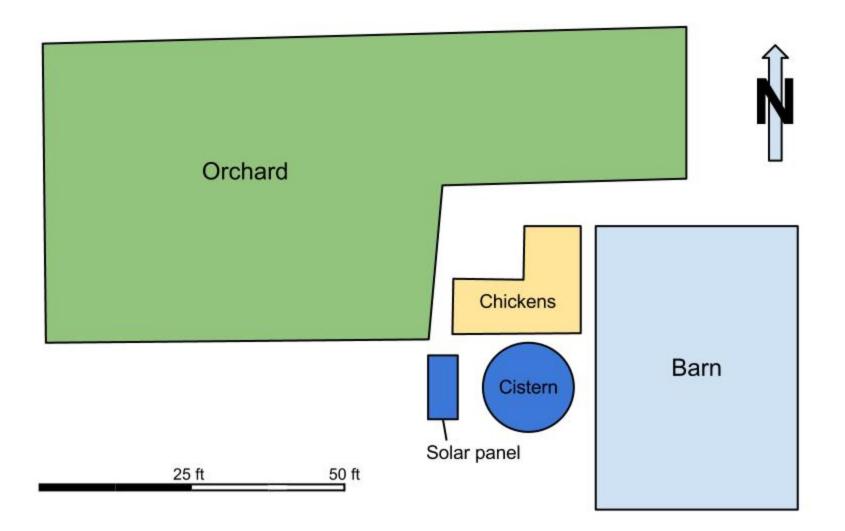
Water Catchment at a Small Farm


Ben Mills Chris Pate Kelly Raynor

Zenger farm

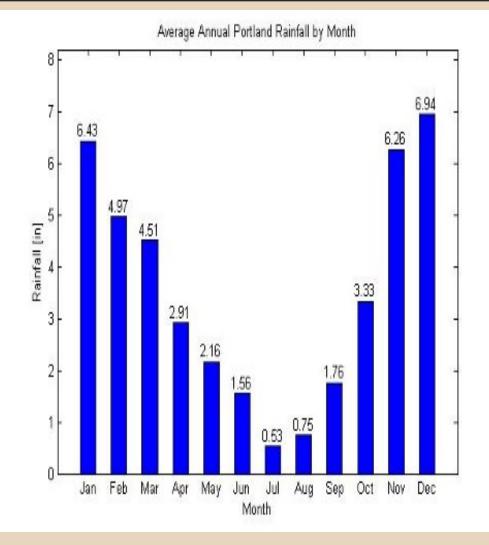
Rain Collection

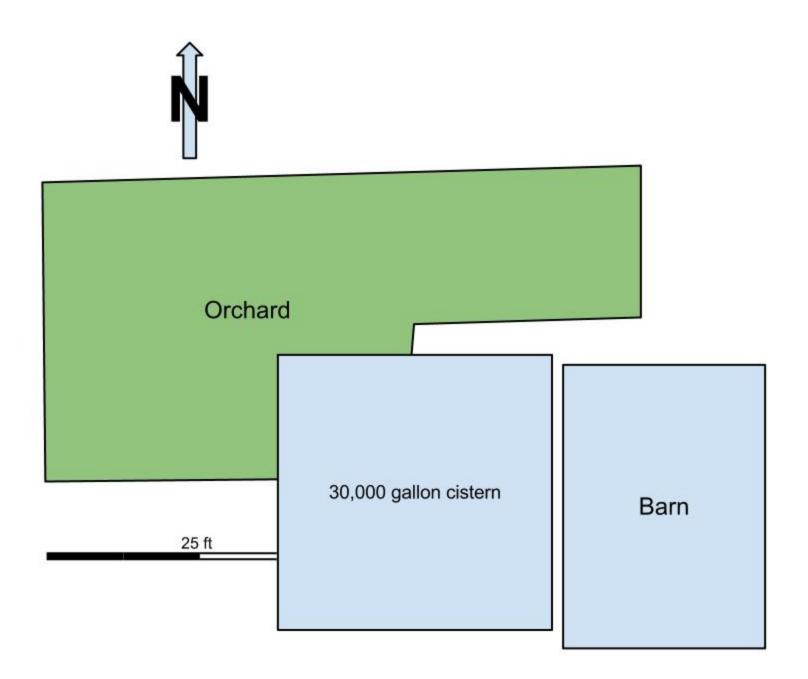
Apples

Plums Pears

Cherries

Blueberries


Irrigation needs


- Irrigation needs determined by assuming that less than half of 4,200 square foot area would need to be watered
- Four hundred square feet of each of the 5 crops
- Net irrigation needs from Oregon Extension Service, assuming adequate water for 7 out of 10 years

Month	Gallons needed	
April	320	
May	3892	
June	7596	
July	11904	
August	9732	
September	4552	
October	352	

Plenty of water... when we don't need it

- We are limited by our annual storage capacity, not rainfall
- To be completely independent of city water, we would need a 30,000 gallon cistern

Storage options

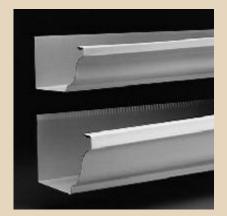
Tank size	Gallons used	Gallons deficit
10,000	15,634	22,714
15,000	20,634	17,714
30,000	29,638	0

The Numbers

The Load 50W pump using a 12V battery 50W/12V= 4.16 Amps 4.16 Amps x 2.4 hours of operation = 10Ah 50W x 2.4 hours= 120 Wh Water Need (Peak Demand) 384 gallons/day total 80 plants with 2gph drip emitters= 160gph, or 2.66 gpm 384 gpd/160 gph = 2.4 hours/dayEfficiencies 120 Wh/(3.7 PSH x .90(Panel) x .85(Battery) x .98(Wiring)) = 43.3 Wp**Battery Capacity** 120 Wh x 3 days of autonomy, with 50% DOD= 60Ah

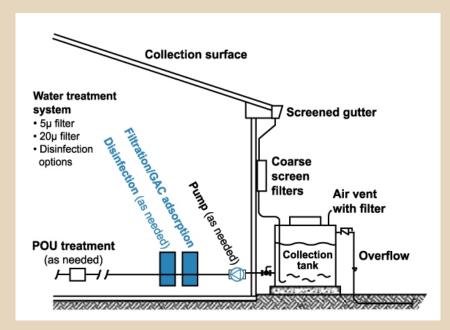
Materials: Solar

- One 100 Watt 100W W Monocrystalline Photovoltaic PV Solar Panel \$190
- Universal One Panel Tilt Mount Kit \$96
- 12 Gauge Primary Wires \$25
- 12v 100 Ah marine battery \$267
- Watering Timer for 12V Battery Operation \$99.50
- 12v pump, battery, pressure switch, solar charge regulator, and a pressure accumulator \$785 = \$1462.50 for solar array, connection, and energy storage and timer



Materials: Catchment and Irrigation

- 50'- ³/₄" schedule 40 PVC- \$12.50
- 400'- 1/2" drip irrigation pipe- \$120
- 20 psi pressure regulator ³/₄"- \$20
- ³/₄" backflow prevention check valve- \$10
- 90 degree long-sweep elbow ³/₄"- \$2
- 80- 2gph drip emitters- \$25
- 10,000 gallon cistern- \$5,191.50
- Gutters and downspout- \$130
- \$5,511 total for catchment and irrigation



Economic cost and benefit

- \$6973.50 total for entire system
- Total savings for water volume: \$64.50/year (\$3.083 /100 cubic feet/748 gallons)
- System will pay for itself after only 109 years
- Is it worth it?

Energy Costs

- It takes 3.4 megajoules of energy to produce a 1-liter plastic bottle
- One megajoule = 2,780 watts
- Our plastic cistern holds 37,854 liters
- Roughly 128,704 megajoules or 357,796,008 watts to manufacture

References

Oregon Crop Water Use and Irrigation Requirements: http://extension.oregonstate.edu/catalog/pdf/em/em8530.pdf Average Rainfall Chart: http://www.bryankappa.com/rainwater.html Plastic production energy costs: http://www.pacinst.org/topics/water_and_sustainability/bottled_water/bottled_water_and_energy.html Portland Water Bureau: http://www.portlandonline.com/water/ SunPumps: http://sunpumps.com/ System diagram: http://www.ehow.com/how_5098975_convert-megajoules-kilowatts.html