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We consider the integrable (zero perturbation) two–dimensional standard map, in light of current
developments on ergodic sums of irrational rotations, and recent numerical evidence that it might
possess non-trivial q-Gaussian statistics. Using both classical and recent results, we show that the
phase average of the sum of centered positions of an orbit, for long times and after normalization,
obeys the Cauchy distribution (a q-Gaussian with q = 2), while for almost all individual orbits such
a sum does not obey any distribution at all. We discuss the question of existence of distributions
for KAM tori.
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I. INTRODUCTION

In the last fifteen years, there has been a growing number of numerical investigations suggesting that chaotic orbits
of conservative (primarily Hamiltonian) systems are characterized by q–Gaussian statistics, whose index varies from
q = 1 (Gaussian) in ‘wide chaotic seas’ to 1 < q < 3 in ‘thin chaotic layers’ close to invariant tori (see [2, ch. 8] for
details).

More recently, numerical evidence has shown that, as the perturbation parameter ε > 0 decreases, chaotic orbit
distributions of the Chirikov-Taylor standard map (a paradigm of two–degree–of–freedom conservative flows)

(x, y) 7→ (x+ y, y + ε sin(2πx)) (mod 1) (1)

change from Boltzmann-Gibbs (Gaussian) to Tsallis (q-Gaussian) statistics [3]. At present, for ε 6= 0, this claim
cannot be rigorously verified nor challenged.

The purpose of this Letter is to elucidate the ergodic properties of the standard map for ε = 0 by applying the
theory of ergodic sums of irrational rotations. This contribution fits within the broader study of regular motions on
two-dimensional invariant tori and its connection with their (irrational) rotation number (see [4] and the collection of
articles in [5]).

For ε = 0 the momentum y in (1) is constant, the map is integrable, and the phase space foliates into invariant
circles (tori), parametrized by y. Let y = α represent one such circle, with α 6∈ Q, and consider the distributional
properties (if any) of the ergodic sums

St(x, α) =

t−1∑
k=0

h(fkα(x)), h(x) = {x} − 1

2
, fα(x) = {x+ α} (2)

where {·} denotes the fractional part, within the interval [0, 1) with end-points identified.
We will show that the distributional properties of (2) for ε = 0 can be rigorously determined by applying both

classical and recent results of ergodic theory that deal with number-theoretic questions. These are theorems that
focus on the convergence in distribution of the sums St(x, α), appropriately centralized and normalized. As t → ∞,
our main findings are (details will be given below):
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FIG. 1: Left: The sequence St, with initial condition x = 0 and t 6 105. Left: α = (
√

5 − 1)/2, with continued fractions
coefficients [1, 1, 1, . . .]. Right: α = π − 3 with continued fractions [7, 15, 1, 293, 1, . . .]. The isolated large coefficient causes
large fluctuations with an approximate periodicity of 33102, the denominator of the corresponding convergent. The red curve
corresponds to the observable −sign(h(x))/2, see (7).

1. The phase average of St converges to a Cauchy distribution (a q-Gaussian with q = 2).

2. For almost all initial points (x, α), St does not converge to any distribution.

3. If α is a badly approximable irrational1, then St converges in distribution to a Gaussian (central limit theorem).

The first statement follows from a classical theorem by Kesten (1960); the second is due to Dolgopyat & Sarig
(2018); the third to Bromberg and Ulcigrai (2018).

Based on the above, we shall proceed to examine recent numerical evidence by Tirnakli & Tsallis [1] on the sum
(2) for the map (1) with ε = 0. More specifically, they sought to identify its statistical distribution within the family
of q-Gaussians with zero mean

Pq(s) =

√
β

Cq
expq(−βs2) where expq(x) = [1 + (1− q)x]

1
1−q (3)

where β is a parameter and Cq is the normalization coefficient [6]. The Cauchy distribution of Theorem 1 that
we obtain for this case corresponds to q = 2, with C2 = π. In spite of approximately 8 × 1014 iterations of the
map (2 × 108 initial points, each iterated 222 times), the numerical value proposed in [1] q ≈ 1.935 agrees with our
theoretical prediction, within only one significant digit (see Appendix A).

II. BACKGROUND THEOREMS

Let us begin with some general observations:
1. The distributional properties of St depend sensitively on the type of averaging performed. Indeed, in (2) one may
randomise any combination of x, α, and t, each sampled from a uniform distribution. In this regard, there are several
types of limit theorems, stated below.
2. The behaviour of St for individual orbits is dictated by the arithmetical properties of α. Bounded continued
fraction coefficients improve convergence (Figure 1, left), while the presence of large coefficients in the continued

1 with bounded continued fraction coefficients
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fraction expansion cause large fluctuations (Figure 1, right). Recall that almost all real numbers have unbounded
coefficients [7, Theorem 29].
3. The properties of St in (2) depend on the choice of the observable h. Thus, if h is sufficiently smooth, then
St is bounded for almost all pairs (x, p) [8] (see also [9, Appendix A]). Bounded ergodic sums may occur also with
non-smooth observables [10], but not for our choice of h.

Let us now recall various limit theorems in [9, 11], adopting the corresponding terminology.
For distributions along individual orbits, we fix the initial conditions and randomise t. The ergodic sum St of a map

f and observable h satisfies a temporal distributional limit theorem if there is a centralizing sequence Ut, a normalizing
sequence Vt →∞, and a (non-constant) random variable Y such that for all real y

lim
T→∞

1

T
#
{
t ∈ {0, . . . , T − 1} :

St(x, α)− UT
VT

6 y
}

= FY (y), (4)

where # denotes the cardinality and FY is the cumulative distribution function of Y . Equivalently, the random
variable (St − UT )/VT , where t is uniformly distributed among the first T iterates, converges in distribution to Y , as
T goes to infinity. In general, the quantities UT , VT , and Y will depend on the initial point, as well as on the function
h.

In a spatial distributional limit theorem one randomizes x instead of t, and modifies (4) as follows:

lim
T→∞

1

T
µ
{
x ∈ [0, 1) :

ST (x, α)− UT
VT

6 y
}

= FY (y), (5)

where µ is the Lebesgue measure. (In a more general setting, the unit interval is replaced by the phase space of f ,
with invariant measure µ.) Unlike in (4), here only ST is considered, the earlier values of the sum being ignored.

In the above limit theorems α is kept fixed, being regarded as a parameter. If we randomize α then the limit
theorems (spatial or temporal) are said to be annealed. For the integrable standard map, a limit theorem resulting
from a phase average is of the annealed spatial type.

Let us recall the first limit theorem of this kind, regarding rotations, due to Kesten [12]:

Theorem 1 [12]. If (x, α) is uniformly distributed on T2, then the distribution of ST (x, α)/ lnT converges as T →∞
to a Cauchy distribution: for some ρ and all y we have

lim
T→∞

1

T
µ
{

(x, α) ∈ T2 :
ST (x, α)

lnT
6 y
}

=
ρ

π

∫ y

−∞

dx

1 + ρ2x2
, (6)

where µ is the Lebesgue measure.

Thus, phase averaging and logarithmic scaling yield the Cauchy distribution. Kesten, in fact, gives a formula for
the value of ρ, which we compute in Appendix B below to find ρ = 4π. Comparing the right-hand-side of (6) with
(3) for q = 2, we find β = ρ2, hence P (0) = ρ/π = 4.

Recently, Dolgopyat & Sarig [9, Theorem 2.1] established a temporal version of Kesten’s theorem, randomising t
and α instead of x and α. The distribution is again Cauchy, with the same logarithmic scaling but a different constant:
ρ = 3π

√
3.

We now turn to the existence of temporal distributions for individual orbits. The initial condition (x, α) is fixed,
with α 6∈ Q, and we attempt to extract a distribution from the terms of the sequence (2). The following result
(Dolgopyat & Sarig, 2018) shows that without α-averaging, almost surely, no temporal distribution exists.

Theorem 2 [13, Theorem 1.2]. Let h be a piecewise smooth function of zero mean. Then there is a set of full measure
Λ ⊂ T2 such that, if (x, α) ∈ Λ then the ergodic sum of h ◦ fα does not satisfy a temporal distributional limit theorem
on the orbit of x.

The observable h in (2) satisfies the assumptions of this theorem. Thus, for a generic initial condition (x, α), the
sequence (2) for the integrable standard map does not admit any distributional limit, which is our second statement
in Section I. This is because there are different scaling limits on different subsequences, due to the presence of large
continued fractions coefficients The latter appear at random in the continued fraction expansion of most numbers,
due to the ergodic properties of Gauss’ map (see [14, section 3.2] and [13, Section 1.3]). Thus, distributional data
extracted from a typical orbit are intrinsically unstable, and this problem cannot be fixed by choosing appropriate
centralizing and normalizing sequences in (4).

The capricious nature of the ergodic sums (2) is best illustrated by fixing α and randomizing the initial condition.
For any fixed time t, the appropriately normalized St of (2) gives a well-defined density ν(z, t, α), symmetric around
the origin (see [15]).
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In Figure 2 we plot the density ν(z, t, α) as a function of z, for α = e− 2 = [1, 2, 1, 1, 4, 1, 1, 6, . . .], with unbounded
(although still regular) continued fractions coefficients. As t changes, we observe significant variations, ranging from
near-uniformity, if t is the denominator of a convergent, to exotic shapes for other values of t. For a typical α these
variations cannot be tamed by an averaging process.
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FIG. 2: Numerical approximations of the density ν(z, t, α) for α = e− 2, and t = 1001 (left), t = 213 (centre), and a detail for
t = 334 (right). Only the first value of t is a denominator of a convergent of e− 2.

To obtain temporal limit theorems for individual orbits, one must restrict α to a zero measure set over which the
fluctuations of St can be controlled. In this direction, a temporal central limit theorem has been proved very recently
by Bromberg and Ulcigrai (see below) who considered the sum St corresponding to the much–studied observable
[10, 12, 16, 17]

h2(x) = χI(x)− γ, (7)

where I = [0, γ) is an interval of length γ and χI is the characteristic function of I. (For γ = 1/2 we have h2(x) =
−sign(h(x))/2, see Figure 1, right.) The zero–measure set chosen here consists of the badly approximable values of α,
i.e., those with bounded continued fraction coefficients. This set is ‘large’ in that it has Hausdorff dimension 1 [18].

Theorem 3 [19, Theorem 1.1]. Let α be a badly approximable irrational number. For every γ badly approximable
with respect to α, every x, and every real y we have

1

T
#
{

0 6 t < T :
St(α, γ, x)− Ut

Vt
6 y
}
→ 1√

2π

∫ y

−∞
e−x

2/2dx

for some sequences Ut(α, x, γ) and Vt(α, γ)→∞.

The restriction on γ is a (mild) diophantine condition (see [19] for details). This theorem is our third statement
in Section I. It generalizes previous results by Beck [20, 21], who dealt with the special case of quadratic irrational α
(irrational roots of a quadratic polynomial with integer coefficients), rational γ, and x = 0. Under these constraints,

he was able to obtain a good description of centralizing and normalizing sequences: Ut = U ln t and Vt = V
√

ln t, for
some constants U and V .

III. CONCLUDING REMARKS

In this paper we have considered the problem of the statistical properties of regular motions in the zero perturbation
limit of the two–dimensional standard map. We remark at the outset, regarding the sensitivity of ergodic sums on
the choice of the observable, that great care must be taken when assessing the relevance of the theory reviewed above
to more general settings (cf. [13, section 2]).

Our main finding is that orbits on tori of the integrable two–dimensional standard map are described by the
Cauchy distribution. We conjecture that this may hold more generally for integrable conservative systems. A second
conclusion that follows from our findings is that the almost certain non-existence of distributions for individual orbits
that holds for a large class of observables [9, section 1] is expected to apply to KAM tori as well.

Regarding the existence and type of distributions resulting from averaging over KAM tori, we note that the latter are
parametrized by a positive measure Cantor set of rotation numbers, selected from the unit interval via a perturbation-
dependent diophantine condition [22, p. 344]. This condition removes from the averaging set the rotation numbers
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that are too closely approximable by rationals, thereby avoiding large fluctuations of the ergodic sum and improving
convergence.

Thus, it seems plausible that, for appropriate observables, an ergodic sum such as (2), averaged over KAM tori,
will converge in distribution. If so, then what would be the resulting distribution as a function of the perturbation
parameter? This question appears worthy of further study.

Acknowledgments

We are grateful to U. Tirnakli and C. Tsallis for useful discussions.

APPENDIX A: THE RESULTS OF TIRNAKLI AND TSALLIS

Let us examine the results of the numerical experiments presented in [1], in view of Theorem 1 of Section II. The
authors choose a large set of 2×108 initial points uniformly distributed on the 2-torus and compute T = 222 ≈ 4×106

iterates of (1) for each initial point, letting 〈x〉 be the average of the resulting set of 8×1014 data points. For each orbit,
the final value ST of the ergodic sum is stored, and centralized using 〈x〉. The 2× 108 values of ST thus obtained are
merged together, their distribution is computed and scaled by the numerical value of P (0), while the latter, together
with the normalisation coefficient Cq [6] provide a numerical value for β. Fitting the normalized distribution to their
data yields the value q ≈ 1.935.

The observable used in [1] differs from that of Theorem 1, since 1/2 is replaced by 〈x〉, although such a difference
can be absorbed by a centralized sequence UT . If we apply Theorem 1 to these data, the numerical result for q agrees
within only one significant figure. The numerical value of P(0) (after employing ln(T ) scaling) is P (0) ≈ 1.5 [23],
which is also problematic when compared with the exact value we have obtained, P (0) = 4. In order to investigate
these discrepancies further, at this stage, we would need more detailed information about the computations presented
in [1].

APPENDIX B: COMPUTATION OF ρ IN THEOREM 1

For x ∈ [0, 1), let qn be the denominator of the nth convergent of the continued fractions of x [24, Chapter X]. In
[7, p. 66] it is proved that there is a unique τ > 0 such that for almost all x ∈ (0, 1) the following limit exists

τ = lim
n→∞

n

ln qn(x)
=

12 ln 2

π2
.

The parameter ρ is given by the following formula [12]

ρ =
2π ln 2

τI
(B1)

where

I =

∫ 1

0

∫ 1

0

∣∣∣∣∣
∞∑
k=1

k−2 sin 2πkx sin 2πky

∣∣∣∣∣ dydx. (B2)

The integrand has an 8-fold symmetry, being invariant under reflection with respect to the main diagonal and each
of the lines x = 1/2, y = 1/2 (because of the absolute value). So it suffices to restrict the integration to the triangle
with vertices (0, 0), (1, 0), (1/2, 1/2). The sum is absolutely convergent, and over that domain can be shown (via
Fourier analysis) to be equal to π2y(1− 2x), which is positive. So, by Fubini’s theorem, we have

I = 8

∫ 1/2

0

dx

∫ x

0

π2y(1− 2x)dy =
π2

24

and thererefore ρ = 4π as desired.
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