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SUMMARY:

* This is a review of two basic dynamical processes on a weakly
connected, directed graph G: consensus and diffusion, as well
their discrete time analogues. We will omit proofs in this lec-
ture. A self-contained exposition of this lecture with proofs
included can be found in [1, 2].

* We consider them as dual processes defined on G by:
ẋ = −Lx for consensus and ṗ = −pL for diffusion.

* We give a complete characterization of the asymptotic behav-
ior of both diffusion and consensus — discrete and continuous
— in terms of the null space of the Laplacian (defined below).

* Many of the ideas presented here can be found scattered in
the literature, though mostly outside mainstream mathematics
and not always with complete proofs.

2



OUTLINE:
The headings of this talk are color-coded as follows:

Definitions

Peculiarities of Directed Graphs

Consensus and Diffusion

Left and Right Kernels of L

Asymptotics

Continuous and Discrete Processes
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Definitions: Digraphs

Definition: A directed graph (or digraph) is a set V =
{1, · · ·n} of vertices together with set of ordered pairs E ⊆
V × V (the edges).
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A directed edge j → i, also written as ji.
A directed path from j to i is written as j  i.

Digraphs are everywhere: models of the internet [6], so-
cial networks [7], food webs [10], epidemics [9], chemical reac-
tion networks [13], databases [5], communication networks [4],
and networks of autonomous agents in control theory [8], to
name but a few.

A BIG topic: Much of mathematics can be translated into
graph theory (discretization, triangulation, etc). In addition,
many topics in graph theory that do not translate back to
continuous mathematics.

5



Definitions: Connectedness of digraphs

Undirected graphs are connected or not. But...
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Definition:
* A directed edge from i to j is indicated as i→ j or ij.
* A digraph G is strongly connected if for every ordered
pair of vertices (i, j), there is a path i j.
* A digraph G is unilaterally connected if for every or-
dered pair of vertices (i, j), there is a path i  j or a path
j  i.
* A digraph G is weakly connected if the underlying
UNdirected graph is connected.
* A digraph G is not connected: if it is not weakly con-
nected.

Definition: Multilaterally connected: weakly con-
nected but not unilaterally connected.

Note: Maximal Strongly Connected Component: SC com-
ponent, or SCC.
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Definitions: Graph Structure
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Definition: Only the blue definitions are used downstream.
* Reachable Set R(i) ⊆ V : j ∈ R(i) if i j.
* Reach R ⊆ V : A maximal reachable set. Or: a maximal
unilaterally connected set.
* Exclusive part H ⊆ R: vertices in R that do not “see”
vertices from other reaches. If not in cabal, called minions.
* Common part C ⊆ R: vertices in R that also “see”
vertices from other reaches.
* Cabal B ⊆ H: set of vertices from which the entire reach
R is reachable. If single, called leader.
* Gaggle Z ⊆ R: an SCC with no outgoing edges. If single,
called goose.

Exercise: So gaggles and cabals are SCC’s.

Exercise: If we reverse edge orientation, then gaggles turn
into cabals, and so on. SCC’s remain SCC’s. Reaches are not
preserved.
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Definitions: Reaches
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reach 2

reach 1

cabal 1

cabal 2

exclusive part 1

exclusive part 2

cabal = SCC w. no incoming edges

gaggle = SCC w. no outgoing edges

common part 1 = common part 2 = {6,7}

{2} and {6,7}

{2}  = goose = minion

{1} = leader

Fun exercise: Invert orientation and do the taxonomy again.

Surprising exercise: The number of reaches may change if
orientation is reversed! (Thus the spectrum is not invariant.)
Example: o←− o −→ o
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Definitions: Laplacian

Definition: The combinatorial adjacency matrix Q
of the graph G is defined as:
Qij = 1 if there is an edge ji (if “i sees j”) and 0 otherwise.
If vertex i has no incoming edges, set Qii = 1 (create a loop).

Remark: Instead of creating a loop, sometimes all elements
of the ith row are given the value 1/n. This is called Teleport-
ing! The matrix is denoted by Qt. (n is no. vertices.)

Definition: The in-degree matrix D is a diagonal ma-
trix whose ith diagonal entry equals the number of (directed,
incoming) edges xi, x ∈ V .

Definition: Matrices S ≡ D−1Q and St ≡ D−1Qt are the
normalized adjacency matrices. By construction, they
are row-stochastic (non-negative, every row adds to 1).

Definition: (In-degree) Laplacians describe decentralized
or relative observation. Common cases:
The combinatorial Laplacian: L ≡ D −Q.
The random walk (rw) Laplacian: L ≡ I −D−1Q.
The rw Laplacian with teleporting: L ≡ I −D−1Qt.

Definition: In general, a matrix is called Laplacian if
(a) row-sum zero, (b) diag elmts ≥ 0, and (c) non-diag elmts
≤ 0. Equivalently: L is Laplacian if L = D −DS, where
D non-neg diag and S row-stoch [1].
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Definitions: the “Usual” Laplacian

Crude discretization of 2nd deriv. of function f : IR→ IR:

f ′′(j) ≈ (f (j + 1)− f (j)) − (f (j)− f (j − 1)) or

f ′′(j) ≈ f(j − 1)− 2f(j) + f(j + 1)

Suppose has period n (large). Get (combinatorial) Laplacian

L =


−2 1 0 · · · 1
1 −2 1 · · · 0

...
0 0 1 −2 1
1 0 · · · 1 −2


Graph theorists add a “-” to get eigenvalues ≥ 0.

Random walk Laplacian: Divide by 2 (and multiply by −1).

The corresponding graph G:

n−1 n

1

2

3
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Definitions: rw Laplacian
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Q =



1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 1
0 0 1 0 0 1 0


D = diag



1
1
1
1
1
2
2


So

L ≡ I −D−1Q =



0 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
−1/2 0 0 0 0 1 −1/2

0 0 −1/2 0 0 −1/2 1



Spectrum:

{
0, 0,

1

2
, 1,

3

2
,
3

2
+ i

√
3

2
,
3

2
− i
√

3

2

}
.
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Definitions: Combinatorial Laplacian
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Q =



1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 1
0 0 1 0 0 1 0


D = diag



1
1
1
1
1
2
2


So

L ≡ D −Q =



0 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
−1 0 0 0 0 2 −1
0 0 −1 0 0 −1 2



Spectrum:

{
0, 0, 1, 1, 3,

3

2
+ i

√
3

2
,
3

2
− i
√

3

2

}
.
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Definitions: Generalized Laplacians

L ≡ I −D−1Q =



0 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
−1/2 0 0 0 0 1 −1/2

0 0 −1/2 0 0 −1/2 1


Definition: A generalized Laplacian is a Laplacian plus a
non-negative diagonal matrix D∗. Common cases:
The generalized combinatorial Laplacian:
L∗ ≡ D∗ + D −Q.
The generalized random walk (rw) Laplacian:
L∗ ≡ I − (D + D∗)−1Q.
The generalized rw Laplacian with teleporting:
L∗ ≡ I − (D + D∗)−1Qt.

Observation: The charpoly of the Laplacian of a weakly
connected graph is the product of the charpolys of generalized
Laplacians of its strongly connected components.
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Directed and Undirected

In the math community, directed graphs are still much less
studied than undirected graphs (especially true for the alge-
braic aspects). As a consequence, very few good text books.

What are the reasons for this?

Directed graphs are a lot messier than undirected graphs:
- Combinatorial Laplacians of undirected graphs are sym-
metric. So: real eigenvalues, orthogonal basis of eigenvectors,
no non-trivial Jordan blocks, etc.
- Connectedness of undirected graphs is much simpler.
- No standard convention on how to orient a digraph.

rw Laplacians of undirected graphs are “almost symmet-
ric”, because they are conjugate to symmetric matrices.

Exercise: Show that D−1Q = D−
1
2 ·D−1

2QD−
1
2 ·D 1

2 .

Proposition: G undirected. Then the eigenvectors
of the rw Laplacian form a complete basis, and the
eigenvalues are real.

(Well-known result: mathematicians like ‘clean’, not ‘messy’.)
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SC but Messy Comb Laplacians 1
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Lleft =


1 −1 0 0
−1 2 −1 0
−1 0 2 −1
0 −1 −1 2


with char. polynomial x4 − 7x3 + 16x2 − 11x and
spectrum {0, 1.245, 2.877± 0.745i} (approximately).

Lright =


1 −1 0 0
0 1 −1 0
−1 0 2 −1
0 0 −1 1


with char. polynomial x4 − 5x3 + 8x2 − 4x and
spectrum {0, 1, 2(2)}. The eigenvalue 2 has an associated 2-
dimensional Jordan block.
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SC but Messy RW Laplacians 2
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Lleft =


1 −1 0 0
−1/2 1 −1/2 0
−1/2 0 1 −1/2

0 −1/2 −1/2 1


with char. polynomial x8(8x3 − 32x2 + 42x− 17)x and
spectrum {0, 1.616± 0.396i, 0.77} (approximately).

Lright =


1 −1 0 0
−1/2 1 0 −1/2
−1/2 0 1 −1/2

0 0 −1 1


with char. polynomial x(x− 2)(x− 1)2 and
spectrum {0, 1(2), 2}. The eigenvalue 1 has an associated 2-
dimensional Jordan block.
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SC but Messy Laplacians 3
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L =


2 0 −1 −1 0
−1 2 0 −1 0
0 −1 2 −1 0
0 −1 0 2 −1
0 −1 0 0 1


with char. polynomial x(x2 − 5x + 7)(x− 2)2 and
spectrum {0, 12(5± i

√
3), 2(2)} (cmplx eval plus 2-d J block).

L =


1 0 −1/2 −1/2 0
−1/2 1 0 −1/2 0

0 −1/2 1 −1/2 0
0 −1/2 0 1 −1/2
0 −1 0 0 1


with char. polynomial x

16(7− 10x + 4x2)2 and

spectrum {0, 14(5± i
√

3)(2)} (a 4-d complex Jordan block).
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SC but Messy Laplacians 4
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L =


2 −1 −1 0 0
0 2 0 −1 −1
0 −1 2 0 −1
−1 0 0 2 −1
−1 −1 0 0 2


with char. polynomial x(x2 − 5x + 7)2 and spectrum
{0, 52 ±

i
2

√
3)(2)} (a 4-d complex Jordan block). Jordan evals

are 2+cube roots of -1.
This is an example of minimal dimension (must have eval 0).
The associated graph is strongly connected.
The adjacency matrix is primitive (∃ 3-cycle and 4-cycle).
The following also have a 4-d complex Jordan block

A = 2I − L and L =
1

2
L

(I am indebted to Ewan Kummel for providing this example.)
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Which Direction??

In this review, we are interested in information flow, as opposed
to a physical flow (oil, traffic, for example). We propose a new
convention:
The direction of the edges should be the same as
the direction of the flow of the information.

In many cases, this makes sense. In a food web, the predator
needs to locate the prey. Thus arrows go from prey to predator.
See this food web. Taken from the US Geological Survey [12].
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Bow-tie Structure of Web

(These arrows run against the information flow!)

- LSCC or core: Large strongly connected component.
- IN component: there is directed path to core.
- OUT component: directed path from core;
- TENDRILS: pages reachable from IN, or that can reach
OUT.
- TUBES: paths from IN to OUT.
- DISCONNECTED: All other pages.

(Sources: [6] in 2000, and [11] in 2015.)
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Consensus and Diffusion

L has form I−S or I−St where S and St are row-stochastic.
From now on x is a column vector and p is a row vector.
Assume that edge k → i has weight w > 0.

Consensus: ẋ = −Lx. (Usual matrix multiplication.)
Properties: The all ones vector 1 is a solution.
Edge k → i contributes w(xk − xi) to ẋi.
Exercise: Prove by writing out eqn for ẋi in ex. pg 11.
Influence of opinion is felt downstream!

Diffusion: ṗ = −pL. (Usual matrix multiplication.)
Properties:

∑
i ṗi = 0 (row-sum L is zero).

Edge k → i contributes +wpi to ṗk and −wpi to ṗi.
Exercise: Prove by writing out the eqn for initial condn p =
pie

T
i in example1 pg 11.

Diffusion moves upstream (against arrows)!

Remark: The physicist’s definition of L would be the neg-
ative of the one we use here (cf. “Usual Laplacian”). Graph
theorists like eigenvalues of symmetric Laplacians to be non-
negative.

Theorem 1: The eigenvalues of S lie within the
closed unit disk (Gersgorin). So the non-zero eigen-
values of L = I − S have positive real part.
Exercise: Prove this.

1pie
T
i is the column vector whose only non-zero entry is the ith, which equals pi.
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Orientation of the Web

A web page can be linked to another one (see picture). This
means that there is a reference to data in another page that
you can land on by tapping or clicking.

The pagerank algorithm employs these links to make ran-
dom walks following links. The stationary measure determines
the expected frequency of visits to pages. The higher the fre-
quency, the more “important” the pages.

Important Remark: The flow of information is opposite
to the direction of the links. In other words, with our
convention the orientation of the edges is reversed.

Important Remark: For rw, Sij is the probability i → j.
For discrete consensus, Sij, is the step x(i) makes following a
unit step of x(j).
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First: Eigenvalue Zero
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SCC: i ∼ j if i and j are in same SCC. This is an equivalence.
Partial order on SCC’s: S1 < S2 if S1  S2.
Topological sorting: extend partial order to total order.

Theorem 2: S and L are block triangular with
SCC’s as blocks. The blocks are generalized rw
Laplacians.

L =



0 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
−1/2 0 0 0 0 1 −1/2

0 0 −1/2 0 0 −1/2 1


1st and 3rd block both give a zero eigenvalue. To understand
how SCC’s are connected, we will look at their eigenvectors,
i.e.: the kernel of L.
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The Right Kernel of L

Recall: reach Ri, excl. part Hi, cabal Bi, common part Ci.

From Now On: (i) There are exactly k reaches {Ri}ki=1.
ii) L is a general Laplacian of the form L = D −DS [1].

Theorem 3 [1]: The algebraic and geometric mul-
tiplicity of the eigenvalue 0 of L equals k.

Thus: no non-trivial Jordan blocks in kernel!

Theorem 4 [1]: The right kernel of L is spanned by
the column vectors {γ1, · · · , γk}, where:

γm(j) = 1 if j ∈ Hm (excl.)
γm(j) ∈ (0, 1) if j ∈ Cm (common)
γm(j) = 0 if j 6∈ Rm (reach)∑k
m=1 γm(j) = 1
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3

γT1 =
(

1 1 0 0 0 2
3

1
3

)
and γT2 =

(
0 0 1 1 1 1

3
2
3

)
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The Left Kernel of L

Theorem 5 [2]: The left kernel of L is spanned by
the row vectors {γ̄1, · · · , γ̄k}, where:

γ̄m(j) > 0 if j ∈ Bm (cabal)
γ̄m(j) = 0 if j 6∈ Bm∑k
j=1 γ̄m(j) = 1

{γ̄m}km=1 are orthogonal

Mnemonic: the horizontal “bar” on γ̄ indicates a
(horizontal) row vector.

Thus in this case the row vectors {γ̄1, · · · , γ̄k} are a set of
orthogonal invariant probability measures.

1
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3

γ̄1 =
(

1 0 0 0 0 0 0
)

and γ̄2 =
(

0 0 1
3

1
3

1
3 0 0

)

28



Observations about the Kernels

Theorem 6 (folklore, [2]): A random walker start-
ing at vertex j has a chance γm(j) of ending up in
the mth cabal Bm.

In the following G is a (weakly connected) digraph with rw
Laplacian L. The union of its cabals is called B. Its comple-
ment is denoted as Bc.

Theorem 7 (folklore): If τ (i) is the expected time
for a rw starting at vertex i to reach B, then τ is
the unique solution of

Lτ = 1Bc with τ |B = 0

τ is often called the expected hitting time.
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Sketch of Proof of Thm 7

The boundary condition (τ |B = 0) is clearly correct.

Recall: a) Sij > 0 means ‘i sees j’.
b) But rw goes against arrows. So:

Sij is probability of i→ j, so for i ∈ Bc (complement of B):

τ (i) = 1 +
∑
j

Sijτ (j)

Rewriting gives the equation of the theorem.

Existence and uniqueness: Reorder the vertices so that
vertices in B appear before vertices in Bc. Then by Theorem
2, L is lower block triangular. The equation becomes(

LBB 0
LBcB LBcBc

)(
0
τBc

)
=

(
0
1

)
The matrix LBcBc is non-singular [1]. So the solution exists
and is unique.

Exercise: Prove that LBcBc is non-singular. Hint:
suppose LBcBcx = 0. Then pad x with zeroes to get a vector
in the null space of L. Now use Theorem 4 to see that there
is no such vector in the right kernel of L.

Exercise: Prove Theorem 6 using the same method.
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Continuous or Discrete

Recall: for rw Lapl. L and normalized adjacency matrix S

L = I − S
If evals L are λm, then evals S are 1− λm.

Continuous Consensus:

ẋ = −Lx
Discrete Consensus:

x(t+1) − x(t) = −Lx(t) =⇒ x(t+1) = Sx(t)

Similarly, Continuous Diffusion:

ṗ = −pL
Discrete Diffusion or Random Walk:

p(t+1) − p(t) = −p(t)L =⇒ p(t+1) = p(t)S

Definition: a (right) eigenpair (λm, ηm) of L is a pair
such that Lηm = λmηm. A left eigenpair (λm, η̄m) sat-
isfies η̄mL = λmη̄m.

Definition: G a digraph with n vertices and k reaches, define
the n× n matrix Γ as follows (γm and γ̄m as in Thm 4 & 5):

Γij ≡
k∑

m=1

γm(i)γ̄m(j) or Γ =

k∑
m=1

γm ⊗ γ̄m

32



Asymptotics of Self-Adjoint

Continuous consensus: If L is any symmetric (or self-
adjoint) square matrix with right eigenpairs (λm, ηm) and left
eigenpairs (λm, η̄m). Note that η̄m = ηTm. Then

ẋ = −Lx
is solved by

x(t) =

n∑
m=1

(ηm, x
(0))

(ηm, ηm)
e−λmt ηm

The terms with Re(λm) positive converge to 0.

Notation: x has n components labeled by i. Each of these
depends on time (t): x(t)(i).

Discrete diffusion or random walk: Similar notation
p(t)(i).

p(t+1) = p(t)S

gives

p(t) =

n∑
m=1

(η̄m, p
(0))

(η̄m, η̄m)
(1− λm)t η̄m

The terms with |1− λm| < 1 converge to 0.

Exercise: write solutions for discrete consensus and
continuous diffusion.
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Asymptotics

But non-orthogonality and Jordan blocks destroy this simple
picture! However, for our bases for kernels of L (theorems 4
and 5) with Γ on pg 32, we still get the following.

Theorem 8 [2]: The soln of the continuous consen-
sus problem satisfies

lim
t→∞

x(t)(i) =

n∑
j=1

(
k∑

m=1

γm(i)γ̄m(j)

)
x(0)(j)

or
lim
t→∞

x(t) = Γx(0)

Theorem 9 [2]: The soln of the (discrete) random
walk satisfies

lim
n→∞

1

n

n−1∑
t=0

p(t) = p(0)Γ

The p are probability row vectors.
In discrete case: first take average, then take limit!

Exercise: state similar theorems for discrete con-
sensus and continuous diffusion.

These theorems do not follow immediately from theorems 1, 4,
and 5 (see [2]).
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Another Interpretation of γm

From Thm 8: Displacements in consensus caused by initial
displacement x0:

ẋ = −Lx =⇒ lim
t→∞

x(t) = Γx(0)

Left multiplying by
1

n
1T has the effect of taking an average of

these displacements.

Definition: The influence I(i) of the vertex i is average
of the displacements caused by unit displacement ei:

I(i) ≡ 1

n
1T Γ ei =

1

n
1T

(
k∑

m=1

γm ⊗ γ̄m

)
ei

1 is the all ones vector.

Theorem 10: The influence I(i) of vertex i in the
mth cabal is given by

Im(i) =
1

n
1T (γm ⊗ γ̄m)(i) ≥ 0

If i not in a cabal, then its influence is zero. The
sum of all influences equals 1.

Exercise: prove this theorem. Hint: It is enough to show
that Γ is row-stochastic. That can be shown from its defi-
nition.
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Asymptotics: Example

1
2

5

6
7

4

3

γT1 =
(

1 1 0 0 0 2
3

1
3

)
and γT2 =

(
0 0 1 1 1 1

3
2
3

)
γ̄1 =

(
1 0 0 0 0 0 0

)
and γ̄2 =

(
0 0 1

3
1
3

1
3 0 0

)
So

Γ =

k∑
m=1

γm ⊗ γ̄m =
1

9



9 0 0 0 0 0 0
9 0 0 0 0 0 0
0 0 3 3 3 0 0
0 0 3 3 3 0 0
0 0 3 3 3 0 0
6 0 1 1 1 0 0
3 0 2 2 2 0 0


Let x(0) and p(0) be concentrated on vertex 7 only. Then

lim
t→∞

x(t) = 0 and lim
n→∞

1

n

n−1∑
i=0

p(i) =
1

9
(3, 0, 2, 2, 2, 0, 0)

Exercise: Check that Γ is as given.

Exercise: Find another interesting example.
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Are They Different??

Up to now, we have used the matrices S and L to model
discrete and continuous versions of consensus and diffusion.

We have seen that these models have many aspects in common
and some differences.

Now, a different question presents itself.
Given a continuous process, can I find a discrete process that
gives the time 1 map of the continuous one.
And vice versa, given a discrete process, can I find a continuous
process whose time 1 map gives me back the the discrete one.

Exercise: If L = I − S, is x(t+1) = Sx(t) the time 1
map of ẋ = −Lx? Hint: no.
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From Continuous to Discrete

Start with the continuous processes: ẋ = −Lx (consensus)
. ṗ = −pL (diffusion)

Soln: x(t) = e−Ltx(0). Time one map: x(t+1) = e−Lx(t).

(1) S(d) ≡ e−L = I − L +
L2

2
− · · ·

(2) S(d) ≡ e−L = eS−I = e−1
(
I + S +

S2

2
+ · · ·

)
Properties of e−L: (1) row-sum one, (2) off-diagonal elmts
non-negative. Thus S(d) is a row-stochastic matrix. So....

Obtain Discrete Consensus: x(t+1) = S(d)x(t).

and Discrete Diffusion: p(t+1) = p(t)S(d).
(The usual term is random walk.)

Define the discrete Laplacian: L(d) = I − S(d). From (1):

Theorem 11 [2]: L(d) and L have the same kernels.

As before: the leading eigenspace of S(d) is kernel of L(d).

Corollary: These discrete processes have the same
asymptotic behavior as the original continuous ones.
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Every Possible Discrete Process??

One more Property of e−L: Recall

(2) S(d) = e−L = eS−I = e−1
(
I + S +

S2

2
+ · · ·

)
Thus e−L is transitively closed: if there is a path i  j,
then there is an edge ij.

So, the answer to question in the header is: NO !

Digraphs like o � o with S =

(
0 1
1 0

)
cannot occur as time one maps (not transitively closed).

Another obstruction is that S(d) = e−L cannot have 0 as eigen-
value.

The question exactly which maps can be considered as a
time one map of a Laplacian system is open, though several
obstructions are known (such as the ones above).

Exercise: Give an example of a discrete process
where S has an eigenvalue 0 (or L = I − S an eval
1).
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Periodic Behavior

Possibility of periodic behavior changes asymptotics:
Consider:
Consensus (continuous): ẋ = −Lx.
Consensus (discrete): x(t+1) = Sx(t).

The eigenvalues of S lie within the closed unit disk.

Asymptotic behavior as t→∞ is determined by
Continuous: null space of L.
Discrete: (i) eigenspace of S assoc. to eigenvalue 1 or
. (ii) eigenspaces of S assoc. to roots of unity.
All else converges to zero.

+1−1

+i

−i

0−2

eigenvalues S eigenvalues −Lapl=S−I

To get asymptotics
For discrete: must average: limn→∞

1
n

∑n−1
t=0 x

(t).

For continuous, no need: limt→∞ x
(t).
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