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                Introduction 
 The notions of topology have been invoked for more than a 

century in the physical world in fi elds as diverse as condensed-

matter physics, high-energy physics, and cosmology to describe 

the properties of matter and the universe, respectively, thus 

spanning the nano- and mesoscales (100 nm–1000 nm) to 

macroscopic ( ≥  a few microns) length scales.  1 – 3   However, topol-

ogy has not yet taken proper root in materials science with the 

question: “Do topology and geometry affect materials physical 

properties at the nano-/mesoscale, and, if so, how can we 

use them to understand and design materials from this new 

perspective?” One of the principal goals of this article is to 

address this and related questions, and materials scientists 

are now well poised to tap into the richness of this fi eld due 

to recent advancements in measurements. Thus the goal is 

to identify and utilize advanced metrological techniques to 

probe topology and to relate the latter to the functional 

properties for a broad class of novel functional materials simi-

lar to what has been achieved in condensed matter physics.  1 

In other words, we look for analogues of identifying “edge 

states” in quantum Hall materials and topological insulators,  4 

which allows us to measure and evaluate transport properties, 

including surface conductivity, the Hall coeffi cient, and 

related parameters. 

 The topology of a material goes beyond its physical shape 

and geometry in that it directly affects physical properties 

such as electronic conduction, charge and spin transport, light 

transmission, and response to a magnetic fi eld. The nontrivial 

aspects of topology and geometry have numerous applica-

tions in modern condensed matter physics where they play 

an important role in various physically and technologically 

interesting systems.  1 , 4   This incipient appreciation for the 

importance of topology is beginning to allow researchers to 

engineer entirely new materials with unusual topologies that 

lead to either exotic or enhanced properties.  5 – 7   Nevertheless, 

for most materials scientists, structural chemists, and biologists, 

topological methods remain obscure and unusually distant as 

compared to existing traditional methods. 

 We fi rst introduce the essentials of topological concepts 

(for example, handlebars or  genus  of a structure) by means 

of illustrations without invoking explicit mathematics. We 

then distinguish between local and global topological aspects 

of materials and mostly focus on nanocarbons, soft matter, 

and biomaterials to describe their topology, a variety of 

topological defects (e.g., vortices, skyrmions),  1 , 8   and their role 

in controlling physical properties. To this end, we introduce 

many topology characterization techniques that underscore 

the emerging fi eld of topological metrology .  The novel and 

important aspects of this nascent fi eld encompass both qualita-

tive and quantitative trends examined experimentally through 

measurable quantities such as a change in Raman spectros-

copy (RS) bands (e.g., G, D, and 2D) of advanced nanoscale 
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carbons,  9 , 10   indicative of mechanical loading or deformation, 

as a function of genus and other topological attributes. 

 These concepts are also applicable to topological networks  11 , 12   

or nets, periodic structures (e.g., metal–organic frameworks,  13   

supramolecular architectures  14  ), and geometrical hierarchies 

found in many soft- and biomaterials.  15   Topological computer 

algorithms and databases (e.g., TOPOS  16   and EPINET  17  ), 

developed over the past decade and a half in conjunction with 

advanced visualization techniques, are greatly assisting the 

design of extended crystalline architectures and frameworks. 

Beyond the periodic and network structures, we will also 

discuss the emerging class of topological materials,  18   such as 

topological insulators  4   and Dirac materials,  19   with an emphasis 

on the underlying quantum phenomena. Finally, having dem-

onstrated the importance of topology, we hope to establish the 

topology/geometry → property → functionality paradigm in 

materials science.   

 What is topology? 
 Topology is a fi eld that studies invariance of certain properties 

under continuous deformation, such as stretching, bending, or 

twisting, of the underlying geometry. By continuous deforma-

tion we mean that nearby points on the object (e.g., a curve 

or a surface) remain neighbors, and no cutting or gluing is 

allowed. The continuous change can be continuously reverted, 

thus retrieving the original shape. We illustrate these appar-

ently abstract concepts through specifi c examples in   Figure 1   

using a pedagogical approach, as explained later.     

 If we take a rubber band, which is almost a circle, we can 

continuously deform it to look like a hexagon or other shape. 

It is topologically equivalent because it is connected by a con-

tinuous deformation, stretching in this case. We can undo 

the deformation (i.e., retrieve the circular rubber band from 

the hexagon by un-stretching it or removing the push pins, 

 Figure 1 ). (Note also that circles of different radii are  all  

topologically equivalent, by radially stretching them.) Now, 

assume that the circular object is electrically conducting, such 

as a metallic ring with a current fl owing in it. When it is 

deformed to the hexagonal shape, the current remains the 

same. Thus, the current in this case becomes the invariant 

property that only depends upon the topology but not on the 

underlying geometry (i.e., insensitive to the shape). 

 As noted previously, continuous deformation means nearby 

points remain neighbors, which is true for the circle-to-hexagon 

deformation and any other polygon (e.g., square or octagon) 

we could create through stretching the circle. Now consider 

that the circular rubber band is deformed in a fi gure-eight 

shape in which the crossing point is glued. If we unglue this 

point by stretching, it will become two points, which upon 

further stretching, will end up as two diametrically opposite 

points on a circle (i.e., the nearby points do not remain neigh-

bors). Therefore, a circle and a fi gure eight are topologically 

inequivalent: a circle has one hole, while a fi gure eight has 

two holes, which means they have different topological char-

acteristics, denoted by  genus  ( g ), where  g  = 1 for the circle and 

 g  = 2 for the fi gure eight. 

 As a two-dimensional (2D) surface example, 

if we take a coffee mug (made from a deform-

able soft material, see  Figure 1 ), we can con-

tinuously reshape the mug into a donut. The 

mug handle becomes the hole in the donut. 

Conversely, we can start with the donut and 

reshape it into a mug. Thus, a mug and a donut 

are topologically equivalent since they both 

have a hole ( g  = 1). A donut, however, is topo-

logically inequivalent to a double donut ( g  = 2) 

or a simple pretzel because a donut cannot 

be continuously deformed (without cutting or 

gluing) into a double donut. Interestingly, a 

donut is also topologically inequivalent to a 

cookie, for instance (i.e., no holes,  g  = 0). 

 Turning our attention now to real-world 

materials, if we look at the surface of a fullerene 

(third row, left column of  Figure 1 ), it is the 

surface of a sphere. Assuming the spherical 

surface is elastic, if we stretch it laterally, it 

would appear as a capped nanotube on both 

sides (i.e., a closed cylinder). Thus, a sphere 

and a closed cylinder are topologically equiva-

lent, both with no holes ( g  = 0). However, the 

sphere or the closed cylinder is topologically 

not equivalent to a one-side open cylinder 

(third row, right column) because we cannot 

  

 Figure 1.      Illustration of topological equivalence between a coffee mug and a donut (top 

row), between a circle and a hexagon (middle row) (through a stretched rubber band), 

and between a sphere and a cylinder (bottom row) closed on both sides. The topological 

inequivalence is delineated in the right column, as a double donut cannot be created by 

continuously deforming a donut (without cutting or gluing). Similarly, a fi gure eight cannot 

be distorted into a circular rubber band without ungluing the intersection point. A one-side 

open cylinder is topologically different from a closed cylinder because one side has been 

cut (or unglued).    
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obtain the one-side open cylinder from a sphere or a closed 

cylinder without cutting it somewhere. In fact, the one-side 

open cylinder is topologically equivalent to a fi nite fl at disk 

(or a cookie), as it can be continuously stretched and opened 

to look like a disk. The open boundary is captured by another 

topological characteristic, namely the Euler characteristic,  χ , 

besides genus  g .  

 Connecting topology to geometry 
 Global topology of materials denotes distortion of invariant 

properties of spaces and objects rather than their topographic 

(or geometric) description.  1 , 2   It is characterized by a parameter 

called genus  g  (i.e., the “handles” of an arrangement), which 

is an integer, as mentioned earlier. It is a topological invariant 

in that it is a conserved quantity under smooth continuous 

mechanical deformation, and it does not depend on the static 

or dynamic equations describing the material geometry.  1 – 3   

In other words, if two orientable closed surfaces have the 

same genus, then they are topologically equivalent. Orientable 

means that a normal vector is uniquely defi ned at all points 

on the surface; the Möbius strip, discussed later, is a notable 

exception and is a non-orientable surface.  1 – 3   The genus is 

related to the Euler characteristic ( χ ) of a surface, defi ned by 

 2(1 )χ = − g   . However, when there are edges (or boundaries), 

it can be geometrically expressed as  χ = − +V E F   , where 

 V ,  F , and  E  represent the number of vertices, faces, and 

edges of a polyhedron “triangulating” the surface, respec-

tively (see   Figure 2  a). The geometry and global topology 

are intimately connected by the celebrated Gauss–Bonnet 

theorem:   1 , 2  

  2 ,
S

KdS πχ  (1) 

 where  K  is the local Gaussian curvature of the closed surface 

( S ) defi ned later. If we integrate over  K  on the surface of a 

given geometry, it equals 2 π  times the Euler characteristic of 

that object. Note that  K  will vary as we deform the surface, 

or change the geometry, but  χ  will be unaffected. Regardless 

of how you may choose to deform the surface (without cutting 

or gluing), it is uniquely characterized by its topology ( χ ) .  

Similar to  K ,  χ  can be negative. However, the mean curvature 

 H  (defi ned below and see  Figures 2b and 2c ) and  g  are strictly 

non-negative.     

 To illustrate these concepts, we note that the spherical 

fullerene (C 60 ) has  χ  = 2 since  g  = 0 (no holes or handles). 

All hyperfullerenes (C 70,84,90,… ) and hypofullerenes (C 36,50,… ) 

are topologically equivalent to a sphere (i.e.,  g  = 0,  χ  = 2). For 

a simple torus (e.g., a carbon nanoring),  χ  = 0 since  g  = 1 (see 

  Table I  ). Similarly, for a double torus (or a double nanoring), 

 χ  = –2 since  g  = 2. A cylindrical single-walled carbon nano-

tube (SWCNT) open at both ends is a surface with genus 

one ( g  = 1) with open boundaries, which implies  χ  = 0. To 

understand this, we can draw an edge from one end to the 

other on the surface of the cylinder ( Figure 2a ). This would give 

 F  = 1,  E  = 3, as there are two edges at the ends of the cylinder 

and  V  = 2; therefore,  χ = − +V E F    = 0. A carbon nanocone 

is topologically equivalent to a disk, and thus to a graphene 

sheet ( g  = 0,  χ  = 2).     

 Topology is essentially elastic (or soft) geometry. Geometry is 

characterized by fi xed distances and angles, or more generally 

on a surface with mean ( H ) and Gaussian ( K ) curvatures.  1 , 10 , 20   

Intuitively, curvature is the amount by which a geometric 

object (or material) deviates from being fl at, or straight in 

the case of a line. At a given point on a curve, there is 

one circle of radius  R  that is tangent to the curve at that point 

( Figure 2b ). The corresponding principal curvature ( κ ) at that 

point is simply the reciprocal of the radius (i.e.,  1/κ = R  ). 

Analogously, there are two principal curvatures  1 2( , )κ κ    at a 

given point on a surface that measure how the surface bends 

by different amounts in different directions with respect to 

that point ( Figure 2c ). The mean curvature is thus defi ned by 

 1 2( ) / 2= κ + κH    and the Gaussian curvature by the product 

 1 2.= κ κK   . Note that under the resulting condition,  2≤K H   , a 

positive  K  implies that the surface is locally either a peak or a 

valley, indicating that the surface bends equally on both sides, 

which is the case for spherical or ellipsoidal geometry. Similarly, 

hyperbolic geometry has a negative  K ,  1 , 10 , 20   which means that the 

two principal curvatures have different signs (e.g., a hyper-

boloid [a hyperbola rotated around its axis]), 

or the surface locally has saddle points.  K  = 0 

implies that the surface is fl at in at least one 

direction (e.g., a plane, cylinder, or cone). 

Surfaces with  H  = 0 are called minimal sur-

faces; some examples include a plane (trivial), 

a helicoid, a catenoid, and periodic negatively 

curved carbon (Schwarzite).  20   Next, we dem-

onstrate and discuss nanocarbon allotropes as 

a prominent example of topological variation 

in greater detail.    

 Topological taxonomy of 
nanocarbons 
 Nanocarbons exist in numerous geometries and 

topologies that range from planar or monolayer 

  

 Figure 2.      (a) Euler characteristic ( χ ) for surfaces with open boundaries. The red line ending 

on the circular boundaries creates two vertices ( V  = 2). (b) Principal curvature of a curve 

( κ ) at a given point is the inverse of the radius ( R ) of the tangent circle. (c) A surface has 

two principal curvatures ( κ  1 ,  κ  2 ) defi ned by the radius of two orthogonal tangent circles 

( R  1 ,  R  2 ) at a given point, defi ning geometric mean ( H ) and Gaussian ( K ) curvatures. 

Note:  E , number of edges;  F , number of faces;  κ  1 , principal curvature for tangent circle 1; 

 κ  2 , principal curvature for tangent circle 2.    
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and multilayer graphene (the youngest member in the family of 

synthetic nanocarbons),  21   nanotubes (single-, double-, oligo-, 

and multi-walled), fullerenes and their analogues (hypo- 

and hyperfullerenes, the oldest member in the synthetic 

nanocarbons, which marked a pivotal moment in the fi eld 

of nanotechnology),  22 , 23   to nanorings, nanocones, nanohorns, 

and peapods, which we collectively refer to as topologically 

distinct geometric allotropes of carbon.  9   These synthetic 

nanoscale carbon allotropes represent a growing family of 

fascinating and aesthetically pleasing architectures with 

outstanding material properties. In addition, while carbon 

remains the element of choice for applications, its allotropes 

offer multifunctional behavior and provide a fertile playing 

fi eld for expounding the nontrivial notions of global topology 

 Table I.      Topology of nanocarbon allotropes.  

Geometry  Schematic Topological Characteristics 

 g  (Genus)  χ  (Euler)  

 Positive Gaussian Curvature    

Mono-and multi-layered graphene 
(HOPG) 

        

0 2 

Fullerenes and hyper-/hypo-fullerenes 

        

0 2 

Single-walled carbon nanotube 
(SWCNT); open (closed) 

        

1 (0) 0 (2) 

Nanoring/nanohoop 

              

1 0 

Nanohorn/nanocone 

                    

0 2 

Double-(DWCNT), oligo-(OWCNT) 
and multi-walled carbon 
nanotubes (MWCNTs) 

              Complex Geometries 

Peapod 

   

 Negative Gaussian Curvature    g  (Genus) unit cell   χ  (Euler)  

Negatively curved carbons/
Schwarzites (3D) 

              

3 –8 

Graphene/carbon nano-ribbon 
(G/CNR)/helicoidal (2D) 

        

0 1  

    Topological characteristics of distinct nanostructured curved carbons with different genus ( g ) and Euler characteristic ( χ ). Note that both positive and 
negative curvature geometries are depicted. Note: HOPG, highly oriented pyrolytic graphite; P-surface, primitive Schwarz surface; D-surface, diamond 
Schwarz surface;  c , helicoid pitch.    
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and unusual geometric attributes (see  Table I ).  10 , 20   These 

concepts are applicable beyond the nanoscale, to the 

mesoscale, and all the way to the very shape and structure of 

the macroscale universe. Some of the fullerenes and related 

nanoscale carbons are known to have formed extraterrestri-

ally in interstellar space, meteorites, lunar rocks, and terrestrial 

sediments.  22   

 Multiwall carbon nanotubes and fullerenes (“nano-onions”) 

possess complex topologies, as do peapods. The latter com-

prise SWCNTs fi lled with C 60  fullerenes. Similarly, X-, Y-, and 

T-junction shaped nanotubes also have complex topologies.  9   

Assuming closed boundaries, Y- and T-junctions have  g  = 2, 

 χ  = –2, whereas the X-junction has  g  = 3,  χ  = –4. Among the 

negative Gaussian curvature ( K  < 0) periodic carbon allo-

tropes, Schwarzite has a complex topology with  g  = 3,  χ  = –8 

per unit cell ( Table I ).  20   Similarly, a helicoid - shaped graphene 

nanoribbon would have  g  = 0,  χ  = 1.  20   

 We summarize the global topology of nanocarbons in  Table I  

in terms of  g  and  χ . Note that the nanocones, nanodisks, and 

nanotubes closed at one end are topologically equivalent to 

the fl at graphene sheet ( g  = 0). Similarly, fullerenes (C 60 ), 

hyperfullerenes (C 70,84,90,… ), hypofullerenes (C 36,50,… ), and capped 

nanotubes have the topology of a sphere ( g  = 0). As noted, 

due to the boundaries captured by  χ , open nanotubes have a 

different topology ( g  = 1,  χ  = 0) than those of closed ones 

( g  = 0,  χ  = 2). Carbon nanotori and nanorings are topologically 

equivalent to a torus ( g  = 1,  χ  = 0). 

 Stable  π -conjugated aromatic Möbius annulenes and Möbius 

strips of single crystals of certain charge-density wave trichal-

cogenides have been recently synthesized.  24   The unusual spin 

and electronic properties of graphene Möbius strips have also 

been explored.  25   The Möbius strip is a structure with an 

indistinguishable inner and outer surface—a non-orientable 

surface  1 – 3   with Euler characteristic  χ  = 2 –  k  = 0, where  k  = 2 is 

its non-orientable genus (different from the usual or orientable 

genus). Multiple twists of the graphene nanoribbons result in 

topologically distinct strips as observed in transmission elec-

tron microscopy (TEM) images.  26   A typical twisted graphene 

nanoribbon has  g  = 0 and  χ  = 2. These concepts are applicable 

to a much broader class of materials discussed next.   

 Topology of soft/biomaterials and complex 
networks 
 Analogous to carbon nanomaterials, other hard-, soft-, and 

biomaterials come in a variety of topological forms. Some 

examples include titania (TiO 2 ) and silica (SiO 2 ) nanotubes,  27   

boron-nitride nanotubes and nanotori,  28   helical gold nano-

tubes,  29   Möbius conjugated organic materials,  24 , 30   mesoporous 

silica networks,  12   di- and tri-block copolymers,  31   micelles, col-

loids, micro-emulsions, biological vesicles,  32 , 33   microtubules, 

folded proteins, knotted DNA, supramolecular structures, 

and photochemistry in restricted space.  14   The topology of 

mixed di- or triblock copolymers,  31   as well as single and 

double gyroid structures  15   (in butterfl y wings and bioin-

spired photonic bandgap materials), zeolites, and other 

metallo–organic frameworks  13   (MOFs) belongs to periodic 

minimal surfaces.  20 , 34 – 36   Also, foams,  37   for instance, possess an 

interesting network topology, and they change confi gurations 

at the local level via a T1 switch (see   Table II  ), in which the 

interface between two bubbles shrinks to zero length and then 

expands to a fi nite length in another direction, thus causing a 

local topology change.  38   In addition, many biological processes, 

including DNA and RNA structure and protein folding, involve 

network, braid, and knot topologies .   39       

 A network has connected nodes and lines in various ways.  11 , 12   

Lattices are a special kind of network in which the lengths are 

the same in each periodically repeated unit, called a unit cell. 

Two networks may have different distances between nodes 

and other characteristics and yet may have identical topolo-

gies (i.e., they can be continuously deformed into each other). 

As a special case, a square lattice is topologically equivalent 

to an oblique lattice but not to a triangular lattice. Protein 

interaction networks,  11   biochemical metabolic networks,  40   

polymer networks,  41   and mesoporous materials  12   are examples in 

which correlations between the network structure (or topology) 

and functional properties provide useful insights into design 

strategies. Similarly, for studying 2D and 3D microstructure 

evolution in the context of crystal grain growth  42   and topo-

logical optimization of materials microstructure  43   (as well as 

of multicellular structures such as foams, bubbles, and bio-

logical tissues), network topology provides an effi cient tool.  44   

Specifi cally, grain growth strongly favors particular grain 

topologies.  42   

 In soft- and bio-matter such as di- and tri-block copolymers  31   

and photonic crystals (in butterfl y wings as well as in weevil 

chitin  15  ), depending on the relative concentration of the two 

constituents and temperature, the topology can change from a 

lamellar structure to a tubular structure or to a gyroid struc-

ture.  15 , 31 , 45   These can be classifi ed as a phase change character-

ized by a change in topology. Some materials are unable to 

reach their minimum energy state due to topological reasons 

resulting in topological frustration.  46   This is very common 

during protein folding, but graphene nanofl akes can also 

exhibit this phenomenon  47   where magnetic order can develop as 

a consequence. 

  Table II  also shows examples of complex topology in 

liquid crystals and block co-polymers. The second row shows 

multiple dislocations in a liquid crystal  48   (left panel) and a 

stacking of cylindrical structures in a hexagonal lattice, with 

each cylinder possessing a complex topology (i.e., a bundle 

of helicoidal layers).  49   The self-assembly of di- and tri-block 

polymers results in a variety of complex topologies (third row) 

as a function of the relative concentration of different types 

of polymer blocks and the interaction energy between differ-

ent types of monomers  31   (i.e., the Flory-Huggins parameter). 

Some depicted examples include lamellar, cylindrical, globular, 

gyroid, and double gyroid structure. Interestingly, the gyroid is a 

triply periodic minimal surface (mean curvature  H  = 0) that 

belongs to the family of P and D (primitive and diamond) 

Schwarz surfaces  34 – 36   and separates space into two identical 
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labyrinths of passages. This peculiar structure was discov-

ered in 1970 by Alan Schoen (then a scientist at NASA).  50   

It also corresponds to the last space group (number 230, 

Ia  3   d). 

 Biomembranes can be fl at (lamellar) or curved depending 

on the structures they enclose (fourth row),  51   and they can also 

morph into a spherical or toroidal topology, in some cases with 

 g  > 1 (fi fth row). As indicated previously, MOFs  13   also form 

periodic minimal surfaces and gyroid-like structures (sixth 

row). Finally, supramolecular assemblies may emerge with 

a variety of topologies, including spheroidal, periodic with 

 g  =1, or even a gyroid-like structure.  52   It is highly desirable to 

probe and quantify the topological attributes of the examples 

portrayed in  Tables I and II .   

 Table II.      Topology of soap bubbles and foam, liquid crystals, di- and triblock copolymers, biomembranes, vesicles, zeolites, 
metallo–organic frameworks, and supramolecular assemblies.  

Geometry  Schematic Topological Characteristics Suggested Metrology 

 g  (Genus)  χ  (Euler)  

Soap bubbles 
and foam  

  

Network topology

Optical imaging   38   

Liquid crystals 
(double-
dislocation) 

        

Complex topology

Non-linear optical 
fl uorescence 
microscopy, laser 
lithography  91 , 92 , 93   

Di- and tri-block 
co-polymers 
(lamellar) 

                          

Complex topology

Small-angle x-ray 
and neutron 
scattering 
(SAXS/SANS)  45   

Bio-membranes 
(lamellar) 

        

0 2

Optical fl uorescence 
microscopy and 
SAXS/SANS  51 , 52   

Vesicles (w/ and 
w/o holes) 

        

0/1,1,2 2/0,0,–2

Optical fl uorescence 
imaging  33   

Zeolites (micro-/
mesoporous, 
metallo-organic 
frameworks 
[MOFs]) 

        

3 –8

HRTEM, SAXS/
SANS, and x-ray 
tomography  34 , 35 , 78 , 79   

Supramolecular 
assemblies 

              

1 0

Optical fl uorescence 
imaging and SAXS/
SANS  51 , 52    

    The foam network rearranges itself through T1 switching events shown by black arrows, which are local topological changes as depicted in the side panel 
(fi rst row). The MOFs (sixth row) are a periodic minimal surface with negative Gaussian curvature and  g  = 3,  χ  = –8 per unit cell. Corresponding suggested 
metrologies for probing topology/geometry are also listed. Note: SAXS, small-angle x-ray scattering; SANS, small-angle neutron scattering.    
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 Probing topology of nanocarbons and 
metrology 
 Probing topological effects on physical properties of materials in 

a signifi cant way and identifying topological metrics through 

analytical techniques that relate to one (or more) experimen-

tal physical quantities are some of the pressing questions for 

materials scientists. As a fi rst step in this direction, we recently 

attempted to describe the differences between various nanoscale 

carbons and provided a semi-quantitative topology assessment 

via monitoring characteristic lattice phonon modes, measured 

using resonance RS in the fi rst- and second-order, thereby 

capturing the electronic spectra and elucidating a viable 

approach.  9 , 10   While the latter can also be obtained using tra-

ditional UV-visible optical spectroscopy, high-resolution 

transmission electron microscopy provided the much needed 

nanoscopic microstructures of various carbons. Understanding 

these geometric allotropes of nanocarbons, particularly in terms 

of their topological characteristics, becomes indispensable 

because it goes well beyond the traditional paradigm of 

microscopic structure → property → function correlation to 

the global topology/geometry → property → function rela-

tionship. From this perspective, we can elucidate the notion of 

global topology and curvature for a range of technologically 

important nanoscale carbons, including tubular (SWCNTs), 

spherical (hyperfullerenes), toroidal (nanorings), and conical/

complex (nanocones, nanohorns) geometries. 

 Various forms of carbon at all spatial lengths undoubtedly 

play a pivotal role for topology due to their structural diversity 

and geometries from a curvature and topology perspective, thus 

uniquely positioning carbon as a fertile playing fi eld for global 

topology versus geometry and curvature attributes. Based on 

extensive studies on graphite, an infi nite multilayered graphene 

structure with primarily sp 2 -bonded carbon (sp  2   C) hybridization, 

it becomes apparent that graphene is the 2D building block for 

carbon allotropes of every other dimensionality.  

 Raman spectroscopy technique 
 RS has emerged inarguably and historically as one of the poten-

tial analytical tools and an integral aspect of structural character-

ization of graphite and related carbon materials at the nanoscale, 

revealing not only the collective atomic/molecular motions but 

also localized lattice vibrations.  53 , 54   Some of the primary reasons 

for this advantage are the strong Raman response to the  π -states 

in sp 2  C systems due to resonance enhancement (resonance 

Raman spectroscopy [RRS]); its simplicity for high-symmetry 

nanotubes and fullerene species, facile access, and noninva-

sive nature; and its ability to provide invaluable information on 

elementary excitations (phonons, defects, stacking order/disorder) 

in graphite as well as the number and orientation of graphene 

layers, the quality and type of edges in graphene, effects of per-

turbations (electric and magnetic fi elds, strain, doping, disorder, 

and functional groups), and fi nite size of the crystallites parallel 

and perpendicular to the hexagonal axis of the probed material. 

These advantages result from the sensitivity of RS to the changes 

that occur in the atomic structure arising from multiple causes. 

 Our motivation here is at least twofold: (1) to amplify on 

the structures observed in high-resolution electron microsco-

py and RRS studies of various nanoscale carbons with arbi-

trarily low genus by monitoring and identifying the effects in 

vibrational modes (usually ignored) arising due to curvature, 

and (2) to provide Raman spectra for otherwise unexplored 

nanoscale carbons to identify a truly topological metric.  9 , 10   

In doing so, we aim to gain a deeper insight and develop a 

unifi ed understanding from the global topological and cur-

vature perspectives by monitoring the shift in wavenumbers 

of prominent Raman bands of diverse curved nanocarbons as 

a topological indicator/metric. In addition, it is anticipated 

that these shifts in wavenumbers are translated into changes 

in local curvature resulting from local topological defects, 

namely either the pentagon-heptagon (P-H) or Stone-Wales 

(S-W) pair defects and/or the mitosis defect,  55 – 60   as well as 

into boundary conditions that are applicable in theory while 

calculating optical absorption and vibrational spectra using 

tight-binding models that help map the electronic structure of 

these nanomaterials. 

 Resonance Raman spectra were measured using a commer-

cial micro-Raman spectrometer equipped with a 2400-g/mm 

grating, ion-etched Super-Notch-Plus fi lter, an argon-ion laser 

operating at excitation wavelength  λ  L  = 514 nm (laser inci-

dent energy  E  L  = 2.41 eV), and a power <10 mW to avoid local 

heating and thermal degradation (spectral resolution of  ∼ 1 cm –1 , 

and Spectra Max software for Windows to accumulate raw data). 

Raman spectra were recorded in the wave-number range of 

1000–3000 cm –1  in backscattered confi guration and analyzed.  9   

We measured resonance micro-Raman spectra of pristine 

monolayer graphene (and equivalently an infi nitely multilay-

ered graphene or highly oriented pyrolytic graphite, HOPG), a 

hyperfullerene (C 84 ), an open-ended SWCNT, a single-walled 

nanoring (SWNR), a single-walled nanohorn (SWNH), and 

a nanocone both in the fi rst- and second-order spectral regions 

(  Figure 3  a–b). Some of these carbon forms were produced 

in very small quantities using either the electron beam irradia-

tion of SWCNT  61   or other processing techniques, such as 

thermal annealing of ultradispersed diamond.  62   Because all 

of these materials are sp 2  C derivatives, it is instructive to 

compare their Raman spectral features with planar HOPG and 

monolayer graphene.     

 Prominent bands of interest in the fi rst-order Raman spec-

tra for all of the nanocarbons are D and G bands occurring at 

 ∼ 1340 cm –1  and  ∼ 1580 cm –1 , respectively. The higher wave-

number G band is associated with the tangential C-C stretch 

or the tangential displacement mode having an E 2g  symmetry. 

For plasma-enhanced chemical vapor deposited SWCNT, the 

G peak decomposes into two main peaks around 1562 cm –1  

and 1593 cm –1  (G +  and G, respectively) with a shoulder at 

 ∼ 1550 cm –1  (G – ). These features have previously been assigned 

to the E 2g  symmetry mode of graphite that results from the split-

ting of an intralayer stretching mode. This splitting arises due 

to the curvature-induced re-hybridization of  σ *- π * states.  54 , 63   

In fact, this re-hybridization strengthens the C–C bond, which 
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yields relatively high elastic constants for the SWCNTs. It is 

worth mentioning that the excitation wavelength of 514.5 nm 

(or photon energy of  E  L  = 2.41 eV) preferentially excites semi-

conducting SWCNTs (mean diameter of  d  t   ∼  1.3 nm) and is 

in resonance with the E 22  
SS  branch of SWCNT 1D density of 

states. Qualitatively, the Raman modes of SWCNTs seem to be 

narrow and sharp, indicating high uniformity and a low level of 

impurities, thus of reasonably good crystalline quality.  61     

 Variation in prominent Raman bands 
 The D band in sp 2  C materials is the disorder-activated band 

with A 1g  symmetry in the fi rst-order scattering process aris-

ing from in-plane substitutional heteroatoms, vacancies, grain 

boundaries, or other defects and fi nite size effects, all of which 

lower the translational symmetry in a quasi-infi nite lattice and 

violate momentum conservation. Therefore, association of the 

D band with symmetry-breaking phenomena results in a band 

intensity that is proportional to the phonon density of states, 

which is applicable to practically all of the sp 2  C-based material 

systems. Note the onset of the D band in  Figure 3 , which is 

absent for defect-free HOPG and graphene.  60 , 64   

 Stable sp 2  C spherical cages are the most abundant fuller-

enes (C 60 ) with somewhat lower yields of higher analogues such 

as C 84 .  Figure 3a  shows the effect of curvature and geometry 

on the experimentally observed specifi c Raman mode in the 

high wave-number regime for spheroids ( D  2 d  –C 84 ) compared 

with HOPG. They are synthesized and isolated following 

Reference 65. While there are only a few Raman lines for C 60 , 

the spectrum for C 84  shows many more lines due to a deviation 

from the spherical geometry (usually oblate), large number of C 

atoms, hybridization, and also to a more reduced symmetry than 

that of the icosahedral symmetry  I   h   for C 60 . While it is diffi cult 

to interpret the Raman spectrum for C 84 , a strong vibrational 

structure resembling a downshifted and split C 60  spectrum is 

apparent for C 84 , where the center of gravity of the two Raman 

bands is shifted by a factor of  ∼ 0.85 and 0.87 with respect to the 

A g (2) (a well-known pentagonal pinch mode for C 60  occurring 

at  ∼ 1470 cm –1 ) and H g (8) bands at  ∼ 1575 cm –1 , respectively. 

A correlation between the cage mass and the frequencies from 

fullerene modes of similar origin thus seems to be justifi ed.  66 , 67   

  Figure 3a  also shows the Raman spectra for a SWNR, a 

SWNH, and a nanocone. SWNHs were obtained from Sano’s 

  

 Figure 3.      Experimental (a) fi rst-order and (b) second-order resonance Raman spectra for monolayer graphene with or without defects, 

infi nite multilayered graphene, or highly oriented pyrolytic graphite (HOPG), hyperfullerene C 84 , single-walled carbon nanotube (SWCNT), 

single-walled nanoring and nanohorn, and tip of the nanocone showing prominent bands of interest, namely D, G, and 2D, and H g (8) for C 84 . 

The Raman intensity is normalized with respect to the higher intensity G band. (c–e) show variations in the Raman frequencies  ω  D ,  ω  G , and 

 ω  2D  for D, G, and 2D bands, respectively. Since the Raman bands assignment for C 84  is different, the variation is not shown for C 84  and is 

mentioned in the text wherever appropriate. The dotted lines in (c–e) are drawn to guide the eye.    
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and Yudasaka’s groups in Japan, both exhibiting similar phonon 

spectra.  68 , 69   They were grown by a DC electric arc discharge 

between two graphite electrodes submerged in liquid nitrogen. 

The internal structure of SWNH is described as a mixture of 

“dahlia-like” and “bud-like” structures as observed by TEM. 

SWNHs have a graphitic carbon structure similar to that of the 

usual carbon nanotubes except that they are twisted. One of 

the potential applications of SWNHs is in fuel cell electrodes 

because of their large surface area and easy gas and liquid 

permeation.  70   On the other hand, SWNRs ( g  = 1) were formed 

by electron-beam irradiation.  61   The Raman spectra of SWNH 

and SWNR show typical nanocarbon disorder D ( ∼ 1350 cm –1 ) 

and G ( ∼ 1580 cm –1 ) peaks ( Figure 3a ). The SWNR Raman 

spectrum resembles that of SWCNT, but it differs somewhat, 

accounted for by the shift of the G band. Alternatively, the G 

band is upshifted, leading to graphene planes with compressive 

microscopic strain attributed to the graphene plane curvature. 

This curvature is invoked to explain the relaxation of the 

Raman selection rules and the appearance of new, albeit weak, 

Raman peaks at 1100 cm –1  and 1740 cm –1 . 

 Nanocone tip Raman data were obtained from Gogotsi’s 

group and analyzed.  71   While the D peak shifts from its average 

position at  ∼ 1340 cm –1 , the G peak shifts from 1580 cm –1  for 

HOPG to  ∼ 1585 cm –1  for a synthetic carbon nanocone. The 

upshift of the Raman band was attributed to the simultane-

ous presence of the curved cone surface and smaller crystal-

lite size giving rise to phonon confi nement in the nanocone. 

The presence of a D band in all phonon spectra indicates that 

the surfaces of cones and graphite with micron-sized crystal-

lites or domains were not perfectly wrapped by graphene. 

A qualitative observation of the broadening of the G band 

results from the conical wrapping of layers and bonding of 

graphene sheets. From the subtracted Raman spectra for a cone 

and HOPG, it is clear that the Raman spectrum for nanocones 

is composed of at least two contributions: microcrystalline 

graphite subsurface carbon layers and multiwall or graphite 

whiskers close to the surface. 

 Raman bands of the representative materials mentioned 

previously were quantitatively analyzed in terms of the posi-

tion of D and G bands as a possible topological metric due to 

their sensitivity toward structural modifi cation, however, with 

weaker or “group” trends.  Figure 3c–d  summarizes the main 

effects, including those of graphene and HOPG. Generally 

speaking, the presence of the G band is a direct indication of 

the presence of a sp  2   C network, and the shift (either decrease 

or increase) in the highest wave number position is a measure 

of (a) different sp 2  C confi gurations; (b) curvature-induced 

re-hybridization and probably a mixed hybridized character; 

(c) compressive or tensile stress/strain; and (d) possible pho-

non confi nement (or vibrational localization). It seems that 

the tensile strain in graphene planes induces curvature by the 

introduction of pentagons in the hexagonal network governed 

by Euler’s theorem for fullerenes.  9   While the Raman bands 

for the nanocone and nanohorn appear at almost similar posi-

tions, the nanoring lies in the category of a different geometry. 

(Ideally, the nanoring is a toroidal geometry with genus one.) 

A quantitative understanding of the Raman line shape and 

wavenumber shift due to the geometry and topology in these 

carbon nanostructures requires properly accounting for the 

changes in both phonon and electronic density of states and 

the concomitant modifi cation of the electron–phonon interaction. 

Indeed, recent theoretical studies on nanotori, nanocones, and 

nanohorns have provided valuable insights in this direction, in 

direct concurrence with our limited fi ndings.  72 , 73   

 While the fi rst-order Raman spectra features furnish informa-

tion about the energies of elementary excitations in solids at 

the center of the Brillouin zone (BZ), the second-order Raman 

spectra provides information about the dispersion relations of 

phonons or high symmetry points of the BZ, which in some 

respects is the information that optical absorption spectros-

copy yields on the electronic band structure. Moreover, in the 

Raman spectra from low-dimensional (1D and 0D) systems, 

higher-order or overtone modes are equally or sometimes 

more informative for phonon spectral representation than for 

3D solids or bulk systems. This is related to the fact that in 

3D solids, the inclusion of two or more phonon modes in a 

scattering process relaxes the wave vector selection rule and 

therefore gives a relatively broad structure to the Raman spectra. 

However, in low-dimensional materials, the (momentum) 

 k -space integration is only in one direction, and the 2D band 

(sometimes it is also denoted as D* in the literature) is symmetry 

allowed by momentum conservation; therefore, the overtone 

Raman features remain relatively sharp and are an intrinsic 

feature. The 2D band in the Raman spectra of most of the sp  2   C 

materials is generally more intense than that of its fi rst-order 

counterpart and has almost the same intensity as the G band. 

In general, almost all of the data are consistent with the fre-

quency relation  ω  2D   ≅  2 ω  D , particularly for the nanotubes. 

 As for the physical origin of the disorder-induced D band, 

it was interpreted initially in terms of phonon density of states 

maxima, but this was revisited by Vidano et al.,  74   who showed 

that the D band is dispersive (i.e., the D band changes with 

incident laser energy,  E  L ). The position of the D band upshifts 

with increasing  E  L  in a linear way over a wide range, the slope 

( Δ  ω  D / Δ  E  L ) being about 50 cm –1 /eV independent of almost any 

type of sp 2  C bonding. Likewise, the 2D band also exhibits 

dispersive behavior, with the slope being twice that for the 

D band (i.e., 100 cm –1 /eV). Baranov et al.  75   made the fi rst 

successful attempt to explain the origin and the dispersive 

behavior in wave numbers of D and 2D bands, namely double 

resonance, and Thomsen and Reich  76   further developed this. 

 Figure 3b  shows the second-order Raman spectra of all the 

representative nanocarbons discussed earlier. Each of the Raman 

spectrum intensity is normalized with that of the G band. 

Given the dispersion with laser energy, the “dispersive behavior,” 

albeit with curvature, in these nanoscale carbonaceous materi-

als both in the D and 2D bands, is shown in  Figure 3c and 3e , 

respectively, which is akin to  Figure 3d  for the G band. Electronic 

structure is usually captured through resonance Raman spec-

tral features, as well as through the differential second-order 
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Raman spectra, wherein the observed spectra are interpreted 

in terms of maxima in the joint electron density of states. 

The “dispersion” in the position of D and 2D bands is the key 

factor in the quantitative evaluation of geometrical curvature 

and corresponding topology, assigned to either microscopic 

tensile or compressive stresses/strains depending on down- and 

upshifts, respectively. 

 Alternatively, these bands are also useful for quantifying 

mechanical deformation in nanocarbons alone or when com-

bined with host materials forming functional nanocomposites. 

While the G band variation is rather weak, the variation in D 

and 2D bands provides yet another measure of the curvature/ 

topology, as they are sensitive to structural modifi cation 

induced by local pentagons or intrinsic defects. Following 

the “isolated pentagon rule,” two adjacent pentagons (mitosis 

defect)  59   are somewhat unstable, which manifest curvature, 

thus introducing microscopic stress fi elds in the C–C bonding 

network. Since the introduction of pentagons in an otherwise 

hexagonal carbon system modifi es the electronic structure, all 

the properties dependent on the electronic structure of carbon 

are affected. Moreover, it turns out that the ordering of the 

valence or highest occupied molecular orbitals states is large-

ly unaffected by the curvature, only the lowest unoccupied 

molecular orbitals states are affected. Besides, theoretical 

numerical calculations for nanotubes show smoothening of the 

van Hove singularities in density of states devoid of standard 

singular behavior, with an increasing number of layers and 

an increasing curvature or strain. This can be explained by an 

increase in the “mass factor” due to geometry/curvature, which 

lowers the wave number in the phonon spectra. The obtained 

RS results are in qualitative agreement with the tight-binding 

calculations for the closed nanotube.  77   Similar information for 

the hyperfullerenes is not shown because the assignment of 

bands differs from that for other sp 2  C materials discussed. 

Once established, this knowledge provides a powerful machin-

ery to understand newer nanocarbons and indeed points to 

an unprecedented emergent paradigm of global topology/

curvature → property → functionality relationship.   

 Other metrological techniques 
 We emphasize that these concepts are applicable to other 

topologically distinct nanomaterials, which include boron-

nitride (BN) nanotubes and nanotori,  28   helical gold nanotubes,  29   

and Möbius conjugated organics.  24 , 30   In addition to RS, there 

are other techniques such as small-angle x-ray and neutron 

scattering (SAXS/SANS), scanning electron microscopy, TEM, 

and various optical imaging techniques that can be used 

as metrological tools to link materials topology. Topological 

correlations that could be obtained via scattering techniques 

would be highly desirable in this regard. Similarly, two-point 

( r  and  r ′) network topology correlations could be obtained 

by appropriately choosing the momentum  k  range in scattering 

experiments. X-ray tomography has also been used for the 

topological characterization of porous media and porous 

networks.  78 , 79   Eventually, metrological techniques will allow 

us to probe topology from nano- to meso- and macroscale 

lengths in various materials.    

 Topological defects: Local versus extended 
 Local or extended deviations from the given topology of a 

material result in topological defects. They can substantially 

alter materials properties or give rise to entirely new functional-

ity in some cases. In the case of carbon defects, local violation 

by topological defects (i.e., violating nanoscale translational 

order inherent in periodic nanostructures) leads to novel curved 

nanocarbons,  9   which in turn transcends to the global topology 

of the material. In particular, a pentagon (or a heptagon) is a 

local topological defect in the hexagonal network of graphene 

or graphite, or a defect with sp 3  character in a sp 2 -bonded lattice. 

Presence of these defects not only introduces curvature in the 

material, thus affecting the global topology, but also affects 

the electronic structure, physical properties, and functionality. 

It has been recently reported that even with defects, graphene 

is the strongest material, and “so strong that it would take 

an elephant, balanced on a pencil, to break through a sheet of 

graphene the thickness of Saran Wrap.”  80   In other materials, 

for instance, connectivity at various nodes in cross-linked 

polymer networks  31 , 41   and silica networks  44   defi nes the local 

topology, which is characterized by local clusters, bond-angle 

distributions, and radial correlations. 

 Materials properties crucially depend on the presence and 

type of defects in the lattice. In the same vein, topologi-

cal defects are even more interesting, as their existence puts 

a novel twist on the properties of materials. In particular, it 

is the mesoscale control and characterization of these defects 

that will allow us to tap into the full potential of topology 

in materials. Semiconductors are a good example in which 

a ppm or ppb level defect concentration can alter the transport 

properties rather substantially. Vacancies, substitutional, inter-

stitial, and other point defects are examples of non-topological 

defects. Extended defects such as dislocations, disclinations, 

domain walls (including twin boundaries that connect two 

different crystallographic orientations or variants), vortices, 

and magnetic fl ux tubes in Type II superconductors are all 

examples of topological defects.  1   Topological defects occur 

either at the boundary of two equal energy states, such as the 

interface between two different magnetic moment directions 

or two different crystalline orientations, or when the crystal-

line continuity is broken, for instance, in a screw dislocation. 

Such defects are responsible for many common phase tran-

sitions, including melting and certain magnetic transitions. 

Topological defects are characterized by, in addition to the 

material’s genus and Euler characteristic, their topological 

charge (e.g., the Burgers vector strength can be viewed  81   as 

“topological elastic charge density”). 

 Familiar defects in materials include domain walls between 

two differently oriented crystals or magnetic states, which are 

in fact a kind of topological defect called solitons. Solitons are 

ubiquitous in nature as well as in materials; they are created 

by a cancellation of the nonlinear and dispersive effects in 
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the material (or medium).  82   Dispersive refers to the speed of a 

soliton or solitary wave that depends on its frequency. Ideally, 

solitons (and domain walls) propagate through a material or 

medium or through each other without altering their shape. 

Similarly, some superconducting materials and Heisenberg 

magnets exhibit other types of topological defects (e.g., vortex 

lines and a variety [spiral, helical] of spin textures as well as 

fl ux tubes). Missing half planes in crystals are also extended 

topological defects denoted as edge dislocations. Likewise, 

fi vefold coordinated entities in some crystals are actually 

orientational disclinations (i.e., topological defects in an other-

wise sixfold coordinated triangular lattice). 

 Here, we choose to describe more elaborate topological 

defects because they have been observed in many complex 

functional materials and possess rich internal structures, which 

affect materials properties in unexpected, mul-

tiple ways.   Figure 4   depicts a half dozen such 

exotic topological defects in a diverse variety 

of functional materials. Skyrmions ( Figure 4a ) 

are spin textures that cover a sphere once 

(i.e., spin orientation goes from 0 to  π ) and have 

been observed in both metallic and insulating 

chiral magnets.  8 , 83   Unlike vortices, skyrmions 

do not have a core and thus can be driven by 

a small electrical current with apparent applica-

tions in information storage. However, similar 

to vortices, they also form a periodic structure 

called the skyrmion lattice, which has been 

observed in chiral magnetic metals,  8   chiral 

magnetic insulators (and multiferroics),  83   

and chiral nematic liquid crystals.  84   Isolated 

magnetic monopoles (or magnetic charges) 

are otherwise deemed impossible to exist, but 

they have been recently observed in artifi cial 

spin ice  85   ( Figure 4b ), which is an example of a 

frustrated magnet with application in memory 

devices. The skyrmion lattice can also exhibit 

magnetic monopoles (and associated Dirac 

strings).  86       

 The middle row in  Figure 4  shows other 

exotic topological defects.  Figure 4c  depicts 

3D boojums with a complex structure for col-

loidal particles dispersed in a liquid crystal.  87   

Boojums are surface defects, fi rst observed 

in superfl uids (with hedgehog point defects 

being their bulk counterpart), and are now 

ubiquitous in soft materials, including Langmuir 

monolayers, liquid crystals, and even in Bose–

Einstein condensates.  Figure 4d  depicts a 

Schlieren texture  48 , 88 , 89   related to the “director 

fi eld” of a uniaxial nematic crystal observed 

under a polarizing microscope. Some nanoscale 

ferroelectrics and multiferroic thin fi lms can 

show double (electric and magnetic) vortices,  90   

as depicted in  Figure 4e , which can affect the 

magnetoelectric response of the material. Finally,  Figure 4f  

shows a pentagon-heptagon pair topological defect in a carbon 

nanotube,  57   which renders it with a curvature. Other unusual 

topological defects in materials (e.g., umbilical defects  89  ) have 

not been discussed here. 

 From a metrological perspective, another recently observed 

exotic topological defect is the Hopf fi bration in a chiral nem-

atic liquid crystal.  91   The Hopf fi bration is a complex texture 

that resembles a series of linked rings wrapped around a torus 

(see   Figure 5  a, left column). It can be controllably generated 

experimentally in cholesteric liquid crystals (i.e., nematics) 

with a twist (or preferential handedness), as depicted in  Figure 5b  

with a specifi c color coding. Using specially shaped laser and 

electron beams, one can orient the molecules in a liquid crystal 

to form not just vortices and knots, but also exotic topological 

  

 Figure 4.      Exotic topological defects in functional materials. (a) A spin texture called 

skyrmion in chiral magnets (red to blue color denotes rotation of spin by  π );  8 , 83   (b) magnetic 

monopoles (+ and – magnetic charges in a hexagonal confi guration of nanomagnets) in 

artifi cial spin ice;  85   (c) double-core boojum structure in colloidal particles dispersed in a 

nematic liquid crystal. The correlation length  ξ  is related to the colloidal particle radius 

 R  = 0.1  μ m  ∼  9.3 ξ . The color bars represent the degree of nematic biaxiality;  87   (d) Schlieren 

texture in a uniaxial nematic liquid crystal;  48 , 88 , 89   (e) multi-gon vortices in multiferroic thin 

fi lms (different ferroelectric domain edges are denoted by red, blue, and green colors);  90   

and (f) a pentagon-heptagon defect in a curved carbon nanotube (and inset shows the 

mitosis defect through a horizontal red line).  57      
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defects, including the Hopf fi bration. The latter was imaged  91   

with three-photon excitation fl uorescence polarizing micros-

copy in conjunction with holographic optical tweezers in 

the same optical setup. In fact, interfering light beams can 

create a textured molecular fi eld in a liquid crystal, and 

optical laser lithography  92   can then be used to sculpt specifi c 

topological shapes out of a material. This approach opens 

up the exciting area of topological imaging in materials 

science.     

 Nonspherical colloidal particles with genus varying between 

1 and 5 dispersed in nematic liquid crystals  93   underscore the 

importance of topology in materials science by way of induc-

ing a zoo of topological defects and concomitant changes in 

material properties. These colloidal particles are accompanied 

by unusual topological defects with a net topological charge 

always equal to half of the Euler characteristic,  χ /2.  Figure 5  

exhibits results for  g  = 1, 3 as observed ( Figure 5c–d ), sche-

matically indicating different confi gurations ( Figure 5e–f ). 

These experiments may enable topology-dictated elastic 

colloidal interactions and self-assembly of reconfi gurable 

topological memory devices. Three-dimensional nonlinear opti-

cal imaging reveals that the topological charge is conserved. 

On the other hand, photothermal melting, laser tweezing, and 

electric fi elds cause transformations between 

these different confi gurations of colloidal 

particle-induced structures. 

 Some materials display topological disor-

der, which is quite distinct from the presence 

of topological defects. An example is that of 

2D foams, where the distribution of the num-

ber of bubble sides provides a quantitative 

measure of topological disorder (as opposed 

to geometric disorder, which is related to 

the distribution of bubble area).  94   In particu-

lar, topological disorder in 2D foams (e.g.,  

Table II ) under shear can be measured by 

direct video imaging of a fl uorescent tube, 

which provides bubble size-topology corre-

lations.  94   For soft materials such as colloids, 

3D nonlinear optical imaging is employed to 

measure the topological charge of defects. 

Similarly, external fi elds (electric, magnetic, 

pressure or stress), photothermal melting, 

laser tweezing, and other techniques are used 

to reveal their defect structures. Magnetic 

vortices and skyrmions are imaged via electron 

holography and Lorentz transmission electron 

microscopy. Schlieren imaging techniques 

could also come in handy when probing 

the topology of a variety of defects (e.g., in 

liquid crystals).  48 , 88   Next, we demonstrate how 

topology can be usefully invoked to determine 

the deformation energy of materials, specifi -

cally soft matter.   

 Elastic deformation energy 
 Biological vesicles have been observed to have a genus up 

to  g =  3; however, synthetic vesicles can have very large 

values ( ∼ 50) of  g .  32   First, we start with the Helfrich-Canham 

curvature free energy:  33   

  
2b

0 G[ ( ) ],
2

κ κgE dS H H K  (2) 

 where  κ  b = bending rigidity,  κ  G = Gaussian rigidity,  dS  = element 

of surface,  H  0  is the spontaneous mean curvature, and  H  and 

 K  are the mean and Gaussian curvature, respectively. Next, by 

using only topological means (such as Bogomol’nyi decom-

position,  95   which is usually invoked to study topological invari-

ance and indicates that the energy in  Equation 2  is greater than 

or equal to 4 π   κ  G  times a genus dependent term), one can cal-

culate the elastic energy of deformation as a function of genus 

for vesicles,  95   as depicted in   Figure 6  . The energy increases 

monotonically with genus and asymptotically reaches the value 

of 8 π , consistent with the Wilmore conjecture, a mathematical 

extrapolation.  95   From topological analysis, one fi nds that the 

spontaneous bending energy contribution resulting from any 

deformation of the vesicles from their metastable shapes falls 

into two distinct topological sets: shapes of spherical topology 

  

 Figure 5.      Illustration of topological metrology in two different experimental situations. 

(a) Schematic and (b) experimentally inferred image of an exotic topological defect 

called a Hopf fi bration in a chiral nematic liquid crystal.  91   The image was obtained using 

three-photon excitation fl uorescence polarizing microscopy (3PEF-PM) in conjunction 

with holographic optical tweezers. In the schematic, the fl ow lines with different colors 

correspond to different regions. In the image, winding bands of color meet at two 

hedgehog defects. The direction of the director fi eld ranges from red to violet as the fi eld 

rotates by  π . (c) Single and (d) triple handlebody ( g  = 1,3, respectively) textures of non-

spherical colloidal particles dispersed in a liquid crystal obtained by 3PEF-PM.  93   Green 

and magenta colors correspond to two orthogonal polarizations of excitation light. The 

cross-sectional image in the lower panels of (c) and (d) were obtained along the dashed 

yellow line. (e–f) Schematic diagrams of the corresponding director fi eld (black lines). 

Red and magenta lines show outer and inner disclination loops.  93   In the (e) and (f) panels, 

 m  c  denotes the topological charge. (c–f) Adapted with permission from Reference 93.    
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( g  = 0) and shapes of non-spherical topology ( g  > 0). These 

ideas can be readily applied to other materials and topologies.     

 Analogously, the deformation of negative curvature peri-

odic minimal surfaces such as Schwarzites and double gyroids 

can be calculated, specifi cally under hydrostatic stress, assum-

ing that only the lattice parameter changes under deforma-

tion.  20   Similarly, carbon and graphene nanoribbons can exist 

in helicoidal shape, and their axial deformation can be readily 

calculated by varying the pitch of the helicoid.  20   In both cases, 

the elastic energy is proportional to the Gaussian curvature 

and the material’s bulk (or axial) modulus. 

 Finally, we consider topological quantum effects that are 

pervasive in condensed matter physics and have greatly 

enriched the discovery of novel phenomena as well as their 

attendant device applications.   

 Topological quantum eff ects 
 Topology is frequently invoked in condensed matter physics 

(wherein topology of the wave function affects the observed 

phenomena) such as in the quantum Hall effect;  1   the Aharonov–

Bohm (AB) effect;  1   and many related effects  96 , 97   with applications 

in nanowire devices,  98   photonic waveguides,  99   and photonic 

quasicrystals.  100   Another quantum effect is the Casimir force that 

has found many applications in nanomechanics and nanoelectro-

mechanical systems.  101   Furthermore, the topological Casimir 

effect has also been studied in CNTs, nanorings, and graphene.  102    

 Topological materials and phase transitions 
 In materials such as topological insulators  4   (e.g., Bi 2 Se 3 , Bi 2 Te 3 ) 

and topological superconductors  103   (e.g . , Cu  x  Bi 2 Se 3 ), the topo-

logical order changes under the infl uence of external fi elds, 

resulting in a topological phase transition. Topological order 

refers to a kind of order at zero temperature, which is macro-

scopically described as a “robust ground state degeneracy.” 

It is also related to time reversal symmetry and spin-orbit 

coupling in materials, directly affecting the magnetoelectric 

response of the material. In topological insulators, the bulk is 

insulating, while the nontrivial topology of the bulk electronic 

energy bands demands that Dirac (i.e., relativistic) fermions 

are realized as surface states (which are metallic).  4   Instead of 

the usual quadratic dispersion, their electronic band structure 

has a linear dispersion (a Dirac cone) in the center of the band-

gap that arises from the topological properties of their band 

structure. Analogously, topological crystalline insulators have 

been proposed as well.  104     

 Dirac materials 
 Materials whose nontrivial electronic properties are a direct 

consequence of the linear energy Dirac spectrum  E  D  =  ν  k , 

where  E    D  denotes the band electronic energy,  ν  is a constant, 

and  k    is the wave vector, are called “Dirac materials.”  19 , 105 , 106   

In other words, the conduction and valence bands touch at 

an isolated set of points called the Dirac points. Graphene, 

strong topological insulators  4   (Bi 2 Se 3 ), and some d-wave 

superconductors  106 , 107   (Bi 2 Sr 2 CaCu 2 O 8 ) are excellent exam-

ples. The motion of electrons in these materials is described 

not by the Schrödinger equation but by the Dirac equation. 

The low energy properties of Dirac materials are described by 2D 

massless Dirac fermions. These materials provide an entire-

ly new avenue for exploring unusual electronic and thermal 

transport properties with potential applications. It is apparent 

that materials scientists are now primed to harness topological 

quantum effects in a slew of emerging topological materials.  18      

 Summary and outlook 
 Using nanocarbons,  9 , 10   soft matter,  31 , 37 , 48   and biological sys-

tems  39 , 52   as illustrative examples, we have demonstrated that 

understanding the physical properties of a broad class of 

materials in terms of topology and geometry is not just useful 

but imperative for progress in materials science. We described 

the essential concepts of topology, topological characteristics, 

and their emerging role, clearly delineating the differences 

between local versus global topology, ubiquity, and impor-

tance of a menagerie of topological defects ranging from the 

commonplace domain walls to exotic skyrmions, boojums, 

and magnetic monopoles. Although topology is effectively 

elastic geometry, we emphasized the difference and how to 

link the two. 

 We also illustrated how RS, nonlinear optical imaging, and 

other analytical techniques adopted to topological character-

ization of materials provide a preliminary indication that a 

powerful topological metrology toolbox is now available to 

materials scientists. In particular, we identifi ed the effects that 

arise due to curvature in lattice vibrational modes (usually 

ignored), and provided Raman spectra for otherwise unexplored 

nanoscale carbons in order to posit a truly viable topological 

metric.  9 , 10   This is a fi eld in its infancy where many new metro-

logical techniques are likely to be developed and discoveries 

are to be made in the near future. 

  

 Figure 6.      Elastic deformation energy of vesicles ( E   g  ) as a function 

of genus ( g ).  95   Blue circles represent exact values; crosses 

represent numerical estimates computed with a (Brakke’s) 

surface evolver. The red curve is an estimated fi t to the 

deformation energy for large values of  g . Green line denotes 

the asymptotic value of 8 π .  95      
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 In addition, we discussed complex and network topolo-

gies prevalent in soft matter, foams, DNA, proteins, and 

other biomaterials. We envision that novel topological and 

geometric characteristics can also be identifi ed and adopted 

as metrics to design and synthesize advanced hard, soft, 

and biomacromolecular materials and analyze them from an 

entirely different perspective that explicitly incorporates 

topological metrology (i.e., a search for quantifying spatial 

and temporal topological correlations). Adopting theory, mod-

eling, topological algorithms and databases,  16 , 17   and extensive 

simulation tools already used in condensed matter physics and 

quantum chemistry to the specifi c topological problems will 

accomplish these goals. As another manifestation of topology, 

using the Helfrich–Canham bending energy, we calculated 

the elastic deformation energy of vesicles with varying genus. 

Recent observations of multi-genus colloidal particles,  93   

Hopf fi brations,  91   and dislocation reactions using topological 

tweezers  108   attest to the dawning of this fi eld. Likewise, exploit-

ing topological quantum effects and observing topological 

phase transitions is a signifi cant growth area for research.  18   

Consolidating metrology techniques for probing topology and 

redirecting geometric concepts toward topological applica-

tions are some of the new exciting frontiers, with a substantial 

scope for unanticipated discoveries. This combined approach 

of integrating modeling, design and synthesis, and metrology 

would undoubtedly usher in the powerful emergent paradigm 

of topology/geometry → property → functionality into mate-

rials science.     
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JOB SEEKERS MEET YOUR NEXT EMPLOYER! 

ON-SITE REGISTRATION HOURS

Monday, April 21 ..................1:00 pm – 4:00 pm 

(Candidate Registration Only)

CAREER CENTER HOURS

Tuesday, April 22 ...............10:00 am – 5:00 pm 

Wednesday, April 23 ..........10:00 am – 5:00 pm

We’ll show off your talents to the world’s most 

prestigious high-tech firms, universities and 

laboratories. At the 2014 MRS Spring Meeting 

Career Center, you can access many interesting job 

postings, visit recruitment booths and interview 

with prospective employers. Please bring extra 

copies of your resume for your own use.

The Career Center is FREE to all MRS members 

and those registered to attend the 2014 MRS 

Spring Meeting. 

Register and submit your resume today!

www.mrs.org/spring-2014-career-center



Materials Research Society® 

University 
Chapters

The Materials Research Society® (MRS) 

University Chapter Program is a passionate 

and talented network of students from universities 

around the world.  Supported by the Materials 

Research Society Foundation, the program fosters 

an environment for collaboration and open exchange 

of ideas across all scientific disciplines, spanning 

campuses and continents. These students represent the 

next generation of materials research and are preparing 

to carry the torch forward, advancing materials and 

improving the quality of life.

You’ll find starting an MRS University Chapter is a fun and 

exceptionally valuable experience. Working through your 

Chapter—hosting events, creating special projects and 

connecting with experts from around the world—will prepare 

you for future professional and leadership roles in the materials 

community.  Your Chapter can also play a vital role in bringing 

science to a broader audience. Now more than ever, the goal is 

to successfully bring research out of the laboratory and into the 

classroom and to the general public … to show how materials have 

changed our history and continue to shape our future.

MRS continues to explore new ways to effectively foster growth of 

virtual global materials communities, using emerging technologies 

that are smart, fresh and innovative … and that includes our 

University Chapters. With social media, MRS OnDemand® and 

two-way live streaming, we’re already tapping into today’s 

technologies to engage Chapters unable to attend our 

Meetings, but with the promise of new innovations, tools 

and devices, we continue to look ahead. Help us build 

the Chapter of the Future!  Together we can design and 

develop virtual events to better collaborate, educate, 

participate and fascinate—across Chapters, across 

disciplines, across borders.

Now’s the time to use your excitement, expertise 

and unique scientific perspectives to forge a new 

path. Join this international student community. 

Start an MRS University Chapter today!

An International Community

One of the main objectives as graduate students and future 

researchers is to acquire the ability to build scientific networks 

for enhancing our vision, mission and scientific cooperation.  

MRS offers multiple tools to accomplish this with annual 

meetings, workshops, the MRS Bulletin and useful applications 

such as career connections or MRS OnDemand. Our MRS 

Student Chapter allowed us to obtain support from the 

Sociedad Mexicana de Materiales (SMM) that expands our 

national network. The formation of MRS Cinvestav Student 

Chapter not only allows us to integrate and exchange ideas 

as materials science students at Cinvestav, but also have the 

opportunity to know the science beyond our borders. 

Natalia Tapia, Chapter President 

Centro de Investigación y de Estudios Avanzados  

del Instituto Politécnico Nacional (Cinvestav-IPN) 

Mexico City, MEXICO

The MRS Student Chapter at WSU was organized 

by students who recognized the need to bring 

together a diverse group of students who were 

working in materials science. The campus is spread 

out geographically and students pursuing PhD 

degrees in MSE can be advised by chemistry or 

physics professors who are located far from the MSE 

department located in the engineering buildings. 

There is no distinction made between students whose 

advisors are in different departments or colleges, and 

the MRS Student Chapter has been a great vehicle to 

promote unity within the disciplines here.

David Field, Chapter Faculty Advisor 

Washington State University 

Pullman, Washington, USA

Interdisciplinary Collaboration
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The MRS University Chapter Experience
The MRS University Chapter Program provides invaluable experiences and benefits for student 

members, but don’t take our word for it. Our Chapter Members Say It Best!

The Materials Research Society, along with our local Binghamton 

University Chapter, has positively influenced my commitment to 

materials science and technology. We were inspired by our advisor, 

Professor M. Stanley Whittingham, to start this Chapter … and 

motivated by his enthusiasm and our faith to bring science to the 

general public, we continue to hold numerous events taken from 

MRS, i.e. MAKING STUFF and NanoDays. As our organization grows, 

we keep growing our events, and have found a solid and welcoming 

place in our community. Apart from the target audience, our events 

also benefit the volunteers, who gained valuable experience both from 

preparation, interaction, and activities. We feel proud and grateful to 

be part of an MRS University Chapter. 

Tianchan Jiang, Chapter President  

Binghamton University  

Binghamton, New York, USA

Leadership Development

As a graduate student, it is key to broaden your spectrum of what 

is taking place in the research world in real time. MRS opens up 

many avenues, especially when working from a University Chapter. 

Direct contact with MRS associates helps keep everyone abreast 

of conferences, Chapter opportunities and activities that otherwise 

may not have been as easily accessible. MRS also rewards student 

memberships with rebates and travel expenditures, helping promote 

student involvement as well as Chapter building. We were able to 

host a multitude of meetings and seminars as well as send students 

to attend MRS conferences to promote their research.

Chinedu Okoro, Chapter President

Tuskegee University 

Tuskegee, Alabama, USA

Chapter Support

Starting and advising an MRS University Chapter is truly a 

rewarding experience. One can see professional growth of 

students, who start feeling like members of the worldwide 

materials research community. I come to MRS meetings with a 

“team,” not just a couple of my students.  Exciting initiatives and 

project ideas generated by students are amazing. Not surprisingly, 

some of the most prominent materials scientists, such as Millie 

Dresselhaus (MIT) or Stan Whittingham (SUNY Binghamton), have 

been acting as Faculty Advisors for many years.

Yury Gogotsi, Chapter Faculty Advisor  

Drexel University 

Philadelphia, Pennsylvania, USA

Professional Growth

Our Chapter has enabled us to establish collaborations among 

the scientists on campus through informal social events, in 

addition to providing opportunities to participate in outreach. 

Integrating the science outreach efforts of Vanderbilt’s 

community into our local community is one of our primary 

goals. As a University Chapter, we received a grant through 

the Materials Research Society Foundation to bring emerging 

materials science and hands-on activities to disadvantaged 

students and teachers in rural Tennessee. Without these seed 

funds, our Vanderbilt program, Materials Outreach for Rural 

Education (MORE), would not have been possible.  

Amy Ng, Chapter President

Vanderbilt/Fisk Universities

Nashville, Tennessee, USA

Education Outreach

FOR MORE INFORMATION 
on the MRS University Chapter Program,  

visit www.mrs.org/university-chapters

I had the chance to present at the 2012 MRS Fall 

Meeting’s Sustainability Forum, while being over 

9000 km away from the meeting venue. I felt as if I 

was actually in Boston, being able to take questions, 

address them and getting into discussions with the 

committee. Thanks to the Materials Research Society 

and our local MRS-KAUST University Chapter for 

making this possible. 

Ahmed E. Mansour, Chapter Vice President

King Abdullah University of Science and Technology 

(KAUST)

Thuwal, SAUDI ARABIA

Building Chapters of the Future




