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1 Introduction

Coupled second order ordinary linear differential equations, coupled oscillators for short, play
an important role in almost all areas of science and technology (see the introduction of [1] for a
recent review). The phenomena of coupled systems appear on all length– and time–scales: from
synchronization of power generators in power-grid networks [2,3], through the traffic control
of vehicular platoons [4,5,6,7,8,9], collective decision-making in biological systems [10,11,12,
13,14] (e.g., transfer of long–range information in flocks of birds), to the atomic scale lattice
vibrations (so-called phonons), just to name few of them. The nature of communication within
such a systems crucially influences the behavior of it. In the presence of centralized information,
e.g., the knowledge of the desired velocity by members of a flock, the performance of many of
these systems is good [4,7,8] in the sense that the trajectories of the agents quickly converge to
coherent (or synchronized) motion. On the other hand, in decentralized systems convergence to
coherent motion is much less obvious, since no overall goal is observed by all agents. In this case,
the only available observations (i.e., of position and/or velocity) are relative to the agent. The
complication of the problem is even greater if information is exchanged only locally - by agents
in a neighborhood that is small in comparison to the system size.

As an aside, we point out that there exist another class of somewhat similar problems, also
with a wide range of applications, namely the dynamics of consensus, see [15,16]. The difference
is that in our case the agents are Newtonian (are subject to force mẍ, i.e., mass × accelerations),
whereas in consensus type equation, that is not the case. Therefore consensus equations tend to
be coupled first order ordinary differential equations with a very different behavior. In particular,
we do not expect to see wave-like behavior in consensus equations, whereas zin our equations
these play a prominent role. In what follows we will restrict ourselves to coupled second order
differential equations.

It is of significant importance to develop a theory that deals with systems where agents may
interact with few nearby agents. In the case of physical systems with symmetric interactions and
no damping (such as harmonic crystals), this theory exists and can be found in textbooks [17].
It consists of imposing periodic boundary conditions, and then asserting that the solutions of the
periodic system behave the same way as in the system with non-trivial boundary conditions,
except near the boundary. Although we know of no formal proof in the literature that this is
correct, this method of solution has been used for about a century with great success. Neither is it
the case that we can rely on previous studies of discretization of a second order partial differential
equation. Indeed the finite difference method applied to a wave equation with convection will
give rise (for small enough mesh) to nearly symmetric equations [18,19].

In flocks there is no reason for the interactions to be symmetric or undamped, as is the
case in the study of harmonic crystals. The equations studied here are therefore more general.
Furthermore in flocks it is desirable to have a two parameter set of equilibria, namely motion with
constant velocity and constant distance between any two consecutive agents (coherent motion).
Thus it is necessary to study a more general problem, namely convergence to coherent motion in
the presence of asymmetry and damping. In this paper we generalize the previously successful
approach (periodic boundary conditions). In doing this one needs to be aware though that (i)
assumptions or conjectures needed to solve the old problem must be investigated again as they
may not be justified anymore, and (ii) new phenomena may arise. For more details see [20,21,9].

In the case of linear response theory in solid state physics [17], when a system of symmetrically
coupled undamped oscillators is perturbed, the signal will typically travel through the entire
system at constant velocity without damping. In our case, the system is generally either stable
or unstable. In the former case the perturbation will die out over time, and in the latter, the
perturbation will blow up exponentially in time. However, even in the stable case perturbations
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may get very large before dying out. The largest amplitude of a perturbed system that is stable,
may in fact still grow exponentially in the size of the system. This phenomenon is called flock
instability. Just like “normal” instability, flock-instability is an undesirable property, since it
makes large flocks unviable. Flock-instability in arrays of coupled oscillators was illustrated
in [22], and bears similarity to certain phenomena discovered earlier in fluid mechanics [23,
24]. Thus the first task is to find criteria to identify those systems that are both stable and flock
stable.

We thus need to replace the traditional approach using periodic boundary conditions by
another that we now outline. For those systems that are stable and flock stable (and only for
those), we conjecture that for times of length O(N) (where N is the size of the flock) the solutions
of the periodic system behave the same way as in the system with non-trivial boundary, except
near the boundary where additional effects must be taken into consideration. It turns out that
with those constraints the system with periodic boundary condition behaves like a wave-equation.
Since the travel time of a wave between the leader (agent 0) and the last agent (numbered N) is
proportional to N , we can study the dynamics of the perturbed system for times needed up to
a finite number of reflections. Due to the asymmetry, wave-packages traveling in the positive R
direction may have a different signal-velocity than waves traveling in the opposite direction. It
turns out we can use this effect to achieve either substantial attenuation or magnification of the
traveling wave at the boundary near agent N .

In the present work we extend this analysis from nearest neighbor systems done in [20,21] to
next nearest neighbor (NNN) systems, and in doing that we uncover another new phenomenon.
We will see that for stable and flock stable systems there are still two signal velocities, but that
in contrast with nearest neighbor systems it is possible that they have the same sign. This means
that perturbations can travel (as waves) in only one direction. As a consequence, they cannot be
reflected. This type of transient has the counter-intuitive characteristic that they travel through
the system in finite time, after which the system finds itself in (almost) perfect equilibrium.

The paper is organized as follows. In Section 2 we define the model of interacting agents. The
main line of reasoning of the method is given in Section 3. The stability conditions are given
in Section 4. The description of the stable solutions is presented in Section 5. This includes the
description of the reflectionless waves on the line, which to the best of our knowledge is a new
result. We include extensive numerical analysis in Section 6 to back up our theory.

2 The Equations of Motion of the NNN System

We consider a model of an one–dimensional array of linear damped coupled (up to next nearest
neighbor) harmonic oscillators on the line. The oscillators or agents are numbered from 0 to N
from right to left. We impose that the system is decentralized, that is: the agents perceive only
information about other agents that is relative to themselves, in this case relative position and
relative velocity. See Figure 1 for a sketch of information flow.

The equations of motion of such a system can be written as:

ẍk =

2∑
j=−2

[gxρx,j (xk+j − xk + j ∆) + gvρv,j (ẋk+j − ẋk)] , (1)

where ∆ is the desired inter–agent distance and ρx,j (ρv,j) are position (velocity) parameters.
The latter are normalized so that ρx,0 = ρv,0 = 1. The normalization factors, gx and gv, are often
called the ‘gains’ in the engineering literature.
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Fig. 1 Sketch of information flow. Available information about position ρx,j and velocity ρv,j weight of
nearest j = k ± 1 and next nearest j = k ± 2 agents for k’th agent.

The initial conditions we will impose from here on, are as follows. At time t ≤ 0 the agents
are in equilibrium, xk = −k∆. Then, for t > 0, the leader x0 starts moving forward at velocity
v0:

∀t ≥ 0 x0(t) = v0t .

The leader is not influenced by other agents, although other agents (e.g., k = 1 and k = 2) are
influenced by it. This choice of the leader at the head of the flock is motivated by applications
to traffic situations (see [20,21]). It is possible to analyze the dynamics with leaders in different
positions or having more than one leader. We will not pursue this here.

It is convenient to eliminate the constant ∆ from Equation (1), using the change of coordi-
nates: zk ≡ xk + k∆. In this notation, the equation of motion of the flock in R becomes:

Definition 2.1 The equations of motion of the NNN system with N > 4 agents, for k ∈
{2, · · ·N − 2}, are:

z̈k =

2∑
j=−2

(gxρx,jzk+j + gvρv,j żk+j) . (2)

This system is subject to the constraints

ρx,0 = ρv,0 = 1 ,

2∑
j=−2

ρx,j =

2∑
j=−2

ρv,j = 0 , (3)

and to the initial conditions:

zk(0) = 0 , żk(0) = 0 , and z0(t) = v0t .

Finally the system is subject to physical boundary conditions for z1, zN−1, and zN discussed later
on. From now on we denote this system by SN . The collection of the systems {SN}N>4 will be
denoted by S.

To express this efficiently in vector notation, we write z ≡ (z1, z2, z3, . . . zN )T together
with ż ≡ (ż1, ż2, ż3, . . . żN )T . Equation (2) may be rewritten as a first order system in 2N
dimensions:

d

dt

(
z
ż

)
=

(
0 I
Lx Lv

)(
z
ż

)
+ F (t) ≡MN

(
z
ż

)
+ F (t) . (4)
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where Lx , Lv ∈ RN×N are matrices - the Laplacians - with standard definition

k ∈ {2, · · ·N − 2} (Lxz)k =

2∑
j=−2

gxρx,jzk+j , (Lv ż)k =

2∑
j=−2

gvρv,j żk+j , (5)

and (Lxz)k and (Lxz)k for k ∈ {1, N−1, N} will have to be modified because there are no agents
with numbers −1, N + 1, and N + 2. Unfortunately there is no canonical way to impose these
physical boundary conditions. They are essentially arbitrary. Finally, in Equation 4, the term
F (t) is the “external force” that describes the influence of the leader with trajectory z0(t) = v0t
on the acceleration of its immediate neighbors (terms that contain z0 or ż0). As a consequence,
all components of the external force F are zero except the N + 1-st and N + 2-nd.

We will introduce two sets of boundary conditions for SN (the system on the line). We
performed numerics with both types of boundary conditions in order to support our conclusion
that for stable and flock stable systems the trajectories are independent of the physical boundary
conditions.

In the decentralized system SN the row sum of the Laplacians equals 0, that is:
∑
j ρx,j =∑

j ρv,j = 0. This implies that for the system SN , the equations of agents k = 1, N − 1, and N
have to be modified. In the case of fixed interaction BC the masses, ρx,0 and ρv,0, of the agent
are not equal 1, instead it is the sum of existing interactions. On the other hand, in fixed mass
BC we change the interactions of existing agents and keep the central ρx,0 and ρv,0 equal to 1.
Here are the details:

Definition 2.2 (i) fixed interaction BC:

z̈1 = (gxρx,−1z0 + gvρv,−1ż0)

− [gx (ρx,−1 + ρx,1 + ρx,2) z1 + gv (ρv,−1 + ρv,1 + ρv,2) ż1]

+

2∑
j=1

(gxρx,jz1+j + gvρv,j ż1+j) ,

z̈N−1 =

−1∑
j=−2

(gxρx,jzN−1+j + gvρv,j żN−1+j)

− [gx (ρx,−2 + ρx,−1 + ρx,1) zN−1 + gv (ρv,−2 + ρv,−1 + ρv,1) żN−1]

+ (gxρx,1zN + gvρv,1żN ) ,

z̈N =

−1∑
j=−2

(gxρx,jzN+j + gvρv,j żN+j)

− [gx (ρx,−2 + ρx,−1) zN + gv (ρv,−2 + ρv,−1) żN ] .

(ii) fixed mass BC:

z̈1 = [gx (ρx,−2 + ρx,−1) z0 + gv (ρv,−2 + ρv,−1) ż0]

+

2∑
j=0

(gxρx,jz1+j + gvρv,j ż1+j) ,

z̈N−1 =

0∑
j=−2

(gxρx,jzN−1+j + gvρv,j żN−1+j)

+ [gx (ρx,1 + ρx,2) zN + gv (ρv,1 + ρv,2) żN ] ,
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z̈N =

0∑
j=−2

(gxρx,jzN+j + gvρv,j żN+j)

+ [gx (ρx,1 + ρx,2) zN + gv (ρv,1 + ρx,2) żN ] .

To conclude our discussion of Equation 4 we observe that those terms in the full equation of
motion that contain z0 or ż0 are written as external force. These two components depend on the
details on the boundary conditions and are given by:(

gxρx,−1z0 + gvρv,−1ż0
gxρx,−2z0 + gvρv,−2ż0

)
,

if we impose fixed interactions BC, and(
gx (ρx,−2 + ρx,−1) z0 + gv (ρv,−2 + ρv,−1) ż0

gxρx,−2z0 + gvρv,−2ż0

)
,

if we impose fixed mass BC.

Coherent motion is defined as:

yk(t) = a0t+ b0 − k∆ , (6)

where a0 and b0 are arbitrary real constants. It is easily checked that coherent motion is a solution
to the differential equations given above. Our aims are:

1. To find out for which values of the parameters trajectories the system is stable: namely, for
all k, limt→∞ |xk(t)− yk(t)| = 0 where yk is given in Equation (6).

2. To find out how fast the stable systems converge to its coherent motion.
3. To determine what is the size of the transient maxt>0 |xN (t)− yN (t)| in stable systems.

In the last item we consider only the last (or N -th) agent to simplify the exposition. As an
example in Figure 2 we present a sketch of the dynamics expected in the stable system of locally
coupled oscillators on the line. In the figures we plot the positions relative to the leader, i.e.,
xk(t)− v0t.

3 Method

The analysis of the system of Definition 2.1 is extremely difficult. In the first place the Laplacians
given in Equation (5) are not simultaneously diagonalizable. Furthermore it is not possible to
choose an obvious set of unique physical boundary conditions. In order to overcome these prob-
lems, we define a system where the communication structure is not a line graph but a circular
graph. Following the reasoning described in [20] and [21], we use the system on the circle only
(in Section 4) to deduce necessary conditions for stability and flock stability on the line, and
(in Section 5) to derive expressions for the signal velocities. These are therefore applied to the
system of practical interest, namely the system on the line.

We emphasize that we are not interested in the dynamics of the circular model: our aim is
only to use the quantities derived to solve the dynamics of the model on the line. We can derive
these quantities in the model with periodic boundary conditions without making reference to the
leader. As a consequence the definition below omits the leader entirely.
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Definition 3.1 The equations of motion of the system with periodic boundary conditions (PBC)

∀ i zN+i = zi

are:

z̈k =

2∑
j=−2

(gxρx,jzk+j + gvρv,j żk+j) .

This system is subject to to the constraints

ρx,0 = ρv,0 = 1 ,

2∑
j=−2

ρx,j =

2∑
j=−2

ρv,j = 0 .

From now on we denote this system by S∗N . The collection of the systems {S∗N}N>4 will be denoted
by S∗.

The Laplacians L∗ [with the same definition as in Equation (5)] now become circulant matrices
and are therefore diagonalizable by the discrete Fourier transform [25]. Let wm be the m-th
eigenvector of L∗’s, that is the vector whose j-th component satisfies:

(wm)j = eı
2πm
N j ≡ eıφj ,

Relative Position Relative Position

T
im

e

period

second

response time

amplitude
first

response timeamplitudes

stationary orbit

of last agent

position of

the leader

(a) (b)

Fig. 2 Dynamics of locally coupled arrays. Sketch of time-dependent dynamics of locally coupled oscillators
on the line (system SN ) of (a) Type I and (b) Type II (see Section 5 for detailed analysis of these solutions).
x-axis depicts relative position with respect to the leader.
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with φ = 2πm/N . We denote the m-th eigenvalues of L∗x by λx,m and those of L∗v by λv,m. With
a slight abuse of notation we also consider these eigenvalues to be functions λx(φ) and λv(φ) of
φ defined above. By using the m-th eigenvector above to calculate L∗xwm and L∗vwm it is easy to
show that:

Lemma 3.1 The λ’s are given by

λx(φ) = gx

2∑
j=−2

ρx,j e
ıφj = gx

2∑
j=0

[αx,j cos(jφ) + ıβx,j sin(jφ)] ,

λv(φ) = gv

2∑
j=−2

ρv,j e
ıφj = gv

2∑
j=0

[αv,j cos(jφ) + ıβv,j sin(jφ)] .

Here we have used the following convenient notation.

Definition 3.2 Let αx,0 = αv,0 = 1 and βx,0 = βv,0 = 0. For j > 0 we define:

αx,j = ρx,j + ρx,−j , βx,j = ρx,j − ρx,−j ,
αv,j = ρv,j + ρv,−j , βv,j = ρv,j − ρv,−j .

Note that the sum of the α’s equals 0 by Equation (3).

Let us now focus on the eigenvectors and eigenvalues of M∗N associated with wm. Denoting
the eigenvalues by νm,±, we get:(

0 I
L∗x L∗v

)(
wm

νm,± wm

)
= νm,±

(
wm

νm,± wm

)
. (7)

Thus the evolution of an arbitrary initial condition is given by:(
z(t)
ż(t)

)
=
∑
m

ame
νm,−t

(
wm

νm,− wm

)
+
∑
m

bme
νm,+t

(
wm

νm,+ wm

)
, (8)

where the am and bm are determined by the initial condition at t = 0.
Next, let us evaluate the second row of Equation (7) using that wm are eigenvectors of L∗:

Lemma 3.2 The eigenvalues of S∗N are the roots of the characteristic equation

ν2 − λv(φ)ν − λx(φ) = 0 , (9)

where φ = 2πm/N . The eigenvalues of S∗ are a dense subset of the closed curves ν+ : S1 → C
and ν− : S1 → C defined by Equation (9).

Our treatment follows that of [21] where it is conjectured that (for nearest neighbor systems)
a circular system and a system on the line evolve in a similar manner. The result is that we
can analyze the circular system and apply the conclusions to the systems on the line. We briefly
outline how the evolution of the two systems can be compared.

First we need to remind the reader of the two notions of stability that play a crucial role in
our analysis.

Definition 3.3 For given N , the system SN (S∗N ) is asymptotically stable if, given any initial
condition, the trajectories always converge to a coherent motion and the convergence is exponen-
tial in time. For the systems we consider this is equivalent to: MN (M∗N ) has one eigenvalue
zero with multiplicity 2, and all other eigenvalues have real part (strictly) less than 0. SN (S∗N )
is unstable if at least one eigenvalue has positive real part.
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Flock stability was introduced in [22]:

Definition 3.4 The collection S is called flock stable if the SN are asymptotically stable for all
N and if maxt∈R|zN (t)| grows sub–exponentially in N .

Note that asymptotic stability is different from flock stability. The former deals with the growth
of the response of a single system as t tends to infinity while N is held fixed, while the latter
deals with the growth of the response of a sequence of systems as N tends to infinity.

Now we mention the main ideas that allow us to compare the evolution of the two systems.
The first idea is the conjecture that if the system on the circle is asymptotically unstable, then
the system on the line is either asymptotically unstable or flock unstable. Notice that undamped,
symmetric systems are all marginally stable, and this aspect does not enter the traditional dis-
cussion in the physics context. This gives us necessary conditions for stability and flock stability
of the system on the line.

The second idea involved in this analysis is the principle that, if the system on the line is
stable and flock stable, then the evolution away from the boundary of the two systems should be
the same. As we shall see this means that for these systems we obtain wave-like behavior with
signal velocities determined by the eigenvalues of the system on the circle (see Theorem 5.1).
This is similar to what is commonly known in solid state physics as periodic boundary conditions
(see Chapter 21 in [17]), though not exactly the same. The difference is that here we apply
principle in more generality than is usual in physics, because we are considering systems that
are not symmetric and not Hamiltonian.

We know that the reverse of this conjecture is actually false: stability on the circle does not
imply stability on the line. There are systems that are stable if periodic boundary conditions
are imposed, but have some eigenvalues with positive real parts when given non-trivial physical
boundary conditions. In Figure 3 we show a simulation of such a system on the line. The pa-
rameters are given in the Figure. Another example is given in Section 5. It turns out, perhaps
fortunately, that such counter examples are extremely rare.

The third and last idea is that the cumbersome physical boundary conditions may be replaced
by a single “free boundary condition” and a single “fixed boundary condition”. This is a great
simplification, because the set of possible all physical boundary conditions form a 16-parameter
set, with no obvious naturally “preferred” boundary condition. However because of this last
principle, our conclusions will be independent of the physical boundary condition. As before, in
the traditional physics context, this problem play little or no role, because presumably the fixed
mass BC is the only possible BC.

In extending the principle of periodic boundary conditions and adding some new ideas to it,
we need to be aware that new phenomena may appear (see Section 5.2) and indeed its validity
is not guaranteed nor is it implied by the validity of the principle in the restricted (symmetric,
undamped) case (nor indeed by the validity in the general nearest neighbor case). Thus our
conclusions need to be checked numerically (see Section 6).

4 Stability Conditions

We wish to establish conditions that guarantee that the systems SN on the line is both asymptot-
ically stable and flock stable. Since a direct verification is too hard or even impossible to perform,
we use the conjectures stated in Section 3. According to those, necessary conditions include the
stability of the systems S∗, a much simpler problem.
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☎

✆☎☎☎

✝☎☎☎

✞☎☎☎

✟☎☎☎

✠☎☎☎

✡✞✠☎☎✡✞☎☎☎✡✝✠☎☎✡✝☎☎☎✡✆✠☎☎✡✆☎☎☎ ✡✠☎☎ ☎ ✠☎☎ ✆☎☎☎ ✆✠☎☎ ✝☎☎☎

❘❡❧❛t✐☛❡ ♣♦s✐t✐♦♥

❚
☞♠
✌

Fig. 3 Dynamics of unstable system. Dynamics of example system SN as calculated for N = 200, ∆ = 1,
v0 = 1, gx = gv = −2, ρx = (4/27,−289/432, 1,−253/432, 23/216), ρv = (47/216,−29/108, 1,−79/108,−47/216)
and fixed interaction BC. Each color represents the orbit of one of the 200 agents.

Substituting the expressions for the λ’s in Lemma 3.1 into Equation (9), we see that the
eigenvalues of S∗N are the roots of the following equation:

ν2 − ν gv
2∑

j=−2
ρv,j e

ıφj − gx
2∑

j=−2
ρx,j e

ıφj = 0 (10)

Note that when φ = 0, the characteristic equation becomes ν2 = 0. This gives two zero eigen-
values. These trivial eigenvalues are associated with the coherent solutions of the system, zk = 0
[see also Equation (6)].

Lemma 4.1 The following are necessary conditions for S∗N not to have eigenvalues with positive
real part when N is large:

(i) βx,1 + 2βx,2 = 0,
(ii) gv ≤ 0,
(iii) αv,1 ∈ [−4/3, 0],
(iv) gxαx,1 ≥ 0.

Proof: To prove (i) notice that the roots of characteristic Equation (9) are:

ν±(φ) =
1

2

[
λv(φ)±

√
λv(φ)2 + 4λx(φ)

]
. (11)

As φ = 2πm/N becomes very small, the λ’s can be approximated by their first order expansion.
From Definition 3.2 and Lemma 3.1 we obtain:

λx(φ→ 0) ≈ ıgxφ
2∑
j=0

jβx,j , λv(φ→ 0) ≈ ıgvφ
2∑
j=0

jβv,j .
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Substituting these into equation for ν, Equation (11), we see that for small enough φ, the term
±
√

4λx(φ) dominates. Since φ can be either positive or negative, this has four branches meeting
at the origin at angles of π/2. Two of these branches contain eigenvalues with positive real part
(for big enough N). Therefore, for N large enough there is φ such that ν±(φ) have negative real

part unless
∑2
j=0 jβx,j = 0.

For condition (ii) we note that the mean of the two roots of Equation (11) is equal λv/2. It
follows that we must require <[λv(φ)] ≤ 0 for all φ 6= 0. Since the average 1

2π

∫ π
−π <[λv(φ)]dφ is

gv, there is a φ so that <[λv(φ)] ≥ gv. That of course means that gv must be non-positive.
For (iii) note that <[λv(φ)] ≤ 0. Therefore,

∑
αv,j cos jφ ≥ 0. For the NNN system, the

constraints on the α’s now give

1 + αv,1 cos(φ)− (1 + αv,1) cos(2φ) ≥ 0 .

Since cos(2φ) = 2 cos2 φ− 1, the inequality becomes a quadratic inequality in cos(φ):

−(2 + 2αv,1) cos2(φ) + αv,1 cosφ+ 2 + αv,1 ≥ 0 ,

which factors as:

− [(2 + 2αv,1) cos(φ) + 2 + αv,1] (cos(φ)− 1) ≥ 0 .

By working out three cases, αv,1 < −1, αv,1 = −1, and αv,1 > −1, the conclusion of (iii) may
be verified.

Beside φ = 0, one other case of Equation (9) is easy, namely φ = π with the λ’s as defined in
Lemma 3.1

ν2 − νgv
2∑
j=0

(−1)jαv,j − gx
2∑
j=0

(−1)jαx,j = 0 .

The roots have non-positive real part if and only if both coefficients are nonnegative. In particular,
this implies that last term in the above equation is gx

∑2
j=0 (−1)jαx,j ≤ 0. From Definition 3.2

we know that
∑2
j=0 αx,j = 1 +

∑2
j=1 αx,j = 0, and as a consequence gxαx,1 ≥ 0, which is

condition (iv). Similarly, gvαv,1 ≥ 0 but this already follows from conditions (ii) and (iii). ut

Since we are only interested in the parameter values for which the collection S∗ is not unstable,
we use the above Lemma 4.1 and Definition 3.2 to eliminate a few parameters from our equations.
This is done by eliminating βx,2, αx,2, and αv,2 through the substitution:

βx,2 = −1

2
βx,1 , αx,2 = −(1 + αx,1) , αv,2 = −(1 + αv,1) ,

which we will use from now on.

Proposition 4.1 If the collection S∗ is stable, the low-frequency expansion of ν±(φ) is given by

ν±(φ) =
ıφ

2

[
gv(βv,1 + 2βv,2)±

√
g2v(βv,1 + 2βv,2)2 − 2gx(4 + 3αx,1)

]
+
φ2

4

[
gv(4 + 3αv,1)± g2v(βv,1 + 2βv,2)(4 + 3αv,1) + 2gxβx,1√

g2v(βv,1 + 2βv,2)2 − 2gx(4 + 3αx,1)

]
.
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Proof: One can transcribe the first two terms of the corresponding expansion given in [20], or
one can find the result by substituting power series in φ in Equation (10) or Equation (11). ut

This result immediately implies two other necessary criteria for stability. It is unclear whether
together with the earlier criteria from Lemma 4.1 these also constitute a sufficient set of criteria
for the stability of S∗.

Corollary 4.1 The following are necessary conditions for the collection S∗ to not be unstable:

(i) g2v(βv,1 + 2βv,2)2 − 2gx(4 + 3αx,1) ≥ 0,
(ii) g2vgx(4 + 3αv,1)2(4 + 3αx,1) + 2g2vgx(βv,1 + 2βv,2)(4 + 3αv,1)βx,1 + 2g2xβ

2
x,1 ≤ 0.

Proof: If condition (i) does not hold, then one branch of the first order expansion given in
Proposition 4.1 will have positive real part. Since items (ii) and (iii) of Lemma 4.1 imply that
gv(4 + 3αv,1) ≤ 0, condition (ii) follows directly setting the argument of φ2 in Proposition 4.1
less than or equal to zero. ut

Remark 4.1 We summarize the stability criteria for later use. From Lemma 4.1 and Corol-
lary 4.1 we get a list of necessary conditions for system stability. We added condition (vii) which
was derived in Corollary 7.1 using Routh–Hurwitz stability criteria (details are given in Appendix
A).

(i) βx,1 + 2βx,2 = 0,
(ii) gv ≤ 0,
(iii) αv,1 ∈ [−4/3, 0],
(iv) gxαx,1 ≥ 0,
(v) g2v(βv,1 + 2βv,2)2 − 2gx(4 + 3αx,1) ≥ 0,
(vi) g2vgx(4 + 3αv,1)2(4 + 3αx,1) + 2g2vgx(βv,1 + 2βv,2)(4 + 3αv,1)βx,1 + 2g2xβ

2
x,1 ≤ 0,

(vii) 2gx − g2v
∑2
j=−2 ρ

2
v,j ≤ 0

5 Characterization of Solutions

We assume that we start with an initial condition given as Equation (8).

Theorem 5.1 Let K0 > 0 fixed. Suppose the collection S∗ is stable and that the initial condition
is such that there are α ∈ (0, 1) and q > 0 such that Namm

1+q and Nbmm
1+q are bounded, and

(2 − q)α ≤ 1. Then for large N there are functions f+ and f− such that the solutions zj(t) of
S∗N satisfy

lim
N→∞

sup
t∈[0,K0N ]

|zj(t)− v0t− f−(j − c−t)− f+(j − c+t)| = 0 .

The signal velocities c± are given by

c± = −1

2
gv(βv,1 + 2βv,2)± 1

2

√
g2v(βv,1 + 2βv,2)2 − 2gx(4 + 3αx,1) .

Sketch of Proof: If S∗ is stable then Definition 3.3 and Lemma 3.2 imply that the eigenvalues lie
on curves bounded away from the imaginary axes, except near φ = 0 where we have an eigenvalue
0 with multiplicity 2. The low-frequency expansion of ν± (Proposition 4.1 and Corollary 4.1)
implies that in a neighborhood I0 of φ = 0 we can write

ν±(φ) = ıφB±1 + φ2B±2 + · · · ,
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where B±1,B±2 ∈ R and furthermore B±2 < 0. For N large enough, none of the eigenmodes
survive long enough to travel around the system [t of order O(N)], except those with 2πm/N in
the neighborhood I0. For these wave-numbers and time scales we may now neglect dissipation.

We use the initial condition of Equation (8) with bm = 0. Neglecting dissipation, the evolution
of the j-th component can then be written as

zj(t) =
∑
m

am e
iφB−1t eiφj =

∑
m

am e
iφ(j+B−1t) .

If we write this as f+(j − c+t), we see that c+ = −B−1. Similarly by setting am = 0 (instead
of bm = 0) one shows that c− = −B+1. The general case follows by superposition of these two.
This yields the asymptotic form of zN (t).

To actually prove the remainder indeed tends to zero, one needs the assumption on the decay
of the am and bm. This part of the argument is given in [20]. ut

Remark 5.1 The signal velocities c− and c+ are in units of number of agents per unit time
(not in distance per unit time). A positive velocity means going from the leader towards the last
agent.

Theorem 5.1 states that if S∗ is stable, then for large N the systems S∗N will evolve like a
wave equation. From the conjectures discussed earlier we conclude that the solutions of SN - for
large N - will behave the same way, except near boundaries. Near the boundaries we apply the
appropriate boundary conditions ( see below) to get the final solution. This gives linear growth
of the transients, and that cannot be improved upon.

If these conditions are not met, in particular if S∗ is unstable, then the conjectures tell us
that S is either unstable or flock unstable. In the first case the coherent motions are unstable
solutions, and in the second, transients are exponential in N before dying out.

It turns out that there are several types of wave-like solutions. These depend on the signs
of the signal velocities c± given in Theorem 5.1 - see the phase diagram presented in Figure 4.
There are, in principle, three types of wave-like solutions. We study these separately.

In our analysis below we ignore cases when c± = 0 or c+ = c−. These cases are interesting by
themselves, but have properties that make them undesirable for situations like traffic and other
types of flocking. Thus we do not investigate them here. For example when c− = 0, distances
between agents don’t tend to the desired distance ∆, but rather to some value that depends on
the initial conditions. If c+ = c−, which only occurs in Type II solutions, the velocity of the last
agent is unbounded as N tends to infinity.

5.1 Type I: Stable, Flockstable, and c− < 0 < c+

When c− < 0 < c+ the solutions resemble the traditional damped wave reflecting between
the ends of the flock. The difference in the signal velocities causes the wave to be damped (or
magnified) when it reflects in agent N . These solutions are called Type I.

For these solutions, it can be shown that for large N the orbit of the last agent is characterized
by the k-th amplitude Ak, the period T [see Figure 2(a)], and the quotient |Ak+1/Ak| which we
refer to as the attenuation α.
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Fig. 4 Phase diagram of signal velocities. Sketch of three type of solutions. Type I and Type II are stable
with PBC and also on the line. Type III solution is stable only with PBC.

Theorem 5.2 Suppose S satisfies the conditions of Theorem 5.1. If c− < 0 < c+, then for large
enough N and at time scales t = O(N), the system has Type I solutions characterized by:

Ak =
−v0N
c+

(
c−
c+

)k−1
, α =

∣∣∣∣c−c+
∣∣∣∣ , T = 2N

(
1

c+
− 1

c−

)
,

where c± as in Theorem 5.1.

The proof is essentially that of [20,21] and relies on two insights. The first is that the high
frequencies die out fast, so that we only need to consider low frequencies (as in the proof of
Theorem 5.1). The second is that we replace the physical boundary conditions in SN by new
boundary conditions to get the correct reflections at the ends, namely a fixed boundary condition
at the leader’s end and a free boundary condition at the other end:

z0(t) = 0 and zN (t)− zN−1(t) = 0 .

Because for large N only low frequencies survive, these conditions can be replaced by

z0(t) = 0 and
∂

∂k
zk(t)

∣∣
k=N

= 0 . (12)

That means that near the leader, a pulse reflects (with opposite sign), and near the free boundary,
the traveling pulse is reflected with the same sign and with amplitude multiplied by a factor
|c−/c+|. The details are written out in [21].
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In order to get strong damping to minimize transients, we want |c−| < c+. This means
that in the velocity Laplacian, more emphasis should be placed on the upstream (lower labels)
information. Such system have asymmetric interactions.

Corollary 5.1 Suppose S is asymptotically stable and flock stable. SN has solutions of Type I
with |c−| < c+ if:
(i) gv (βv,1 + 2βv,2) < 0 and
(ii)gx (4 + 3αx,1) < 0.

Proof: If S is asymptotically stable and flock stable, then all S∗N are stable (by our conjectures).
The conditions c− < 0 < c+ and |c−| < c+ imply that c− + c+ > 0. This implies (i). Statement
(i) together with c− < 0 implies (ii). ut

In Figure 5 (parameters are given in the figure) we present typical dynamics of Type I stable
system SN . The characteristics predicted from Theorem 5.2 are A1 = 80 , α = 0.4 , T = 560, and
from the simulation we measured A1 = 77.2, α = 0.377, T = 568.◆ ❂ ✷✵✵❀ ✧ ❂ ✶❀ ✈� ❂ ✶❀ ❣① ❂ ✦✷❀ ❣ ✁ ❂ ✦✷

✂① ❂ ✭✦✶✄✷❀ ✶✄✹❀ ✶❀ ✦✸✄✹❀ ✵✮

✂✁ ❂ ✭✦✶❀ ✸✄✹❀ ✶❀ ✦✶❀ ✶✄✹✮

☎

✆☎☎

✝☎☎

✻☎☎

✽☎☎

✞☎☎☎

✟✠☎☎ ✟✆✺☎ ✟✆☎☎ ✟✞✺☎ ✟✞☎☎ ✟✺☎ ☎

❘❡❧❛t✐✡❡ ♣♦s✐t✐♦♥

❚
☛♠
☞

Fig. 5 Dynamics of Type I solution. Dynamics of example system SN as calculated for N = 200, ∆ = 1,
v0 = 1, gx = gv = −2, ρx = (−0.5, 0.25, 1,−0.75, 0), ρv = (−1, 0.75, 1,−1, 0.25) and fixed interaction BC. Each
color represent the orbit of one of the 200 agents.

5.2 Type II: Stable, Flockstable, and 0 < c− < c+

When 0 < c− < c+, that is the signal velocities are both positive, the wave cannot be reflected,
because it cannot move with negative velocity. We denote these solutions as Type II or reflec-
tionless waves. It was proved in [21] that such solutions cannot occur with nearest neighbor
interactions.



16 J. Herbrych et al.

Since both signal velocities are positive, there is no reflection possible at k = N agent. Thus
the boundary condition at k = N is useless, and we need another boundary condition. We replace
Equation (12) by the somewhat counter-intuitive condition:

z0(t) = 0 and z1(t)− z0(t) = 0 .

As before for large N only low frequencies survive, and so these conditions can be replaced by

z0(t) = 0 and
∂

∂k
zk(t)

∣∣
k=0

= 0 . (13)

Thus we have both a free and a fixed boundary condition at the leader’s end. For Type II, the
orbit of the last agent can be characterized by the amplitude A, the first response time T1 and
the second response time T2 [see Figure 2(b)].

Theorem 5.3 Suppose S satisfies the conditions of Theorem 5.1. If 0 < c− < c+, then for large
enough N and at time scales t = O(N), the system has Type II solutions characterized by:

A =
−v0N
c+

, T1 =
N

c+
, T2 =

N

c−
, (14)

where A, T1, and T2 are as above, and c± as in Theorem 5.1.

Proof: T1 and T2 are the (positive) times at which zN (t) − z0(t) changes velocity. These can
be deduced from Proposition 7.1 whose reasoning is different enough from earlier work, that we
include a sketch of the proof. It can be found in Appendix B. A = T1v0 is the distance traveled
by the leader in the time interval [0, T1). ut

Corollary 5.2 Suppose S is asymptotically stable and flock stable. SN has solutions of Type II
(both velocities positive) if:
(i) gv (βv,1 + 2βv,2) < 0 and

(ii) 0 < 2gx (4 + 3αx,1) < g2v (βv,1 + 2βv,2)
2
.

Proof: Similar to the proof of Corollary 5.1. ut

In Figure 6 we present typical dynamics of Type II stable system (parameters given in the figure).
The characteristics predicted from Theorem 5.3 are A = 43.845, T1 = 43.845, T2 = 456.16, and
from the simulation we measured: A = 43.182, T1 = 43.182, T2 = 453.95. From the figure it
seems that a start signal traveling with velocity c+ and a stop signal traveling with velocity c−
travel from the leader towards the last agent. A striking aspect of this type of solution is that
very briefly after the second response time, the trajectory of the last agent is (almost) exactly in
its equilibrium position. Dynamics within such a system can be described as a traveling wave-
package which does not reflect in the boundary of the system.

5.3 Type III: c− < c+ < 0

Finally, when c− < c+ < 0, the perturbation which in our set-up starts at the leader, cannot be
transmitted to the flock, because only negative signal velocities are available. Thus the system
“finds” another non wave-like solution which has very large amplitudes. The only reason for
listing this solution in this work at all, is that the system is stable and does have wave-like
solutions with negative signal velocities. We call these solutions Type III. As with Type II, these
solutions cannot occur with only nearest neighbor interactions.
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Fig. 6 Dynamics of Type II solution. Dynamics of example system SN as calculated for N = 200, ∆ = 1,
v0 = 1, gx = gv = −2, ρx = (1,−2, 1, 0, 0), ρv = (−0.5,−1, 1, 0.5, 0) and fixed interaction BC. Each color represent
the orbit of one of the 200 agents.

Corollary 5.3 Suppose S∗ is asymptotically stable. SN has solutions of Type III (both velocities
negative) if:
(i) gv (βv,1 + 2βv,2) > 0 and

(ii) 0 < 2gx (4 + 3αx,1) < g2v (βv,1 + 2βv,2)
2

Proof: Similar to the proof of Corollary 5.1. ut

Within such a setup, on short time scales, the leader simply starts and other agents do not
follow him. On time scales larger than O(N), other phenomena may take place. Thus amplitudes
will grow faster than O(N), and the system is flock unstable or even asymptotically unstable.
However, due to the complicated nature of the stability conditions, we do not have a proof of
this. In Figure 7 we present a simulation of such a system ( parameters given in the figure).
Notice that the amplitudes do not grow linearly with system size.

6 Numerical Tests

As we saw in Section 5, measured values of certain characteristics presented for N = 200 differ
slightly from the predicted ones, given by Theorem 5.2 and Theorem 5.3. This is expected, since
our predictions are valid for N → ∞. In order to test our conclusions we performed extensive
numerical calculations. We outline our procedure.

First we fixed gx = gv = −2 and defined a set P of about 8.6 ∗ 107 ten-tuples
(gx, gv, ρx,−2, ρx,−1, ρx,1, ρx,2, ρv,−2, ρv,−1, ρv,1, ρv,2) satisfying Equation (3). We call these ten-
tuples configurations. From this set of configurations we then selected the set PC that satisfy
all the criteria in Remark 4.1. For Type I solutions we impose an additional constraint, namely:
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Fig. 7 Dynamics of Type III solution. Dynamics of example system SN as calculated for ∆ = 1, v0 = 1,
gx = gv = −2, ρx = (−2,−15/4, 1,−21/4, 5/2), ρv = (−1, 4, 1,−5, 1), fixed interaction BC N = 50 (left panel)
and N = 100 (right panel). Each color represent the orbit of one of the 50 and 100 agents, respectively.

|c−| < c+ (see Corollary 5.1). Next, from the same ten-tuples of configurations we created the set
PS,N that satisfy Definition 3.3 for given N . It turns out that for N large enough these sets were
identical: PC = PS,N (in our case we had to go up to N = 800 for a few systems). This strongly
suggests that indeed the criteria in Remark 4.1 (plus Corollary 5.1) are very good indicators of
asymptotic stability of the system on the circle.

In order to decrease computation time for large N , we imposed a further constraints on PS,N
that selected 500 configurations of Type I and 500 configurations of Type II. The constraints
were for on the period T for type I and on the second response time T2 for type II:

T . O(10N) for type I
T2 . O(10N) for type II

We ran each of these configurations forN ∈ {25·2n}n=11
n=0 , that is: forN varying from 25 to roughly

52, 000. We measure the characteristics directly from numerical simulations and compare them
with predictions of Theorem 5.2 and Theorem 5.3. For the numerical work we used the ordinary
differential equation solver of the Boost library [26,27] in a parallel computing environment.

In Figure 8 we present the relative error=|measured−predicted|/|predicted| of the following
quantities: for Type I solutions, the first amplitude A1, the period T , and the attenuation α, and
for Type II solutions, the amplitude A and the first and second response times T1 and T2. We
plot both the error average (for 500 measurements/configurations) and the worst (largest) error.
We repeated this experiment for two different types of physical boundary conditions denoted by
fixed interaction and fixed mass to make sure that these did not make a difference.

As is clearly visible in Figure 8, the relative errors decrease as N grows, as is predicted by
the theory. Our numerical analysis is consistent with the statement that - with the exception
of period T for Type I orbit - the error decreases as O(1/

√
N). The error in the period T (for

Type I) appears to decrease as O(1/N).

7 Conclusions

We have investigated the dynamics of linearly coupled oscillators with next nearest neighbor
interaction on the line. To our knowledge, it seems not possible - or at least very hard - to
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Fig. 8 Relative error size scaling. Size N dependence of average and maximal relative error of Type I and
Type II solutions for two different boundary condition as calculated for N = 25, . . . , 51200 agents. Notice that
the plot has log–log scale, therefore slope corresponds to the power of the decay.

characterize the dynamics of this system by analyzing its equations of motion directly. We fol-
low Reference [20,21] and study the leaderless systems S∗ with periodic boundary conditions.
According to the theory developed there, for large N , the stability of this system is a criterion
for the stability and flock stability of the systems on the line. In addition it provides us with the
tools, namely the signal velocity, to quantitatively characterize the transients of the system on
the line (as N tends to infinity).

As in the case of nearest–neighbor systems, symmetric interactions are far from optimal.
Certain asymmetric cases show much better performance. In fact the smallest transients tend to
occur in the newly found Type II solutions. In these wave-like solutions, the agents accelerate
and decelerate only once to synchronize. There are no reflections of these waves. Similar wave-
like behavior without apparent reflection was recently demonstrated experimentally to occur in
flocks of starling birds [13,28]. When the flock turns, the change of the heading of individual
birds propagates through the flock in a wave-like fashion. This appears to happen in the same
manner of our reflectionless waves: the heading of birds accelerates and decelerates only once to
assume its new value. The question arises whether the same mechanism discussed in this paper
that gives rise to reflectionless waves one-dimensional flocks, also operates in course changes of
actual bird flocks. We leave this as a future challenge and motivation for further study.

Acknowledgements We acknowledge support by the European Union’s Seventh Framework Program FP7-
REGPOT-2012-2013-1 under grant agreement no. 316165.
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Appendix A: The Routh-Hurwitz Stability Criteria

The Routh-Hurwitz criterion is a standard strategy to derive a concise set of conditions that
is equivalent to the condition that all roots of a given polynomial have negative real parts. In
various systems similar to the ones discussed here, this criterion gives good results [20,9]. In our
current case the resulting equations are too complicated to give us much information and we
only get one more necessary condition for stability that we can use, namely Corollary 7.1. Our
discussion is based on Chapter 15, Sections 6, 8, and 13 of Ref. [29], where more details can be
found.

Theorem 7.1 (Routh-Hurwitz) Assume that the determinants given below are nonzero. Given
a real polynomial R = x4 + a3x

3 + a2x
2 + a1x+ a0, all roots of R have negative real part if and

only if all determinants of the upper-left submatrices (the leading principal minors) of:

A4 ≡


a3 a1 0 0
1 a2 a0 0
0 a3 a1 0
0 1 a2 a0

 ,

are positive. That is: a3 > 0, a0 > 0, a3a2 − a1 > 0, and a3a2a1 − a23a0 − a21 > 0.

An equivalent but less well–known set of conditions is given in the following:

Theorem 7.2 (Liénard-Chipart) Assume that the determinants in Theorem 7.1 are nonzero.
Given a real polynomial R = x4 + a3x

3 + a2x
2 + a1x+ a0, all roots of R have negative real part

if and only if a3 > 0, a2 > 0, a0 > 0, and a3a2a1 − a23a0 − a21 > 0.

The characteristic polynomial Q of Equation (9) can be turned into a polynomial with real
coefficients

R = QQ∗ ≡ ν4 − 2<(λv)ν
3 +

[
|λv|2 − 2<(λx)

]
ν2

+ 2 [<(λx)<(λv) + =(λx)=(λv)] ν + |λx|2 ,

by taking its product with its complex conjugate. Clearly, all roots of Q have negative real part
if and only if the same is true for R. Notice that in each of the two criteria, one of the equations
is trivially satisfied, namely a0 > 0 (where we are assuming nondegeneracy). Therefore, in the
Routh-Hurwitz case three equations are obtained. The first two are:

<(λv) < 0 , (15)

−<(λv)
[
|λv|2 − 2<(λx)

]
− [<(λx)<(λv) + =(λx)=(λv)] > 0 . (16)

The third inequality we do not utilize, since it is extremely complicated containing fifth order
terms. We are left with the above two, which are now necessary conditions for all roots to have
negative real part.

Similarly, the Liénard-Chipart stability criterion also gives two necessary conditions for all
roots to have negative real part:

<(λv) < 0 , (17)

2<(λx)− |λv|2 < 0 . (18)

The third inequality is the same as before and will not be utilized. Since the second inequality
of the Liénard-Chipart conditions seems less complicated than the corresponding one of the
Routh-Hurwitz conditions, we will continue with the former.
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Substituting the expressions for the λ’s (Lemma 3.1) we get:

gv

2∑
j=0

αv,j cos(jφ) < 0 ,

2gx

2∑
j=0

αx,j cos(jφ)− g2v |
2∑
j=0

ρv,je
ıφj |2 < 0 .

These are complicated relations, and therefore we will use the equivalent relations averaged over
φ. The first of these inequalities was already used in Lemma 4.1. After some calculations we can
work out the average over φ of the second relation. This gives the final necessary condition for
all roots to have negative real part. ut

Corollary 7.1 The following is a necessary condition for the collection S∗ to not be unstable:

2gx − g2v
2∑

j=−2
ρ2v,j ≤ 0 .

Appendix B: Analysis of Type II Trajectories

Proposition 7.1 Let K0 > 0 fixed. Suppose that S∗ is stable and that 0 < c− < c+. Suppose
further that there are α ∈ (0, 1) and q > 0 such that Namm

1+q and Nbmm
1+q are bounded, and

(2− q)α ≤ 1. Then

lim
N→∞

sup
t∈[0,K0N ]

|zN (t)− zN (t)| = 0 .

where zN (t) is given by

zN (t) =


−t if t ∈

[
0, Nc+

]
−N
c+

+ c−
c+−c−

(
t− N

c+

)
if t ∈

(
N
c+
, Nc−

)
0 if t ∈

[
N
c−
,∞
)

The signal velocities are as in Theorem 5.1.

Sketch of Proof: We consider the equations of motion for the acceleration ξk of agent k. These
are given by the second derivative with respect to time of Definition 2.1. In those equations, the
only expression that depends on time is the initial condition of leader. So nothing changes, except
that now ξ0(t) = δ(t) (for > 0), where δ is the Dirac function. We replace the Dirac function by
a smooth pulse p(t) that enables us to satisfy the decay constraint on the decay of am and bm
but with the condition that

∫
p(s) ds = 1. So now we obtain:

ξ0(t) = p(t) (19)

Theorem 5.1 now implies that in S∗ we have

ξk(t) = f+(k − c+t) + f−(k − c−t) (20)
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By the periodic boundary conditions conjectures, we see that away from the boundaries the
behavior of S and S∗ is the same. So we have the above relation from t = 0 until the signal runs
into the boundary at N .

Setting k = 0 in the last equation and comparing with Equation (19) gives

p(t) = f+(−c+t) + f−(−c−t) . (21)

The second part of Equation (13) then gives:

f ′+(−c+t) + f ′−(−c−t) = 0 .

Integrate with respect to t to get

−1

c+
f+(−c+t)−

1

c−
f−(−c−t) = 0 =⇒ f−(s) = −c−

c+
f+

(
c+
c−

s

)
.

Substitute this into Equation (21):

p(t) =
c+ − c−
c+

f+(−c+t) =⇒ f+(s) =
c+

c+ − c−
p

(
s

c+

)
.

Now use both of the last equations to eliminate f− and f+ from Equation (20):

ξk(t) =
c+

c+ − c−
p

(
t− k

c+

)
− c−
c+ − c−

p

(
t− k

c−

)
.

Now set k = N and integrate twice with respect to time and add a Galilean transformation
so that for small positive t we get zN (t) = −t. With some rewriting this gives the final result.
(As before, to actually prove the remainder indeed tends to zero, one needs the assumption on
the decay of the am and bm. This part of the argument is given in [20].) ut
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