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2-D Reciprocal Lattices

Real space:

Unit cell vectors: a,b
d-spacing direction

a d 10 [10] :
b d;(i {01} . Reciprocal

space

Reciprocal space:

Unit cell vectors: a*,b*
magnitude direction

a* 1/dqg b

b* 1/d01 N a

A reciprocal lattice can
be built using Real
reciprocal vectors. space

Note: each point in the reciprocal lattice represents a set of
planes.



3-D Reciprocal Lattice

Real space:

Unit cell vectors: a,b,c
magnitude direction

a dio [100]

b dowo [010]

C  dooz [001]

Orthorhombic

Reciprocal space:

Unit cell vectors: a*,b*
magnitude direction
a* 1/digg " b andc
b* 1/dg; o "~ aandc
c* 1/dgy " aandb Real

space

Note: as volume of unit cell in real space increases the volume of
unit cell in reciprocal space decreases, and vice versa. a*b* and c*
are parallel to corresponding a,b and c, and this is only true for the unit
cells of cubic, tetragonal and orthorhmbic crystal systems.



Convergent Beam Electron
Diffraction (CBED)

CBED uses a conver-
gent beam of elec-
trons to limit area of
specimen which con-
Corwergence argle b tributes to diffraction
L pattern.
Sanmple o Each spot in SAED then
# 1N becomes a disc within
which variations in
intensity can be seen.
CBED patterns contain
a wealth of information
about symmetry and
thickness of specimen.
Big advantage of CBED
Is that the information
IS generated from small
regions beyond reach
of other techniques.




Why CBED?
Why CBED? Why not SAD?

Limits of Conventional SAD

Conventional SAD uses an aperture to define the area from which
the pattern is to be recorded. The aperture is placed in the image
plane of the objective lens to create a virtual aperture in the
specimen plane (Le Poole 1947). The spatial resolution in SAD is
limited by both spherical aberration and the ability of the operator
to focus the aperture of the and the image in the same plane. The
error in area selection U is given by:

U=C_(2qg)*+D2qg
where: C.= spherical aberration coefficient
gqg= Bragg angle
D= minimum focus step.
The result is that the theoretical lower limit of area
selection is ~0.5um (in practice governed by aperture
size).

J.B. Le Poole, Philips Tech. Rundsch 9
(1947) 33.




Symmetry Deviations

Possible reasons for Symmetry to deviate
from that which Is expected

Crystal Defects - Point defects, dislocations,
stacking faults

Element not in mid-plane
Glide or Screw out of surface
Probe smaller than unit cell
Heavily tilted sample




Bright and Dark Field Imagin

Microstructure of a Pb(ZrSnTi)O4
specimen. ® direction of
structural modulation.



SAED vs CBED

Parallel beam Convergent beam

Spatial Spatial

resolution c | = resolution
onvergence angle ' :
>0-5mm |:':||'4"-9EIT';EII'ICJ‘_. ar-gh:g - I beam size
sample 5 aenple

objective
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Applications of CBED

Phase identification

Symmetry determination-point and

space group

Phase fingerprinting

Thickness measurement

eStrain and lattice parameter measurement
eStructure factor determination



Phase ldentification in BaAl,SI,0O,

Hexagonal Orthorhombic Hexagonal

<0001> CB ED



Symmetry and Lattice Parameter
Determination
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Phase Fingerprinting
Orthorhombic AFE | Cubic PE

LIT]
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[001] CBED
patterns of an
. antiferroelectric
A PbZrOg5 single
crystal specimen
at (a) 20°C, (b)
280°C, (c)220°C.
" (d) [001] CBED
~ pattern of a
rhombohedral
~ ferroelectric

Rhombohedral FE | Rho

mbohedral FE -' CBED



High Resolution Z-contrast Imaging
Atomic Ordering in Ba(Mg,,3Nb,/;3)O,

'HREM:Phase co.htrfast' -3 ::; £

(STEM) - -88 -100nm

A: dlsordered B: ordered region



XRD, SEM and TEM Studies of
Nanocrystalline BaTiO; Thin Film
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Why are there so many spots?
The Ewald Sphere

High Energy Electron Case.

Very Large Radius
Ewald Sphere.

Ewald Sphere is atangent tothe
dotted line of reciprocal lattice points.



Ewald’s Sphere

Ewald’s sphere is built for interpreting diffraction

; Reciprocal
CG-CO0=0G or kq-ki=g Laue equation SPace

At G, diffraction occurs, at H no diffraction




Construction of Ewald’s Sphere

Ewald’s sphere is built for interpreting diffraction patterns and it
shows which sets of planes are at (or close to) their Bragg angle
for diffraction to occur.

sIncident wave is represented by a reciprocal vector k (kl=1/I and
points in the direction of wave).

«Construct a circle with radius 1/l (i.e., k), which passes through
origin of reciprocal lattice, O.

‘Wherever a reciprocal point touches the circle, Bragg's law Is
obeyed and a diffracted beam will occur.

CO-incident beam and CG-diffracted beam. The angle between
CO and CG must be 2q.

*0G is the reciprocal vector g3 and has magnitude of 1/d 3.

0G/2=IklIsing, ® 0G=2/ sing, ® 1/d3=2/1 sinQi3g

® | =2d13,SiNQ130



Ewald’s Sphere Construction in 3D

__ .- :.-:-._ o
Reciprocal
space

In a single crystal
only a few sets of
planes are oriented
at their Bragg
angle at any one
time.



Lattice Vectors

Real space lattice vector

corresponds to directions in r=0a-+2b+lc

crystal and it can be defined [021]
as:
r=ua+vb+wc
a,b and c are unit cell vectors,
u,v and w are components of Real
the direction index [uvw]. space

A reciprocal lattice vector
can be written as:

g*=ha*+kb*+Ic*

a*,b* and c* are reciprocal unit
vectors, and h,k and | are the
Miller indices of the plane (hkl).




Effect of Spacing of planes in Real Space on
Length of Reciprocal Vector, g

Reciprocal
space

In a crystal of any structure, gnk Is normal to the (hkl)
plane and has a length inversely proportional to the interplanar
spacing of the planes.



Streaking Reciprocal Lattice Points

Reciprocal
space

Bragg’s law predicts diffraction at only precise Bragg angles for an
infinite crystal. In TEM experiments, specimens are thin in at least one
dimension (thickness).

Effect of small dimensions is to allow diffraction over a range of
angles close to Bragg angle, or as if reciprocal lattice points are
stretched out in the thickness direction. The stretched reciprocal

lattice points are called relrods.



Deviation Parameter, s

Ewald sphere can intersect
with a relrod even when it
misses the actual reciprocal
lattice point. Diffraction, at
reduced intensity, can still
occur. Deviation parameter,
s, defines how close a relrod
Is to the Ewald sphere and
Diffraction vector K is given:

K=g+s .
The s is defined to be positive
In the direction of the beam Rreciprocal
And negative if it points space

Upwards (as here).



Beam Intensity vs Deviation, s

Beam

intensity




The curvature of the circle with respect to the reciprocal
lattice, depends on the relative values of the wavelength |,

and the spacing of the lattice planes in the crystal, d.



Indexing Diffraction Pattern-ratio Technique

Any 2-D section of a reciprocal lattice can be defined by two vectors so only
need to index 2 spots.

1.Choose one spot to be the origin and

measure ri
2.measure the spacing of a second spot r2
3.measure the angle, f

4.prepare atable giving the ratios of the
spacings of permitted diffraction planes
in the known structure

5.take measured ratio r /r, and locate a value close to this in

the table
6.assign more widely-spaced plane (lower indices) to the

shorter r value

7.calculate angle between pair of planes of the type you have
indexed

8.if measured f agrees with one of possible value, accept
iIndexing. if not, revisit the table and select another possible
pair of planes

9.finish indexing the pattern by vector addition.
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If we know the index for two diffraction spots
It is possible to index the rest of the spots by
Using vector addition as shown. Every spots
Can be reached by a combination of these two

Vectors.




Kikuchi Lines-1 .-

In a thick enough specimen,
Inelastic scattering (in 3-D)
also take place.

Inelastically scattered e's
travel in all directions but their
distribution peaks in a forward
direction.

More are scattered forward
Than sideways. This contri-
butes a grey background
around the central spot of the
diffraction pattern, as shown.

Grey background



Kikuchi Lines-2

1.Inelastically scattered e’s can be
diffracted only if they are traveling

at Bragg angle,qg to a set of planes.
2.Two sets of e’s will be able to do

this - those at +gg and those at -(g.

3.More e’s at A than B, one
bright (excess) line and one
dark (deficient) line result.
Excess Line 4. e's are scattered in all
directions, diffracted e’s
form a cone, not a beam
resulted in Kikuchi lines.
5.Spacing of pair of Kikuchi
lines is the same as spacing
of diffracted spots from the
same plane.

Projection of hkl plane

Deficient Line



Kikuchi Lines-3

hkl planes

Specimen

Lens

Deficient line

ey background




Kikuchi Line Patterns for Si

Kikuchi lines pass
straight through
transmitted and
diffracted spots.
Diffracting planes
are tilted at exactly
the Bragg angle to
optic axis.

Crystal has been
titled slightly away
from Bragg angle,
so that Kikuchi lines
no longer pass
through trans-
mitted and
diffracted spots.

Here the crystal is
tilted so that more
that one set of
planes are
diffracting. Each set
of diffracting planes
has its own pair of
Kikuchi lines.



Indexing Diffraction Pattern-ratio
technique

Any 2-D section of a reciprocal lattice can be defined by two vectors so only
need to index 2 spots.

1.Choose one spot to be the origin and
measure ri

2.measure the spacing of a second spot r2

3.measure the angle, f

4.prepare a table giving the ratios of the
spacings of permitted diffraction planes
in the known structure

5.take measured ratio r /r, and locate a value close to this in

the table
6.assign more widely-spaced plane (lower indices) to the

shorter r value
7.calculate angle between pair of planes of the type you have

indexed

8.if measured f agrees with one of possible value, accept
indexing. if not, revisit the table and select another possible
pair of planes

9.finish indexing the pattern by vector addition.




o131 1Ndexing - Example
1.Choose T as the origin, r -7.75mm
2.r,-12.87/mm

3.f-72°

4.Get a table giving relative reciprocal
lattice spacings

5.r,/r,=1.66 gives several possible
pair of planes in the table

6.From the table of interplanar angle in cubic, f —=72° gives only
one matched pair of planes, {100} (or {200}) and {311} for a

face-centered lattice. {100} diffraction is not allowed in a face-
centered structure.

7.Calculating interplanar angles leads to (131) or (113) and (200)
angle between (311) and (200) is 25.2°.

8.Zone axis of pattern: r; X r, = [013] for (131) and (200) pair



Formation of HOLZ Lines

Formation of
HOLZrings.

ZOLZ or Zero Layer.

John E. kansfield Moth Campus Electron Microbeam Analysis Lab,, Unikversity of Michigan




