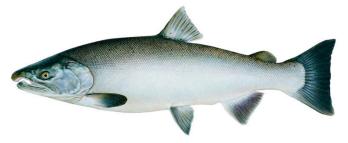
Siltcoos Lake, Oregon: a limnological case study

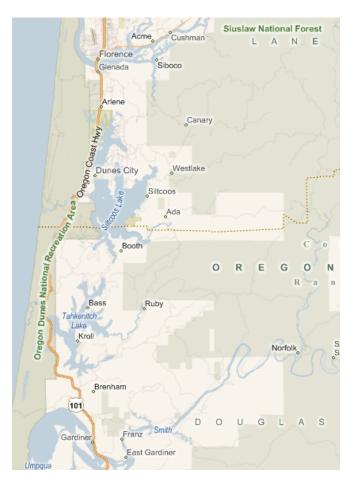
Rich Miller, Center for Lakes and Reservoirs

ESR 475/575 October 21, 2009

Portland State

Outline


- Siltcoos Lake background
 - Origin and natural conditions
 - Anthropogenic influences
- Water quality problems and management
 - Designated beneficial uses
 - Water quality impairments
- 2008-2009 limnological studies
 - Bathymetry
 - Aquatic macrophytes
 - Water quality/nutrient loading


Origin and natural conditions

- Submersed valley dammed by sand dunes
- ~1300 ha, ? m deep

Current 6m max depth + wind = no thermal stratification

- Water quality?
- Coho, cutthroat trout

Anthropogenic influences

- Water level control
 - I.P. dam (1-2.4 MASL)
- Land use (inc.nutrient loading)
 - Forestry
 - Agriculture (channelization)
 - Residential (septics, etc)
- Introduced flora and fauna
 - Warmwater fish ~1920
 - *Egeria densa <* 1947

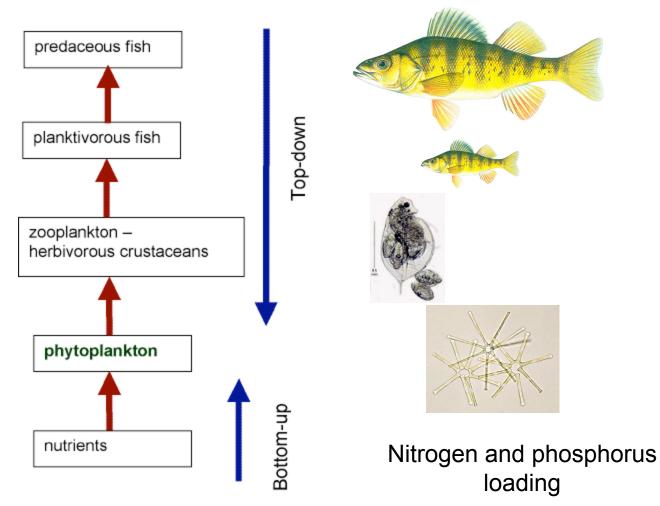
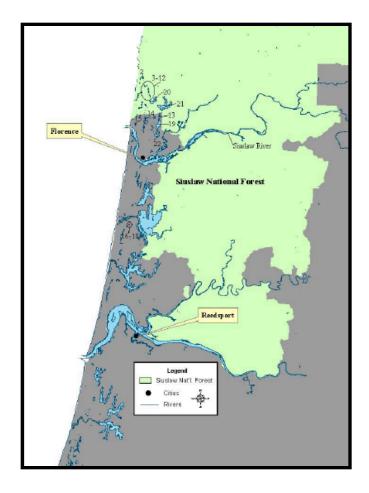


Photo: Tenmile Lakes Basin Partnership



Top down / bottom up?

Boats as vectors for aquatic weeds

Siuslaw NF Lakes	2003	2004
Percent of boat ramp equipped lakes with invasive weeds	100	100
Percent of non-boat ramp equipped lakes with invasive weeds	24	27
Mean number of invasive weeds in ramp lakes	2	2
Mean number of invasive weeds in no- ramp lakes	<1	<1

Portland State

Sytsma and Pfauth 2005

Designated beneficial uses from OAR's

- Domestic water supply
- Water contact recreation
- Fishing
- Boating
- Salmon and trout rearing and migration

Beneficial Uses	Estuaries & Adjacent Marine Waters	Fresh Waters
Public Domestic Water Supply ¹		Х
Private Domestic Water Supply ¹		Х
Industrial Water Supply	Х	Х
Irrigation		Х
Livestock Watering		Х
Fish & Aquatic Life ²	X	Х
Wildlife & Hunting	Х	х
Fishing	Х	Х
Boating	х	Х
Water Contact Recreation	х	Х
Aesthetic Quality	Х	Х
Hydro Power		Х
	Х	

Portland State

Table produced November, 2003

Water quality impairments

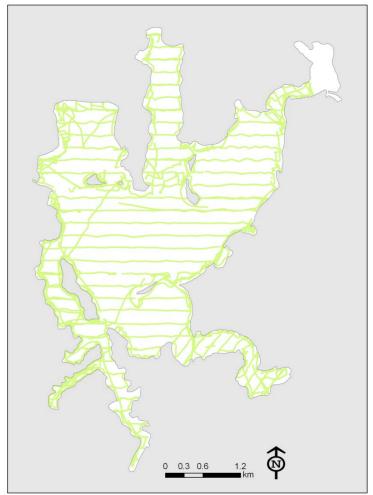
- CWA Section 305(b) requires a report from DEQ on the overall condition of Oregon's waters.
- CWA Section 303(d) requires identifying waters that do not meet water quality standards where a Total Maximum Daily Load (TMDL*) needs to be developed.

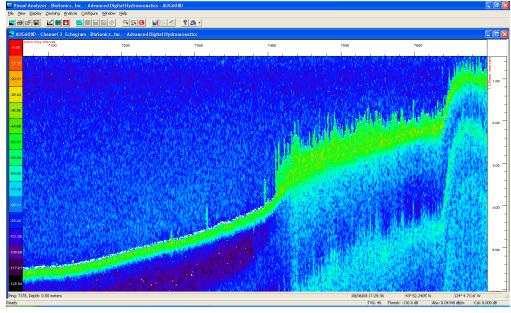
Watershed 4th Field HUC Record ID	Name LLID River Mile	Parameter	Season	Criteria	Beneficial Uses	Status		[Data Source] Supporting Data
SILTCOOS 17100207 2773	Siltcoos Lake / Siltcoos Lake 1241131438816 / 1240882438766 0 to 2.3	Aquatic Weeds Or Algae	Undefined	development of fungi or other growths having		303(d)	1998 Added to database	Previous Data: Atlas of Oregon Lakes (PSU, 1985): Extensive growth of Elodea densa, a non-native aquatic plant and a "B" designated weed (ODA), dominates the macrophyte assemblage and interferes with beneficial uses.

More problems

- Frequent potentially toxigenic cyanobacteria blooms
- Health advisory if > 100,000 cells/ ml; unless *Microcystis* or *Planktothrix* (>40,000 cells/ml)
- Advisories issued for 54 days during the fall of 2008 and 93 days during the fall/winter of 2009
- 125 Dunes City households draw water directly from the lake

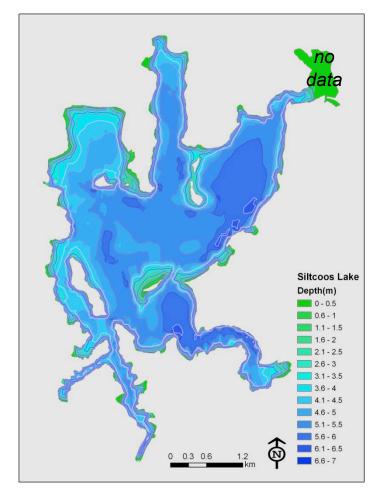
Anabaena sp. bloom. Photo by Stephen Hager


Portland State

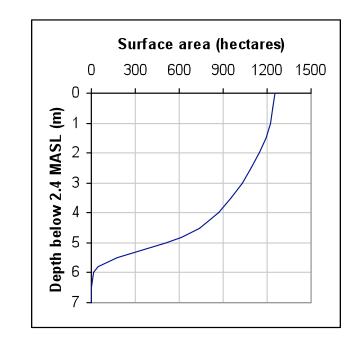

2008-2009 research by CLR

- Funded by DEQ/EPA 319 grant program
- Create bathymetric map
- Determine the coverage, composition, and depth distribution of macrophytes
- Document water quality conditions
- Document nutrient loading from tributaries Data can be used by DEQ for TMDL purposes

Hydroacoustics



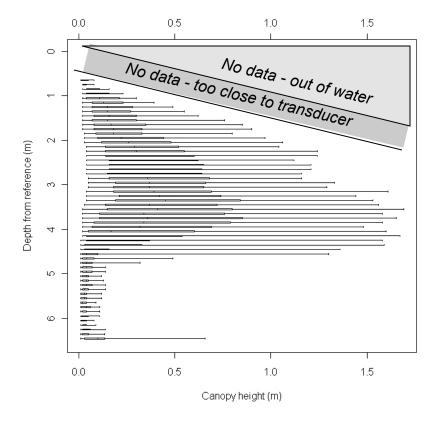
- Transects spaced ~ 200m apart
- 420 kHz transducer and differential GPS
- Data processed to:
 - bottom depth
 - macrophyte canopy height

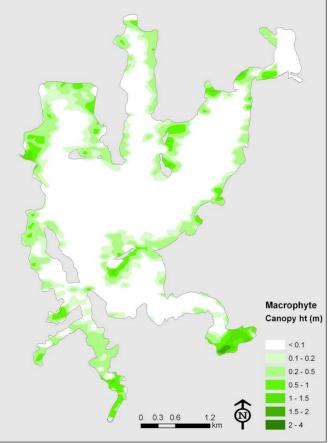


Bathymetry

Essential data for hydrologic and macrophyte modeling

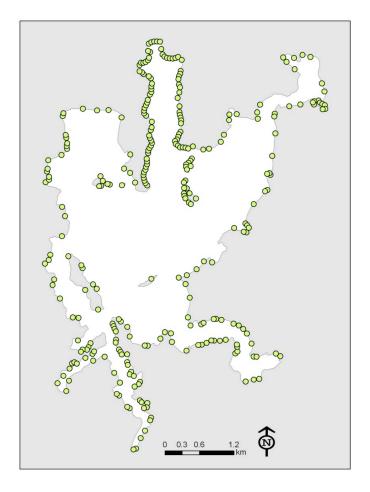
- Interpolated surface from acoustic data
- Maximum depth of 6.5m at WSEL of 2.4m
- Volume = 53.9 cubic hectometers
- Surface area = 1254 hectares




Macrophyte coverage, composition, and distribution

- Methods
 - Hydroacoustic data
 - Grab samples
- Results can be used for
 - Define extent of problem
 - Baseline for long-term monitoring
 - Modeling effects of management scenarios

Macrophyte canopy height from acoustic data



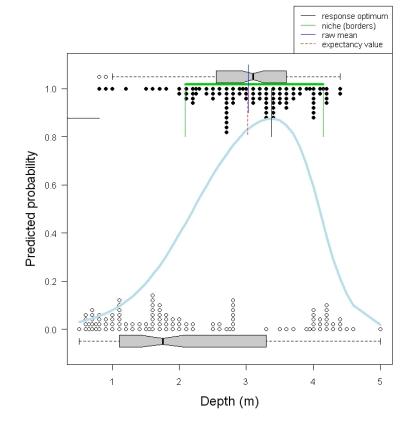
Maximum depth of colonization $\sim 4.8m$

Species composition from grab samples

- 300 random points evenly distributed from 0.5 to 5 m
- Presence/absence and wet weight by species
- •Macrophytes present at 80% of sites between 0.5-5m

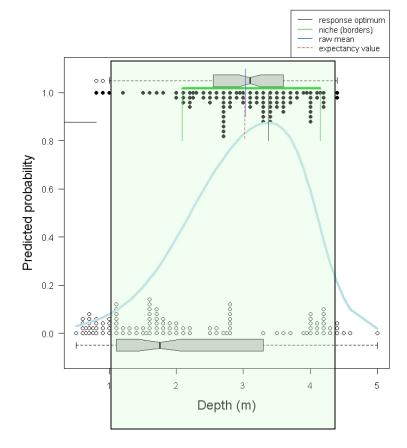
Macrophyte species (n=26, 4NN)

ITIS code	Scientific name	Common names	Native status	Uncertain taxonomy?
18370	Brasenia schreberi	water shield	Native	no
32057	Callitriche hermaphroditica	autumn water starwort	Native	no
18403	Ceratophyllum demersum	coontail, common hornwort	Native	no
38972	Egeria densa	Brazilian elodea	Non-native	no
40010	Eleocharis sp.	spikerush	Unknown	no
38937	Elodea canadensis	common waterweed	Native	no
38081	Megalodonta beckii	Beck's watermarigold	Native	no
503904	Myriophyllum aquaticum	parrotfeather milfoil	Non-native	no
27044	Myriophyllum heterophyllum	Variable leaf water milfoil	Non-native	no
38996	Najas flexilis	slender water nymph	Native	no
9467	Nitella sp.	brittlewort	Unknown	no
517578	Nuphar lutea polysepala	yellow pond lilly, splatterdock	Native	no
39021	Potamogeton amplifolius	bigleaf pondweed	Native	no
39019	Potamogeton foliosus	leafy pondweed	Native	yes
39008	Potamogeton natans	floating leaf pondweed	Native	no
39042	Potamogeton praelongus	white stemmed pondweed	Native	no
39017	Potamogeton pusillus	small pondweed	Native	yes
504558	Potamogeton richardsonii	Richardson's pondweed	Native	no
504559	Potamogeton robbinsii	fern-leaf pondweed	Native	no
39005	Potamogeton sp.	unknown pondweed	Unknown	no
39055	Potamogeton zosteriformis	flatstem pondweed	Native	no
521154	Scirpus tabernaemontani	softstem bulrush	Native	yes
40238	Scirpus subterminalis	water bulrush	Native	no
757504	Stuckenia pectinata	sago pondweed	Native	no
34456	Utricularia macrorhiza	U. vulgaris, bladderwort	Native	no
38951	Vallisneria americana	tape grass, wild celery	Non-native	no


Species distribution factors

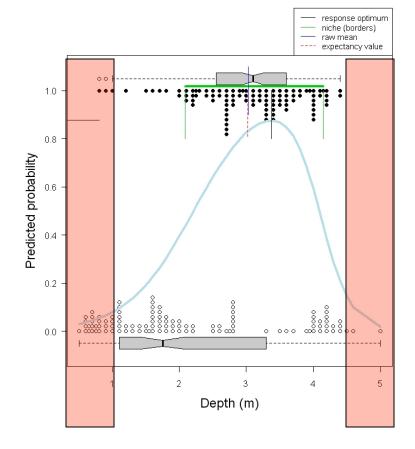
- Within a lake
 - Depth/light
 - Sediment quality
 - Competition between species
 - Wave energy

Egeria densa. Photo by Toni Pennington


Presence/absence probability model based on depth

$$\mu = \frac{1}{1 + \exp(a + bx)} \cdot \frac{1}{1 + \exp(c - dx)}$$

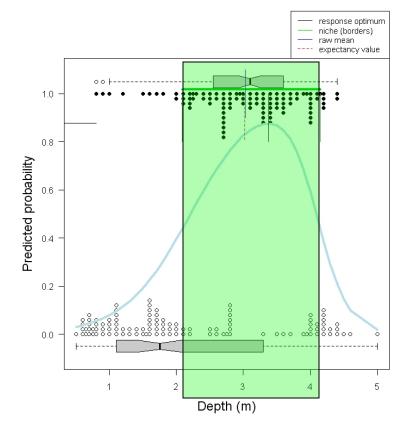
- Present w/> 5% prob.
- Absent
- Depth of max. prob.
- Niche (1/2 max. prob.)


Presence/absence probability model

$$\mu = \frac{1}{1 + \exp(a + bx)} \cdot \frac{1}{1 + \exp(c - dx)}$$

- Present w/> 5% prob.
- Absent
- Depth of max. prob.
- Niche (1/2 max. prob.)

Presence/absence probability model

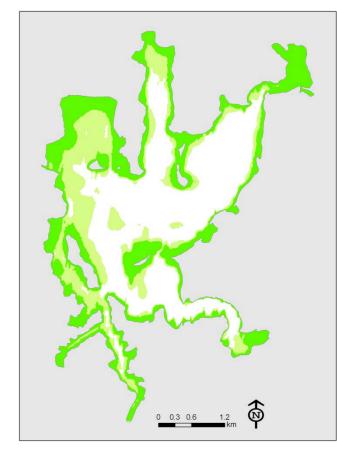


$$\mu = \frac{1}{1 + \exp(a + bx)} \cdot \frac{1}{1 + \exp(c - dx)}$$

h

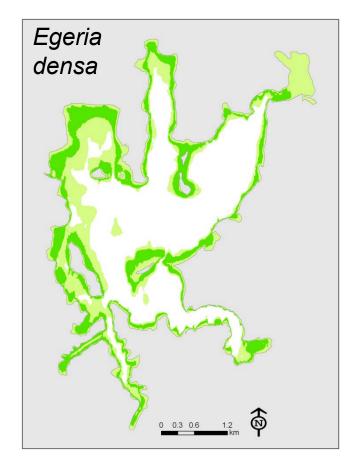
- Present w/> 5% prob.
- Absent
- Depth of max. prob.
- Niche (1/2 max. prob.)

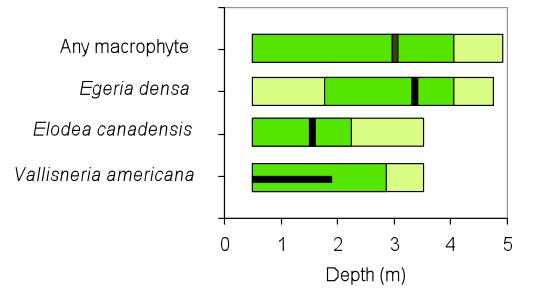
Presence/absence probability model



$$\mu = \frac{1}{1 + \exp(a + bx)} \cdot \frac{1}{1 + \exp(c - dx)}$$

- Present w/> 5% prob.
- Absent
- Depth of max. prob.
- Niche (1/2 max. prob.)


Portland State

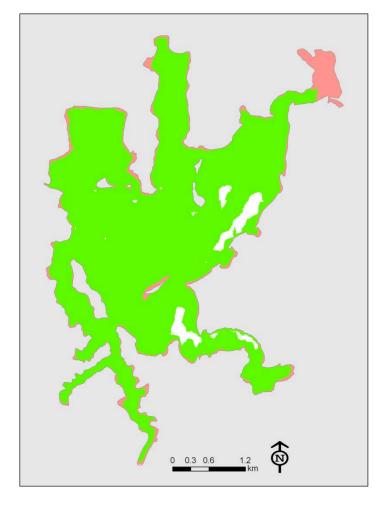

Macrophyte presence/absence model applied to the bathymetic map

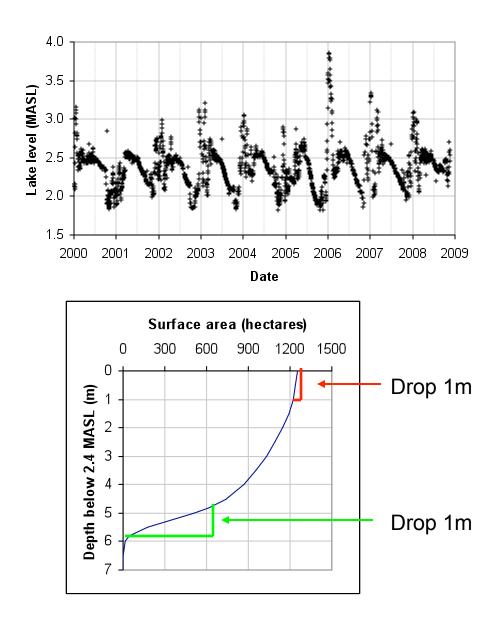
- Predicts 51% of the surface area has > 5% probability of macrophyte coverage
- Max. (90%) probability of occurrence at 3.0 m
- >5% probability from 0.5-4.9 m
- <5% probability > 4.9m
- Niche from 0.5-4.1 m

Distribution of individual species

Portland State

Myriophyllum heterophyllum not present at enough random sites to create a depth distribution model



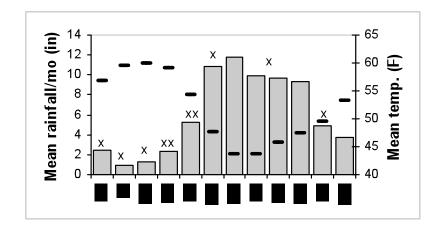

How is this information useful?

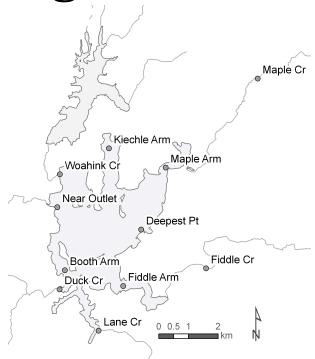
- Baseline data is necessary for tracking natural and managed changes
- Simulation of management scenarios

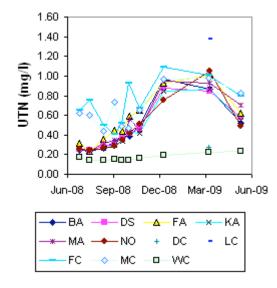
Δ Water level

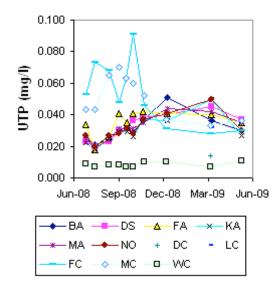
Aquatic weed management options

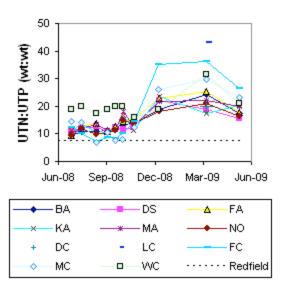
- Herbicides
- Biomanipulation
- Harvest
- Bottom barriers
- Dredging
- Water levels
- Water clarity

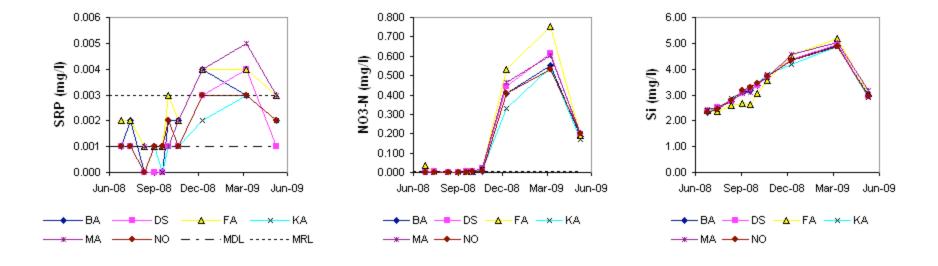

Unintended consequences of macrophyte management

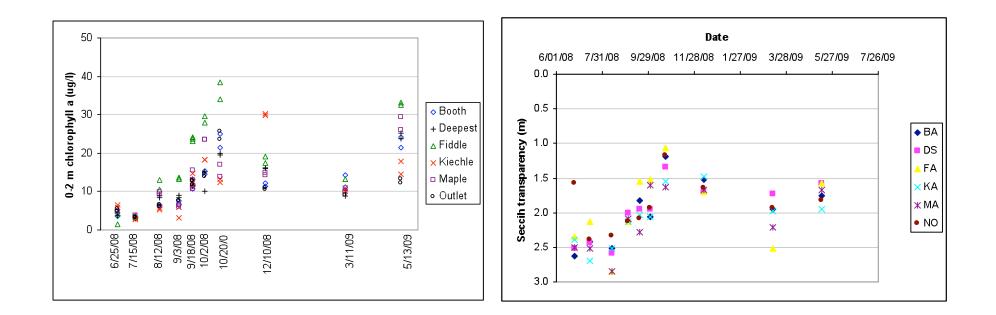

- Less macrophytes leads to more algae?
- Habitat loss for fish and aquatic invertebrates


Water quality monitoring

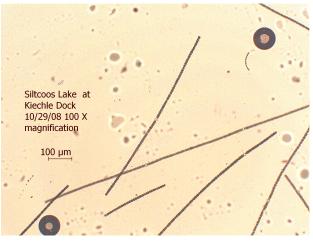

- Six lake, five stream sites
- Ten sampling events
- Nutrients, chlorophyll, phytoplankton, zooplankton, clarity, temperature, oxygen, pH, etc.




Total phosphorus and nitrogen



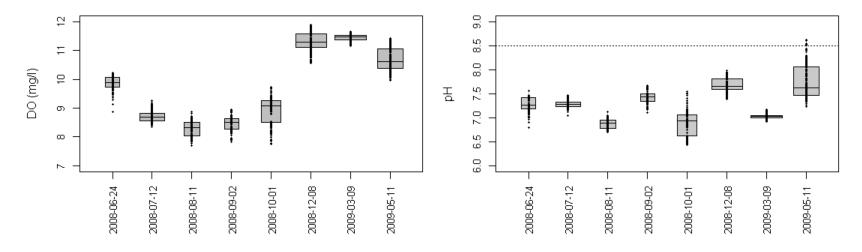
Dissolved nutrients



Chlorophyll and Secchi trans.

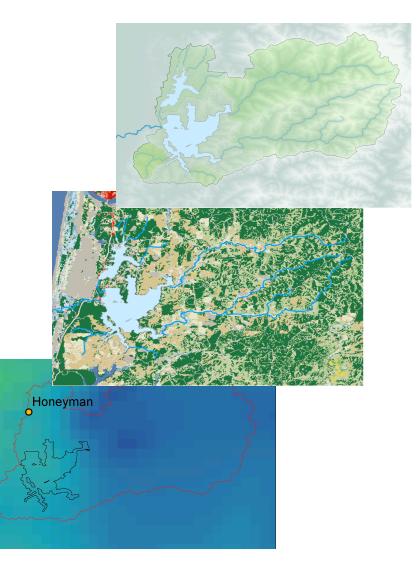
Phytoplankton and zooplankton

- Cyanobacteria present in every sample and dominant in most samples
 - Several Anabaena sp.
 - Gloeotrichia echi
 - Aphanizomenon flos aquae
- Some nitrogen fixers
- Herbivorous zooplankton (*Daphnia sp.* and copepods)



Metabolic balance and diel shifts

Photosynthesis $6CO_2 + 12H_2O + light \rightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$


Respiration $C_6H_{12}O_6+6O_2 \rightarrow 6CO_2+6H_2O+energy$

Hydrologic model

- GIS based with slope, soil type, and land use as factors
- Driven by daily precipitation and temperature
- "Back of the envelope" (no gaged watersheds for model verification)

