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Abstract-- We demonstrate the possibility of optimal 
control of physical inventory systems in a non- 
stationary fitness terrain, based on the combined 
application of evolutionary search and adaptive critic 
terrain following. We show that adaptive critic based 
approximate dynamic programming techniques based 
on plant-controller Jacobeans can be used with systems 
characterized by discrete valued states and controls. 
Improvements upon a quasi-optimal policy found using 
a genetic algorithm in a high-penalty environment, 
average 66% under conditions both of stationary and 
non-stationary demand. 

Index Terms--- dual  heuristic programming, genetic 
algorithms, artificial neural networks, supply chain 
management, approximate dynamic programming. 

I.  INTRODUCTION 

This paper demonstrates the use of adaptive critic based 
approximate dynamic programming techniques to the 
tuning and adaptation of inventory control and 
transportation policies for a physical distribution system 
within a changing business environment. Such distribution 
systems feature warehouses/depots where inventory can be 
cheaply stored and which feed higher-cost retail outlets 
which satisfy final customer demand (Figure 1). 
Transportation resources are multimodal, but may be 
limited or difficult to change. Final demand may fluctuate, 
and average demand can change over time. Most prior 
studies in this application area have concentrated on 
inventory (economic order 
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Figure 1. The Physical Distribution Problem. 
Inventory is held at S1 and distributed to inventories at 
DO and D1 using limited transport resources. 

quantity) [6][7][17], or on transportation (solid 
transportation problem) [1][5] allocations. This work 
addresses both: selection of an optimal set of policies for a 
multi-product, multi-echelon, multi-modal physical 

distribution system, in a non-stationary environment. The 
problem is highly multi-dimensional, even with a small 
system. Both state and control variables may be discrete 
valtied and end use demand is often characterized by a 
random variable. The cost surface in policy space for such 
systems tends to be quite discontinuous, with low penalty 
and high penalty regions separated by no more than a single 
transport unit. 

We start by performing a global search for a quasi-optimal 
policy using a genetic algorithm (GA) in a stationary 
environment characterized by a discrete event simulation. 
All GA results, not just the final optimum, are saved and 
used to develop a neural network plant-model. We then 
implement the adaptive critic based, dual heuristic 
programming (DHP) method to improve upon the quasi 
optimal policy found by the GA, and adapt it to a changing 
environment. DHP uses the Jacobian of the coupled policy- 
discrete event system to train a critic function. This critic 
function produces estimates of the partial derivatives of the 
long-term cost associated with a particular policy. These 
derivatives are then used to adjust the policy, reducing the 
long-term cost. As the state and control variables in our 
problem context are discrete valued, numerous 
approximations are used to implement differentiable 
functions needed by DHP. 

II. THE PROBLEM 

The task addressed by this paper is that of adjusting the 
control policies for the physical distribution system shown 
in Figure 1 so that it can continue to operate effectively in a 
stochastic, non-stationary environment. The underlying 
problem is usually presented as a cost minimization 
problem. The function to be minimized is total cost Cxot, 
which consists of the initial and final costs, plus the 
incremental costs, summed over a planning time horizon T 

CTo t = Clnit + Clncr + CFinal, w h e r e  (1) 
T 

C lncr = E (CH (t) + Cp (t) + C T (t) + C x (t)), where (2) 
t=0 

CH is holding cost, Cp is purchase cost, Cx transport cost, 
and Cx stockout penalties, and 

N K 

CH(t) = ~ ~ CH(t,n,k ), (3) 
n=l k=0 

summed over N nodes and K stocks, 
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CH(t, n, k) = PH (n, k) QH (t,n,k) if QH (t,n, k) _> 0, 
(4) 

0 else, where 
PH is holding price per QH unit quantity on hand; 

N K 

C p ( t ) = ~  ~ Cp(t,n,k) (5) 
n=l  k = 0  

N K 

Cp(t, n, k) = ~ ~ Pp (k)Qp (t, n, k) if Qp(t,n,k), 
.=1 t,=0 (6) 

0 else, 
where Pp(k) is purchase price per Qp unit quantity 
purchased; 
C T (t) = CTF (t) + CTO (t) + CTX (t), where (7) 
CTF is fixed transport cost (the cost of  owning the transport 
resource over the decision period), CTO is operating cost 
(only for transport units actually employed), and CTX is the 
penalty for transport shortfalls, and 

A M 

CTF(t)= ~ ~ CTF(t,a,m ), (8) 
a = 0  m = 0  

summed over A arcs and M modes of  transport, where 
CTF(t, a, m) = PTFTCap (t,a, m) if Tcap(t,a,m ) > 0, 

(9) 
0 else, 
where PTF is the price per Tc,p, the trait capacity of transport 
hired during the decision period; 

A M 

CTO (t) : ~ ~ CTO (t, a, m), where (10) 
a = 0  ra=O 

CTO (t, a, m) = PTo (TcAP (t, a, m) - TCA v (t, a, m)), 

if TCAe (t, a, m) > TCAV (t, a,m), (11) 

0 else, 
where Pro is the cost of  operating the units which are on the 
road (the difference between capacity Tc~p and capacity 
available Tc~v); 

A M 

CTX(t)= Z Z CTx(t'a,m), (12) 
a = 0  m = 0  

CTX (t, a, m) = PTX (Qs (t, a, m) - Tca v (t, a, m)), 

if Qs (t, a, m) >Tca v (t, a, m), (13) 

0 else, where 
Qs is the quantity provided by a supply node ns, which is 
related to QR the quantity requested by a demand node, rq 
Os(t ,a ,m) = OR (t, nd,k) 

if QH (t, n S , k) > OR (t, n a , k), (14) 

O H (t, ns, k) else, 
the quantity requested being driven by the two policies 
which control the reorder point, RP and the order up-to 
point UT, such that 

Q R (t, n d, k) = UT(t, n d, k) - 

(QH(t, nd,k) +Qo( t ,  na,k))  

if QH (t, n d , k) < RP(t, n a , k) - 

(QH (t, na,  k) + Qo(t, n d , k)), 

0 else, where 

(15) 
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Qo is the quantity already on order, but not delivered to the 
demand node. 

N K 

Cx(t)=)-~, ~ Cx(t ,n ,k) ,  (17) 
n=l k = 0  

N K 

Cx(t ,n ,k)=)-~  ~ PxQH(t ,n ,k) ,  
n=l k=0  

if QH(t,n,k) < 0, (18) 

0 else, 
where Px is the penalty for stockout. 

For small problems, minimizing the cost function is often 
done using mixed-integer linear programming (LP) 
techniques[9]. Our study instead uses a Genetic Algorithm 
as a tool for finding an initial policy set that will minimize 
costs, reserving the use of  the LP as a comparison tool. 
Because the fitness terrain is spiky, the search problem is 
difficult, and the GA solution is only quasi-optimal. In the 
specific case of  the problem used here, the cost of the LP- 
derived optimal starting policy set was only 28% that of the 
GA solution. The purpose of  the Genetic Algorithm is 
twofold. Not only does it search for a quasi-optimal 
starting point, but it also saves both the optimal and off- 
optimal data generated by the search process for use as a 
source of  input/output pairs to train the Plant Model NN 
(section III). 

The evaluation function for the GA is a discrete event 
simulation. Business constraints necessary to the operation 
of the simulation are handled by repairing the chromosome 
as it is being created. Other business rules are enforced by 
adjustment of the penalties associated with breaking them. 

III. METHODOLOGY 

Small scale artificially constrained examples of  our 
inventory and transportation problem can be solved exactly 
using Dynamic Programming [3][4]. Unfortunately, very 
few supply nodes, stock levels and transport arcs can be 
included before the classical approach becomes intractable 
due to the "curse of dimensionality". Over the last decade, a 
family of approximate dynamic programming techniques 
utilizing adaptive critics has been developed, that do not 
suffer from dimensional blow up. 

In Dynamic Programming one develops an optimal policy 
by comparing the costs of  all alternative actions at all 
accessible points in state space through time. This search is 
made efficient by limiting the options using the principle of  
optimality: that an optimal trajectory has the property that 
no matter how an intermediate point is reached, the rest of  
the trajectory must coincide with an optimal trajectory as 
calculated with the intermediate point as the starting point. 

Adaptive critic based approximate dynamic programming 
methods start with the assumption that the optimal policy 
can be written as a continuously differentiable function of  
the state variables and some number of  policy parameters. 
A critic fimction is then constructed that estimates the value 

i i i i i i  _ [ . . . . .  - . . . . . . . . . . . . . . . . . . .  



of the secondary utility function (cost to go) at any 
accessible point in state space. Under the assumption that 
the critic is accurately estimating the long term cost of the 
policy specified by the control function's parameter values, 
the gradient of the critic function can be used to adjust the 
policy parameters so as to arrive at a local optimum in the 
parameterized policy space. This process has been 
successfully operationalized using artificial neural networks 
for both the control and critic functions [2][10][11] and 
more recently using fuzzy systems[ 13]. 

The method is applied by formulating a "primary" utility 
function U(t) that embodies a control objective for a 
particular context in one or more measurable variables. A 
secondary utility function is then formed 

o 0  

J(t) = ~_,ykU(t+k), (19) 
k=0 

which embodies the desired control objective through time. 
This is Bellman's equation, and a useful identity that 
follows from it is 

J(t) = U(t) + yJ(t + 1). (20) 

A promising collection of approximation techniques based 
on estimating the function J(t) using this identity with 
neural networks as function approximators was proposed by 
Werbos [19][20]. As the gradient of the estimated J(t) is 
used to train or tune the control policy, some techniques use 
critics that estimate the derivatives of J(t) instead of the 
function value itself. 

In Dual Heuristic Programming (DHP) the critic's outputs 
are estimates of the derivatives of J(t). This method utilizes 
two distinct training loops, one for the control policy and 
one for the critic estimator. The control policy is adjusted to 
optimize the secondary utility function J(t) for the problem 
context. Since the controller outputs control actions u(t), a 
gradient based learning algorithm requires estimates of the 

derivatives OJ(t) for controller training. The critic 
OU i (t) 

function is trained based on the consistency of its estimates 
through time judged using the Bellman Recursion. For the 
DHP method, where the critic estimates the derivatives of 

J(t) with respect to the system states, i.e. 2 i ( t)= OJ(t) 
OR i ( t ) '  

we differentiate both sides of Bellman's Recursion 

J(t) = ~ (U(t) + yJ(t + 1)), (21) 
ORi(t) aRi(t) 

to get the identity used for critic training (in tensor notation) 

OU(t) aU(t) Ouj(t) 
2 i  ( t )  - - -  

aRi(t ) Ouj(t) aRi(t ) 
(22) 

ORk(t+l) ORk(t+l) Oum(t)] 
+Y)]'k(t+l) ~ + ~Um(t) ~ J "  
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To evaluate the right hand side of this equation we need a 
model of the system dynamics that includes all the terms 
from the Jacobian matrix of the coupled plant-controller 

aRj( t+l)  ORj(t+l) 
system, e.g. and (23) 

~3R i (t) Ou i (t) 

The control policy is updated using the chain rule and the 
system model to translate critic outputs into estimates of 

~J(t) i.e. 
au i (t) ' 

OJ(t) OU(t) OR i (t + 1 _ _  ) (24) 
Ouk(t)=Ouk(t)+Y~" 2i ( t+ l )  Ouk(t) 

The entire process can be characterized as a simultaneous 
optimization problem; gradient based optimization of the 
critic function estimator together with gradient based 
optimization of control policy parameters based on the J(t) 
estimates obtained from the critic. Different strategies have 
been utilized to get both these optimizations to converge. 
One possibility is to alternate between optimizing the critic 
estimator and optimization of the control policy. It is also 
possible to do both optimization processes simukaneously 
[8][12]. 

As this technique relies on gradient based optimization of 
J(t), it inherently suffers from the problem of 
(unsatisfactory) local optima. Global optimization of J(t) in 
general is subject to the "No Free Lunch Theorem". What 
approximate dynamic programming techniques offer is a 
tractable method for local hill climbing on the J(t) 
landscape of policy parameter space. Initialized at a random 
point in parameter space, these methods may be trapped by 
a local optimum at an unsatisfactory control law. One can 
attempt to avoid this by applying problem specific 
knowledge to the choice of initial controller parameters, in 
the hope of being near a satisfactorily high hill (or deep 
valley). In this paper we seek to avoid this problem by 
starting with a quasi-optimal initial policy that is already in 
some sense satisfactory. 

IV. IMPLEMENTATION 

To implement Dual Heuristic Programming to refine our 
quasi-optimal policies we need: 

a) a differentiable secondary utility function, 
b) a system model capable of  approximating the partial 

aRj (t + 1) ORj (t + 1) 
differential equations and , and 

OR i (t) Ou i (t) 
c) a method for expressing policies using a differentiable 

function of some set of policy parameters. 

Unfortunately, our current problem context does not come 
thus equipped. We are therefore required to make a number 
of approximations. 



A. Strategic Utility Function 
The strategic utility function U(t) defines the effectiveness 
of the controller. In many control situations this is a simple 
error function that measures how far the system is from a 
desired state. The current problem is a bit more complex. 
The utility function is set equal to the cost equation (1), and 
objective is to set policies so as to minimize the total cost of  
executing those policies. The utility fimction therefore 
describes the impact on costs of each aspect of  that 
execution. 

Complicating the situation further is the fact that policy 
execution is discontinuous - if, for example, an order is 
created, then purchase costs are incremented, if no order is 
created, then they are not. However, in order to apply the 
DHP methodology, we must have a differentiable J(t), and 
therefore need a differentiable U(t), and in order to do that, 
we must make the approximations described below. 

Rather than detail all elements of U(t), we will limit this 
presentation to the three cost equations (4, 6, and 13) 
presented above, the first example being holding cost, CH. 

The curve representing holding cost has a 'knee' at QH = 0, 
so the derivative is not continuous at that point: 

[PH if Q n > 0, (25) 
OCH/aQ. = { L0 else, 

so, for the purpose of  calculating derivatives only, we use 
the approximation: 

C n = P. Qusig(Qn), (26) 
(where sig(x) is the logistic sigmoid function 

sig(x) = 1/(1 + e x) ), which has the partial derivative 

/~CH/0 Q, = PH QH sig( QH)(I-sig(QH)). (27) 
In the case of purchase cost, the function itself is non- 
continuous (a purchase is only made when the associated 
control conditions are met), so when we calculate the partial 
derivatives we start from: 

Cp =Pp Qpsig((UT- (QH +Qo)X sig(RP-(Q H +Qo))~ (28) 

Similarly, the starting point for calculation of the 
derivatives of the transport shortfall penalty, is the 
approximation: 
C rx = PTX (LIT- (Q H + Q o )X sig(RP - (Q H + Q o ))- Tcav) (29) 

(sig(UT -(QH + Qo))- Tcav )' 

B. System Identification 
Creation of  a function which describes the responses of the 
plant to control and state inputs is a task called System 
Identification. In this study we train a simple MLP Neural 
Net as a model of the plant responses, then use the net as an 
ordered array of  derivatives. 

Training the Plant Model NN is a straightforward task, 
provided one has a suitable collection of I/O pairs. There 
are a number of  ways of  obtaining such pairs -- all involve 
providing a set of  inputs which span the search space, 
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processing the plant response, and collecting the resultant 
output. Two ways that were considered and rejected are 
Monte Carlo search, and complete enumeration. The first 
involves generating inputs at random, feeding them to the 
simulation, and saving the outputs. The second involves 
complete enumeration of  all possible inputs at some 
sampling interval. The first has the drawback that it might 
miss significant features of  the fitness landscape, the second 
that it will waste time on non-significant feature. 

The third method, used here, is to save the output generated 
by the GA during its search process. If  all output is saved, 
even that generated by less-than-optimal inputs, then the 
data set so obtained will not only span the search space, it 
will also provide a higher proportion of I/O pairs in the 
vicinity of good solutions. We believe this is the first time 
such an approach has been used. 

Two data sets were collected for this study. The training set 
totaled 90,000 records, and the test set contained 108,000 
records. The data were collected by running the GA with a 
population of  100 for the standard 1,000 generations, and 
saving the UO data every 97 generations. 

The plant model NN has 62 inputs (40 state variables, 18 
control variables, and 4 exogenous demand variables), a 
102-neuron hidden layer, and 40 state variable outputs. 
Forty-eight examples of the NN were trained for 20 full 
epochs. The resulting nets had a training set RMSE = 0.60 
and a test set RMSE = 0.62. (n=48, coefficient of  variance 
< 0.000 for both). This is not a sterling result, but Shannon 
[12] has shown that very poor predictive models can 
provide outputs that are good enough for an adaptive critic 
to use. 

Once the trained plant model NN is in place, it may be used 
to provide information on the partial derivatives 

~R(t + 1) and ~R(t + 1______~) by first passing the current state 
&(t) ~R(t) 

and control information Rt and ut forward through the NN 
and saving the slope of  the activation function at each node. 
Then, for each R, a 1 is backpropagated from the output 
node, with all other inputs at the output nodes held to zero. 
The derivative information will appear as outputs from the 
input nodes, R and u. 

C Differentiable Policy Representation 
If  we are to do gradient based search across a policy space, 
we have to be able to express those policies in such a way 
that gradient is meaningful. To do this, we are going to use 
another artificial neural network - the Action Net - since a 
NN can be thought of  as a differentiable function of  the 
combination of  its inputs and network weights. This will 
allow us to produce deltas from the initial policy variable 
set points, giving us outputs that are both meaningful and 
differentiable. 



V. RESULTS 

The experiments described below tested the neural control 
system against the quasi-optimal policies found by the GA. 

The GA policies were developed based on a fixed demand 
schedule, and the amounts demanded were based on the 
expected value of the demand for a specific stock at a 
specific node. Demand node 1, for example, required 2.0 
units of  stock 0 every timestep for 90 simulation days. 

The NN controller, which requires persistence of excitation 
to train well, was trained using Poisson-distributed demand 
with a stationary mean equal to the value used by the GA. 

The cost structure of  the simulation was designed to 
maintain pressure on both the GA evolutionary search and 
the NN learning process, by penalizing severely any failure 
to maintain stocks or transport resources at a level 
appropriate to the scenario. Costs reported, therefore, are 
not directly comparable to normal business operating costs. 

Both the fixed, GA-derived and the NN controller-adjusted 
policies were then tested using demand schedules that ran 
for 360 simulation days. There were three test data sets, 
labeled Baseline, Delta Demand (DD), and Increasing 
Average Demand (lAD). Baseline was the training data set, 
extended to 360 days. Delta Demand caused a 10% step 
increase in demand, which held for the full 360-day test 
period. Increasing Average Demand added a fixed 
increment to demand each timestep, sufficient to raise the 
demand at the 360 day point by 20% over the starting 
demand. All three demand schedules had a Poisson 
distribution laid on top of the underlying trend. 
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Figure 2. Summary of GA/NN Controller Comparisons. 
Performance comparisons of fixed quasi-optimal GA- 
derived policies (GA, dark columns), with adaptive 
Neural Control policies (NN, light columns) for three 
different demand schedules: stationary (Baseline), 
Increasing Average Demand (IAD), and Delta Demand 
(DD). All demand schedules exhibit Poisson-distributed 
noise. 

Note that the comparison to be made is not really between 
the NN controller and the GA-derived policies. Instead, it 
is between fixed policies (however arrived at) and learning 

policies (whatever their start point). The results (Figure 2) 
can be summarized by stating that, in this instance, the NN 
adaptive control solution was able to improve on the fixed 
policy set. The NN controller results were highly consistent 
- the coefficient of  variation (Std Dev/Avg) in all three test 
series was 0.000% (n=250). 

A. Baseline 

This set of  experiments (Figure 3) was designed to establish 
a reference behavior for the system. 

First, the GA-derived policies were used, without 
modification, to operate the simulation on a 360-day am. 
Then the NN controlled-simulation was am against the 
same demand schedule, using the adaptive critic techniques 
discussed above to correct the way the NN responded to 
changes in the environment. At the end of  the 360-day 
generalization test period the NN controller provided a 
savings of  64 percent over the GA-derived policies. 

1000 - 

800 - ~ -  - :~  pkJs N~N 

~ B0O 

15 s 
e.- 400 ~ ---- 

t / f . / "  
'~ 200 J' 

Dnl~ 

Figure 3. Average (n = 250) cumulative total cost of 
logistics system with fixed, GA-derived policies (dashed 
line) and with policies adjusted by the neural-controller 
(solid line). Baseline demand schedule. 

B. Increasing Average Demand 

The second series of  tests (Figure 4.) compared the 
effectiveness of  the (unchanging) GA-generated policies 
with those of  the NN controller when operating in a 
changing environment In this case, the change was a fixed 
increase in demand at every timestep throughout the period, 
sufficient to increase demand by 20% over the 360-day test 
period. Final cost reduction at the end of  the 360-day 
generalization period was 69%. 

3 4 5 3  
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Figure 4. Average (n = 250) cumulative total cost of 
logistics system with fixed, GA-derived policies (dashed 
line) and with policies adjusted by the neural-controller 
(solid line). Baseline demand schedule with increasing 
average demand. 

C. Delta Demand 

The final test series (Figure 5) compared the effectiveness 
of the (unchanging) GA-generated policies with those of the 
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Figure 5. Average (n = 250) cumulative total cost of 
logistics system with fixed, GA-derived policies (dashed 
line) and with policies adjusted by the neural-controller 
(solid line). Baseline demand schedule plus 10% step 
increase. 

NN controUer when operating in an environment where 
demand had been increased by a 10% step which persisted 
throughout all time periods. Final cost reduction at the end 
of the 360 day generalization period was 69%. 

VI. CONCLUSIONS 

We have demonstrated the possibility of optimal control of 
physical inventory systems in both stationary and non- 
stationary demand conditions, based on the combined 
application of evolutionary search and adaptive critic 
controller training. As part of this demonstration, we 
showed that adaptive critic based approximate dynamic 
programming techniques based on plant-controller 
Jacobeans can be used with systems characterized by 
discrete valued states and controls. In addition, it has 

proven feasible to use off-optimal data from the 
evolutionary search to provide system identification inputs 
for a plant model neural net. Improvements over a fixed, 
quasi-optimal policy found using a genetic algorithm, 
average 66% under conditions both of stationary and non- 
stationary demand in a high penalty environment. 
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