
Improving quasi-optimal inventory and transportation policies using adaptive critic
based approximate dynamic programming

Stephen Shervais
Eastem Washington University,

Cheney, WA 99004, USA

Thaddeus T. Shannon l
Portland State University,
Portland, OR 97207, USA

Abstract-- We demonstrate the possibility of optimal
control of physical inventory systems in a non-
stationary fitness terrain, based on the combined
application of evolutionary search and adaptive critic
terrain following. We show that adaptive critic based
approximate dynamic programming techniques based
on plant-controller Jacobeans can be used with systems
characterized by discrete valued states and controls.
Improvements upon a quasi-optimal policy found using
a genetic algorithm in a high-penalty environment,
average 66% under conditions both of stationary and
non-stationary demand.

Index Terms--- dual heuristic programming, genetic
algorithms, artificial neural networks, supply chain
management, approximate dynamic programming.

I. INTRODUCTION

This paper demonstrates the use of adaptive critic based
approximate dynamic programming techniques to the
tuning and adaptation of inventory control and
transportation policies for a physical distribution system
within a changing business environment. Such distribution
systems feature warehouses/depots where inventory can be
cheaply stored and which feed higher-cost retail outlets
which satisfy final customer demand (Figure 1).
Transportation resources are multimodal, but may be
limited or difficult to change. Final demand may fluctuate,
and average demand can change over time. Most prior
studies in this application area have concentrated on
inventory (economic order

f External
External
sup,,y Oon o

Goal: Minimize Total Cost
I - - I

Controls: Inventory Policies
Transportation Resources

Figure 1. The Physical Distribution Problem.
Inventory is held at S1 and distributed to inventories at
DO and D1 using limited transport resources.

quantity) [6][7][17], or on transportation (solid
transportation problem) [1][5] allocations. This work
addresses both: selection of an optimal set of policies for a
multi-product, multi-echelon, multi-modal physical

distribution system, in a non-stationary environment. The
problem is highly multi-dimensional, even with a small
system. Both state and control variables may be discrete
valtied and end use demand is often characterized by a
random variable. The cost surface in policy space for such
systems tends to be quite discontinuous, with low penalty
and high penalty regions separated by no more than a single
transport unit.

We start by performing a global search for a quasi-optimal
policy using a genetic algorithm (GA) in a stationary
environment characterized by a discrete event simulation.
All GA results, not just the final optimum, are saved and
used to develop a neural network plant-model. We then
implement the adaptive critic based, dual heuristic
programming (DHP) method to improve upon the quasi
optimal policy found by the GA, and adapt it to a changing
environment. DHP uses the Jacobian of the coupled policy-
discrete event system to train a critic function. This critic
function produces estimates of the partial derivatives of the
long-term cost associated with a particular policy. These
derivatives are then used to adjust the policy, reducing the
long-term cost. As the state and control variables in our
problem context are discrete valued, numerous
approximations are used to implement differentiable
functions needed by DHP.

II. THE PROBLEM

The task addressed by this paper is that of adjusting the
control policies for the physical distribution system shown
in Figure 1 so that it can continue to operate effectively in a
stochastic, non-stationary environment. The underlying
problem is usually presented as a cost minimization
problem. The function to be minimized is total cost Cxot,
which consists of the initial and final costs, plus the
incremental costs, summed over a planning time horizon T

CTo t = Clnit + Clncr + CFinal, w h e r e (1)
T

C lncr = E (CH (t) + Cp (t) + C T (t) + C x (t)), where (2)
t=0

CH is holding cost, Cp is purchase cost, Cx transport cost,
and Cx stockout penalties, and

N K

CH(t) = ~ ~ CH(t,n,k), (3)
n=l k=0

summed over N nodes and K stocks,

i This work was supported in part by the National Science Foundation under grant ECS-9904378.
0-7803-6583-6/00/510.00 © 2000 IEEE 3 4 4 9

CH(t, n, k) = PH (n, k) QH (t,n,k) if QH (t,n, k) _> 0,
(4)

0 else, where
PH is holding price per QH unit quantity on hand;

N K

C p (t) = ~ ~ Cp(t,n,k) (5)
n=l k = 0

N K

Cp(t, n, k) = ~ ~ Pp (k)Qp (t, n, k) if Qp(t,n,k),
.=1 t,=0 (6)

0 else,
where Pp(k) is purchase price per Qp unit quantity
purchased;
C T (t) = CTF (t) + CTO (t) + CTX (t), where (7)
CTF is fixed transport cost (the cost of owning the transport
resource over the decision period), CTO is operating cost
(only for transport units actually employed), and CTX is the
penalty for transport shortfalls, and

A M

CTF(t)= ~ ~ CTF(t,a,m), (8)
a = 0 m = 0

summed over A arcs and M modes of transport, where
CTF(t, a, m) = PTFTCap (t,a, m) if Tcap(t,a,m) > 0,

(9)
0 else,
where PTF is the price per Tc,p, the trait capacity of transport
hired during the decision period;

A M

CTO (t) : ~ ~ CTO (t, a, m), where (10)
a = 0 ra=O

CTO (t, a, m) = PTo (TcAP (t, a, m) - TCA v (t, a, m)),

if TCAe (t, a, m) > TCAV (t, a,m), (11)

0 else,
where Pro is the cost of operating the units which are on the
road (the difference between capacity Tc~p and capacity
available Tc~v);

A M

CTX(t)= Z Z CTx(t'a,m), (12)
a = 0 m = 0

CTX (t, a, m) = PTX (Qs (t, a, m) - Tca v (t, a, m)),

if Qs (t, a, m) >Tca v (t, a, m), (13)

0 else, where
Qs is the quantity provided by a supply node ns, which is
related to QR the quantity requested by a demand node, rq
Os(t ,a ,m) = OR (t, nd,k)

if QH (t, n S , k) > OR (t, n a , k), (14)

O H (t, ns, k) else,
the quantity requested being driven by the two policies
which control the reorder point, RP and the order up-to
point UT, such that

Q R (t, n d, k) = UT(t, n d, k) -

(QH(t, nd,k) +Qo(t , na,k))

if QH (t, n d , k) < RP(t, n a , k) -

(QH (t, na, k) + Qo(t, n d , k)),

0 else, where

(15)

3 4 5 0

Qo is the quantity already on order, but not delivered to the
demand node.

N K

Cx(t)=)-~, ~ Cx(t ,n ,k) , (17)
n=l k = 0

N K

Cx(t ,n ,k)=)-~ ~ PxQH(t ,n ,k) ,
n=l k=0

if QH(t,n,k) < 0, (18)

0 else,
where Px is the penalty for stockout.

For small problems, minimizing the cost function is often
done using mixed-integer linear programming (LP)
techniques[9]. Our study instead uses a Genetic Algorithm
as a tool for finding an initial policy set that will minimize
costs, reserving the use of the LP as a comparison tool.
Because the fitness terrain is spiky, the search problem is
difficult, and the GA solution is only quasi-optimal. In the
specific case of the problem used here, the cost of the LP-
derived optimal starting policy set was only 28% that of the
GA solution. The purpose of the Genetic Algorithm is
twofold. Not only does it search for a quasi-optimal
starting point, but it also saves both the optimal and off-
optimal data generated by the search process for use as a
source of input/output pairs to train the Plant Model NN
(section III).

The evaluation function for the GA is a discrete event
simulation. Business constraints necessary to the operation
of the simulation are handled by repairing the chromosome
as it is being created. Other business rules are enforced by
adjustment of the penalties associated with breaking them.

III. METHODOLOGY

Small scale artificially constrained examples of our
inventory and transportation problem can be solved exactly
using Dynamic Programming [3][4]. Unfortunately, very
few supply nodes, stock levels and transport arcs can be
included before the classical approach becomes intractable
due to the "curse of dimensionality". Over the last decade, a
family of approximate dynamic programming techniques
utilizing adaptive critics has been developed, that do not
suffer from dimensional blow up.

In Dynamic Programming one develops an optimal policy
by comparing the costs of all alternative actions at all
accessible points in state space through time. This search is
made efficient by limiting the options using the principle of
optimality: that an optimal trajectory has the property that
no matter how an intermediate point is reached, the rest of
the trajectory must coincide with an optimal trajectory as
calculated with the intermediate point as the starting point.

Adaptive critic based approximate dynamic programming
methods start with the assumption that the optimal policy
can be written as a continuously differentiable function of
the state variables and some number of policy parameters.
A critic fimction is then constructed that estimates the value

i i i i i i _ [. -

of the secondary utility function (cost to go) at any
accessible point in state space. Under the assumption that
the critic is accurately estimating the long term cost of the
policy specified by the control function's parameter values,
the gradient of the critic function can be used to adjust the
policy parameters so as to arrive at a local optimum in the
parameterized policy space. This process has been
successfully operationalized using artificial neural networks
for both the control and critic functions [2][10][11] and
more recently using fuzzy systems[13].

The method is applied by formulating a "primary" utility
function U(t) that embodies a control objective for a
particular context in one or more measurable variables. A
secondary utility function is then formed

o 0

J(t) = ~_,ykU(t+k), (19)
k=0

which embodies the desired control objective through time.
This is Bellman's equation, and a useful identity that
follows from it is

J(t) = U(t) + yJ(t + 1). (20)

A promising collection of approximation techniques based
on estimating the function J(t) using this identity with
neural networks as function approximators was proposed by
Werbos [19][20]. As the gradient of the estimated J(t) is
used to train or tune the control policy, some techniques use
critics that estimate the derivatives of J(t) instead of the
function value itself.

In Dual Heuristic Programming (DHP) the critic's outputs
are estimates of the derivatives of J(t). This method utilizes
two distinct training loops, one for the control policy and
one for the critic estimator. The control policy is adjusted to
optimize the secondary utility function J(t) for the problem
context. Since the controller outputs control actions u(t), a
gradient based learning algorithm requires estimates of the

derivatives OJ(t) for controller training. The critic
OU i (t)

function is trained based on the consistency of its estimates
through time judged using the Bellman Recursion. For the
DHP method, where the critic estimates the derivatives of

J(t) with respect to the system states, i.e. 2 i (t)= OJ(t)
OR i (t) '

we differentiate both sides of Bellman's Recursion

J(t) = ~ (U(t) + yJ(t + 1)), (21)
ORi(t) aRi(t)

to get the identity used for critic training (in tensor notation)

OU(t) aU(t) Ouj(t)
2 i (t) - - -

aRi(t) Ouj(t) aRi(t)
(22)

ORk(t+l) ORk(t+l) Oum(t)]
+Y)]'k(t+l) ~ + ~Um(t) ~ J "

3451

To evaluate the right hand side of this equation we need a
model of the system dynamics that includes all the terms
from the Jacobian matrix of the coupled plant-controller

aRj(t+l) ORj(t+l)
system, e.g. and (23)

~3R i (t) Ou i (t)

The control policy is updated using the chain rule and the
system model to translate critic outputs into estimates of

~J(t) i.e.
au i (t) '

OJ(t) OU(t) OR i (t + 1 _ _) (24)
Ouk(t)=Ouk(t)+Y~" 2i (t+ l) Ouk(t)

The entire process can be characterized as a simultaneous
optimization problem; gradient based optimization of the
critic function estimator together with gradient based
optimization of control policy parameters based on the J(t)
estimates obtained from the critic. Different strategies have
been utilized to get both these optimizations to converge.
One possibility is to alternate between optimizing the critic
estimator and optimization of the control policy. It is also
possible to do both optimization processes simukaneously
[8][12].

As this technique relies on gradient based optimization of
J(t), it inherently suffers from the problem of
(unsatisfactory) local optima. Global optimization of J(t) in
general is subject to the "No Free Lunch Theorem". What
approximate dynamic programming techniques offer is a
tractable method for local hill climbing on the J(t)
landscape of policy parameter space. Initialized at a random
point in parameter space, these methods may be trapped by
a local optimum at an unsatisfactory control law. One can
attempt to avoid this by applying problem specific
knowledge to the choice of initial controller parameters, in
the hope of being near a satisfactorily high hill (or deep
valley). In this paper we seek to avoid this problem by
starting with a quasi-optimal initial policy that is already in
some sense satisfactory.

IV. IMPLEMENTATION

To implement Dual Heuristic Programming to refine our
quasi-optimal policies we need:

a) a differentiable secondary utility function,
b) a system model capable of approximating the partial

aRj (t + 1) ORj (t + 1)
differential equations and , and

OR i (t) Ou i (t)
c) a method for expressing policies using a differentiable

function of some set of policy parameters.

Unfortunately, our current problem context does not come
thus equipped. We are therefore required to make a number
of approximations.

A. Strategic Utility Function
The strategic utility function U(t) defines the effectiveness
of the controller. In many control situations this is a simple
error function that measures how far the system is from a
desired state. The current problem is a bit more complex.
The utility function is set equal to the cost equation (1), and
objective is to set policies so as to minimize the total cost of
executing those policies. The utility fimction therefore
describes the impact on costs of each aspect of that
execution.

Complicating the situation further is the fact that policy
execution is discontinuous - if, for example, an order is
created, then purchase costs are incremented, if no order is
created, then they are not. However, in order to apply the
DHP methodology, we must have a differentiable J(t), and
therefore need a differentiable U(t), and in order to do that,
we must make the approximations described below.

Rather than detail all elements of U(t), we will limit this
presentation to the three cost equations (4, 6, and 13)
presented above, the first example being holding cost, CH.

The curve representing holding cost has a 'knee' at QH = 0,
so the derivative is not continuous at that point:

[PH if Q n > 0, (25)
OCH/aQ. = { L0 else,

so, for the purpose of calculating derivatives only, we use
the approximation:

C n = P. Qusig(Qn), (26)
(where sig(x) is the logistic sigmoid function

sig(x) = 1/(1 + e x)), which has the partial derivative

/~CH/0 Q, = PH QH sig(QH)(I-sig(QH)). (27)
In the case of purchase cost, the function itself is non-
continuous (a purchase is only made when the associated
control conditions are met), so when we calculate the partial
derivatives we start from:

Cp =Pp Qpsig((UT- (QH +Qo)X sig(RP-(Q H +Qo))~ (28)

Similarly, the starting point for calculation of the
derivatives of the transport shortfall penalty, is the
approximation:
C rx = PTX (LIT- (Q H + Q o)X sig(RP - (Q H + Q o))- Tcav) (29)

(sig(UT -(QH + Qo))- Tcav)'

B. System Identification
Creation of a function which describes the responses of the
plant to control and state inputs is a task called System
Identification. In this study we train a simple MLP Neural
Net as a model of the plant responses, then use the net as an
ordered array of derivatives.

Training the Plant Model NN is a straightforward task,
provided one has a suitable collection of I/O pairs. There
are a number of ways of obtaining such pairs -- all involve
providing a set of inputs which span the search space,

3452

processing the plant response, and collecting the resultant
output. Two ways that were considered and rejected are
Monte Carlo search, and complete enumeration. The first
involves generating inputs at random, feeding them to the
simulation, and saving the outputs. The second involves
complete enumeration of all possible inputs at some
sampling interval. The first has the drawback that it might
miss significant features of the fitness landscape, the second
that it will waste time on non-significant feature.

The third method, used here, is to save the output generated
by the GA during its search process. If all output is saved,
even that generated by less-than-optimal inputs, then the
data set so obtained will not only span the search space, it
will also provide a higher proportion of I/O pairs in the
vicinity of good solutions. We believe this is the first time
such an approach has been used.

Two data sets were collected for this study. The training set
totaled 90,000 records, and the test set contained 108,000
records. The data were collected by running the GA with a
population of 100 for the standard 1,000 generations, and
saving the UO data every 97 generations.

The plant model NN has 62 inputs (40 state variables, 18
control variables, and 4 exogenous demand variables), a
102-neuron hidden layer, and 40 state variable outputs.
Forty-eight examples of the NN were trained for 20 full
epochs. The resulting nets had a training set RMSE = 0.60
and a test set RMSE = 0.62. (n=48, coefficient of variance
< 0.000 for both). This is not a sterling result, but Shannon
[12] has shown that very poor predictive models can
provide outputs that are good enough for an adaptive critic
to use.

Once the trained plant model NN is in place, it may be used
to provide information on the partial derivatives

~R(t + 1) and ~R(t + 1______~) by first passing the current state
&(t) ~R(t)

and control information Rt and ut forward through the NN
and saving the slope of the activation function at each node.
Then, for each R, a 1 is backpropagated from the output
node, with all other inputs at the output nodes held to zero.
The derivative information will appear as outputs from the
input nodes, R and u.

C Differentiable Policy Representation
If we are to do gradient based search across a policy space,
we have to be able to express those policies in such a way
that gradient is meaningful. To do this, we are going to use
another artificial neural network - the Action Net - since a
NN can be thought of as a differentiable function of the
combination of its inputs and network weights. This will
allow us to produce deltas from the initial policy variable
set points, giving us outputs that are both meaningful and
differentiable.

V. RESULTS

The experiments described below tested the neural control
system against the quasi-optimal policies found by the GA.

The GA policies were developed based on a fixed demand
schedule, and the amounts demanded were based on the
expected value of the demand for a specific stock at a
specific node. Demand node 1, for example, required 2.0
units of stock 0 every timestep for 90 simulation days.

The NN controller, which requires persistence of excitation
to train well, was trained using Poisson-distributed demand
with a stationary mean equal to the value used by the GA.

The cost structure of the simulation was designed to
maintain pressure on both the GA evolutionary search and
the NN learning process, by penalizing severely any failure
to maintain stocks or transport resources at a level
appropriate to the scenario. Costs reported, therefore, are
not directly comparable to normal business operating costs.

Both the fixed, GA-derived and the NN controller-adjusted
policies were then tested using demand schedules that ran
for 360 simulation days. There were three test data sets,
labeled Baseline, Delta Demand (DD), and Increasing
Average Demand (lAD). Baseline was the training data set,
extended to 360 days. Delta Demand caused a 10% step
increase in demand, which held for the full 360-day test
period. Increasing Average Demand added a fixed
increment to demand each timestep, sufficient to raise the
demand at the 360 day point by 20% over the starting
demand. All three demand schedules had a Poisson
distribution laid on top of the underlying trend.

20OO

1600

~ '1200
o

< 400

o

BasoUno Delta Demand (10%) Increasing Average
Demand (20%)

Demand Schedule

Figure 2. Summary of GA/NN Controller Comparisons.
Performance comparisons of fixed quasi-optimal GA-
derived policies (GA, dark columns), with adaptive
Neural Control policies (NN, light columns) for three
different demand schedules: stationary (Baseline),
Increasing Average Demand (IAD), and Delta Demand
(DD). All demand schedules exhibit Poisson-distributed
noise.

Note that the comparison to be made is not really between
the NN controller and the GA-derived policies. Instead, it
is between fixed policies (however arrived at) and learning

policies (whatever their start point). The results (Figure 2)
can be summarized by stating that, in this instance, the NN
adaptive control solution was able to improve on the fixed
policy set. The NN controller results were highly consistent
- the coefficient of variation (Std Dev/Avg) in all three test
series was 0.000% (n=250).

A. Baseline

This set of experiments (Figure 3) was designed to establish
a reference behavior for the system.

First, the GA-derived policies were used, without
modification, to operate the simulation on a 360-day am.
Then the NN controlled-simulation was am against the
same demand schedule, using the adaptive critic techniques
discussed above to correct the way the NN responded to
changes in the environment. At the end of the 360-day
generalization test period the NN controller provided a
savings of 64 percent over the GA-derived policies.

1000 -

800 - ~ - - :~ pkJs N~N

~ B0O

15 s
e.- 400 ~ ----

t / f . / "
'~ 200 J'

Dnl~

Figure 3. Average (n = 250) cumulative total cost of
logistics system with fixed, GA-derived policies (dashed
line) and with policies adjusted by the neural-controller
(solid line). Baseline demand schedule.

B. Increasing Average Demand

The second series of tests (Figure 4.) compared the
effectiveness of the (unchanging) GA-generated policies
with those of the NN controller when operating in a
changing environment In this case, the change was a fixed
increase in demand at every timestep throughout the period,
sufficient to increase demand by 20% over the 360-day test
period. Final cost reduction at the end of the 360-day
generalization period was 69%.

3 4 5 3

1600 , I1-- I
i - -GAplus NN

1200;

~ 800

400 " - - - - - - - - ~ "

f

j l

/
J

J
f

/

f
0 i .

Day=

Figure 4. Average (n = 250) cumulative total cost of
logistics system with fixed, GA-derived policies (dashed
line) and with policies adjusted by the neural-controller
(solid line). Baseline demand schedule with increasing
average demand.

C. Delta Demand

The final test series (Figure 5) compared the effectiveness
of the (unchanging) GA-generated policies with those of the

2 0 0 0 •

1600

~ 1 2 0 0

o
1

~ 800

400

0

/
,¢

t /

r ~ f

Day=

Figure 5. Average (n = 250) cumulative total cost of
logistics system with fixed, GA-derived policies (dashed
line) and with policies adjusted by the neural-controller
(solid line). Baseline demand schedule plus 10% step
increase.

NN controUer when operating in an environment where
demand had been increased by a 10% step which persisted
throughout all time periods. Final cost reduction at the end
of the 360 day generalization period was 69%.

VI. CONCLUSIONS

We have demonstrated the possibility of optimal control of
physical inventory systems in both stationary and non-
stationary demand conditions, based on the combined
application of evolutionary search and adaptive critic
controller training. As part of this demonstration, we
showed that adaptive critic based approximate dynamic
programming techniques based on plant-controller
Jacobeans can be used with systems characterized by
discrete valued states and controls. In addition, it has

proven feasible to use off-optimal data from the
evolutionary search to provide system identification inputs
for a plant model neural net. Improvements over a fixed,
quasi-optimal policy found using a genetic algorithm,
average 66% under conditions both of stationary and non-
stationary demand in a high penalty environment.

VII. REFERENCES:

[1] Aneja, Y. and K. Nair (1979). "Bicriteria Transportation Problem."
Management Science. 25: 73-78.

[2] Barto, A., Sutton, R. and Anderson, C. (1983) "Neuronlike Adaptive
Elements That Can Solve Difficult Learning Control
Problems," IEEE Transactions On Systems, Man, And
Cybernetics Vol. SMC-13, No. 5, pp. 834-846.

[3] Bellman, R. (1957). Dynamic Programming. Princeton, Princeton
University Press.

[4] Bellman, R.E., and Dreyfus, S. (1962)Applied Dynamic
Programming. Princeton, Princeton University Press.

[5] Bit, A., M. Biswal, et al. (1993). "Fuzzy programming approach to
multiobjective solid transportation problem." in Fuzzy Sets and
Systems. 57: 183-194.

[6] Gullu, R. and N. Erkip (1996). "Optimal allocation policies in a two-
echelon inventory problem with fixed shipment costs."
International Journal of Production Research,. 46-47:311-
321.

[7] Jonsson, H., E. Silver, et al. (1986). "Overview of a stock allocation
model for a two-echelon push system having identical units at
the lower echelon" in Multi-Stage Production Planning and
Inventory Control. New York., Springer-Verlag.

[8] Lendaris, G. and Shannon, T. (1998) "Application Considerations for
the DHP Methodology," in Proceedings of the International
Joint Conference on Neural Networks '98 (UCNN '98)
Anchorage, AK, IEEE, May.

[9] Oh, S. and A. Haghani (1997). "Testing and Evaluation of a Multi-
Commodity Multi-Modal Network Flow Model for Disaster
Relief Management." Journal of Advanced Transportation. 31 :
249-282.

[10] Prokhorov, D., Adaptive Critic Designs and their Applieation, Ph.D.
Dissertation, Department of Electrical Engineering, Texas Tech
University, 1997.

[11] Prokhorov, D. & D. Wunsch, "Adaptive Critic Designs", IEEE
Transactions On Neural Networks, vol.8(5), 1997, pp. 997-
1007.

[12] Shannon, T., (1999) "Partial, Noisy and Qualitative Models for DHP
Adaptive Critic Neuro-control," in Proceedings of the
International Joint Conference on Neural Networks "99
(IJCNN'99), Washington DC, July.

[13] Shannon, T.T. & Lendaris, G.G., (2000), "Adaptive Critic Based
Approximate Dynamic Programming for Tuning Fuzzy
Controllers", in Proceedings of lEEE-FUZZ 2000, IEEE.

[141 Werbos, P. (1992) "Neurocontrol and Supervised Learning: An
Overview and Evaluation," in White, D. and Sofge, D.,
Handbook of Intelligent Control. New York, Van Nostrand
Rheinhold.

[15] Werbos, P. (1995) "Optimization Methods for Brain-like Intelligent
Control," Proceedings of the 34th Conference on Decision and
Control. IEEE Press, pp. 579-584.

[161 Werbos, P. (1990) "Neuroeontrol and related techniques," in Maren,
A, Harston, C., and Pap, R. (eds.) Handbook of Neural
Computing Applications. Academic Press, Inc., New York., pp.
345-380.

[17] Zhang, V. (1996). "Ordering Policies for an Inventory System with
Three Supply Modes." Naval Research Logistics. 43: 691-708.

3454

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

