biological renewable resources such as trees, fish, grass that grow to replace what is used
growth rate is (to a rough approximation) dependent on the size of the population relative to the resources needed for that population to grow
soil moisture and nutrients for trees or grass
food for fish
change in the population during a growth phase would be (roughly) equal to the number_of_individuals * growth_rate
where growth rate is the number of new individuals per individual in the population per time
demographic transition - human growth rates are around 0% to 2% per year
animal populations grow much faster
question for management is - how many trees or fish can we harvest and still keep the population productive?
"Exponential" growth -
|
population at time 2 = 110 + .1*110 = 121
population(3) = population(2) + .1 * population(2)
population(4) = population(3) + .1 * population(3)
and continue iterating
short time step or small growth rate
verbal
each week the population of rats increases by 0.02
initial population is 100 rats
the population over the first 40 weeks more than doubles (up to about 220 rats)
graphical (data from the rat counter)
Table
time rats 0 100 1 102 2 104.04
Algebra
2 different equations to describe this
iterative -
fit the curve to an equation
show this in Excel
time, rats, delta, growth_rate
Simulation model in STELLA (build in class)
stocks = rats
flow = new rats
constant = growth_rate
positive feedback
value of these simulations in Excel or STELLA - sensitivity to time step (delta) or growth_rate
1. description of reproduction
Guinea pigs on an island
rich in detail with attention to individuals and population levels
may not be explicit enough
geneology - diagram
2. chart of population growth
from this data -
0, 2
4, 2
8, 6
12, 6
16, 18
20, 18
24, 54Excel example
generate several versions in class
3. algebraic representation
fit the data to an exponential equation
doesn't fit the observations as well
4. generate a similar population growth with a simulation
a. iterative, time steps, each row in a spreadsheet
pop(at time 2) = population(at time 1) + new rodents
new rodents = (population(at time 1)/2) * 4 per litter
create spreadsheet and chart
can use this approach to examine sources of variability
for example if there is only 3 per litter or as many as 5 per litter
b. "systems" version
build model in STELLA, simulate with time
need to translate discrete time step numbers to growth rates per month
4 per every 8 months = .5 per month
this is not exaclty true because of compounding in exponential functions
5. individual based models
keep track or simulate data on each individual or space in the territory