notes/mechanistic_models.htm

Mechanistic Models

1. Three fundamentally different models

There are three fundamentally different underlying model for phytoplankton physiology:

  short description example
optimization optimization of cellular composition and efficiency leading to maximum growth rate or least loss Shuter 1979
survival ensuring survival through rough times by using storage or other non-optimal, high cost strategies Parnas and Cohen 1976
Multiple
Annoyance
Hypothesis
multiple low levels of toxic side products limit the growth through interference with metabolism  

These models represent very different approaches to understanding how phytoplankton cell structure is linked to the processes of regulation and growth in algae. These are not "meta-models" in the sense of Burmaster (****). Each model requires its own set of parameters and experimental approaches. This short paper intends to ellucidate the differences between these three approaches and explore the potential for bringing these together.

 

2. Parameters and modeling approaches

Optimization

measuring processes and components such as carbon fixation and chlorophyll or photosynthetic units

addresses molecular efficiency of each component (mol C fixed per mol C per time)

allocation of components within the cell that leads to maximum growth rate under those conditions

classical example is the sun shade adaptation

models based on minimum cost or maximum production in a competitive environment

 

Survival

diversity within species, phenotypic plasticity under different conditions

example diatom size differences between generations

differences in gene structure

good models from vascular plant literature

individual based models such as Rueter -

based on genetic algorithm

 

MAH

low levels of toxins or supra-optimal conditions

examples from trace metals

Zinc squeeze from Sunda

measure side products at very low levels

balance of secondary metabolism

 

 

3. Phenomenon that could be addressed

There is a list of phenomena that cant be adequately explained by any of the three models. These phenomenon are usually explained by invoking larger context; Godel's theorem. When the larger context is invoked however, the argument becomes more circular. Maybe these models could be used together to explain the response without invoking the larger context.

Oscillation

why would metabolism oscillate

how can the over-capacity be explained in the context of optimal models

examples - the metabolic flux models for enzymes - see Bi335 website

 

Crashes

peroxidation cascade (Sakamoto et al ---)

imbalanced metabolism

 

Viruses

lower growth rate allows higher density

 

 

John Rueter
February 19, 2001