Geodesics on Regular Constant Distance Surfaces

J. J. P. Veerman* ${ }^{*}$

September 4, 2023

Abstract

Suppose that the surfaces K_{0} and K_{r} are the boundaries of two convex, complete, connected C^{2} bodies in \mathbb{R}^{3}. Assume further that the (Euclidean) distance between any point x in K_{r} and K_{0} is always $r(r>0)$. For x in K_{r}, let $\Pi(x)$ denote the nearest point to x in K_{0}. We show that the projection Π preserves geodesics in these surfaces if and only if both surfaces are concentric spheres or co-axial round cylinders. This is optimal in the sense that the main step to establish this result is false for $C^{1,1}$ surfaces. Finally, we give a non-trivial example of a geodesic preserving projection of two C^{2} non-constant distance surfaces. The question whether for any C^{2} convex surface S_{0}, there is a surface S whose projection to S_{0} preserves geodesics is open.

2020 Mathematics Subject Classification: 52A15, 53A05.

1 Introduction

Suppose $\gamma(t)$ is a trajectory of an object in \mathbb{R}^{3} outside a convex body. In this paper, $\Pi(\gamma(t))$ is called the projection of $\gamma(t)$. In many applications it is important to track the point $\Pi(\gamma(t))$ on the surface of the body nearest to the moving object ${ }^{1}$. In [10], a method to compute and track the projection was considered. Instead, here we consider the question whether this projection can take geodesics to (reparametrized) geodesics.

Before describing the main result, we give some general background about this problem. A diffeomorphism $\phi: S_{1} \rightarrow S_{2}$ between (sub) manifolds is called a geodesic mapping if it carries geodesics to geodesics. We restrict our discussion to surfaces in \mathbb{R}^{3}. It is well-known that if S_{1} has constant Gaussian curvature, then there is a geodesic mapping from S_{1} to the plane. Vice versa, Beltrami's theorem says that if S_{1} admits a (local) geodesic mapping to the plane near every point in S_{1}, then S_{1} has constant Gaussian curvature ([4], Section 4.6, exercises 12 and 13). There is a fairly

[^0]large body of literature on geodesic mappings, $[7,8]$ and the references therein. Our own interest here is to find out whether projections from one surface to another can be geodesic mappings.

Our main result concerns projections to the convex set from a surface whose distance to the convex set is exactly r (a constant). We call such a surface a surface of constant distance (the word 'equidistant' is already in use for a slightly different concept [11]). Very little has been written about sets of constant distance (but see [3, 2]). What we aim to show here is essentially a rigidity result in \mathbb{R}^{3} : a constant distance surface whose projection takes geodesics to geodesics must be a sphere or a cylinder. We proceed with the details.

We imagine a C^{2} convex body in \mathbb{R}^{3} whose boundary we denote by K_{0}. Let p be any point in the surface. By applying an isometry, we may assume that p is located at the origin of \mathbb{R}^{3} and that the tangent plane to K_{0} at p is given by $z=0$. Thus the coordinate patch near the origin can be written as

$$
\begin{equation*}
K_{0}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2},-\frac{1}{2}\left(a_{1} x_{1}^{2}+a_{2} x_{2}^{2}\right)-h\left(x_{1}, x_{2}\right)\right) \tag{1.1}
\end{equation*}
$$

where the a_{i} are the principal curvatures and h is twice continuously differentiable with $h(0,0)$ is zero and the same holds for all first and second derivatives. By convexity, the principal curvatures a_{i} are non-negative.

Because of the smoothness and the convexity, we can smoothly coordinatize the space Ω surrounding the convex body by using these coordinate patches as follows [10]:

$$
\begin{equation*}
S\left(x_{1}, x_{2}, r\right)=K_{0}\left(x_{1}, x_{2}\right)+r \hat{n}\left(x_{1}, x_{2}\right) . \tag{1.2}
\end{equation*}
$$

where \hat{n} is the unit normal to K_{0}. These 3-dimensional coordinate patches form a differentiable atlas of Ω. Denote by $\Pi: \Omega \rightarrow K_{0}$ the orthogonal 'projection' from Ω onto K_{0}, defined as follows [10]: $\gamma:=\Pi(z)$ is the unique point on K_{0} nearest to $z \in \Omega$. Clearly, the inverse of Π at a point γ of K_{0} consists of a ray normal to K_{0} at γ.

$$
\Pi^{-1}(\gamma)=\cup_{r>0}\{\gamma+r \hat{n}(\gamma)\}
$$

where \hat{n} is the unit normal at γ pointing outwards.

Figure 1.1: Left, the projection (red) of straight line orthogonal to the axis of symmetry of a solid cylinder. Right, the projection of a line at an arbitrary angle with the axis of symmetry of the cylinder. The former is a geodesic, the latter clearly not.

The simple example of Figure 1.1 shows that the projection of a straight line in \mathbb{R}^{3} does not usually result in a geodesic in K_{0}. The question arises when is it that geodesics do project to geodesics? In this paper, any non-singular reparametrization (i.e. with non-zero, possibly variable, speed) of a unit speed geodesic will also be called a geodesic.

Definition 1.1 i) Given two closed C^{2} surfaces S_{1} and S_{2} in \mathbb{R}^{3}. The projection $\Pi: S_{1} \rightarrow S_{2}$ is defined as follows. For $x \in S_{1}$,

$$
\Pi(x):=\left\{y \in S_{2}: y \text { minimizes the Euclidean distance } d(x, y)\right\} .
$$

ii) Two surfaces are called regular constant distance surfaces if the Euclidean distance from any point x in S_{1} to S_{2} equals r (fixed), and the nearest point on S_{2} is always unique.

It is a curious fact that in general $\Pi: S_{1} \rightarrow S_{2}$ and $\Pi^{\prime}: S_{2} \rightarrow S_{1}$ are not inverses of one another. However, if the S_{i} are at least C^{1} and regular constant distance, then Π and Π^{\prime} are inverses. This is the content of Proposition 2.1. In the remainder of this paper, we deal with this case (except where mentioned otherwise).

Let K_{r} denote the surface that has distance r to K_{0}, or

$$
K_{r}:=\left\{S\left(x_{1}, x_{2}, r\right): r>0 \text { fixed }\right\} .
$$

We are interested in determining when the projection $\Pi: K_{r} \rightarrow K_{0}$ between these surfaces have the property that they send geodesics to (reparametrizations of) geodesics. We call this property preservation of geodesics and Π a geodesic mapping. The proof of the following result takes up most of this paper.

Theorem 1.2 Let K_{0} be C^{2} surface patch given by (1.1) with $a_{1} \geq 0$ and $a_{2} \geq 0$ and fix $r>0$. Then the projection $\Pi: K_{r} \rightarrow K_{0}$ does not preserve geodesics, unless (in that patch) (i) the Gaussian curvature is zero (i.e. $a_{1} a_{2}=0$) or (ii) the patch consists of umbilic points (i.e. $a_{1}=a_{2}$)

A moment's reflection, will tell us that in \mathbb{R}^{3}, projections between concentric spheres or between co-axial round cylinders do preserve geodesics. The interesting question is, are there any others? Here is a (to the author) surprising corollary of Theorem 1.2.

Corollary 1.3 Let K_{0} and K_{r} be regular constant distance, complete, convex, connected, C^{2} surfaces in \mathbb{R}^{3} at a distance $r>0$. The projection from K_{r} to K_{0} preserves geodesics if and only if both are either spheres or (infinite) round cylinders.

Remark. In this context, a (generalized) cylinder C is a set of points such that for every point $p \in C$ there is a unique line $\ell(p)$ in C and any two such lines are either the same or parallel. A 'perfect' or 'round' cylinder is a cylinder that rotationally symmetric around its axis. In particular, its principal curvatures are constant.

Remark. In view of Proposition 2.1, $\Pi: K_{r} \rightarrow K_{0}$ and $\Pi^{\prime}: K_{0} \rightarrow K_{r}$ are inverses. So Π preserves geodesics if and only if Π^{\prime} preserves geodesics.

Proof of Corollary 1.3. It is clear that if K_{0} and K_{r} both are either spheres or (infinite) round cylinders, then the geodesics are preserved.

Vice versa, if the projection preserves geodesics, then by Theorem 1.2, every C^{2} surface patch is either a piece of a sphere or piece of a cylinder. The two cannot occur in the same C^{2} patch, because at any 'intermediate' point, (i) or (ii) in that theorem will be violated, and then geodesics will not be preserved. Thus all of K_{0} must satisfy either (i) or (ii).

It is well-known that a C^{2} complete surface whose principal curvatures are the identical (or umbilic surface) must be a part of a sphere ([4], Section 3.2). Similarly ([4], section 5.8), a complete surface with Gaussian curvature zero, must be a generalized cylinder. Finally, Proposition 4.1 implies that if K_{0} and K_{r} are cylinders and the projection preserves geodesics, then they must be round cylinders.

Remark. Interestingly, this corollary is clearly false in \mathbb{R}^{2}. For instance, if K_{0} is an ellipse in \mathbb{R}^{2} and K_{r} a circle that contains it, the projection $K_{r} \rightarrow K_{0}$ is surjective. On the other hand, in dimension 4 or higher, nothing appears to be known.

We furthermore prove that Corollary 1.3 is optimal in the sense that if we drop C^{2} in favor of $C^{1,1}$, that is: once continuously differentiable with a Lipschitz derivatives, then the result does not hold.
Theorem 1.4 There exist regular constant distance, complete, convex, $C^{1,1}$ surfaces K_{0} and K_{r} in \mathbb{R}^{3} with the property that (wherever the surfaces are C^{2}) either (i) $a_{1} a_{2}=0$ or (ii) $a_{1}=a_{2}$ holds, but the projection from K_{0} to K_{r} does not preserve geodesics.
Proof. The result follows directly from Proposition 5.1.
Remark. In [1] (see also [10]), a related, but more complicated, counter-example was constructed which carries over to cylinders in \mathbb{R}^{3}. It says that here is a convex $C^{1,1}$ cylinder such that that the projection Π onto this cylinder does not have a derivative.

Finally, we are interested in the question whether, given the boundary S_{0} of a convex body, there is any surface S outside it, whose projection onto S_{0} preserves geodesics. For cylinders in \mathbb{R}^{3}, the answer is affirmative, as we show in Section 6. In fact, in that case, the space outside S_{0} can be foliated by surfaces $S_{k}, k \geq 0$ so that each projection $\Pi_{k}: S_{k} \rightarrow S_{0}$ preserves geodesics. However, as we will show, these surfaces S_{k} generally are not convex.

Remark. For general C^{2} convex bodies, even in \mathbb{R}^{3}, it is unknown at the time of this writing whether the space outside them can be foliated by surfaces S_{k} so that each projection $\Pi_{k}: S_{k} \rightarrow S_{0}$ preserves geodesics.

2 Preliminaries

We first prove that the projections between two regular constant distant surfaces (see Definition 1.1) are inverses of one another. Then we discuss the strategy to prove Theorem 1.2.

Proposition 2.1 Let S_{1} and S_{2} be C^{1} surfaces in \mathbb{R}^{3} such that the Euclidean distance from any point x in S_{1} to S_{2} equals r (fixed), and the nearest point on S_{2} is always unique. Then the projections
$\Pi: S_{1} \rightarrow S_{2}$ and $\Pi^{\prime}: S_{2} \rightarrow S_{1}$ are inverses of one another.

Figure 2.1: This figure illustrates that $\Pi: S_{1} \rightarrow S_{2}$ and $\Pi^{\prime}: S_{2} \rightarrow S_{1}$ are not generally inverses of one another. Traveling from y along S_{2} in the direction of $c(t)$ will (initially) decrease the distance to x^{\prime}.

Proof. Consider $\Pi: S_{1} \rightarrow S_{2}$ and $\Pi^{\prime}: S_{2} \rightarrow S_{1}$ and suppose $\Pi(x)=y$ (see Figure 2.1). Suppose there is x^{\prime} in S_{2} not equal to x such that $x^{\prime} \in \Pi^{\prime}(y)$. Denote the Euclidean distance by $d(x, y)$. Now

$$
\begin{aligned}
x^{\prime} \in \Pi^{\prime}(y) & \Longrightarrow \quad d\left(y, x^{\prime}\right) \leq d(y, x)=r \\
d\left(x^{\prime}, S_{2}\right)=r & \Longrightarrow \quad d\left(x^{\prime}, y\right) \geq r
\end{aligned}
$$

So $d\left(y, x^{\prime}\right)=r$.
Consider the plane P through x, x^{\prime}, and y, and parametrize S_{2} by the arclength t and let the geodesic $c(t)$ be the tangent to $S_{2}(t)$ as drawn in Figure 2.1. Then, by differentiability of S_{2},

$$
\lim _{t \searrow 0^{+}} \frac{d\left(S_{2}(t), x^{\prime}\right)-d\left(S_{2}(0), x^{\prime}\right)}{t}=\lim _{t \searrow 0^{+}} \frac{d\left(c(t), x^{\prime}\right)-d\left(c(0), x^{\prime}\right)}{t}=-\cos \phi
$$

The last equality is a special case ${ }^{2}$ of Theorem 4.3 in [5]. Thus for some positive $t, d\left(S_{2}(t), x^{\prime}\right)<r$, contradicting the assumption that $d\left(x^{\prime}, S_{2}\right)=r$.

To prove Theorem 1.2, we pick a family Γ of geodesics in the patch given by (1.1) as follows. A geodesic $\gamma(t)$ in Γ is determined by initial condition $\gamma(0)=\left(0, x_{2}(0), x_{3}(0)\right)$, where $x_{2}(0)$ is not zero but small and $\dot{x}_{1}(0)>0$ is of order unity, while $x_{3}(0)$ is determined by the fact that γ is a curve in the surface K_{0} (see Figure 2.2).

Since we are interested not in geodesics per se, but in geodesics modulo (non-singular) reparametrization, we establish a simple characterization of geodesics in Γ that does not depend on the parametrization (Lemma 3.1). We then consider the projection $\Pi: K_{0} \rightarrow K_{r}$, with $r>0$, which maps γ to a curve γ_{r} in K_{r}. And finally, we prove that γ_{r} is not a (reparametrization of a) geodesic by showing that it fails the criterion just mentioned. To do this, we will need to determine the terms of the leading order of magnitude in a fairly involved expression. We will employ the standard 'big-oh'

[^1]

Figure 2.2: A view of a geodesic γ in K_{0} from 'above' (i.e. $x_{3}>0$). At $t=0, \gamma$ passes through the point $\left(0, x_{2}(0)\right)$ with velocity $\left(\dot{x}_{1}(0), 0\right)$.
and 'small-oh' notation as follows. We consider curves such as the ones in Figure 2.2, and evaluate certain quantities as these curves cross the $x_{1}=0$ axis. Thus ${ }^{3}$ using x as shorthand for $\left(x_{1}, x_{2}\right)$:

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =O k \text { means } \limsup _{|x| \rightarrow 0} \frac{|f(x)|}{|x|^{k}}<\infty \\
\text { and } \quad f\left(x_{1}, x_{2}\right) & =\text { ok means } \lim _{|x| \rightarrow 0} \frac{|f(x)|}{|x|^{k}}=0
\end{aligned}
$$

It will be convenient to have a more compact notation. Hence the following definition.
Definition 2.2 We define $z_{i}:=a_{i} x_{i}+\partial_{i} h(x)$, where $x(t)=\left(x_{1}(t), x_{2}(t)\right)$ is the projection to the $x_{1}-x_{2}$ plane of the geodesic $\gamma(t)$ in Figure 2.2.

We compute the leading orders at $t=0$ of z_{i}, \dot{z}_{i}, and \ddot{z}_{i}.

$$
\dot{z}_{i}=a_{i} \dot{x}_{i}+d_{t} \partial_{i} h \quad \text { and } \quad \ddot{z}_{i}=a_{i} \ddot{x}_{i}+d_{t}^{2} \partial_{i} h .
$$

We know that $h=o 2$ and so $\partial_{i} h=o 1$. Furthermore, at $t=0, x_{1}=0$, and $x_{2}=O 1$. Thus

$$
\begin{equation*}
z_{1}=\partial_{1} h \quad \text { and } \quad z_{2}=a_{2} x_{2}+o 1 \tag{2.1}
\end{equation*}
$$

Each of these is $O 1$ or less. Now,

$$
d_{t} \partial_{i} h=\partial_{1} \partial_{i} h \dot{x}_{1}+\partial_{2} \partial_{i} h \dot{x}_{2} .
$$

Along the geodesic in the patch, \dot{x}_{1} is order unity (or $O 1$), and even though \dot{x}_{2} may be small, we see that $d_{t} \partial_{2} h=o 0$. In fact, we are only interested in evaluating these quantities at $t=0$ at which point we have $\dot{x}_{2}=\ddot{x}_{2}=0$. Putting this together results at $t=0$ in

$$
\begin{equation*}
\dot{z}_{1}=a_{1} \dot{x}_{i}+o 0 \quad \text { and } \quad \dot{z}_{2}=\partial_{1} \partial_{2} h \dot{x}_{1}, \tag{2.2}
\end{equation*}
$$

and so $\dot{z}_{2}=o 0$. The next derivative, \ddot{z}_{i}, is a little trickier. The reason is that $d_{t}^{2} \partial_{2} h$ cannot be bounded by some order. It may be large, or, depending on h, it may be small. To ensure we have the leading terms of \ddot{z}_{i}, we have to include both terms and the expression does not simplify. Setting $t=0$, we will see that $\ddot{x}_{1}=O 1$ and we know that $\ddot{x}_{1}=0$. So at $t=0$,

$$
\begin{equation*}
\ddot{z}_{1}=a_{1} \ddot{x}_{i}+d_{t}^{2} \partial_{2} h \quad \text { and } \quad \ddot{z}_{2}=\partial_{1} \partial_{2} h \dot{x}_{1} . \tag{2.3}
\end{equation*}
$$

[^2]
3 Proof of Theorem 1.2

To distinguish the standard inner product in \mathbb{R}^{3} from a 2 -tuple, we indicate the former by a dot: $x \cdot y$. Also, to avoid cluttering the formulas with the repetitive occurrence of the argument "(0)", we will not write it, except when its omission might lead to misunderstandings.
Lemma 3.1 Suppose the family of curves $\gamma(t)=\left(x_{1}(t), x_{2}(t),-\frac{1}{2}\left[a_{1} x_{1}(t)^{2}+a_{2} x_{2}(t)^{2}\right]-h\right)$ in K_{0} are (a reparametrization of) geodesics with $x_{1}=0, \dot{x}_{1}>0, x_{2} \neq 0$, and $\dot{x}_{2}=0$. Then at $t=0$

$$
\lim _{x_{2} \rightarrow 0} \frac{\ddot{x}_{2}}{\dot{x}_{1}^{2} x_{2}}=-a_{1} a_{2} .
$$

Furthermore, this characterization is independent of the (smooth) parametrization of γ.

Proof. Set $e_{i}:=\partial_{i} K_{0}$, where K_{0} is given by (1.1). The metric tensor $g_{i j}=e_{i} \cdot e_{j}$ and its inverse are given by (see Definition 2.2)

$$
g=\left(\begin{array}{cc}
1+z_{1}^{2} & z_{1} z_{2} \\
z_{1} z_{2} & 1+z_{2}^{2}
\end{array}\right) \quad \text { and } \quad g^{-1}=\Delta^{-1}\left(\begin{array}{cc}
1+z_{2}^{2} & -z_{1} z_{2} \\
-z_{1} z_{2} & 1+z_{1}^{2}
\end{array}\right)
$$

where Δ is the determinant of g. The coefficients of g^{-1} are denoted by $g^{i j}$. The Christoffel symbols of the second kind are now given by

$$
\Gamma_{i j}^{k}:=\partial_{i} e_{j} \cdot \sum_{n} g^{k n} e_{n}
$$

We have that

$$
\partial_{i} e_{j}=\left(0,0,-\partial_{i} z_{j}\right) .
$$

So we only need the 3 rd component of $\sum_{n} g^{k n} e_{n}$. A straightforward computation gives that these are $-\Delta^{-1} z_{k}$. This yields

$$
\Gamma_{i j}^{k}=\Delta^{-1} z_{k} \partial_{i} z_{j} .
$$

Employing the rules for order calculation, one checks that this gives an $O 1$ term only if $i=j$, namely $a_{i} x_{i}$. Everything else gives at best $o 1$ terms. So $\Gamma_{i i}^{k}=a_{k} a_{i} x_{k}+o 1$, and $\Gamma_{i j}^{k}=o 1$ if $i \neq j$. The geodesic equations are

$$
\ddot{x}_{k}+\sum_{i, j} \Gamma_{i j}^{k} \dot{x}_{i} \dot{x}_{j}=0 .
$$

So in our case, the equation for \ddot{x}_{2} is

$$
\ddot{x}_{2}+\left(a_{1} a_{2} x_{2}+o 1\right) \dot{x}_{1}^{2}+(o 1) \dot{x}_{1} \dot{x}_{2}+\left(a_{2}^{2} x_{2}+o 1\right) \dot{x}_{2}^{2}=0 .
$$

Setting $\dot{x}_{2}=0$, proves the first part of the lemma.
To prove that this is invariant under the parametrization $t \rightarrow s(t)$, define $c(t)=\gamma \circ s$. Set $s(0)=0$. Using $\dot{x}_{2}(0)=0$ again, it is trivial to show that at $t=0$

$$
\frac{d_{t}^{2}\left(x_{2}(s)\right)}{\left(d_{t} x(s)\right)^{2} x_{2}(s)}=\frac{\ddot{x}_{2}}{\dot{x}_{1}^{2} x_{2}},
$$

where we use d_{t} for $\frac{d}{d t}$.

Lemma 3.2 Given the surface K_{0} of (1.1), then the constant distance surface K_{r} can be parametrized as follows

$$
K_{r}\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{2}, r-\frac{1}{2}\left(a_{1 r} u_{1}^{2}+a_{2 r} u_{2}^{2}\right)+o 2\right)
$$

where

$$
a_{i r}=\frac{a_{i}}{1+r a_{i}} .
$$

Figure 3.1: The radius of curvature in the x-direction of K_{0} at the origin equals $1 / a$. The orthogonal projection to K_{r} then gives a radius of curvature of $r+1 / a$. The principal curvature is the reciprocal of this.
Proof. Fix $r>0$. The inverse projection $\Pi_{r}^{-1}: K_{0} \rightarrow K_{r}$ is well-defined, and given by

$$
\begin{equation*}
K_{r}\left(x_{1}, x_{2}\right):=\Pi_{r}^{-1}\left(K_{0}\left(x_{1}, x_{2}\right)\right)=K_{0}\left(x_{1}, x_{2}\right)+r \hat{n}\left(x_{1}, x_{2}\right) . \tag{3.1}
\end{equation*}
$$

We'll call K_{0}, somewhat informally, the 'downstairs' surface and K_{r} is 'upstairs'. We compute, using Definition 2.2

$$
\begin{equation*}
\hat{n}\left(x_{1}, x_{2}\right)=\frac{\left(z_{1}, z_{2}, 1\right)}{\sqrt{1+z_{1}^{2}+z_{2}^{2}}} \tag{3.2}
\end{equation*}
$$

So

$$
\begin{aligned}
K_{r}\left(x_{1}, x_{2}\right) & =\left(x_{1}+\frac{r z_{1}}{V}, x_{2}+\frac{r z_{2}}{V},-\frac{1}{2}\left(a_{1} x^{2}+a_{1} x_{2}^{2}\right)-h\left(x_{1}, x_{2}\right)+\frac{r}{V}\right) \\
\text { where } V & =\sqrt{1+z_{1}^{2}+z_{2}^{2}}
\end{aligned}
$$

There are no mixed quadratic terms of the form $x_{1} x_{2}$ in the expansion of $K_{r}\left(x_{1}, x_{2}\right)$. So if we rewrite this as $K_{r}\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{2}, r+u_{3}\left(u_{1}, u_{2}\right)\right)$, then the $u_{1^{-}}$and u_{2}-axes of K_{r} are the axes of principal curvature at $\left(u_{1}, u_{2}\right)=(0,0)$. All we need to do to complete the proof, is a computation of the curvature in the $x_{1}-r$ plane to get $a_{1 r}$. This is done in Figure 3.1 by employing osculating circles. The computation is the same in the $x_{2}-r$ plane.

Part of the difficulty here is that it is pretty clear that if K_{0} does not have constant curvature along a geodesic $\gamma(t)$, then the curve traced in K_{r} by projecting γ will certainly not be a constant
speed curve, let alone a constant speed geodesic. It is thus a priori clear that the projected curve will not satisfy the geodesic equations. What we wish to establish, however, is whether it can be reparametrized as a geodesic. We use Lemma 3.1 that the images $\gamma_{r}(r>0)$ under the projection are not geodesics.

Lemma 3.3 The geodesic γ depicted in Figure 2.2 with $\gamma(0)=\left(0, x_{2}\right)$ and $\dot{\gamma}(0)=\left(\dot{x}_{1}, 0\right)$ projects to a curve

$$
\gamma_{r}(t)=\left(u_{1}(t), u_{2}(t), u_{3}(t)\right)
$$

in $K_{r}(r>0)$, where at $t=0$, we have

$$
\begin{aligned}
& \dot{u}_{1}=\left(1+r a_{1}\right) \dot{x}_{1}+o 0 \\
& u_{2}=\left(1+r a_{2}\right) x_{2}+o 1 \\
& \ddot{u}_{2}=-\left(1+r a_{1}+r a_{2}\right) a_{1} a_{2} \dot{x}_{1}^{2} x_{2}+r d_{t}^{2} \partial_{2} h+o 1 .
\end{aligned}
$$

Proof. We trace a possibly reparametrized geodesic $\gamma(t)$ in K_{0} satisfying Lemma 3.1, and determine the curvature of its projection γ_{r} 'upstairs' in K_{r}. Note that $\gamma_{r}(t)$ is given by $\gamma(t)+r \hat{n}\left(x_{1}(t), x_{2}(t)\right)$. The unit-normal \hat{n} is given in (3.2). We use the rules of evaluating the orders given in Section 2.

The x_{1} and x_{2} coordinates of γ_{r} will be called u_{1} and u_{2} and, noting that $z_{i}=O 1$ (Section 2), we get

$$
\begin{aligned}
& u_{1}=x_{1}+r z_{1}\left(1-\frac{1}{2} z_{1}^{2}-\frac{1}{2} z_{2}^{2}+O 4\right) \\
& u_{2}=x_{2}+r z_{2}\left(1-\frac{1}{2} z_{1}^{2}-\frac{1}{2} z_{2}^{2}+O 4\right) .
\end{aligned}
$$

Referring to (2.1), this gives for u_{2} the following:

$$
\begin{equation*}
u_{2}=\left(1+r a_{2}\right) x_{2}+o 1 . \tag{3.3}
\end{equation*}
$$

Now, differentiate the u_{i} with respect to time.

$$
\begin{aligned}
& \dot{u}_{1}=\dot{x}_{1}+r \dot{z}_{1}-r \dot{z}_{1}\left(\frac{1}{2} z_{1}^{2}+\frac{1}{2} z_{2}^{2}+O 4\right)-r \dot{z}_{1}\left(z_{1} \dot{z}_{1}+z_{2} \dot{z}_{2}+O 3\right) \\
& \dot{u}_{2}=\dot{x}_{2}+r \dot{z}_{2}-r \dot{z}_{2}\left(\frac{1}{2} z_{1}^{2}+\frac{1}{2} z_{2}^{2}+O 4\right)-r \dot{z}_{2}\left(z_{1} \dot{z}_{1}+z_{2} \dot{z}_{2}+O 3\right) .
\end{aligned}
$$

Use (2.2), to see that the leading term appearing in \dot{u}_{1} is \dot{x}_{1} (which is $O 0$), and thus

$$
\begin{equation*}
\dot{u}_{1}=\left(1+r a_{1}\right) \dot{x}_{1}+o 0 . \tag{3.4}
\end{equation*}
$$

We need to differentiate \dot{u}_{2} one more time with respect to time.

$$
\ddot{u}_{2}=\underbrace{\ddot{x}_{2}+\ddot{z}_{2}}_{A}-\underbrace{r \ddot{z}_{2} O 2}_{B}-\underbrace{2 r \dot{z}_{2}\left(z_{1} \dot{z}_{1}+z_{2} \dot{z}_{2}+O 3\right)}_{C}-\underbrace{r z_{2}\left(\dot{z}_{1}^{2}+z_{1} \ddot{z}_{1}+\dot{z}_{2}^{2}+z_{2} \ddot{z}_{2}+O 2\right)}_{D} .
$$

To analyze this, we denote the four terms A through D, and look at each individually. In A, \ddot{z}_{2} can be evaluated via (2.3) and \ddot{x}_{2} can be eliminated via Lemma 3.1. This gives $-\left(1+r a_{2}\right) a_{1} a_{2} \dot{x}_{1}^{2} x_{2}+r d_{t}^{2} \partial_{2} h$ for the term marked A. Clearly, B is negligible compared to A. In C, $\dot{z}_{2}=o 0$ as noted before, and the term in parentheses is $O 1$. So all together this term is $o 1$ and therefore negligible compared to A.

Finally, in C, we use (2.1) to establish that $-r \dot{z}_{1}^{2} z_{2}$ is $O 1$ and, by (2.1), all other terms are smaller. This last expression can be simplified using (2.1) and (2.2) to $-r a_{1}^{2} a_{2} \dot{x}_{1}^{2} x_{2}+o 1$. Collecting terms and adding the relations (3.3) and (3.4) yields the lemma.
Proof of Theorem 1.2. On the one hand, if the projected curve γ_{r} is also a geodesic, then it itself must satisfy Lemma 3.1 with the curvatures given by Lemma 3.2. So

$$
\ddot{u}_{2}=-\frac{a_{1} a_{2}}{\left(1+r a_{1}\right)\left(1+r a_{2}\right)} \dot{u}_{1}^{2} u_{2} .
$$

Eliminating \dot{u}_{1} and u_{2} in favor of \dot{x}_{1} and x_{2} via Lemma 3.3 gives

$$
\ddot{u}_{2}=-\left(1+r a_{1}\right) a_{1} a_{2} \dot{x}_{1}^{2} x_{2}+o 1 .
$$

On the other hand, another equation for \ddot{u}_{2} is given by Lemma 3.3. If we equate the two expressions, we obtain

$$
-\left(1+r a_{1}\right) a_{1} a_{2} \dot{x}_{1}^{2} x_{2}+o 1=-\left(1+r a_{1}+r a_{2}\right) a_{1} a_{2} \dot{x}_{1}^{2} x_{2}+r d_{t}^{2} \partial_{2} h+o 1
$$

Upon simplification, this gives

$$
\begin{equation*}
-r a_{1} a_{2}^{2} \dot{x}_{1}^{2} x_{2}+r d_{t}^{2} \partial_{2} h=o 1 . \tag{3.5}
\end{equation*}
$$

This equation has two possible solutions. The first is if the left hand is o1 and so $a_{1} a_{2}=0$ and $d_{t}^{2} \partial_{2} h$ is $o 1$. From the rules about manipulating the order symbols in Section 2, it follows that then $h=o 4$. The other possibility is if $a_{1} a_{2}>0$ and so $d_{t}^{2} \partial_{2} h=a_{1} a_{2}^{2} \dot{x}_{1}^{2} x_{2}+o 1$. This happens if and only if $h=\frac{1}{4} a_{1} a_{2}^{2} x_{1}^{2} x_{2}^{2}+g$ and $d_{t}^{2} \partial_{2} g=o 1$. So $h=\frac{1}{4} a_{1} a_{2}^{2} x_{1}^{2} x_{2}^{2}+o 4$.

Now consider the geodesic η which is just γ rotated by $\pi / 2$. Then, by the same reasoning, if the projection η_{r} in K_{r} is a geodesic, we must have that $h=\frac{1}{4} a_{1}^{2} a_{2} x_{1}^{2} x_{2}^{2}+o 4$. Since both ${ }^{4}$ must hold, we get $\frac{1}{4} a_{1} a_{2}^{2} x_{1}^{2} x_{2}^{2}=\frac{1}{4} a_{1}^{2} a_{2} x_{1}^{2} x_{2}^{2}$ or $a_{1}=a_{2}$.

Remark. The two types of solutions of (3.5) in this proof do indeed occur. For if K_{0} is a plane or a cylinder with radius $1 / a$, we get

$$
K\left(x_{1}, x_{2}\right)=\sqrt{a^{-2}-x_{1}^{2}}-a^{-1}=-\frac{1}{2} a x_{1}^{2}-\frac{1}{8} a^{3} x_{1}^{4}+O 6 .
$$

In this case, the Gaussian curvature is zero and $h=o 4$. On the other hand, for a sphere of radius $1 / a$, we have

$$
K\left(x_{1}, x_{2}\right)=\sqrt{a^{-2}-x_{1}^{2}-x_{2}^{2}}-a^{-1}=-\frac{1}{2}\left(a x_{1}^{2}+a x_{2}^{2}\right)-\frac{1}{8}\left(a^{3} x_{1}^{4}+2 a^{3} x_{1}^{2} x_{2}^{2}+a^{3} x_{2}^{4}\right)+O 6 .
$$

Here, the principal curvatures are equal and $d_{t}^{2} \partial_{2} h=a^{3} \dot{x}_{1}^{2} x_{2}+o 1$.

4 Cylinders Must Be Round

Now let K_{0} be a convex, but not necessarily round, cylinder, invariant under translations along the x_{3}-axis. Consider "polar" coordinates $\left(\rho, x_{3}, r\right)$ in \mathbb{R}^{3} where ρ is the arclength along the simple, closed curve in the $x_{1}-x_{2}$ plane that defines K_{0} as illustrated in Figure 4.1.
Proposition 4.1 With the above assumptions, the projection $\Pi: K_{0} \rightarrow K_{r}$ preserves geodesics if and only if the non-zero principal curvature of K_{0} is constant.

[^3]

Figure 4.1: "Polar" coordinates in \mathbb{R}^{3}.

Proof. Since the Gaussian curvature is zero, the map from the cylinder to the plane, given by $K_{0}\left(\rho, x_{3}\right) \rightarrow\left(\rho, x_{3}\right)$ is a bijective isometry and so maps geodesics to geodesics. A geodesic γ in K_{0} is (a) parallel to the x_{3}-axis, or (b) a circle in the $x_{1}-x_{2}$ plane, or (c) a curve $\gamma\left(x_{3}\right)=\left(\rho\left(x_{3}\right), x_{3}\right)$. Since γ is a geodesic, $\rho\left(x_{3}\right)$ is affine and has a constant derivative $\frac{d \rho}{d x_{3}}$. Assume γ is a geodesic of type (c).

Now consider the projection γ_{r} of γ onto K_{r}. As with K_{0}, we parametrize K_{r} by the arclength ρ_{r} of the defining curve and x_{3}. It is clear that γ_{r} is a curve $x_{3} \rightarrow \rho_{r}\left(x_{3}\right)$. Again, if γ_{r} is a geodesic, then $\frac{d \rho_{r}}{d x_{3}}$ is constant. Denote the non-zero principal curvature of K_{0} by $a(\rho)$. A reasoning similar to that of Lemma 3.2 gives that arclengths ρ_{r} and ρ travelled along each geodesic relate as

$$
d \rho_{r}=\frac{1 / a(\rho)+r}{1 / a(\rho)} d \rho=(1+a(\rho) r) d \rho .
$$

Since the x_{3} coordinates of $\gamma(t)$ and and its projection $\gamma_{r}(t)$ are the same, we get

$$
\begin{equation*}
\frac{d \rho_{r}}{d x_{3}}=(1+a(\rho) r) \frac{d \rho}{d x_{3}} \tag{4.1}
\end{equation*}
$$

Thus $\frac{d \rho_{r}}{d x_{3}}$ is constant if and only if $a(\rho)$ is constant.

5 A $C^{1,1}$ Counter-example

We consider the round cylinder 'topped off' by a hemisphere both of radius r, which gives a $C^{1,1}$ surface (see Figure 5.1). Denote this surface by S_{r}. It is easy to convince oneself that S_{1} and $S_{r}(r>1)$ are regular, constant distance surfaces. Clearly, at every point (except where C^{2} does not hold) either (i) $a_{1} a_{2}=0$ or (ii) $a_{1}=a_{2}$.

Proposition 5.1 Let S_{1}, S_{r}, and $\Pi: S_{1} \rightarrow S_{r}$ be given as above. Let γ_{1} be the shortest geodesic connecting $P_{1}=(0,1, \pi / 2)$ and $Q_{1}=(0,-1 / \sqrt{2},-1 / \sqrt{2})$. The projection of γ_{1} by Π to γ_{r} (connecting P_{r} to Q_{r} in $\left.S_{r}(r>1)\right)$ is not a local geodesic near the point M_{r} where γ_{r} intersects the boundary of the cylinder (see Figure5.1).

Figure 5.1: A straight cylinder of radius r topped off by a hemisphere of radius r. This surface is C^{2}, except on the circle where the cylinder and the hemisphere meet. Here $\partial^{2} / \partial z^{2}$ has a discontinuity. Since the first derivative changes gradually, this surface is $C^{1,1}$.

Proof. The geodesic γ connects P_{1} to Q_{1}, but we do not know where it crosses over from the cylinder to sphere. So let us call that point $M_{1}(\theta)$. We have

$$
P_{1}=(0,1, \pi / 2), \quad M_{1}(\theta)=(\sin \theta, \cos \theta, 0), \quad Q_{1}=\left(0, \frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right) .
$$

It is easy to see that then the projection γ_{r} of γ connects P_{r} to Q_{r} via $M_{r}(\theta)$ (the same θ), where

$$
\begin{equation*}
P_{r}=(0, r, \pi / 2), \quad M_{r}(\theta)=(r \sin \theta, r \cos \theta, 0), \quad Q_{r}=\left(0, \frac{-r}{\sqrt{2}}, \frac{-r}{\sqrt{2}}\right) . \tag{5.1}
\end{equation*}
$$

The projection of γ_{r} consists of two pieces that live on C^{2} surfaces with either curvature zero (the cylinder) or the sphere, and so each of these two pieces is a geodesic in S_{r}.

Figure 5.2: The two geodesic pieces of γ_{r} in S_{r}. To the left, the piece in the flattened out cylinder. To the right the piece that lies in the hemisphere.

The first piece connects P_{r} to M_{r}, see the left of Figure 5.2. In the flattened out cylinder, it is the hypotenuse of the triangle with sides $\pi / 2$ and $r \theta$ and thus has length $\sqrt{\pi^{2} / 4+r^{2} \theta^{2}}$. The second
piece lives in the sphere. Its length is r times the angle α between M_{r} and Q_{r}. The cosine of α is given by the dot product of the unit vectors parallel to M_{r} and Q_{r}, which gives $-\cos \theta / \sqrt{2}$. Thus the length of the second piece equals $r \arccos \left(\frac{-\cos \theta}{\sqrt{2}}\right)$. Therefore, the length of the projected curve γ_{r} is given by

$$
\ell_{\theta}\left(\gamma_{r}\right)=\sqrt{\frac{\pi^{2}}{4}+r^{2} \theta^{2}}+r \arccos \left(\frac{-\cos \theta}{\sqrt{2}}\right) .
$$

We need to minimize this over $\theta \in[0 . \pi]$. It is an elementary calculus exercise ${ }^{5}$ to see that this is minimized at θ satisfying $\frac{\theta}{\sin \theta}=\frac{\pi / 2}{r}$. We know that γ is minimizing in S_{1}. Therefore if we substitute $r=1$, we get $\theta=\pi / 2$. That same calculation for $r>1$ implies then that γ_{r} (where $r>1$) is not globally minimizing in S_{r}.

Figure 5.3: The tangent space $T S_{r}$ at M_{r}. The red curve corresponds to the lift of γ_{r}. The branch to the left of the base point M_{r} travels to Q_{r} and the branch to the right travels P_{r} (see (5.1)).

Figure 5.3 is a slightly impressionistic image of the tangent space $T S_{r}$ at M_{r}. The slope of γ_{r} restricted to the lower half plane that projects to the hemisphere equals 1 . However the slope restricted the upper half plane which can be identified with the rolled out cylinder, the slope equals $1 / r$. Thus γ_{r} is not locally minimizing at M_{r}.

6 There are Other Projections that Preserve Geodesics

In this Section, we find a beautiful example of a family of projections $\Pi_{k}: S_{k} \rightarrow S_{0}$ such that the surfaces $\left\{S_{k}\right\}_{k \geq 0}$ foliate the space surrounding the boundary S_{0} of a convex body in \mathbb{R}^{3}. It is not known whether this is possible for all such surfaces S_{0}. Our construction is based on Section 4 and works for (convex) cylinders.

Consider a general, not necessarily round, convex, cylinder S_{0}. It consists of parametrized closed curve $c(t)$ and lines though that curve, orthogonal to it, as sketched in Figure 4.1. We can define a S outside S_{0} by first defining a new curve in \mathbb{R}^{2} :

$$
C(t)=c(t)+r(t) \hat{n}(t) .
$$

[^4]Here $\hat{n}(t)$ is the unit normal to $c(t)$ and $r(t)$ is a non-negative distance. Let us denote the curvature of $c(t)$ by $a(t)$. According to (4.1), the projection $\Pi: S \rightarrow S_{0}$ between the corresponding cylinders preserves geodesics if

$$
r(t)=\frac{k}{a(t)}
$$

where k is a positive constant. The cylinder $S_{k}, k \geq 0$ is given by the lines through C_{k} orthogonal to plane of C_{k}. Thus the projection $\Pi_{k}: S_{k} \rightarrow S_{0}$ preserves geodesics. Notice that we have to be careful here, because now the back and forth projections are not inverses of one another anymore (see Proposition 2.1).

Figure 6.1: the cylinders orthogonal to the plane of the figure through the blue and the green curves, have projections to the cylinder orthogonal to the red ellipse that preserve geodesics.

We take as an example the ellipse given by

$$
c(t):=(\alpha \cos (t), \beta \sin (t)) \quad \text { and } \quad C_{k}(t)=c(t)+\frac{k}{a(t)} \hat{n}(t)
$$

where k is a non-negative constant. Standard calculations give $C(t)$ explicitly as

$$
C_{k}(t)=\left(\left(\alpha+\frac{k}{\alpha}\left(\alpha^{2} \sin (t)^{2}+\beta^{2} \cos (t)^{2}\right)\right) \cos (t),\left(\beta+\frac{k}{\beta}\left(\alpha^{2} \sin (t)^{2}+\beta^{2} \cos (t)^{2}\right)\right) \sin (t)\right) .
$$

We used MAPLE in Figure 6.1, to draw the ellipse $c(t)=(\cos (t), 3 \sin (t))$ in red, $C_{k}(t)$ for $k=0.5$ in green, and for $k=1.5$ in blue. Note that these remarkable curves lose convexity for large enough k. We leave it to the reader to establish that for large k, the projection $\Pi_{k}^{\prime}: S_{0} \rightarrow S_{k}$ is not single-valued and therefore does not preserve geodesics.

References

[1] S. S. Akmal, M. N. Nam, J. J. P. Veerman, On a Convex Set with Nondifferentiable Metric Projection, Optimization Letters, Vol 9, Issue 6, 1039-1052, 2015.
[2] A. Blokh, M. Misiurewicz, L. Oversteegen, Sets of Constant Distance from a Compact Set in 2-Manifolds with a Geodesic Metric, Proceedings of the American Mathematical Society, 137, 733-743, 2009.
[3] M. Brown, Sets of Constant Distance from a Planar Set, Michigan Math. J. 19, 321-323, 1972.
[4] M. P. do Carmo (1976), Differentiable Geometry of Curves and Surfaces, Prentice-Hall, London.
[5] L. S. Fox, P. Oberly, J. J. P. Veerman, One-Sided Derivative of Distance to a Compact Set, Rocky Mountain Journal of Mathematics 51 (2), 491-508, 2021.
[6] P. Michel, The ESA Hera Mission: Detailed Characterization of the DART Impact Outcome and of the Binary Asteroid (65803) Didymos, The Planetary Science Journal, 3: 160, 2022 (July).
[7] J. Mikes, Geodesic Mappings of Affine-Connected and Riemannian Spaces, J. Math. Sciences, 78 (3), 1996, 311-333.
[8] J. Mikes, V. E. Berezovski, E. Stepanova, and H. Chudá, Geodesic Mappings and their Generalizations, J. Math. Sciences, 217 (5), 2016, 608-623.
[9] S.P. Naidu e. a., Radar observations and a physical model of binary near-Earth asteroid 65803 Didymos, target of the DART mission, Icarus, 348, 133777, 2020.
[10] J. J. P. Veerman (2020), Navigating Around Convex Sets, The American Mathematical Monthly, 127:6, 504-517,
[11] J. B. Wilker, Equidistant Sets and their Properties, Proceedings of the American Mathematical Society, 47 (2): 446-452, 1975.

[^0]: *Weizmann Institute, Rehovot, Israel.
 ${ }^{\dagger}$ Maseeh Dept. of Math. and Stat., Portland State Univ., Portland, OR, USA; e-mail: veerman@pdx.edu.
 ${ }^{1}$ A case in point is the event on September 26, 2022, when an unmanned spacecraft hit the asteroid Didymos on purpose [9], thereby changing the orbit of the asteroid. Clearly, the change in orbit of the asteroid is related to the locus, angle, and speed of the missile at the time of impact. The asteroid itself is in good approximation a convex set, but far from round [9].

[^1]: ${ }^{2}$ In this simple case, it can also be derived easily from an explicit computation.

[^2]: ${ }^{3}$ Care should be exercised with the " $=$ " sign. It is not reflexive in this context.

[^3]: ${ }^{4}$ Note that the powers of a_{i} are distinct.

[^4]: ${ }^{5}$ Use that the derivative of arcoos q equals $-1 / \sqrt{1-q^{2}}$.

