2. ANALYSIS ON EXPANDING WELL-ORDERED SETS
ON THE LINE

We assume that we are in the setting of the previous section: we are
given two intervals I;, i=0,1, on the real line and an orientation-
preserving expanding map f defined on each of these intervals so that the
image of each of these intervals contains both.

Remark. Let f and g be two such expanding maps. f and g are

topologically conjugate on their nonwandering sets. We fix the topological .

conjugacy A by requiring it to be order preserving. Since f and g are both
C!, they have derivatives bounded away from | and oo; it follows that 4 is
already Hoélder continuous. As a matter of fact, the modulus of continuity
of h 1s at least

. {minlnf{, minlnf’l}
min

1 ’
max In g max In g}

Here the subscripts denote the restriction of the map to their intervals I,
and I,.
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From now on denote by E, the unique well-ordered minimal set of
rotation number x in A(f), the nonwandering set of f. Now let ¢ be a
Borel-measurable function on A(f). Consider the function

4,1 S'=RU{w},  Ié 0=,

Here u, denotes the unique f-invariant probability measure on E,. This
measure can be characterized as follows: Let y: E, — S' be a semicon-
Jugacy beween fon E, and R, on S'. Then ¥, 1, is Lebesgue measure. The
collection of measures {y,} is weak *-continuous at irrationals. Therefore
the function I(g, -) is already continuous at irrationals for ¢ moderately
regular. In the well-ordered case an important principle to obtain under-
standing of the behavior of the function I(g, -) is the Denjoy-Koksma
theorem (see, for example, ref. 5). In the case where one has the additional
information that the system is expanding, much stronger tools are
available, for example, Renyi’s discovery concerning bounded nonlinearity
of compositions of C'** expanding maps with small image,® which we
will use over and over again.

Denote by C?A(f) the Banach space of functions ¢ on A(f), which
are Holder continuous of exponent 8; denote by

lo(x) —o(y)]
x,yeAf) [x—ylﬂ

|¢|/}=

the norm of ¢. From now on the standing assumption is that f is C' and
that inf /">y > 1. The first proposition is concerned with how well finite
time average converge to the actual average.

Proposition 2.1. (Hyperbolic Denjoy~-Koksma.) Let « be irra-
tional, p/q a rational approximant of «. Assume ¢ is in CPA(f). Let x, be
a point in E,; then

g—1

PRTAEN B

q
S);,; 1415

In particular, the time average converges, not Just g, almost everywhere.

Proof. By Lemma 1.3, we have that E, is contained in 1, ,, which
consists of ¢ intervals {7, _,} and each of such intervals consists of points
whose first itinerary of length ¢ is the same. Consequently each of these
intervals has length smaller than y 9.

Now pick any point x, in E,. Its first g iterates (x,..., 47 (x)) land in
each of these intervals. So p.(I;_,)=1/q.
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Consider again these first g~ 1 iterates. After relabeling we have

f'(xg)el, _,. Then

g -1

<Y 10/ (xo)) — g J‘,z bi,

=0 q-1

qg—1

T (o)) =4 | du
=0

<qi q‘ |I {$(f1(x0)) =&} Ko

i=0

Because we have the estimate for the length of I, |, the estimate follows.

That this implies that the time average converges can be seen as
follows. Let a= [aq, ay,..., a;,..), and N<gq,. Then N=3Y,.,b;q, with
b,<a;. Now we have

1 N—1

i Zj<nb/qj“l)_q/‘j
3 I AU o= [ | <=

Zj<n quj

Now the right-hand side converges to zero. ]

<

1915

We now immediately have the following.

Proposition 2.2. Let a be irrational, and p/q a rational approxi-
mant of . Then for ¢ in C* we have

2
\I(¢, p/q) — 1(¢, 1) <VW 191

Proof. Assume p/q<u; the other case is treated analogously. For
any point Q in E,, on has

p 1921 )
1(¢,2)=- !
(¢ q) p % #(f(Q))

We take Q in E,, to be s,,(0) and xo=5,(0) in E,. From the symbolic
dynamics one then obtains that the first ¢ iterates of Q are very close to the
first g iterates of x,; more precisely (see Proposition 1.2)

) . 1
for i=1,.,q—1: {f'(xo)—Sf(Q)I sy_"

Consequently

Y 60— HHQ))| < g 91

0

Now apply the previous proposition. [
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An important application for our purpose concerns Lyapunov
exponents. More precisely, assume that fe C' *#; let ¢ =In f". Then I($, x)
equals the Lyapunov exponent of f on E,, which we will denote by A(«).
We remark that in this case, we can apply Proposition 2.1 and obtain that
/(2) equals the Lyapunov exponent of every point in E,.

Corollary 2.3. Assume that f is of class C'**. For p/q a rational
approximant to «

14(p/q) — M) < 1f 1 o/7*
Now denote by dy; the Hausdorff distance on compact sets.

Theorem 2.4. Assume feC'*# Let p/q be a continued fraction
approximant of a; then dy(E,,,, £,)e?** is uniformly bounded away from
zero and infinity.

Proof. We have from Lemma 1.3 that E,c/,_,. Recall that [,_,
consists of g intervals each containing one point in the orbit of 0 =s,,(0).
Denote by |I| the length of an interval I

We first show that |I;_,[e?#'? is (for p/q a rational approximant)
bounded away from zero and infinity, uniformly in g. This can be seen as
follows. Since f7~! is injective on I,_, and feC' +£ we have that for all
points x, y in Iq_l

(/9" (x)]—In f97V"(y)]

g—2
< Y (S (x) =In f1(f'(p))

i=0

<l S, Z 1) = F O
<l 1, 1 ) = f NS yo

The last inequality holds because | f?~'(x)— f 7-1(p)| is no biger than 1.

Let y = fi(Q). This point is periodic and f¥(y)=e*»%. For xin I _,
the ratio f9'(x)/e?"??) is then uniformly (in ¢) bounded away from zer0
and infinity. Since f9~ l(1 7 _,) has length of order 1 (independent of q), we
obtain that |7;_,|e?#/¢) is uniformly bounded away from zero and infinity.
Therefore (by Lemma 1.3) du(E,,,, E,) is bounded from above by e —HAID,
According to the previous corollary, e*(”/?/e?*® is uniformly bounded.
Consequently, dy(E,,, E ,)e?*®) is uniformly bounded away from infinity.
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By Lemma 1.3, one interval in /, does not contain a point in the orbit
of Q. The length of this interval is O(e ~“**’). Therefore, du(E,/, E,)e*™
is also uniformly bounded away from zero. |

Remarks. 1. If one considers Farey approximants instead of
continued fraction approximants, the convergence is typically not this good
(this of course only applies to irrationals of unbounded type).

2. The present discussion generalizes straightforwardly to the case of
a finite number of intervals.

3. As a further application of the analytic theory, consider smoothy
circle endomorphisms with critical points. There are many examples'?
where one can construct well-ordered minimal sets for such maps. Assume
that such a set avoids a neighborhood of the critical set. By ref. 9, such sets
are hyperbolic, and by ref. 14, these sets imbed as well-ordered minimal sets
for smooth expanding circle maps. Consequently, the previous applies.

In the present context we want to describe analytic properties of the
renormalization scheme outlined in Section 1. More specificaly, this scheme
concentrates on points which are endpoints of gaps. So let us consider the
point Q. = 45,(0) in E,. Consider the sequence of continued fraction
approximants p,/q, to o. Consider for n the point Q,=s,,.(0). One has
that Q,, is to the left of O and Q,,,, is to the right of Q... Now consider
the interval J, bounded by Q,, and Q,,, . Define J,, as the interval
feJ.. Now, R(f,R,), the renormalization of f to J,, satisfies the same
assumptions as our original f. In particular, R( f, J,) has again well-
ordered minimal sets of a given rotation number. Every such minimal set
defines by repeated application of the original map f a minimal set for f
on the original interval. One observes that this induced minimal set is
again well ordered (Proposition 1.5). As far as the rotation number is
concerned, we have the following.!'*

Proposition 2.5. If E is a well-ordered set and has rotation
number « for R(f, J,), then the induced well-ordered set for f has rotation
number

UP2qs 1+ (1 —2) Pay
Aqzn 1+ (1 —2)q2

Proof. This follows immediately from the characterization of the
rotation number as the average number of ones. |

Now define the nonlinearity of a map f as
S'(x) ‘

N =sip lf’(y)_l
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{see also ref. 11). From the proof of Theorem 2.4 we have that the sequence
of maps R(f,J,) has uniformly bounded nonlinearity (on each of the
intervals on which it is defined).

We have the following stronger result.

Proposition 2.6. Let « be irrational, and {p,/q,} be the sequence
of continued fractions to x. The renormalizations {R(f, J,)} converge
exponentially fast in »# to the set of linear expanding maps on J, with
slopes e?>** and e9>*! i(a).

Proof. We how first that the nonlinearity of the expanding maps
R(/. J,) tends to zero as n tends to infinity. Consider two points x and y
in, say, J, o (the other case being analogous). Then with ¢ =gq,,, we have
by the same argument as in Theorem 2.4 (the total nonlinearity of a com-
position is determined by the length of the image):

Mnl/(x)]=In[ /(]I

<lnfilg X vy 21 7 ) =7 )

q—1

<IInf'ly 32 v 7P 1JalP

Recall that the length of the interval J, tends to zero (exponentially fast)
as n goes to infinity. This shows that for n large, R(f,J,) is approxi-
mately linear with slopes f*'(Q,,) and f*+V(Q,,,,). Now apply the
corollary |

Now consider the “linear” map L(«) in our class of maps defined as
follows. L(a) is defined on two intervals in the unit interval I; it is linear
on these intervals and the derivative is the same on these intervals, namely
exp{4(«)]; the point 0 and 1 are fixed. Now consider the subsequent renor-
malizations R(L(a), J,), where J;, are the corresponding intervals. Denote
by H, the topological conjugacy between the nonwandering sets of R(f, J,,)
and R(L(x), J;). For the terminology in the next theorem we refer to the
Appendix.

Proposition 2.7:

1. The Holder constant of H, tends to | faster than 1 —y 9.

2. The Lipschitz distance between J,,,, in J, and J,,, | in J, goes to
zero faster than y =9,

Proof. This follows readily from the analysis as set up so far. |

—— N . e e A e e

—~ 0O M




Tangerman and Veerman

we have that the sequence
inearity (on each of the

t {p./q,} be the sequence
ons {R(f,J,)} converge
anding maps on J, with

- of the expanding maps
sider two points x and y
ien with g =g,,, we have
.al nonlinearity of a com-

)

fotol?

» zero (exponentially fast)
wrge, R(f,J,) is approxi-
(Q2n+1)- Now apply the

class of maps defined as
nit interval 7; it is linear
on these intervals, namely
‘der the subsequent renor-
yonding intervals. Denote
wandering sets of R(f, J,,)
t theorem we refer to the

ster than 1 —y ™9,
I,and J,,, in J, goes to

is as set up so far. |

Hyperbolic Weli-Ordered Cantor Sets 31

Theorem 2.8. The sequence of renormalizations {RUf, IV
converges to the sequence of renormalizations { R(L(x),J,)}¢ as n tends
to infinity.

Remark. In principle, the speed of convergence can be estimated bet-
ter. However, since the numerators in the continued fraction approximants
to z already grow very fast, the difference will be hard to observe numeri-
cally. One notices, though, that even in the hyperbolic setting there is, as
far as speed of convergence is concerned, still a noticeable difference
between irrational numbers of bounded type and, say, Liouville numbers.
For the latter the convergence is extremely fast.

This theorem implies that when one renormalizes at a gap point of the
well-ordered Cantor set E,, the geometry of E, at this point is completely
controlled by the Lyapunov exponent of this set. This asymptotic geometry
is independent of the particular choice of gap point. The convergence is,
however, not uniform.’

3. THE TWO-DIMENSIONAL CASE

In this section we will partially generalize the previous results to a
class of two-dimensional hyperbolic sets, for which one can define a notion
of well-orderedness. For a given well-ordered minimal set E_, we will define
a renormalization procedure analogous to the one-dimensional case. The
renormalized maps will be defined on certain “rectangles” bounded by the
local stable and unstable manifolds of two periodic points'*’ (both of
which are vertices of this “rectangie”). The sequence of rectangles deter-
mined by subsequent renormalizations is canonically determined by the
“number theory” of «. The main result of this section is Theorem 3.12. It
implies that the geometry of this sequence of rectangles (up to a global
affine transformation) is determined exponentially fast by the “number
theory” of « and the Lyapunov exponents of E,. In particular, as far as this
sequence of rectangles is concerned, its geometry is asymptotically converg-
ing to the geometry of the corresponding sequence of renormalizations in
:he case where the hyperbolic set is linear. Moreover, this theorem implies
that subsequent renormalizations converge to the corresponding sequence
of renormalizations one obtains in the linear case. That is to say: the
Hélder exponent of corresponding conjugacies tends to 1 extremely fast.

Remark. Many of the results obtained in this section hold in a more
general context. The way in which particulaf use has been made of the
assumption that this renormalization process is concerned with well-
ordered minimal sets is in the following. First of all, we have a version of
(hyperbolic) Denjoy-Koksma for our setting. This basically amounts to
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saying that we know the invariant probability measure u, well enough to
make a fairly precise statement concerning the existence and convergence
of time averages. Moreover, in one part of the construction (Proposi-
tion 3.10) we use the projection maps obtained by pushing along the
invariant foliations. Such foliations are typically not much better than C',
and neither are such projections. In order to maintain bounds on the non-
linearity, it is therefore important not to have to use such projections very
often.

We will now define a class of hyperbolic sets we want to consider.
Consider rectangles I;, ie {0, 1}, in the square / (see Fig.2). Assume we
are given maps f,: I, — f;(I;) = I as indicated: both maps have a fixed point,
both are orientation-preserving diffeomorphisms (C?), and f, maps the
interval I, all the way across I along the bottom, and f; maps the rectangle
I, all the way across I along the top. We moreover assume that these maps
are C? and uniformly hyperbolic: there exist smooth cone fields C* and C*
on I which are strictly mapped into themselves by Df, resp. Df ~': For
xelyul,, Df, strictly maps C*(x) into C*(f(x)), for x in f(I,ul,), Df '
maps C*(x) strictly into C*(f ~'(x)). Here strictly means in terms of a fixed
norm |-| on tangent vectors: if ve C*(x), then |Df v| = y|v| for some y> 1.

From these assumptions one obtains that the nonwandering set A(f)
is a hyperbolic Cantor set. In this setting one has on A(f) stable and
unstable bundles E* and E“ and one has local stable and unstable
manifolds tangent to these distributions. Since we are in the two-dimen-

(1,1)

(8,0)

Fig. 2. The geometric definition of the maps f, and f,.

Hype

siona
assur.

]
V be
inters
the u
direct
dynai
Using
sets ¢
a rot:
to {C
Sectic

F
a unic

\%

P
tional.
X, be

Ir
everyv

P
measu.
accour.
follows
case is
sequen
Then t
of Lem.
repeat

Re
7 by 7’
D«
Iyol,,
use the




Fangerman and Veerman

isure y, well enough to
stence and convergence
construction (Proposi-
by pushing along the
't much better than C!,
ain bounds on the non-
se such projections very

s we want to consider.
see Fig. 2). Assume we
naps have a fixed point,
C?), and f, maps the
id f, maps the rectangle
assume that these maps
h cone fields C* and C°*
oy Df, resp. Df ~': For
or xin f(Iow1,), Df !
means in terms of a fixed
v| = v|v| for some y> 1.
nonwandering set A(f)
as on A(f) stable and
il stable and unstable
are in the two-dimen-

(1,1)

5 fo and f,.

Hyperbolic Well-Ordered Cantor Sets 313

sional case, these bundles are C'. Moreover, under the present geometric
assumptions we have that these bundles have f-invariant orientations.

In the present setting one can once again define well-orderedness. Let
I be a curve, say a stable manifold transverse to the unstable foliation,
intersecting each leaf once. Denote by n“ the projection of A(f)on V along
the unstable foliation (n° denotes the analogous projection along the stable
direction). We say that a subset E of A(f) is well ordered if the induced
dynamics on the image of E under n* imbeds in a monotone circle map.
Using symbolic dynamics, it is again easy to trace well-ordered minimal
sets of given rotation number. One can adopt the strategy of Section 1: fix
a rotation number 2 and now one defines functions s,, resp. s, ., from St
to {0, 1}% (note the difference from dimension 1). All of the results of
Section 1 carry over without any difficulty.

Proposition 3.1. For all «#0 the nonwandering set A(f) contains
a unique minimal well-ordered set E, of rotation number .

We similarly have the analog of hyperbolic Denjoy—-Koksma:

Proposition 3.2. (Hyperbolic Denjoy-Koksma.) Let « be irra-
tional, and p/g a rational approximant of a. Assume é is in C2A(f). Let
X, be a point in E,; then

g—1

T 4D —q [ du,

q9
S 7413/2 l¢!ﬂ

In particular, the time average converges (not just u, almost
everywhere).

Proof. We again want to find sets of small diameter and of u,
measure 1/¢. In order to obtain sets of small diameter, we have to take into
account forward and backward iterates. The construction of such sets is as
follows. Let Q be a point in E,, (here we assume that g is even; the odd
case is treated similarly). Consider the set of points in 4(f) whose symbol
sequences agree for i= —g/2 to i= +q/2 with the symbol sequence for Q.
Then the diameter of this set is bounded by y ~#2. Moreover, by the analog
of Lemma 1.3, we obtain that the u, measure of this set is 1/g. Now we can
repeat the proof of Proposition 2.1. 1|

Remark. Proposition 2.2 carries over without any difficulty (replace

7 by ).

Denote by U, S the partial unstable, respectively stable, foliation on
Iyu I, defined as W*(A(f))nlp v 1y, respectively W*(A(f))nI,ul,. We
use the word “partial” since they are only defined on a subset. Denote also
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by / ~'U, respectively /'S, the images of these foliations in / under f ',
respectively f. Denote by f,, respectively f,, the induced C? maps on the
leaves, f,=/: f7'U—-U and f,=f"": fS—S, considered as one-dimen-
sional maps. Parametrize all the leaves in each of the partial foliations by
arc length.

Now let £, be a well-ordered minimal set. Denote by 4,(2), resp. 4,(a),
its unstable, resp. stable, Lyapunov exponent. Then }.,,(oz)=jln Sy, and
/fa)y= —{1In fiu,. Using Proposition 3.2 and the analog of Proposi-
tion 2.2, we have that for p/q a rational approximant i, (a)— 4.(p/q)l and
[Ax)— A (p/q)! are exponentially small in ¢.

We want to define the nonlinearity of f,, resp. f,. Define the non-
linearity of f, as the supremum over all connected leaves in f ~'U of the
one-dimensional nonlinearity per leaf. Analogously for f,.

Proposition 3.3. f, and f, have bounded nonlinearity.

Proof. This follows from the fact that the curvature of the local
leaves is bounded. ||

As in the one-dimensional case, it is important to be able to control
the nonlinearity after many iterates of f. Let U, and U, be partial
foliations both contained in U. Assume that f9: U, —» U, is well defined,
ie., f7 maps leaves in the first partial foliation into leaves of the second
partial foliation and both foliations are local. Define S, and S, analogously.

Proposition 3.4. The nonlinearity of f¢ (/%) is bounded by a
constant times the diameter of U, (S,).

Proof. Here the diameter of a one-dimensional foliation is by defini-
tion the length of its longest leaf.

It is sufficient to prove the result for f,. Now, f, is leafwise C? and we
can repeat the first part of the proof of Proposition 2.6. |

We finally need to discuss projection (holonomy) maps obtained by
pushing along stable or unstable foliations (see Fig. 3). Let L be a leaf of
U. Let ¥, and V, be smooth curves intersecting L transversely. Near
VL one can consider the projection from ¥V, nU to ¥V, U defined by
pushing along the leaves of U. Since the partial foliation U is C!, this
holonomy map is C'. In particular, if ¥, and V, are C'-close, this map will
have derivative close to one (again the size of the derivative is measured in
terms of arc-length coordinates). The same discussion holds for pushing
along the stable foliation. Such projections, which are initially only defined
on a Cantor set, have C! extensions of derivative close to the derivative on
the Cantor set.

In this setting we can define a return map to a rectangle as
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Yy

Holonomy

mmnmn=)

Fig. 3. The holonomy map: pushing along unstable leafs.

follows. From now on, we will again concentrate on continued
fraction approximants p,/q, to « We will renormalize on the points
O 1n =aet Spayen(0) and Qs | = et Spay . yigun.,(0). Define the rectangle J, as
the diamond-shaped region whose boundaries are the local stable and
unstable manifolds of these two points (note that Q,, is the vertex at the
lower left and Q,, . is at the upper right).

In this rectangle we define two strips J,, and J,;:
Jn.0=dcff_q2"(Jn)mJn and Jn.l =dcff—qzn*l(Jn)mJn' Now define R(f; Jn)
as the rescaled version of f,, on J,o and f**' on J,,. The R(f, J,)
satisfies the assumptions of the map at the beginning of this section (see
also Fig. 4). We call R(f, J,) the renormalization of f on J,: it can be con-
sidered as the return map to J,. In particular, R(f, J,) will have well-
ordered minimal sets. We remark that for general p/q <r/s, such rectangles
and renormalizations can be defined analogously.

Concerning the shape of J, we want to make a few remarks. One
observes that the symbol sequences for Q,, and Q,,,, agree for
i= —g,,+1 to i=q,,_,;—1. This implies that J, is a small and very
skinny parallellogram, with angles determined by the intersection of local
stable and unstable manifolds at the chosen point in E,. The strips J,, ;, and
J,. . are extremely skinny compared to J,.

Now consider the “linear” map L(«) in our class of maps defined as
follows. L(a) is defined on two strips in the unit square [; it is linear on
these strips and the derivative diagonal and the same on both of these
strips: namely exp[4,(x)] in the horizontal direction and exp[4,(«)] in the
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R(£,3,)

Fig. 4. The geometric definitions of the nth renormalization R(f,J,).

vertical direction. The points (0, 0) and (1, 1) are fixed. Now consider the
subsequent renormalizations R(L(x), J,), where J;, are the corresponding
rectangles. Denote by H, the topological conjugacy between the non-
wandering sets of R(f, J,) and R(L(x), J,,).

We first study the following one-dimensional problem (see Fig. 5).

Consider the map #h,, the restriction of H, to S, W} _(Q,,), the
“bottom” of J,,. The map 4, conjugates (f“)% on I, to its linear equivalent
on Iy and n*o (f*)™+'on*~! on the right interval /, to its linear equivalent
on /{. Here n* denotes the projection along the stable leafs in from “top”
to “bottom” in J,,.

Lemma 3.5. The conjugacy A, is Hélder and its Holder exponent is
at least 1 — o(y ~9*) as n tends to infinity.

Proof. Since the rectangle J, is exponentially small in n, we have that
7’ has derivative very close to one.

Now h, conjugates two one-dimensional maps of the type discussed in
Section 2. Combining this with Proposition 3.4, we conclude that each of
these one-dimensional maps has exponentially small nonlinearity. By the
analog to Corollary 2.3, we have that the derivatives on corresponding
intervals are exponentially close. Therefore, ratios of derivatives are very
close to one (see the remark in the beginning of Section 2). ||
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Fig. 5. Reduction to one-dimensional expanding maps.

Corollary 3.6. The Holder constant of the conjugacy between
R(f, J,) and R(L(2), J) is at least 1 —o(y %) as n tends to infinity.

Proof. To obtain H,, push points along stable and unstable leaves
and use the differentiability of the projection 7°. |l

Proposition 3.7. The Lipschitz distance between J,, in J, and
J: ., in J, goes to zero faster than y 7~

Proof. Consider the rectangle J,. In order to construct J,. it
suffices to determine the leaves in U and S bounding it. See Fig. 6. Each of
these leaves corresponds, as in the proof of Lemma 3.5, to fixed points of
one-dimensional maps of bounded nonlinearity. ||

We now reformulate the previous propositions in our theorem.
Theorem 3.8. The sequence of renormalizations {R(f, J,)}s con-

verges to the sequence of renormalizations {R(L(a),J,)}q as n tends to
infinity.
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Fig. 6. The location of the n+ Ist domain in the nth domain.

Remark. As long as x is irrational, the sequence of renormalizations
{R(f,J,)} is well defined. The speed of the convergence is stowest, but still
superexponentially convergent in #, for rotation numbers of bounded type.

APPENDIX. CONVERGENCE OF RENORMALIZATION

In this Appendix we present a definition of convergence of
renormalizations appropriate for our context.

Each map f in the class of maps we consider in Sections 2 and 3
defines a sequence of renormalizations {R(f,J,)}s. The domains J, of
definition for the renormalized maps depend on the initial choice of map
and form a decreasing sequence of sets J,, ;<= J,.

In the one-dimensional case each of these intervals is bounded by two
specific periodic points. In the two-dimensional setting (Section 3) each of
these domains is a “rectangle” bounded by local unstable and stable
manifolds of two specific periodic points (both of which are vertices of the
rectangle). Moreover, the next domain J,, , is in a very specific region of
this “rectangle.” To each of these rectangles J,, we can associate an affine
transformation A, . This transformation 4 is determined by the following
requirements: orientation preserving, the vertex Q,, goes to (0, 0), and the
two adjacent points go to (1,0) and (0, 1). The image of J, under 4,
converges exponentially fast in n to the unit square I In the one-dimen-
sional case this transformation A4, is determined by requiring it to be
orientation preserving.
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Consider for f and f* the sequences {R(f.Ja)} e and (R(f". I}

In this setting we have the following: for each n. R(f,J,) and R(f, J)
are, by assumption, topologically conjugate on their nonwandering set,
by a transformation H,. We have. moreover, that with respect to the
Euclidean metric each H, is Holder continuous on the corresponding non-
wandering set.

Definition (Convergence of renormalization). The sequence
RS-

(R(f,Ja)}§ converges to the sequence {R(g.Ju)jo if:

1. The Holder exponent of the conjugacy H, converges to one as n
tends to infinity.

2. The Lipschitz distance between J,,, inJ,and J, . in J/, tends to
zero as n tends to infinity.

The definition of (relative) Lipschitz distance'®' we use is the following.

Definition. Let M be a metric space with boundary é(M), and 4
and B two homeomorphic subsets of M. Define the Lipschitz distance
between 4 and B in M as

inf{ln L(¢)+1n Lie I
@: (M, A)— (M, B) is a homeomorphism, ¢ =1d on d(M)}

Here L(¢) denotes the infimum of the Lipschitz constants for ¢. (If
A and B are not Lipschitz homeomorphic, one defines their Lipschitz
distance as + 0.)

Now define the Lipschitz distance between J,..inJ,and J, ., in J,
as the Lipschitz distance between A J_(J,,,,,) and A4 J;.(J;H) in the unit
square /. (Note that the image of J, itself under A, converges exponen-
tially fast in n to the unit square 1)

The point of this definition is that the sets J, ., respectively J; .
have very small diameter with respect to J,,, J,. Moreover, J, .. is also
extremely close to the boundary of J,. If the Lipschitz distance between
J,,,inJ,and J,,,in J/, is small, then in particular their locations in the
respective bigger rectangles are comparable.

Remark. Part two of the definition of convergence of renormalization
is a condition quite independent of part one. Although each conjugacy H,
is Holder continuous of exponent close to one, this does not imply that the
Lipschitz distance between J,.,inJ,and J, ., in J:, is small.
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4. CONCLUDING REMARKS

In this paper we consider two examples of renormalization at points
in well-ordered sets in certain hyperbolic maps. The main ingredient,
besides hyperbolicity, is the hyperbolic Denjoy-Koksma theorem. The
central reasons why we have such a theorem are that the invariant
probability measure of a well-ordered set is concentrated on exponentially
small intervals and the symbolic dynamics is very regular. It therefore
seems reasonable to expect that a similar program can be carried out in
different contexts. As an example, we mention the period doubling Cantor
set in unimodal maps of positive entropy. This set is hyperbolic and has
a fairly simple symbolic dynamics.

The fundamental problems in proving higher-dimensional generaliza-
tions (say, four-dimensional symplectic maps) are a lack in our under-
standing of the analogues of well-ordered behavior and the lack of smooth-
ness of foliations.

Finally, we want to put the results of the renormalization approach
described here in the context of renormalization of circle maps and twist
maps. There one has with regard to renormalization of dynamics on well-
ordered sets the following crude geometric picture in the space of such
maps (unproven). There is a basin of attraction consisting of maps whose
dynamics on a (given) well-ordered set is smoothly conjugate to a rigid
rotation. Successive renormalizations of such a map converge to a set of
maps whose dynamics is a rigid rotation on the corresponding well-ordered
sets. Then there is a “codimension one” invariant set consisting of well-
ordered sets on which the map is smoothly conjugate to a “critical” circle
map. This critical set is normally repelling for the renormalization
operator and forms the boundary of the basin of attraction described
before. Its other side consists of maps whose (given) well-ordered set is a
hyperbolic Cantor set. This is the side discussed here and one has that
successive renormalizations in this region go off to infinity (scaling go at a
superexponential rate to zero).

In this set our results show that for two maps with hyperbolic well-
ordered sets of the same rotation number and the same Lyapunov
exponent, successive renormalizations of the one converge to successive
renormalizations of the other. [In the case where the rotation number is
the golden mean and one can speak of fixed points of renormalization our
results amount to studying the unstable manifold of the “critical” map in
the neighborhood of infinity (R. MacKay, private communication).] The
novel feature in this case is that renormalizations of two maps with well-
ordered sets of the same rotation number, but different Lyapunov
exponents, diverge. This second parameter (Lyapunov exponent) does not
seem to have an analog in the other cases.
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ACKNO\

One
Rockefelle
prepared.

REFERE!

1. V. 1. Ar
(Springe:
2. Ph. Boyl
3. M. Gron
Cedic, 16
4. G. A. He
5. M. Herm
6. M. Hirsc
14:133-1¢
7. M. Hirsc
Mathema
8. R. Mane,
9. R. Mane.
10. D. Sulliv:
Notes in
11. D. Sulliv
Mathema:
12. J.J.P. Ve
13 J.P.V
(1987).
14 1. J. PV
University
15. J.J. P. Ve
Rockefelle
16. J. J. P. Ve
certain tw




an and Veerman

‘ation at points
ain ingredient,

theorem. The

the invariant
n exponentially
ar. It therefore
- carried out in
oubling Cantor
:rbolic and has

nal generaliza-
in our under-
ack of smooth-

ation approach
maps and twist
1amics on well-
- space of such
of maps whose
.gate to a rigid
‘rge to a set of
ng well-ordered
sisting of well-
“critical” circle
-enormalization
;tion described
irdered set is a
1 one has that
scaling go at a

yperbolic well-
ume Lyapunov
2 to successive
tion number is
‘malization our
ritical” map in
ication).] The
1aps with well-
ent Lyapunov
nent) does not

Hyperbolic Well-Ordered Cantor Sets 321

ACKNOWLEDGMENT

One of the authors (F.M.T.) thanks the Feigenbaum Lab at

Rockefeller University for its hospitality while this manuscript was being
prepared.

REFERENCES

1.

V. L. Arnol'd. Geometrical Methods in the Theorv of Ordinary Differential Equations
(Springer-Verlag. 1983).

. Ph. Bovland. Bifurcations of circle maps. Preprint. Boston University (1984).
_ M. Gromov. Structures métriques pour les variétés Riemannicnnes (Textes Mathématiques.

Cedic. 1980).

4. G. A. Hedlund. Am. J. Math. 66:60S (1944).

. M. Herman. Publ. Math. [HES 49 (1979).
. M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets. Proc. Symp. Pure Math.

14:133-164 (1967).

. M. Hirsch. C. Pugh, and M. Shub. [nvariant Manifolds (Springer Lecture Notes in

Mathematics. No. 583).

. R. Mane. Ergodic Theory of Smooth Dynamical Systems (Springer-Verlag, 1986).
. R. Mane, Commun. Math. Phys. 100:495-524 (1985).
. D. Sullivan. Conformal dynamical systems. in Geometric Dynamics (Springer Lecture

Notes in Mathematics, No. 1007).

. D. Sullivan. Differentiable Structures on Cantor Sets (AMS Proceedings of Pure

Mathematics. Vol. 48).

12. J.J. P. Veerman. Symbolic dynamics and rotation numbers, Physica 134A:543-576 (1986).
13. J. J. P. Veerman. Symbolic dynamics of order-preserving orbits, Physica 29D:191-201

(1987).

] J. P. Veerman, Hausdorff dimension of order preserving sets, Preprint, Rockefeller

University (1988).

1. J. P. Veerman and F. M. Tangerman. Renormalization of Aubry Mather sets. Preprint,

Rockefeller University (1988).

. J. J. P. Veerman and F. M. Tangerman, Intersection properties of invariant manifolds in

certain twist maps, Preprint, Rockefeller University (1988).




