PSU ORCHARD IRRIGATION

Jessica Beutler, Steven Teegardin John Stevenson, Katie Ross, Heather Wilson

INTRODUCTION

- Purpose:
 - To make an irrigation system that is powered by solar energy
- Scale:
 - 1/8 of an acre
 - Use for dry season only- June through September (~18 weeks)
 - 30 fruit trees of various species
- Plan:
 - Use a rainwater catchment system with a solenoid valve to pump rainwater through piped channels to irrigate fruit trees.
 - Channels are half pipe PVC
 - Solenoid valve set on timer, powered by a solar panel.
 - System must be removable per ODOT requirements

WELCOME TO THE PSU ORCHARD!

AERIAL VIEW OF THE ORCHARD

IRRIGATION **M**AP

SLOPE DIAGRAM

CALCULATIONS

- Water Needs: During dry season (June-September) each tree needs about 4-6 gallons of water per week.
 - 6 gallons x 30 trees x 18 weeks = 3240 gallons of water
- Water catchment system:
 - Maximum structure size feasible: 7' by 7' (49 square feet)
 - I inch rainfall per square foot = <u>.623 gallons</u>
 - Average rainfall in Portland (October May): 31.38 inches
 - Potential rain capture from 1 square foot (October May): 19.54 gallons
 - Projected rain capture during non-summer months: 957.46 gallons
 - Average rainfall in Portland (June September): 4.53 inches
 - Potential rain capture from 1 square foot: 2.82 gallons
 - Additional rainwater capture during summer months: 138.18 gallons

CALCULATIONS

- Water catchment (cont'd):
 - Wettest potential rain capture for year: 2,052.6 gallons
 - Tank need range: 1000-2000 gallons
 - Chosen tank: 1500 gallons
- Solar Panel:
 - Timer: Battery powered, 9V
 - Solenoid valve: <10 watt
 - Solar Panel: needs to produce at least 10 watts
 - Angle: 56 degrees
- Water valve:
 - 6 gallons a week per tree = .85 gallons per day per tree
 - Total gallons per day = 25.5 gallons
 - Flow = dependent on tank volume, trial/error for timing

CALCULATIONS

- Structure:
 - Tank dimensions: 80" (~6.7') diameter, 70" (~5.9') height
 - Height off the ground: 1.5'
 - Structure height at highest point: 8.5'
 - Structure height at lowest point: 8'
 - Dimensions: 7' length x 7' width
 - Platform: 1' height

COST OF MATERIALS

Description	С	Cost	
1500 Gallon Tank	\$1	\$1,994.99	
15 Watt Solar Panel Kit	\$	94.95	
Solenoid Pump	\$	98.55	
Coil Connector	\$	30.75	
Timer	\$	84.04	
Gutter system	\$	50.00	
Structure	\$	200.00	
Channel piping (2" PVC)	\$	161.00	
Miscellaneous	\$	50.00	

Total cost

\$2,764.28

CONCLUSIONS

- Amount of rainfall and size of structure possible, being fully dependent on rain water irrigation is impossible.
- Project will be used to lessen the need for hand watering, protect orchard from drought.
- Secondary proposal: use shed in community garden as a secondary rain capture site.
- Someone would need to check water volume twice a month.
- Project is feasible under grants made to student sustainability projects.