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•Lateral resolution: ~µm
•Details of microstructure:
e.g., domain structure,
chemical inhomogeneity
phase distribution, grain
boundaries, interfaces,
precipitates, dislocations,
etc.
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2-D Reciprocal Lattices

Real space:
Unit cell vectors: a,b

d-spacing  direction
a    d10 [10]
b d01 [01]

Reciprocal space:
Unit cell vectors: a*,b*

magnitude  direction
a*  1/d10 ⊥ b
b*  1/d01 ⊥ a

A reciprocal lattice can 
be built using
reciprocal vectors.

[01]

[10] (10)

(01)

Note: each point in the reciprocal lattice represents a set of 
planes.



3-D Reciprocal Lattice

Real space:
Unit cell vectors: a,b,c

magnitude direction
a    d100 [100]
b d010 [010]
c d001 [001]

Reciprocal space:
Unit cell vectors: a*,b*

magnitude direction
a*  1/d100 ⊥ b and c
b*  1/d010 ⊥ a and c
c*  1/d001 ⊥ a and b

Note: as volume of unit cell in real space increases the volume of 
unit cell in reciprocal space decreases, and vice versa. a*,b* and c* 
are parallel to corresponding a,b and c, and this is only true for the unit 
cells of cubic, tetragonal and orthorhmbic crystal systems.

Orthorhombic



Convergent Beam Electron 
Diffraction (CBED)

CBED uses a conver-
gent beam of elec-
trons to limit area of 
specimen which con-
tributes to diffraction
pattern.
Each spot in SAED then
becomes a disc within
which variations in
intensity can be seen.
CBED patterns contain
a wealth of information
about symmetry and
thickness of specimen.
Big advantage of CBED
is that the information
is generated from small
regions beyond reach
of other techniques. 



Why CBED?



Symmetry Deviations



Bright and Dark Field Imaging

BF

DF

DFMicrostructure of a Pb(ZrSnTi)O3
specimen.  → direction of 
structural modulation.

• • •

•
•
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SAED vs CBED

spots disks

lens

sample

Parallel beam Convergent beam

T D T D

Convergence angle

objective

SAED      CBED

Spatial 
resolution

>0.5µm

Spatial 
resolution
beam size



Applications of CBED

•Phase identification
•Symmetry determination-point and 
space group
•Phase fingerprinting
•Thickness measurement
•Strain and lattice parameter measurement 
•Structure factor determination



Phase Identification in BaAl2Si2O8

200oC 400oC 800oC

<0001>

Hexagonal Orthorhombic Hexagonal

6mm 2mm 6mm

CBED



Symmetry and Lattice Parameter 
Determination

BF
EDS

[143]

[100]

[111]

CBED

CBED-HOLZ

Experimental simulated

Lattice
parameters

SAED

010

001

0.2µm

Nb
A

B

A

A

A

A

B

B

B

B

CBED



Phase Fingerprinting

[001] CBED
patterns of an
antiferroelectric
PbZrO3 single
crystal specimen
at (a) 20oC, (b)
280oC, (c)220oC.
(d) [001] CBED
pattern of a 
rhombohedral 
ferroelectric 
Pb(ZrTi)O3
Specimen at 
20oC.

Orthorhombic AFE                   Cubic PE

Rhombohedral FE             Rhombohedral FE CBED



High Resolution Z-contrast Imaging
Atomic Ordering in Ba(Mg1/3Nb2/3)O3

(STEM)

aI Z2

∆f: -52      -64       -76      -88   -100nm

HREM-Phase contrast

Z-contrast

A: disordered B: ordered region



XRD, SEM and TEM Studies of 
Nanocrystalline BaTiO3 Thin Film

10nm

AES

XRD
SEM SEM

SEM

TEM

TEM

TEM

T (OC)

K

K-dielectric constant



Why are there so many spots?
The Ewald Sphere



Ewald
circle

0

incident
beam

diffracted
beam

2θ

C

k
Gg

130

H

At G, diffraction occurs, at H no diffraction

Ewald’s sphere is built for interpreting diffraction

CG-C0=0G or kd-ki=g Laue equation

Ewald’s Sphere



Construction of Ewald’s Sphere

Ewald’s sphere is built for interpreting diffraction patterns and it 
shows which sets of planes are at (or close to) their Bragg angle 
for diffraction to occur.

•Incident wave is represented by a reciprocal vector k (lkl=1/λ and 
points in the direction of wave).
•Construct a circle with radius 1/λ (i.e., k), which passes through 
origin of reciprocal lattice, 0.
•Wherever a reciprocal point touches the circle, Bragg’s law is 
obeyed and a diffracted beam will occur.
•C0–incident beam and CG–diffracted beam. The angle between 
C0 and CG must be 2θ.
•0G is the reciprocal vector g130 and has magnitude of 1/d130.

0G/2=lklsinθ, → 0G=2/λsinθ, → 1/d130=2/λsinθ130

→ λ=2d130sinθ130



Ewald’s Sphere Construction in 3D

In a single crystal
only a few sets of
planes are oriented
at their Bragg
angle at any one
time.



Lattice Vectors
Real space lattice vector
corresponds to directions in 
crystal and it can be defined 
as:

r=ua+vb+wc
a,b and c are unit cell vectors,
u,v and w are components of
the direction index [uvw].

A reciprocal lattice vector
can be written as:
g*=ha*+kb*+lc*

a*,b* and c* are reciprocal unit 
vectors, and h,k and l are the 
Miller indices of the plane (hkl).



Effect of Spacing of planes in Real Space on 
Length of Reciprocal Vector, g

In a crystal of any structure, ghkl is normal to the (hkl)
plane and has a length inversely proportional to the interplanar 
spacing of the planes. 

(111)
-

d111-

[111]
-



Streaking Reciprocal Lattice Points

Bragg’s law predicts diffraction at only precise Bragg angles for an 
infinite crystal. In TEM experiments, specimens are thin in at least one
dimension (thickness).
Effect of small dimensions is to allow diffraction over a range of 
angles close to Bragg angle, or as if reciprocal lattice points are 
stretched out in the thickness direction. The stretched reciprocal 
lattice points are called relrods.



Deviation Parameter, s

RelrodEwald sphere can intersect
with a relrod even when it
misses the actual reciprocal
lattice point. Diffraction, at
reduced intensity, can still
occur. Deviation parameter,
s, defines how close a relrod
Is to the Ewald sphere and
Diffraction vector K is given:

K=g+s

sK

g

The s is defined to be positive
In the direction of the beam
And negative if it points
Upwards (as here).

e-



Beam Intensity vs Deviation, s



Ewald’s Sphere and Diffraction 
Patterns

The curvature of the circle with respect to the reciprocal 
lattice, depends on the relative values of the wavelength λ, 
and the spacing of the lattice planes in the crystal, d. 



Indexing Diffraction Pattern-ratio Technique

Any 2-D section of a reciprocal lattice can be defined by two vectors so only 
need to index 2 spots.

1.Choose one spot to be the origin and
measure r1

2.measure the spacing of a second spot r2

3.measure the angle, φ
4.prepare a table giving the ratios of the

spacings of permitted diffraction planes
in the known structure

5.take measured ratio r1/r2 and locate a value close to this in 
the table

6.assign more widely-spaced plane (lower indices) to the 
shorter r value

7.calculate angle between pair of planes of the type you have
indexed

8.if measured φ agrees with one of possible value, accept 
indexing. if not, revisit the table and select another possible 
pair of planes

9.finish indexing the pattern by vector addition.



Indexing Electron Diffraction Patterns

If we know the index for two diffraction spots
It is possible to index the rest of the spots by
Using vector addition as shown. Every spots
Can be reached by a combination of these two
Vectors.



Kikuchi Lines-1 e-

In a thick enough specimen,
inelastic scattering (in 3-D)
also take place.

Inelastically scattered e-s 
travel in all directions but their 
distribution peaks in a forward
direction.

More are scattered forward 
Than sideways. This contri-
butes a grey background 
around the central spot of the
diffraction pattern, as shown.



Kikuchi Lines-2

Excess Line

Deficient Line

Projection of hkl plane

1.Inelastically scattered e-s can be
diffracted only if they are traveling
at Bragg angle,θB to a set of planes.
2.Two sets of e-s will be able to do 
this - those at +θB and those at -θB.

3.More e-s at A than B, one
bright (excess) line and one
dark (deficient) line result.
4. e-s are scattered in all 
directions, diffracted e-s  
form a cone, not a beam 
resulted in Kikuchi lines.
5.Spacing of pair of Kikuchi
lines is the same as spacing
of diffracted spots from the
same plane.



Kikuchi Lines-3

Lens

Specimen

hkl planes

Excess line Deficient line

Grey background

Diffraction pattern



Kikuchi Line Patterns for Si

Kikuchi lines pass 
straight through  
transmitted and 
diffracted spots. 
Diffracting planes  
are tilted at exactly 
the Bragg angle to  
optic axis.

T

D

Crystal has been 
titled slightly away 
from Bragg angle, 
so that Kikuchi lines 
no longer pass 
through trans-
mitted and 
diffracted spots.

T

Here the crystal is 
tilted so that more 
that one set of 
planes are 
diffracting. Each set 
of diffracting planes 
has its own pair of 
Kikuchi lines.



Indexing Diffraction Pattern-ratio 
technique

Any 2-D section of a reciprocal lattice can be defined by two vectors so only 
need to index 2 spots.

1.Choose one spot to be the origin and
measure r1

2.measure the spacing of a second spot r2

3.measure the angle, φ
4.prepare a table giving the ratios of the

spacings of permitted diffraction planes
in the known structure

5.take measured ratio r1/r2 and locate a value close to this in 
the table

6.assign more widely-spaced plane (lower indices) to the 
shorter r value

7.calculate angle between pair of planes of the type you have
indexed

8.if measured φ agrees with one of possible value, accept 
indexing. if not, revisit the table and select another possible 
pair of planes

9.finish indexing the pattern by vector addition.



Indexing - Example
1.Choose T as the origin, r1-7.75mm

2.r2-12.87mm

3.φ~72O

4.Get a table giving relative reciprocal 
lattice spacings

5.r2/r1=1.66 gives several possible 
pair of planes in the table

r1

r2 φ

T

r=Lλ/d  r2/r1=d1/d2

6.From the table of interplanar angle in cubic, φ~72O gives only 
one matched pair of planes, {100} (or {200}) and {311} for a 
face-centered lattice. {100} diffraction is not allowed in a face-
centered structure.

7.Calculating interplanar angles leads to (131) or (113) and (200) 
angle between (311) and (200) is 25.2O.

8.Zone axis of pattern: r1 x r2 = [013] for (131) and (200) pair

Cubic

200

131 (311)?

_

[013]
_



Formation of HOLZ Lines


