
Partial, Noisy and Qualitative Models for Adaptive Critic Based
Neurocontrol

Thaddeus T. Shannon,
Portland State University, Systems Science Ph.D. Program

tads@sysc.pdx.edu

Abstract
The roles of plant models in adaptive critic methods for
approximate dynamic programming are considered, with
primary focus given to the DHP methodology. In place of
complete system identification, partial, approximate, and
qualitative models of plant dynamics are considered. Such
models are found to be sufficient for successful controller
design. As classification is in general easier than
regression, the results for qualitative models suggest an
avenue for simplifying ongoing system identification in
adaptive control applications.

Introduction

A variety of Adaptive Critic Design techniques for training
neuro-controllers have appeared in the literature in recent
years [7], [8], [9], [12] and [13]. These techniques can be
divided into model based methods such as Dual Heuristic
Programming (DHP), and non-model based methods such
as Action Dependent Heuristic Dynamic Programming
(ADHDP) or Q-learning. While the DHP method has been
shown to be much more efficient for training neuro-
controllers and to produce superior designs to the non-
model based methods, its implementation relies on having
an explicit differentiable model. When such a model is not
available, the cost of developing one may well offset the
increased speed and accuracy of the model based methods.

An alternative to the less model intensive methods is to use
simplified models. The time and effort needed to develop a
model may be reduced either by only estimating a partial
model, by using a very rough estimation procedure, or by
only attempting to capture the qualitative behavior of the
system with the model. We seek to better define what is
required in a plant model for successful implementation of
DHP based controller training. The eventual aim of this
exercise is to compare the use of various approximate
models in the DHP method, with the use of other adaptive
critic methods. Towards this end, this paper outlines some
empirical results from our initial investigations.

The Role of Models in Approximate Dynamic
Programming

Adaptive critic methods of approximate dynamic
programming are all based upon using a "critic" network to
provide feedback for training a "controller" network. The
standard classification of adaptive critic methods is based
on the critic's inputs and outputs. In Heuristic Dynamic
Programming (HDP) the critic outputs estimates of the
secondary utility function's value. In Dual Heuristic
Programming (DHP) the critic outputs estimates of the
derivatives of the secondary utility function. In either case,
action dependent critics receive both the system states and
the controller's action (control) as inputs (thus ADHDP and
ADDHP).

The two networks used in these approaches to approximate
dynamic programming utilize two distinct training loops, a
controller training loop and a critic training loop [5]. The
controller training loop adapts a neural network to be an
approximately optimal controller. Specifically, the
controller network is trained to maximize some secondary
utility function J(t). The network outputs control actions
u(t), so a gradient based learning algorithm requires

estimates of the derivatives
)(

)(

tu

tJ

i∂
∂

 for network training.

The critic network is trained based on the consistency of its
estimates through time, the exact implicit relationship
being a function of the type of critic used and the structure
of the primary utility function.

An alternative way of distinguishing these methods is to
consider the role of system models in the training loops of
each method:

HDP: The critic estimates J(t) based on the system state
R(t). Critic training is based on the identity

),1()()(++= tJtUtJ γ

which requires no system model to check. Controller
training is based on finding the derivatives of J(t) with
respect to the control variables. In HDP we obtain these
derivatives through the chain rule

)(

)(

)(

)(

)(

)(
1 tu

tR

tR

tJ

tu

tJ

i

jn

j
ji ∂

∂

∂
∂

=
∂
∂ ∑ =

. We combine estimates of

the derivatives of J(t) with respect to the states , obtained
via backpropagation through the critic network, with the
derivatives of the states with respect to the controls using
the chain rule. This final set of derivatives comes from a
differentiable model, e.g. an explicit analytic model or a
neural model. Thus HDP uses a model for controller
training but not critic training.

ADHDP: (Q-learning) Training for the critic network is the
same as for HDP. Training for the controller is simplified
in that the control variables are inputs to the critic, thus
derivatives of J(t) with respect to the controls are obtained
directly from backpropagation through the critic. Thus
ADHDP uses no models in the training process.

DHP: Here the critic estimates the derivatives of J(t) with

respect to the system states, i.e.
)(

)(
)(

tR

tJ
t

i
i ∂

∂
=λ . The

identity used for critic training is (in tensor notation)

.
)(

)(

)(

)1(

)(

)1(
)1(

)(

)(

)(

)(

)(

)(
)(









∂
∂

∂
+∂

+
∂

+∂
++

∂

∂

∂
∂

+
∂
∂

=

tR

tu

tu

tR

tR

tR
t

tR

tu

tu

tU

tR

tU
t

i

m

m

k

i

k
k

i

j

ji
i

λ

λ

To evaluate the right hand side of this equation we need a
full model of the system dynamics. This includes all the
terms from the Jacobian matrix of the coupled plant-

controller system, e.g.
)(

)1(

tR

tR

i

j

∂

+∂
 and

)(

)1(

tu

tR

i

j

∂

+∂
.

Controller training is much like in HDP, except that the
controller training loop directly utilizes the critic outputs
along with the system model. So DHP uses models for
both critic and controller training.

ADDHP: This methods utilizes the DHP critic training
process, but gets the derivatives needed for controller
training directly from the critic's output. Therefore
ADDHP uses a model for critic training but not for
controller training.

One of the promising applications for adaptive critic
methodologies is in adaptive control contexts for non-
stationary plants. In these contexts there will necessarily be
a third training loop updating a differentiable model in an

ongoing plant identification process. The limitations of the
overall adaptation context may often come from our ability
to track the changing system with our model, rather than
from our ability to continuously solve the approximate
dynamic programming problem. Thus understanding the
effects of model error on controller training is important.

Benchmark Problems

Two benchmark problems are considered in our
preliminary work on the role of model quality in the DHP
training process: the inverted pendulum or pole-cart
problem, and a nonlinear multivariate discrete time plant
proposed by Narendra and Mukhopadhyay [6]. Both of
these plants have been extensively explored using adaptive
critic methodologies [11], [7].

The Pole-Cart System
The pole-cart problem is described by:

[]
,

)sgn(cossin

,
cos

3
4

sin

)sgn(sin
cos

2

12

2

mm

xmlu
x

mm

mll

ml
g

mm

xmlu

c

c

c

p

c

c

+
−−+

=













+
−






−






+













+
+−−

=

−

&&&&
&&

&

&&
&&

µθθθθ

θθµ
θ

µθθ
θθ

where θ is the angle of the pole's deflection from vertical,
x is the position of the cart on the track, m is the mass of
the pole, l is the length of the pole, g is the gravitational
constant, mc is the mass of the cart, and cµ and pµ are the

coefficients of friction of the cart on the track and the pole
on the cart. The objective is to minimize the pole's angle of
deflection from vertical (θ = 0), while keeping the cart as
close as possible to a pre-specified location on the track (x
= 0). In our example here we use the primary utility
function

())()(25.0)(22 txttU +−= θ .

Our baseline solution consists of a two layer controller
network with 6 inputs (position, velocity and acceleration
for both cart position and pole angle), 1 hidden layer
element, and 1 output layer element. Both processing
elements use hyperbolic tangent activation functions and
contain no bias term. The critic network uses the same 6
inputs, has 1 hidden layer element and 6 outputs. Again the
processing elements have no bias term, but while the
hidden element uses a hyperbolic tangent function, the
output elements are linear.

Training of the networks is conducted simultaneously using
a plain vanilla gradient descent method with moderate
sized learning rates and no momentum terms. In this case
training stimulus is provided by setting the pole at small
deflections away from vertical. The resulting controllers
vary in performance, but are uniformly able to both keep
the pole vertical and control the position of the cart on the
track. As was reported in [4], initial angles of over 50° can
be handled, and the cart made to track desired locations.
For prior treatments of this problem see [1], [10], [2], [3]
and [4].

The Narendra System
The Narendra system is defined by the state equations:

[]

[]).()](2sin[3)1(

,
)(1

)(
)](4sin[1)()1(

),(
)(1

)(2
)(

)(
)()(1

)()(
5.12

)](sin[)(9.0)1(

213

2
3

3
332

22
1

1
1

12
1

2
1

11

211

tutxtx

tx

tx
txtxtx

tu
tx

tx
tx

tu
tutx

tutx

txtxtx

+=+

+
++=+













+
+

+












+
+

+=+

Often the observable states are taken to be x1(t) and x2(t).
The plant is stable at the origin with constant control
values. Linearized around the origin, it is controllable,
observable and of minimum phase. The standard reference
signal for evaluating controller performance is:

.
20

2
sin75.0

30

2
sin75.0)(~

,
10

2
sin75.0

50

2
sin75.0)(~

2

1









+








=









+








=

tt
tx

tt
tx

ππ

ππ

Utilizing the reference signal, and recognizing the time
delays in the system, we use the primary utility function

() ()2
22

2
11)1(~)1()(~)()(+−++−= txtxtxtxtU .

Our basic controller has 5 inputs,)(1 tx ,)(2 tx ,)(3 tx ,

)1(~
1 +tx , and)2(~

2 +tx , 6 hidden layer elements and 2

outputs,)(1 tu and)(2 tu . The critic network has 4 inputs,

)(1 tx ,)(2 tx ,)(~
1 tx , and)(~

2 tx , 6 hidden layer elements,

and 2 outputs,
)(

)(

1 tx

tJ

∂
∂

 and
)(

)(

2 tx

tJ∂
. All the processing

elements in both networks use hyperbolic tangent
activation functions and have bias terms. Training of both

networks is performed simultaneously using the same
generic method employed for the pole-cart problem, the
only difference being the size of the learning rates and the
inclusion of a small momentum term in this case.

Baseline training is carried out using a random reference
signal generated by selecting a value from the interval [-
1.5, 1.5] via a uniform distribution every four time steps.
This procedure generates a random, stair-step signal that
provides persistent excitation for training. The
performance of the trained controller is evaluated after
40,000 training steps using the sinusoidal reference
trajectory given above. This evaluation is a generalization
test as the controller never sees a non-random reference
trajectory during the training process. Controllers trained
by this method vary in performance, with an average RMS
error of 0.30 and with the better controllers producing an
RMS error of about 0.23.

Partial Models

By a partial model we mean a model which only explains
some of the causal interactions between state variables. A
general hypothesis is that a differentiable model that
includes any subset of the state variables that would
constitute an observable system should be sufficient for
DHP training. Such a model should be useable for carrying
out the DHP process, even in those situations where
additional plant states might be observable, and even when
such additional state variables are used as inputs to the
controller and critic networks.

In the case of the pole-cart problem a variety of partial
models can be successfully used. Successful controller
training can be carried out with any single state or pair of
states left out of the model. In fact, any model that includes
at least one angle state variable will work. Note that these
statements are based on using all state variables as
controller and critic network inputs; the state variables are
only omitted from the model used in the training update
process.

For Narendra's problem, a model including only the first
and second state variables (still an observable system)
works as well as the full model. As with the pole-cart
problem, this test is again intermediate between using full
state information with a complete model, and using the
reduced model with a controller and critic receiving only
the first two states. Controller performance was almost
identical to that obtained using the full analytic model with
an average RMS error of 0.30.

Noisy Models

Noisy models are ubiquitous in real life. A model based on
regression analysis or any other statistical estimation
technique is approximate at every operating point. The
numerical values derived from such models may be
considered "noisy" values in that they are (hopefully) close
to the "true" values and if properly estimated, randomly
distributed around the true values. We can perform
controlled experiments to yield these kinds of
approximations by mixing noise with the "true" values
derived from a known analytic model. Two kinds of mixing
are possible, additive mixing, and multiplicative mixing.

Most of our experiments have been conducted with models
unbiased from the true analytic models used to simulate the
plants. The exception to this has been a few experiments
with uniformly biased models for the Narendra plant
mentioned below.

Results for the pole-cart problem show that relatively large
amounts of multiplicative noise or scaling can be
introduced into a model and still obtain good results from
the DHP method. On the other hand, relatively small
amounts of additive noise in the model can cause the DHP
method to fail. It should be remembered that both these
statements are based on introducing noise into analytic
models, hence the resulting noisy models are unbiased.
Obviously if a model was biased the situation is even
worse.

Results for Narendra's problem are similar, though in this
case there is a much greater tolerance to additive noise than
in the cart-pole example. Controller performance ranged
from 0.37 RMS error for unbiased scaling factors in the
interval (0, 2), to 0.53 RMS error for additive noise from
the interval (-1, 1). Additionally, even with the
incorporation of a consistent positive or negative bias away
from the true derivative values, DHP training is still
possible. This result for biased models is based on adding
non-zero mean, uniformly distributed noise to all the
analytic model values. Controller performance in these
cases was significantly degraded with RMS errors ranging
from 0.6 to 0.75 depending on the magnitude of the noise.
This range of controller performance is consistent with that
reported for HDP trained controllers [7].

For both benchmark problems, increasing the amount of
noise in the model can lead to instability in the training
process. One way of countering this problem is to slow
down training by reducing the learning rates used in the
weight update process. The combined effect of the noisy
model and the reduced learning rates is much slower
controller learning or adaptation. A positive side effect of

this is that the model noise in the slowed down learning
process appears to have an annealing affect, reducing the
likelihood of getting stuck in a local optimum far from a
desired optimum.

Qualitative Models

Based on the above observations, it is tempting to
investigate the use of greatly simplified qualitative models.
Such models only determine the sign of the derivatives at
each operating point, positive, negative or zero. Since our
current experiments are based on plants defined by analytic
equations we simply replace all positive derivatives with
the value 1 and all negative derivatives with the value -1.

Other authors have hypothesized that qualitative models
should be adequate for the pole-cart problem, as there is
only a single control variable and straightforward
dynamics. Our experience has been that training with such
models is generally successful, though usually slower than
training with exact models, and is capable of producing
controllers of the same quality as when training with exact
models.

Narendra's problem is more interesting in this context as it
is Multiple Input Multiple Output (MIMO) with significant
non-linearity and time delays and requires following an a
priori unknown reference trajectory. Significantly, the
same sort of qualitative model works rather well in this
case. Again training is somewhat slower than when using
an exact model. Controller performance on the test
trajectory averaged 0.4 RMS error, with a best of 0.32.

The size of the positive and negative values used will vary
the "gain" of the training process - thus linking this choice
to the selection of learning rates for the training process.
Larger values in a qualitative model might require smaller
learning rates and vice versa.

Another view of our simplified, qualitative model is that
we have constructed a classifier of the plant's qualitative
behavior. Our classifier tells us whether a particular
variable will increase, decrease or remain unchanged based
on the value of some other variable. Estimating such a
classifier as a practical matter should be simpler than
estimating a quantitative model for the plant. All one needs
to determine are the class boundaries in the state space. An
important question to explore is with what precision must
the class boundaries be known for the qualitative model to
be useful?

Experiments with Narendra's system suggest that only very
rough models are needed. To demonstrate this, we took the
above mentioned qualitative model in which all positive

values were replaced with positive one and all negative
values replaced with negative one, and additionally zeroed
out all derivatives with absolute value less than 0.1, thus
establishing a substantial "don't know" zone between
classes. Results with these models were comparable to
those using the exact class boundaries reported above, with
average RMS error on the test trajectory of 0.38, and a best
performance of 0.32. This shows that successful training is
possible using only qualitative information for those
regions of state space in which the plant's dynamics are
unambiguous.

Conclusions

Our experiences outlined above show that the models used
in DHP training can be far from perfect and still lead to
successful controller training. A variety of options exist for
simplifying system identification and modeling in the DHP
context. Partial models based on subsets of the available
state variables appear to be viable as long as the included
variables form an observable system.

Estimation of exact parameter values in system models
may not be as important as producing unbiased estimates.
In off-line training contexts, the "noise" in these estimated
models may even be beneficial in the controller training
process, due to its tendency to anneal the critic and
controller networks out of unsatisfactory local optima.

The final case of qualitative models is promising because
estimating a classifier is in general an easier problem than
full regression of a system model. Qualitative models that
simply determine whether a derivative takes on a positive,
negative or zero value at any operating point are equivalent
to pattern classifiers. Their estimation in an on-line context
should involve less computational overhead, and should be
easier to adapt to non-stationary plants undergoing
significant structural change. This could make qualitative
models valuable in real time on-line adaptation contexts.

These results suggest that simple or quick and dirty models
used in the DHP methodology may well be preferable to
using one of the other adaptive critic methods that requires
little or no model information for implementation. In
particular, a qualitative approach where the plant's
dynamics are clearly understood for some regions of state
space may in many cases be both efficient and effective.

Acknowledgements

I would like to thank PSU for continuing research support,
George Lendaris for all his time, guidance and mentoring,
and Annabel & Hal Sacks, Gretchen & Don Liuzzi for the
generous use of their kitchen tables.

References
[1] Barto, A.G., R.S. Sutton, & C.W. Anderson, "Neuronlike
Elements That Can Solve Difficult Learning Control Problems",
IEEE Transactions on Systems Man & Cybernetics, vol. 13, pp.
834 - 846.

[2] Lendaris, G. & C. Paintz, "Training Strategies for Critic and
Action Neural Nets in Dual Heuristic Programming Method", in
Proceedings of ICNN'97, Houston, IEEE, 1997, pp. 712 - 717.

[3] Lendaris, G., C. Paintz, & T. Shannon, "More on Training
Strategies for Critic and Action Neural Nets in Dual Heuristic
Programming Methodology", in Proceedings of IEEE-SMC'97,
Orlando, IEEE, 1997.

[4] Lendaris, G., & T. Shannon, "Application Considerations for
the DHP Methodology", in Proceedings IJCNN'98, Anchorage,
IEEE, 1998, pp. 1013-1018.

[5] Lendaris, G., T.T. Shannon & A. Rustan, " A Comparison of
Model Based Adaptive Critic Training Algorithms for Neuro-
control", in Proceedings of IJCNN'99, Washington D.C., IEEE,
1999.

[6] Narendra, K. & S. Mukhopadhyay, "Adaptive Control of
Nonlinear Multivariable Systems Using Neural Networks",
Neural Networks, vol. 7, #5, 1994, pp. 737-752.

[7] Prokhorov, D., Adaptive Critic Designs and their
Application, Ph.D. Dissertation, Department of Electrical
Engineering, Texas Tech University, 1997.

[8] Prokhorov, D. & D. Wunsch, "Adaptive Critic Designs",
IEEE Transactions On Neural Networks, vol.8(5), 1997, pp. 997-
1007.

[9] Prokhorov, D., R. Santiago & D. Wunsch, "Adaptive Critic
Designs: A Case Study for Neurocontrol", Neural Networks, vol.
8 (9), pp. 1367 - 1372.

[10] Santiago, R. & P.J. Werbos, "New Progress Towards Truly
Brain-Like Control", Proceedings of WCNN'94, San Diego, CA,
1994, pp. 27-33.

[11] Visnevski, N. & D. Prokhorov, "Control of a Nonlinear
Multivariable System with Adaptive Critic Designs", C. Dagli, et
al., eds., Intelligent Engineering Systems Through Artificial
Neural Networks: Proceedings of ANNIE'96, vol. 6, ASME
Press, 1996, pp. .

[12] Werbos, P.J., "A Menu of Designs for Reinforcement
Learning Over Time", in Miller, W.T., R.S. Sutton, & P.J.
Werbos eds., Neural Networks for Control, MIT Press,
Cambridge, MA, 1990, pp. 67 - 95.

[13] Werbos, P.J., "Approximate Dynamic Programming for
Real-Time Control and Neural Modeling", in D.A. White & D.A.
Sofge eds., Handbook of Intelligent Control: Neural, Fuzzy and
Adaptive Approaches, Van Nostrand Reinhold, New York, 1992,
pp. 493 - 525.

