June 23, 1998

Modelling Algal Metabolism

 


outline

1. Description of the basic processes

2. Dynamic model

3. Underlying system

4. What does the oscillation tell us? Is it real

 


1. Generalized model of algal metabolism

This paper will focus on a very simple version of algal response to changes in light. The underlying conceptual model will be derived Shuter's work (1975?) on optimal physiological composition. His model has 5 major components (see table 1) that exist in different relative amounts depending on the algal growth limitations. According to Shuter, the optimal solution is the combination of components that gives the maximum growth rate. Part of the optimization of these systems is a series of feedback loops that maintains the organism in "balanced growth", i.e. where the specific rate of increase of all components is equal. I will explore this model with a dynamic model constucted to illustrate this feedback control and with a complex-system model that is constructed to understand the basic characteristics of the feedback system.

Table 1. Cellular components as defined by Shuter (1975)

COMPONENT ABBREV. DESCRIPTION
Photosynthetic membrane Pmemb thylakoid membrane, photosynthetic centers, all pigments
Photosynthetic enzymes Penz enzymes of the Calvin Cycle and closely related pathways
Enzymes and Biosynthesis Enz enzymes for biosynthesis, respiration (including the mitochondria), ribosomes, RNA polymerases
Structure Struct cell wall, plasma membrane, DNA, all components of the cell necessary at zero growth rate
Nitrogen Assimilation Nassim enzymes and transmembrane proteins required for the uptake and reduction of nitrogen

From the literature and experience we can describe a "typical yet non-existent" algal metabolism that is based on these components. Energy is captured by the photosynthetic membranes to make NADPH. NADPH is used by the photosynthetic enzymes to fix CO2 into Triose. Triose is converted into building blocks for synthesis and Triose is also used for respiration processes to support biosynthesis, growth and maintainence costs. The building blocks are assembled into the four cellular components. The allocation between these different components represents the fundamental adaptation strategy for the organism.

Figure 1. Diagram of carbon flow through algal metabolism. The components are described in Table 1. The feedback control loops are described below. NADPH represents the energy output of the photosythetic membrane. Triose-P represents the carbon fixed into organic carbon. Blocks represent the common building blocks used for biosynthesis including carbohydrates, amino acids, nucleotices and fatty acids.

 

I can tell a story that describes how this system is controlled that is consistent with our understanding of the regulation of photosynthesis but doesn't include an details at the molecular level.. The rate of production of NADPH depends on light energy and the amount of photosynthetic membrane (Pmemb). High amounts of NADPH itself should inhibit the production. Triose-P is produced depending on the amount of photosynthetic enzyme (Penz) and the amount of NADPH to fuel the reaction. Triose production should be inhibited if there is already a large concentration of building blocks. Building blocks are produced from carbon skeletons and nitrogen. These common metabolites are synthesized by enzymes and as a result the rate is a function of the enzymatic and biosynthetic component. These building blocks are then synthesized into the biomolecules of the cell. Amino acids are synthesized into proteins at a rate controlled by the ribosomes and thus the rate of all of these processes are sensitive to the Enz fraction. The concerted regulation of cell metabolism and biosynthesis should lead to a set of components (Pmemb, Penz, Enz and Struct) that no component is in excess, i.e. where a component is synthesized in excess of its amount necessary to mediate the metabolic process. The structural component is synthesized in a fixed ratio to cell growth and is not catalytically active. In Shuter's version of this story, each component is only synthesized in an amount that just meets the catalytic need and that will lead to an "optimal" growth rate. In the dynamic model of this process, the regulation of the flux of new carbon into each component will respond, through feedback loops, to converge on the optimal ratio of these components for a fixed environmental conditions and resources.

Steady state environmental conditions are rare. How do algae adapt to fluctuations in natural systems. There are several possible strategies; storage, rapid adaptation, cell-to-cell diversity, and metabolic diversity. These will be dealt with in another paper ("Do phytoplankton change their strategy in a fluctuating environment?"). This paper will deal with the regulatory system and the behavior of simple simulated models of this system. I hope to demonstrate that dynamic models can be constructed the reach the same opitmal solution as predicted by Shuter but that these models have some built in propensity to oscillate. We can damp that oscillation in the model with tricks that may help us understand how this works in a cell. If we characteize the regulatory circuit in its crudest logical form, using Boolean operators and simple time steps, we also observe oscillatory behavior that can be characterized as periodic attractors in two different basins. Comparison of the dynamic simulation model with the complex-system model should provide some insight into the underlying regulatory strategy of algae.

more here later.

 


2. Dynamic simulation model

2a. Constructing a simple dynamic model using STELLA

 

Figure 3. Model schematic in STELLA. Stocks are the boxes, flows are the arrows with a circle in the middle and information flow are the single lines.

Table 2

flow equation
   
   
   
   
   

figure 3 output from a simple model

 

2b. Adding pools, threshholds and sigmoidal kinetics as modelling tricks

Table 3. "Improved" equations for a well-behaved model

flow equation
   
   
   
   
  F

Figure 4. Output from the "improved" model

 

Comments on these tricks as they relate to algal regulation.

 


3. Complex model of this same metabolic system

3a. Boolean statements

In each case the value for the metabolite of component is determined by the state of the system in the previous time step.

NADPH is high if Pmemb was high
Triose-P is high if NADPH was high and Penz was high
Building blocks is high if Triose was high and Enz was low
Pmemb is high if NADPH was low and blocks was high or St was high
Penz is high if Triose was low and Blocks was high and St was high
Enz&biosynth is high if Blocks was high OR St was high
Structure is low if Blocks was low

3b. Logic table for output

There are 128 (2^7) different combinations of 1 and 0 for this system. I have constructed a logic table in Excel that determines the outcome for each initial state. The outcome can be given in binary (i.e. 100100) or decimal (36). For each initial state their is only one outcome state and thus we can map 128 different inputs onto each of their outputs. Following the progress of these states will illustrate the concept of a basin. If we start at state 0 it goes to 1, 1 goes to 15, 15 to 79 to 111 to 127 to 110 to 113 to 14 to 65 and back to 15. There is a loop in here that is referred to as a periodic attractor for this system. It turns out that in this system there are two periodic attractors and that all of the possible inputs are in a basin for one or the other attractor. A slight change in the state of one component can result in the system going into the other basin. For example, starting at 23 --> 14 which is in Basin A but starting at 24 --> 70 -->33 --> 31 which is in Basin B. This is the essense of non-linear systems, a slight change does not necessarily lead to an incremental change in the output.

It is easier to visualize the concept of states flowing into a basin from Figure 5.

Figure 5.Basin and attractor diagram for experimental run "try3". Basin A and Basin B are the periodic attractors. The 128 states are listed as their decimal equivalent for the binary values from 0000000 to 1111111. This is the same data as in Appendix A.

 

3d. Effect of a slight change in the logic statements

 


 


Appendix A.

Logic table for "try3"

LOGIC TABLE

                       

LOOKUP TABLE

 

Initial binary values

 

Output binary values

     

decimal

 

decimal

Na

Tr

Bl

Pm

Pe

En

St

Nadph

Triose

Blocks

Pmemb

Penz

Enzbio

Struct

input

output

0

0

0

0

0

0

0

0

0

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

0

1

1

0

0

0

0

0

0

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

1

15

2

0

0

0

0

0

1

0

0

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

2

1

3

0

0

0

0

0

1

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

3

15

4

0

0

0

0

1

0

0

0

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

4

1

5

0

0

0

0

1

0

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

5

15

6

0

0

0

0

1

1

0

0

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

6

1

7

0

0

0

0

1

1

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

7

15

8

0

0

0

1

0

0

0

1

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

8

65

9

0

0

0

1

0

0

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

9

79

10

0

0

0

1

0

1

0

1

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

10

65

11

0

0

0

1

0

1

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

11

79

12

0

0

0

1

1

0

0

1

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

12

65

13

0

0

0

1

1

0

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

13

79

14

0

0

0

1

1

1

0

1

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

14

65

15

0

0

0

1

1

1

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

15

79

16

0

0

1

0

0

0

0

0

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

16

6

17

0

0

1

0

0

0

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

17

14

18

0

0

1

0

0

1

0

0

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

18

6

19

0

0

1

0

0

1

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

19

14

20

0

0

1

0

1

0

0

0

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

20

6

21

0

0

1

0

1

0

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

21

14

22

0

0

1

0

1

1

0

0

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

22

6

23

0

0

1

0

1

1

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

23

14

24

0

0

1

1

0

0

0

1

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

24

70

25

0

0

1

1

0

0

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

25

78

26

0

0

1

1

0

1

0

1

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

26

70

27

0

0

1

1

0

1

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

27

78

28

0

0

1

1

1

0

0

1

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

28

70

29

0

0

1

1

1

0

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

29

78

30

0

0

1

1

1

1

0

1

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

30

70

31

0

0

1

1

1

1

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

31

78

32

0

1

0

0

0

0

0

0

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

32

17

33

0

1

0

0

0

0

1

0

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

33

31

34

0

1

0

0

0

1

0

0

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

34

17

35

0

1

0

0

0

1

1

0

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

35

31

36

0

1

0

0

1

0

0

0

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

36

17

37

0

1

0

0

1

0

1

0

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

37

31

38

0

1

0

0

1

1

0

0

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

38

17

39

0

1

0

0

1

1

1

0

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

39

31

40

0

1

0

1

0

0

0

1

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

40

81

41

0

1

0

1

0

0

1

1

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

41

95

42

0

1

0

1

0

1

0

1

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

42

81

43

0

1

0

1

0

1

1

1

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

43

95

44

0

1

0

1

1

0

0

1

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

44

81

45

0

1

0

1

1

0

1

1

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

45

95

46

0

1

0

1

1

1

0

1

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

46

81

47

0

1

0

1

1

1

1

1

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

47

95

48

0

1

1

0

0

0

0

0

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

48

10

49

0

1

1

0

0

0

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

49

14

50

0

1

1

0

0

1

0

0

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

50

10

51

0

1

1

0

0

1

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

51

14

52

0

1

1

0

1

0

0

0

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

52

10

53

0

1

1

0

1

0

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

53

14

54

0

1

1

0

1

1

0

0

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

54

10

55

0

1

1

0

1

1

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

55

14

56

0

1

1

1

0

0

0

1

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

56

74

57

0

1

1

1

0

0

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

57

78

58

0

1

1

1

0

1

0

1

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

58

74

59

0

1

1

1

0

1

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

59

78

60

0

1

1

1

1

0

0

1

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

60

74

61

0

1

1

1

1

0

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

61

78

62

0

1

1

1

1

1

0

1

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

62

74

63

0

1

1

1

1

1

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

63

78

64

1

0

0

0

0

0

0

0

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

64

1

65

1

0

0

0

0

0

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

65

15

66

1

0

0

0

0

1

0

0

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

66

1

67

1

0

0

0

0

1

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

67

15

68

1

0

0

0

1

0

0

0

TRUE

FALSE

FALSE

FALSE

FALSE

TRUE

68

33

69

1

0

0

0

1

0

1

0

TRUE

FALSE

TRUE

TRUE

TRUE

TRUE

69

47

70

1

0

0

0

1

1

0

0

TRUE

FALSE

FALSE

FALSE

FALSE

TRUE

70

33

71

1

0

0

0

1

1

1

0

TRUE

FALSE

TRUE

TRUE

TRUE

TRUE

71

47

72

1

0

0

1

0

0

0

1

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

72

65

73

1

0

0

1

0

0

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

73

79

74

1

0

0

1

0

1

0

1

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

74

65

75

1

0

0

1

0

1

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

75

79

76

1

0

0

1

1

0

0

1

TRUE

FALSE

FALSE

FALSE

FALSE

TRUE

76

97

77

1

0

0

1

1

0

1

1

TRUE

FALSE

TRUE

TRUE

TRUE

TRUE

77

111

78

1

0

0

1

1

1

0

1

TRUE

FALSE

FALSE

FALSE

FALSE

TRUE

78

97

79

1

0

0

1

1

1

1

1

TRUE

FALSE

TRUE

TRUE

TRUE

TRUE

79

111

80

1

0

1

0

0

0

0

0

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

80

6

81

1

0

1

0

0

0

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

81

14

82

1

0

1

0

0

1

0

0

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

82

6

83

1

0

1

0

0

1

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

83

14

84

1

0

1

0

1

0

0

0

TRUE

FALSE

FALSE

TRUE

TRUE

FALSE

84

38

85

1

0

1

0

1

0

1

0

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

85

46

86

1

0

1

0

1

1

0

0

TRUE

FALSE

FALSE

TRUE

TRUE

FALSE

86

38

87

1

0

1

0

1

1

1

0

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

87

46

88

1

0

1

1

0

0

0

1

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

88

70

89

1

0

1

1

0

0

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

89

78

90

1

0

1

1

0

1

0

1

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

90

70

91

1

0

1

1

0

1

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

91

78

92

1

0

1

1

1

0

0

1

TRUE

FALSE

FALSE

TRUE

TRUE

FALSE

92

102

93

1

0

1

1

1

0

1

1

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

93

110

94

1

0

1

1

1

1

0

1

TRUE

FALSE

FALSE

TRUE

TRUE

FALSE

94

102

95

1

0

1

1

1

1

1

1

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

95

110

96

1

1

0

0

0

0

0

0

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

96

17

97

1

1

0

0

0

0

1

0

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

97

31

98

1

1

0

0

0

1

0

0

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

98

17

99

1

1

0

0

0

1

1

0

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

99

31

100

1

1

0

0

1

0

0

0

TRUE

TRUE

FALSE

FALSE

FALSE

TRUE

100

49

101

1

1

0

0

1

0

1

0

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

101

63

102

1

1

0

0

1

1

0

0

TRUE

TRUE

FALSE

FALSE

FALSE

TRUE

102

49

103

1

1

0

0

1

1

1

0

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

103

63

104

1

1

0

1

0

0

0

1

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

104

81

105

1

1

0

1

0

0

1

1

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

105

95

106

1

1

0

1

0

1

0

1

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

106

81

107

1

1

0

1

0

1

1

1

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

107

95

108

1

1

0

1

1

0

0

1

TRUE

TRUE

FALSE

FALSE

FALSE

TRUE

108

113

109

1

1

0

1

1

0

1

1

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

109

127

110

1

1

0

1

1

1

0

1

TRUE

TRUE

FALSE

FALSE

FALSE

TRUE

110

113

111

1

1

0

1

1

1

1

1

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

111

127

112

1

1

1

0

0

0

0

0

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

112

10

113

1

1

1

0

0

0

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

113

14

114

1

1

1

0

0

1

0

0

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

114

10

115

1

1

1

0

0

1

1

0

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

115

14

116

1

1

1

0

1

0

0

0

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

116

42

117

1

1

1

0

1

0

1

0

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

117

46

118

1

1

1

0

1

1

0

0

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

118

42

119

1

1

1

0

1

1

1

0

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

119

46

120

1

1

1

1

0

0

0

1

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

120

74

121

1

1

1

1

0

0

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

121

78

122

1

1

1

1

0

1

0

1

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

122

74

123

1

1

1

1

0

1

1

1

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

123

78

124

1

1

1

1

1

0

0

1

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

124

106

125

1

1

1

1

1

0

1

1

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

125

110

126

1

1

1

1

1

1

0

1

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

126

106

127

1

1

1

1

1

1

1

1

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

127

110