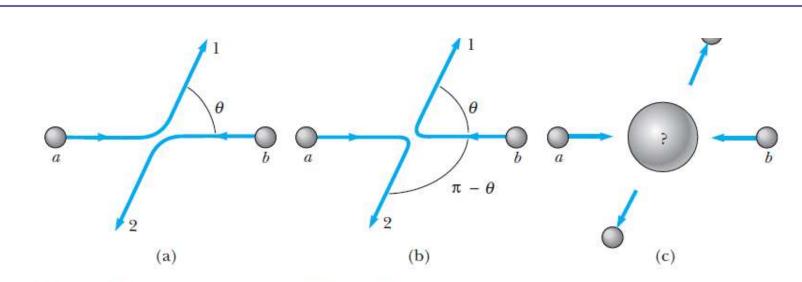
CHAPTER 8 Atomic Physics


- Allowed solutions to Schrödinger equation for two noninteracting particles accounting for their indistinguishable property
- Bosons and fermions, Pauli's exclusion principle again
- 8.1 Atomic Structure and the Periodic Table

What distinguished Mendeleev was not only genius, but a passion for the elements. They became his personal friends; he knew every quirk and detail of their behavior.

- J. Bronowski

$$\Psi_{n\ell m_{\ell}m_s} = R_{n\ell}Y_{\ell m_{\ell}}X_{m_s}$$

Suffices for this chapter, derived results are numerically nearly correct, also we do allow for an inclusion of effects of the fourth dimension (by multiplying what goes on in 3D with the spin wave function)

Figure 9.14 The scattering of two electrons as a result of their mutual repulsion. The events depicted in (a) and (b) produce the same outcome for identical electrons but are nonetheless distinguishable classically because the path taken by each electron is different in the two cases. In this way, the electrons retain their separate identities during collision. (c) According to quantum mechanics, the paths taken by the electrons are blurred by the wave properties of matter. In consequence, once they have interacted, the electrons cannot be told apart in any way!

identical particles cannot be told A consequence of the uncertainty principle

apart in any way-they are truly indistinguishable

There is no path for a quantum mechanical object to follow, uncertainty principle forbids this

The time-independent Schrödinger equation for two particles of mass *m* But without spin, so it is not really $-\frac{\hbar^2}{2m}\frac{\partial^2\psi(x_1, x_2)}{\partial x_1^2} - \frac{\hbar^2}{2m}\frac{\partial^2\psi(x_1, x_2)}{\partial x_2^2} + V\psi(x_1, x_2) = E\psi(x_1, x_2)$ one-dimensional infinite square well solve the Schrödinger equation only inside the well where *V* = 0

7-58

Could also have two parts: L_1 and L_2

The single-particle product solutions are

$$\psi_{nm}(x_1, x_2) = \psi_n(x_1)\psi_m(x_2)$$

where $\psi_n(x_1)$ and $\psi_m(x_2)$ are the single-particle wave functions for an infinite square well given by Equation 6-32. Thus, for n = 1 and m = 2,

$$\psi_{12} = C \sin \frac{\pi x_1}{L_1} \sin \frac{2\pi x_2}{L_2}$$
 even if only one par

The probability of finding particle 1 in dx_1 and particle 2 in dx_2 is $|\psi(x_1, x_2)|^2 dx_1 dx_2$, which is just the product of the separate probabilities $|\psi(x_1)|^2 dx_1$ and $|\psi(x_2)|^2 dx_2$. However, even though we have labeled the particles 1 and 2, if they are identical, we cannot distinguish which is in dx_1 and which is in dx_2 . For identical particles, therefore, we must construct the wave function so that the probability density is the same if we interchange the labels:

$$|\psi(x_1, x_2)|^2 = |\psi(x_2, x_1)|^2$$
7-60

Equation 7-60 holds if $\psi(x_1, x_2)$ is either symmetric or antisymmetric on exchange of particles—that is,

 $\psi(x_2, x_1) = +\psi(x_1, x_2)$ symmetric $\psi(x_2, x_1) = -\psi(x_1, x_2)$ antisymmetric If that made sense, the particle that we could find at x = $\frac{1}{2}$ L needed to be always the one in state n = 1 (the other particle has zero probability there), if we were to change labels the same condition would apply - so we would violate the condition that quantum mechanical particles are indistinguishable as a consequence of the uncertainly principle, so it cannot make sense We note that the general wave function of the form of Equation 7-58 and the example (Equation 7-59) are neither symmetric nor antisymmetric. If we interchange x_1 and x_2 , we get a different wave function, implying that the particles can be distinguished. These forms are thus *not* consistent with the indistinguishability of identical particles. However, from among all of the possible linear combination solutions of the single product functions, we see that, if ψ_{nm} and ψ_{mn} are added or subtracted, we form symmetric or antisymmetric wave functions necessary to preserve the indistinguishability of the two particles:

$$\psi_{s} = C[\psi_{n}(x_{1})\psi_{m}(x_{2}) + \psi_{n}(x_{2})\psi_{m}(x_{1})] \quad \text{symmetric} \leftarrow \text{Two basis types of particles} \\ \psi_{A} = C[\psi_{n}(x_{1})\psi_{m}(x_{2}) - \psi_{n}(x_{2})\psi_{m}(x_{1})] \quad \text{antisymmetric} \leftarrow \text{fermions, (half integer spin)} \\ \end{array}$$

When n = m for both particles, wavefunction = zero

Pauli Exclusion Principle

There is an important difference between the antisymmetric and symmetric combinations. If n = m, the antisymmetric wave function is identically zero for all x_1 and x_2 , whereas the symmetric function is not. More generally, it is found that electrons (and many other particles, including protons and neutrons) can only have antisymmetric *total* wave functions, that is they are fermions

$$\Psi_{n\ell m_{\ell} m_s} = R_{n\ell} Y_{\ell m_{\ell}} X_{m_s}$$
 7-61

where $R_{n\ell}$ is the radial wave function, $Y_{\ell m_{\ell}}$ is the spherical harmonic, and X_m is the spin wave function.

Matter is composed of fermions, half integer spin,

Paraphrasing Winston Churchill: not everybody at the horse races is a crook, but all the crooks are at the horse races: Not all bosons are force particles, but all force particles are bosons

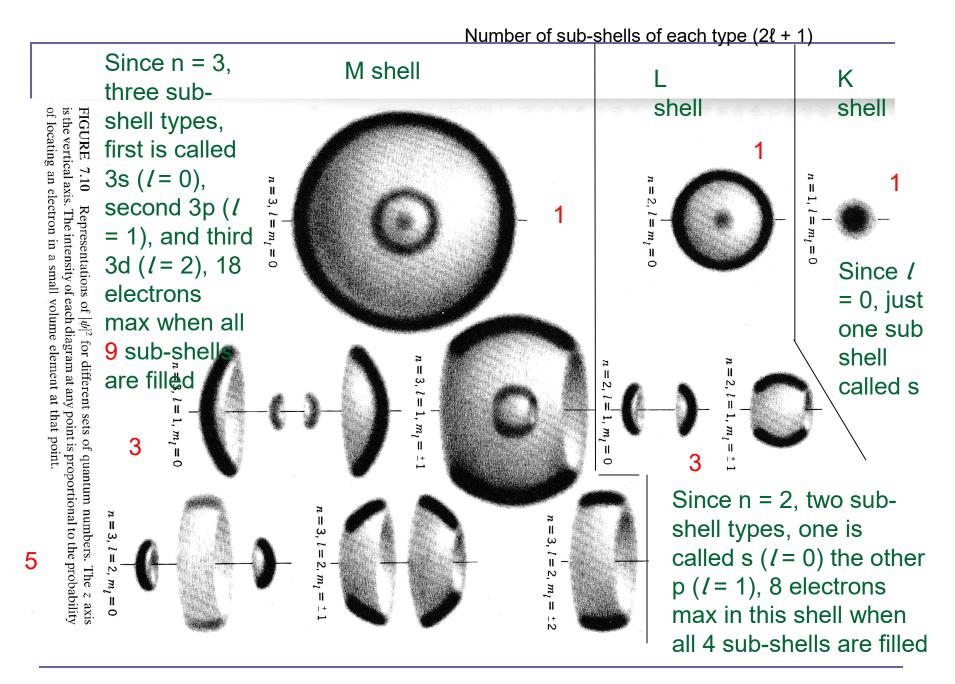
Pauli Exclusion Principle

- To make sense of atomic spectroscopic data of the anomalous Zeeman effect, Pauli proposed his famous exclusion principle:
 No two electrons in an atom can have the same set of quantum numbers (n, l, m_e, m_s).
- It applies to all particles of half-integer spin, which are called *fermions*, electrons and composite particles (protons and neutrons) in the nucleus are fermions. Each of the latter (composite) particles is composed of three quarks which are also fermions, spins add up, so no chance for them to become a boson)

The whole periodic table (chemical properties) can be understood by two rules on the basis of the hydrogen atom:

- 1) The electrons in an atom tend to occupy the lowest energy levels available to them.
- 2) Pauli exclusion principle.

Hydrogen atom model, Schrödinger plus spin


The principle quantum number has letter codes.

n =	1	2	3	4	
Letter =	K	L	Μ	Ν	

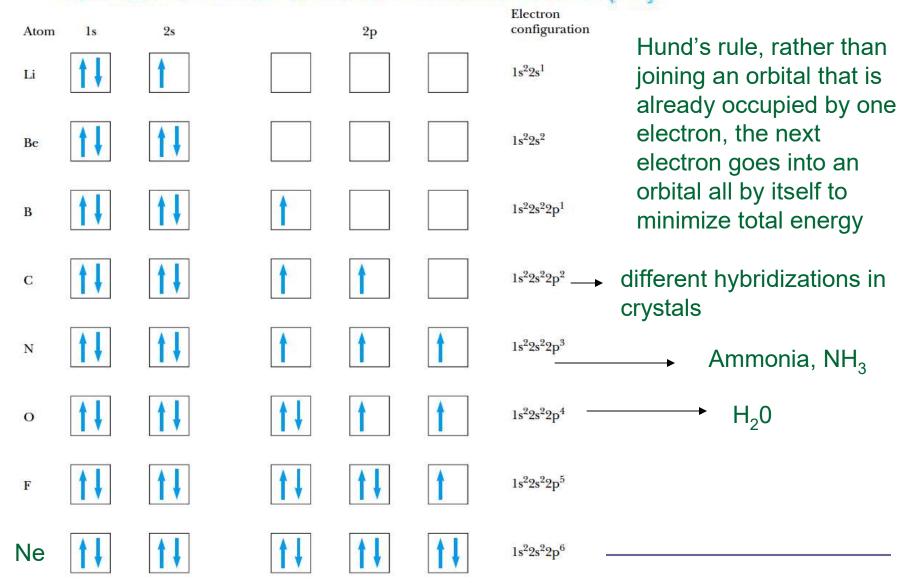
n = **shells** (e.g.: K shell, L shell, etc.)

n and ℓ together for **subshells** (e.g.: 1*s*, 2*p*, 3*d* – where leading number refers to principal quantum number

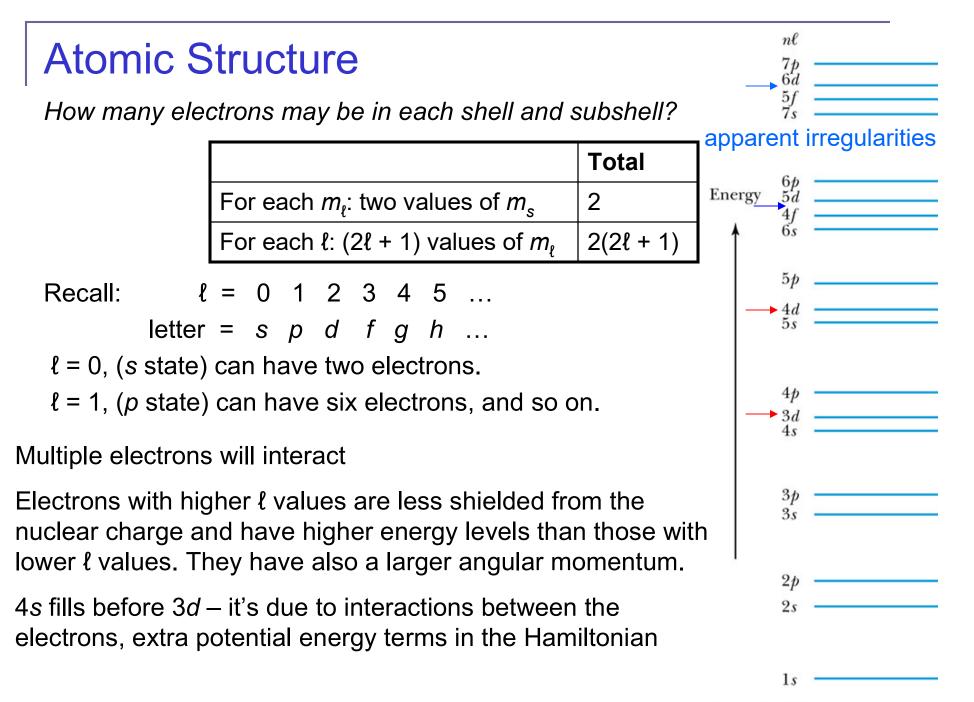
in each hydrogen-analogous orbital (3D spatial wavefunction-squared) there can only be up to two electrons with opposite spin

Filled and half-filled shells and sub-shells result in spherical symmetric electron density distributions for the corresponding atoms, (Unsoeld's theorem)

7


Atomic Structure

- **Hydrogen**: $(n, l, m_l, m_s) = (1, 0, 0, \pm \frac{1}{2})$ in ground state. Both spin states with same probability
- In the absence of a magnetic field (and ignoring hyper-fine structure and spin orbit coupling), the state $m_s = \frac{1}{2}$ would be degenerate with the $m_s = -\frac{1}{2}$ state. (different wavefunction but same energy)
- **Helium**: $(1, 0, 0, \frac{1}{2})$ for the first electron, $(1, 0, 0, -\frac{1}{2})$ for the second electron.
- Electrons have anti-aligned ($m_s = +\frac{1}{2}$ and $m_s = -\frac{1}{2}$) spins, they are being *paired and spins cancel*, total spin becomes an integer (0), i.e. the whole particle becomes a boson, composed of fermions (which are subject to the Pauli exclusion principle, nuclear spins cancel also, happens at there are two protons and two neutrons).


Electrons for H and He atoms are in the K shell. H: 1s $He^{+:}$ 1s¹ just like H He: 1s² Li⁺⁺: 1s¹ just like H There is no sub-shells at all for n = 1, because l = 0, meaning m_l also = 0, so just one set with spatial (3D) quantum numbers (1, 0, 0, $\pm \frac{1}{2}$)

Number of sub-shells is number of sets with unique spatial (3D) quantum numbers 8

No more than one electron may occupy a given quantum state specified by a particular set of single-particle quantum numbers n, ℓ , m_r , m_e .

Figure 9.15 Electronic configurations of successive elements from lithium to neon. The filling of electronic states must obey the Pauli exclusion principle and Hund's rule.

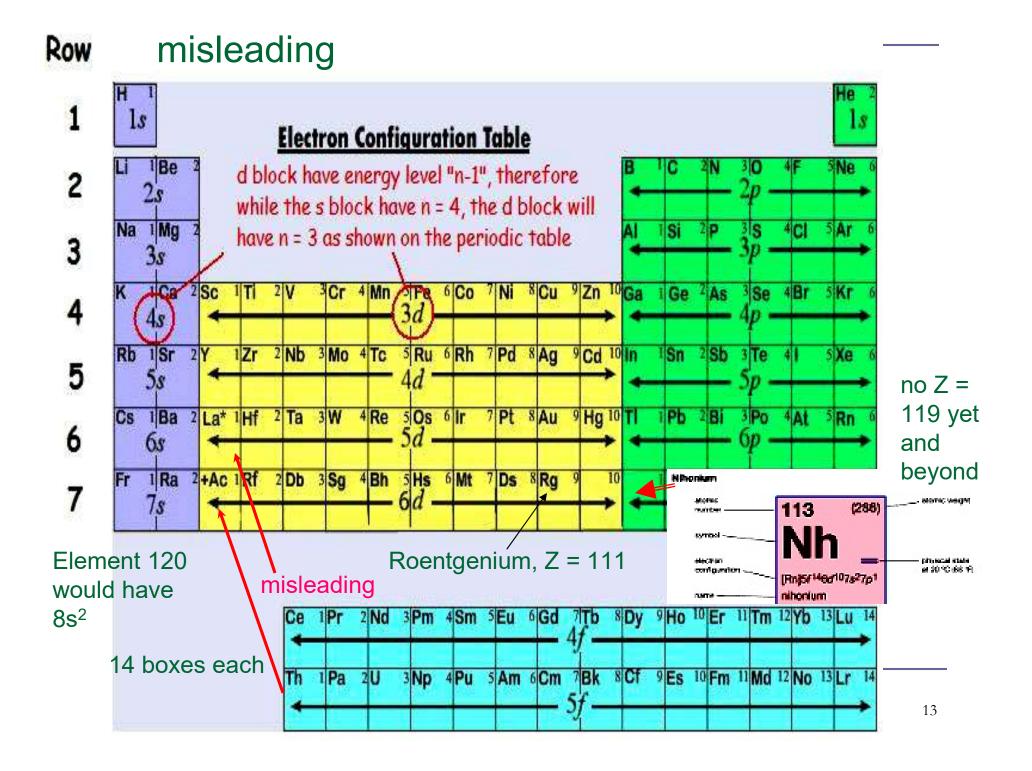
© 2006 Brooks/Cole - Thomson

$$\begin{split} 1s < 2s < 2p < 3s < 3p < 4s \sim 3d < 4p < 5s < 4d < 5p < 6s < 4f \sim 5d \\ < 6p < 7s < 6d \sim 5f. \end{split}$$

Ordering of subshells by energy

z	Symbol	Ground Configuration	Ionization Energy (eV)	Z	Symbol	Ground Configuration	Ionization Energy (eV)
1	Н	1 s ¹	13.595	27	Со	$3d^{7}4s^{2}$	7.86
2	He	$1s^2$	24.581	28	Ni	$3d^{8}4s^{2}$	7.633
2 3	Li	[He] 2s ¹	5.390	29	Cu	$3d^{10}4s^{1}$	7.724
4	Be	$2s^2$	9.320	30	Zn	$3d^{10}4s^2$	9.391
5	B	$2s^22p^1$	8.296	31	Ga	$3d^{10}4s^24p^1$	6.00
6	С	$2s^2 2p^2$	11.256	32	Ge	$3d^{10}4s^24p^2$	7.88
7	N	$2s^22p^3$	14.545	33	As	$3d^{10}4s^24p^3$	9.81
8	O	$2s^22p^4$	13.614	34	Se	$3d^{10}4s^24p^4$	9.75
9	F	$2s^22p^5$	17.418	35	Br	$3d^{10}4s^24p^5$	11.84
10	Ne	$2s^2 2p^6$	21.559	36	Kr	$3d^{10}4s^24p^6$	13.996
11	Na	[Ne] $3s^1$	5.138	37	Rb	[Kr] 5s ¹	4.176
12	Mg	$3s^2$	7.644	38	Sr	$5s^2$	5.692
13	Al	$3s^23p^1$	5.984	39	Y	$4d5s^2$	6.377
14	Si	$3s^23p^2$	8.149	40	Zr	$4d^{2}5s^{2}$	6.835
15	Р	$3s^23p^3$	10.484	41	Nb	$4d^{4}5s^{1}$	6.881
16	S	$3s^23p^4$	10.357	42	Mo	$4d^{5}5s^{1}$	7.10
17	Cl	$3s^23p^5$	13.01	43	Тс	$4d^{5}5s^{2}$	7.228
18	Ar	$3s^23p^6$	15.755	44	Ru	$4d^{7}5s^{1}$	7.365
19	K	[Ar] $4s^1$	4.339	45	Rh	$4d^{8}5s^{1}$	7.461
20	Ca	$4s^2$	6.111	46	Pd	$4d^{10}$	8.33
21	Sc	$3d4s^2$	6.54	47	Ag	$4d^{10}5s^1$	7.574
22	Ti	$3d^24s^2$	6.83	48	Cd	$4d^{10}5s^2$	8.991
23	V	$3d^{3}4s^{2}$	6.74	49	In	$4d^{10}5s^25p^1$	5.785
24	Cr	$3d^54s$	6.76	50	Sn	$4d^{10}5s^25p^2$	7.342
25	Mn	$3d^{5}4s^{2}$	7.432	51	Sb	$4d^{10}5s^25p^3$	8.639
26	Fe	$3d^{6}4s^{2}$	7.87	52	Te	$4d^{10}5s^25p^4$	9.01

Table 9.2 Electronic Configurations of the Elements


Note the closed subshells for any n at the noble gasses

Note the closed subshells for any n at the noble gasses

Z	Symbol	Ground Configuration	Ionization Energy (eV)	Z	Symbol	Ground Configuration	Ionization Energy (eV)
53	I	$4d^{10}5s^25p^5$	10.454	79	Au	$[Xe, 4f^{14}5d^{10}] 6s^1$	9.22
54	Xe	$4d^{10}5s^{2}5p^{6}$	12.127	80	Hg	$6s^2$	^{10.434} Last of
55	Cs	[Xe] 6s ¹	3.893	81	Tl	$6s^26p^1$	6.106
56	Ba	$6s^2$	5.210	82	Pb	$6s^26p^2$	7.415 the stable
57	La	$5d6s^2$	5.61	83	Bi	$6s^26p^3$	7.287 elements
58	Ce	$4f5d6s^2$	6.54	84	Po	$6s^26p^4$	8.43
59	Pr	$4f^{3}6s^{2}$	5.48	85	At	$6s^26p^5$	9.54
60	Nd	$4f^{4}6s^{2}$	5.51	86	Rn	$6s^26p^6$	10.745
61	Pm	$4f^{5}6s^{2}$	5.60	87	Fr	[Rn] $7s^1$	3.94
62	Fm	$4f^{6}6s^{2}$	5.644	88	Ra	$7s^2$	5.277
63	Eu	$4f^{7}6s^{2}$	5.67	89	Ac	$6d7s^2$	5.17
64	Gd	$4f^{7}5d6s^{2}$	6.16	90	Th	$6d^27s^2$	6.08
65	Tb	$4f^{9}6s^{2}$	6.74	91	Pa	$5f^26d7s^2$	5.89
66	Dy	$4f^{10}6s^2$	6.82	92	U	$5f^{3}6d7s^{2}$	6.194
67	Ho	$4f^{11}6s^2$	6.022	93	Np	$5f^{4}6d7s^{2}$	6.266 Occur only in U-
68	Er	$4f^{12}6s^2$	6.108	94	Pu	$5f^{6}7s^{2}$	6.061 ores and nuclear
69	Tm	$4f^{13}6s^2$	6.185	95	Am	$5f^{7}7s^{2}$	5.99 reactors
70	Yb	$4f^{14}6s^2$	6.22	96	Cm	$5f^{7}6d7s^{2}$	6.02
71	Lu	$4f^{14}5d6s^2$	6.15	97	Bk	$5f^{8}6d7s^{2}$	6.23 6.20 Do not
72	Hf	$4f^{14}5d^26s^2$	6.83	98	Cf	$5f^{10}7s^2$	6.30 DO HOL
73	Ta	$4f^{14}5d^36s^2$	7.88	99	Es	$5f^{11}7s^2$	6.42 OCCUI
74	W	$4f^{14}5d^46s^2$	7.98	100	Fm	$5f^{12}7s^1$	6 50
75	Re	$4f^{14}5d^56s^2$	7.87	101	Mv	$5f^{13}7s^2$	6.58 naturally
76	Os	$4f^{14}5d^66s^2$	8.71	102	No	$5f^{14}7s^2$	6.65 on Earth
77	Ir	$4f^{14}5d^76s^2$	9.12	103	Ew Lr	$5f^{14}6d7s^2$	
78	Pt	$4f^{14}5d^86s^2$	8.88	104	Ku	$5f^{14}6d^27s^2$	

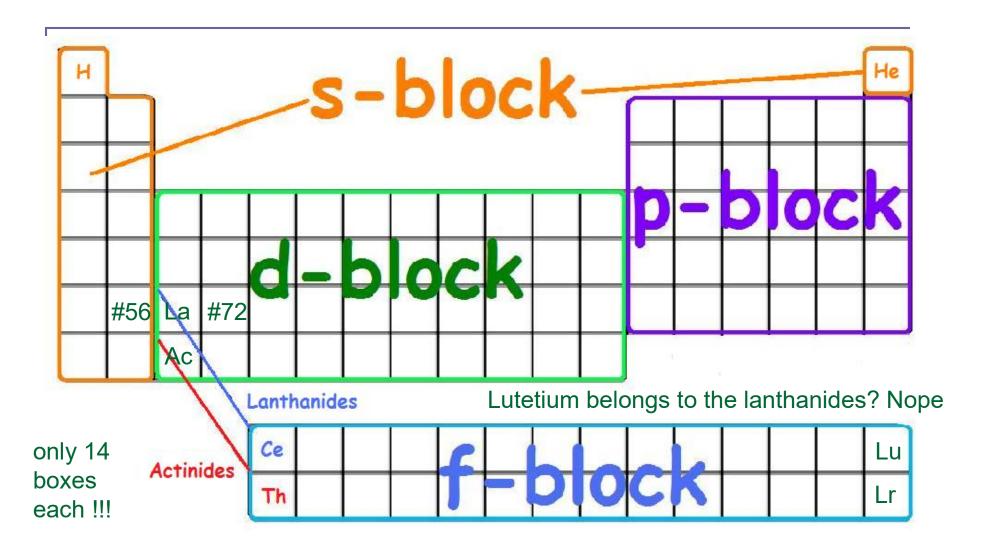
Table 9.2 Electronic Configurations of the Elements

Note: The bracket notation is used as a shorthand method to avoid repetition in indicating inner-shell electrons. Thus, [He] represents $1s^2$, [Ne] represents $1s^22s^22p^6$, [Ar] represents $1s^22s^22p^6$, and so on.

Г	whenever [] around atomic mass, radioact													active			
I LA H I Hydrogen	Periodic Table of the Elements																
1.00794 1s ¹	2 11A		100	onew — 🛏 1		— Group old	d					Metalloids 13 IIIA	14 IVA	15 VA	Nonmetals 16 VIA	17 VILA	4.00280 1s ²
Li 3 Lithium 6.941	Be 4 Beryllium 9.012182	Potassium Boron Carbon Nitrogen Oxygen Fluorine 39.0983 + Atomic mass 10.81 12.011 14.0087 15.9994 18.9984													Ne 10 Neon 20.179		
	2s ² Mg 12	4s' (averaged according to occurrence on earth) 2p ¹ 2p ² 2p ³ 2p ⁴ <td></td>															
Sodium 22.969768 35 ¹	Magnesium 24.3050 3s ²	3 1118	4 IVB	5 VB	6 V1B	7 VIIB	Meta s vilib	6 9 VIIIB	10 VIIIB	11 18	12 118	Aluminum 26.9815 3p ¹	Silicon 28.0855 3p ²	Phosphorus 30.9738 30 ³	Sultur 32,06 30 ⁴	Chlorine 35,453 3p ³	Argon 39.948 3p ⁶
	Ca 20 Calcium	Sc 21 Scandium 44.955910 3d ¹ 4s ²					Fe 28	Co 27 Cobalt 58.93320 3d ⁷ 4s ²	Ni 28 Nidkel 58.69 3d ⁹ 4s ²	Cu 29 Copper 63.546 3d ¹⁰ 4s ¹	Zn 30 Zinc 65.39 3d ¹⁰ 4s ²	Ga 31 Gallium 69.723 4p ¹	Ge 32 Germanium 72.81 4p ²	As 33	Se 34 Selenium 78.96 4p ⁴	Br 35 Bromine 79.904 4p ³	Kr 36 Krypton 83.80 4p ⁶
Rb 37 Rubidium 85.4878 55 ¹	Sr 38 Strontium 87.62 5s ²	Y 39 Yttrium 88.90585 4d ⁱ 5s ²	Zr 40 Zirconium 91.224 4d ² 5s ²	Nb 41 Niobium 92.90638 4d ⁴ 5s ¹	Mo 42 Molybdenum 95.94 4d ⁹ 5s ¹		Ru 44 Ruthenium 101.07 4d ⁷ 5s'	Rh 45 Rhodium 102.90550 4d ⁹ 5s ¹	Pd 48 Palladium 108.42 4d ¹⁰ 55 ⁰	Ag 47 Silver 107.8882 4d ¹⁰ 5s ¹	Cd 48 Cadmium 112.411 4d ¹⁰ 5s ²	in 49 Indium 114.82 5p ¹	Sn 50 Tin 118.710 5p ²	Sb 51 Antimony 121.75 5p ³	Te 52 Tellurium 127,60 5p ⁴	l 53 lodine 126.905 5p ³	Xe 54 Xenon 131.30 5p ⁶
Cesium 132.90543	Ba 56 Barium 137.327	57 - 71 Lanthanide series	Hf 72 Hafnium 178.49	Tantalum 180.9479	Tungsten 183.85	Re 75 Rhenium 188.207	Os 76 Osmium 190.2	Ir 77 Iridium 192.22	Pt 78 Platinum 195.08	Au 79 Gold 196.96654	Hg 80 Mercury 200.59	TI 81 Thallium 204.3833	Pb 82 Lead 207.2	Bi 8 Bismuth 208.9803	Po 84 Polonium (209)	At 85 Astatine (210)	Rn 88 Radon (222)
85' Fr 87 Francium (223) 75'	65 ² Ra 88 Radium (226) 75 ²	89 - 103 Actinide series		5d ³ 8s ² Unp 105 Unrilpentum (282) 6d ⁹ 7s ²	5d ⁴ 8s ² Unh 108 Umilhaalum (263) 6d ⁴ 7s ²	5d ⁴ 8s ² Uns 107 Umitseptium (282)	5d ⁶ 85 ² 108 NE	eds	upda	ting f	or na	mes	and	^{®,} disco	verie	هه s, Ur	مه • ۱.

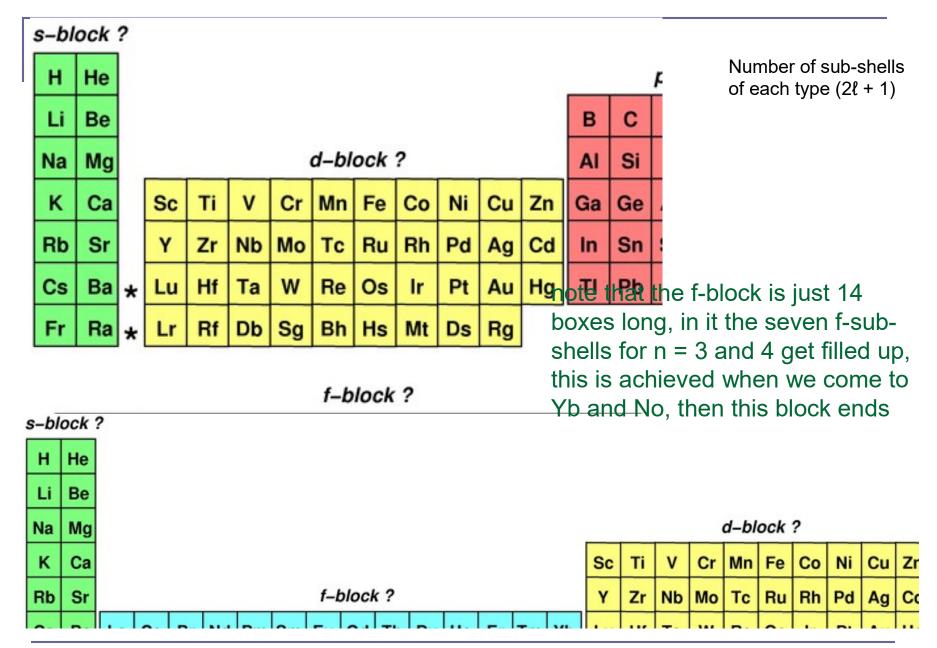
		_		_				-	-			-							-	
	La	57	Ce :	38 Pr	r 59	Nd 60	Pm 61	Sm 6	32 E	Eu 63	Gd 6	4 T	b 65	Dy 66	Ho 67	Er 68	Tm 69	Yb 70	ш	71
Lanthanide	Lantha	num	Cerium	Pa	aseodymium	Neodymium	Promethium	Samariu	m	Europium	Gadoliniu	m 1	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutet	ium
15 boxes each	138.9	055	140.11	5 14	40.90785	144.24	(145)	150.38		151.985	157.25	1:	58.92534	162.50	164.93032	167.28	168.93421	173.04	174.9	967
	5d ¹ 8s		4f ¹ 5d ¹ 8	2 4	tf ³ 0s ²	4f ⁴ 6s ²	4f ³ 8s ²	4f ⁶ 8s ²	2	4f es²	4f [°] 5d ¹ 8s	2 4	4f ^e es ²	4f ¹⁰ 6s ²	4f ¹¹ 8s ²	4f ¹² 8s ²	4f ¹³ 8s ²	4f ¹⁴ 6s ²	4f ¹⁴ 5d	es²

	Ac	89	Th	90	Ра	91	U 92	Np 93	Pu 94	Am 95	Om 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103
Actinide	Actin	um	Thoriu	m	Protactin	ium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
series	(22	7)	232.03	881	231.035	88	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
	6d ¹ 7s	2	6d ² 7s ²		5f ² 8d ¹	7s²	5f ⁸ 6d ¹ 7s ²	5f ⁴ 8d ¹ 7s ²	5f*8d*7s2	5f 6d ⁰ 7s ²	5f ⁷ 8d ¹ 7s ²	5f ⁹ 8d ⁹ 7s ²	5f ¹⁰ 8d ⁰ 7s ²	5f ¹ 8d ⁰ 7s ²	5f ¹² 6d ⁰ 7s ²	5f138d97s2	6d ⁰ 7s ²	ed ¹ 7s ²

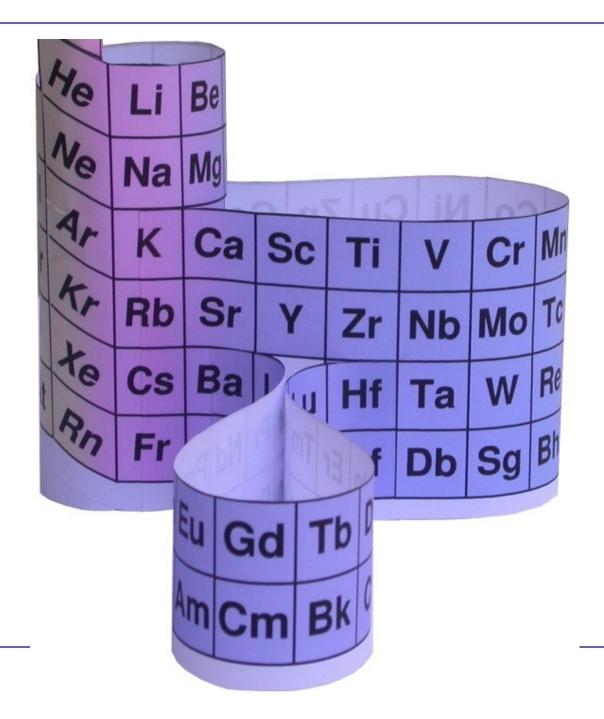

Standard long periodic table, Y and Lu have an analogous electronic structure for outer electrons

14

1 IA			Atom	ic numb	er ——		58							
1 Hydrogen 1.008	2 IIA			Nan	ne —	→ Ce	C e ←	Sy	rmbol		13 IIIA	14 IVA	ן ע	
3 Li Lithium 6.940 2-1	4 Be Beryllium 9.012 2-1			Electron per shel		14 ≥2-8-18	. 0.12 ≪= 8-19-9-:		Atomic n	nass	5 B Boron 10.810 2-3	6 C Carbon 12.011 2-4] Niti 14.	
11 Na Sodium 22.99 2-8-1	12 Mg Magnesium 24.30 2-8-2	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	13 Al Aluminium 26.98 2-8-3	14 Si Silicon 28.085 2-8-4	Phos 30 2-
19 K Potassium 39.098 2-8-8-1	20 Ca Calcium 40.078 2-8-8-2	21 Sc Scandium 44.956 2-8-9-2	22 Ti Titanium 47.867 2-8-10-2	23 V Vanadium 50.942 2-8-11-2	24 Cr Chromium 51.996 2-8-13-1	25 Mn Manganese 54.938 2-8-13-2	26 Fe Iron 55.845 2-8-14-2	27 Co Cobalt 58.933 2-8-15-2	28 Ni Nickel 58.693 2-8-16-2	29 Cu Copper 63.546 2-8-18-1	30 Zn Zine 63.380 2-8-18-2	31 Ga Gallium 69.723 2-8-18-3	32 Ge Germanium 72.630 2-8-18-4	Ars 74 2-8
37 Rb Rubidium 85.468 2-8-18-8-1	38 Sr Strontium 87.620 2-8-18-8-2	39 Y Yttrium 88.906 2-8-18-9-2	40 Zr Zirconium 91.224 2-8-18-10-2	41 Nb Niobium 92.906 2-8-18-12-1	42 Mo Molybdenum 95.950 2-8-18-13-1	43 Te Technetium [97] 2-8-18-13-2	44 Ru Ruthenium 101.07 2-8-18-15-1	45 Rh Rhodium 102.91 2-8-18-16-1	46 Pd Palladium 106.42 2-8-18-18	47 Ag Silver 107.87 2-8-18-18-1	48 Cd Cadmium 112.41 2-8-18-18-2	49 In Indium 114.82 2-8-18-18-3	50 Sn Tin 118.71 2-8-18-18-4	Anti 12 2-8-1
55 Cs Cesium 132.91	56 Ba Barium 137.33 2-8-18-18-8-2	57 - 71 Ln Lanthanides	72 Hff Hafnium 178.49 2-8-18-32-10-2	73 Ta Tantalum 180.95 2-8-18-32-11-2	74 W Tungsten 183.84 2-8-18-32-12-2	75 Re Rhenium 186.21 2-8-18-32-13-2	76 Os Osmium 190.23 2-8-18-32-14-2	77 Ir Iridium 192.22 2-8-18-32-15-2	78 Pt Platinum 195.08 2-8-18-32-17-1	79 Au Gold 196.97 2-8-18-32-18-1	80 Hg Mercury 200.59 2-8-18-32-18-2	81 Tl Thallium 204.38 2-8-18-32-18-3	82 Pb Lead 207.20 2-8-18-32-18-4	8] Bis: 20 2-8-18
87 Fr	88 Ra	89 - 103 Actinides	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	ııı Rg	112 Cn	113 Nh	114 Fl	1 N
Francium [223] 2-8-18-32-18-8-1	Radium [226] 2-8-18-32-18-8-2	Techniques	Rutherfordium [267] 2-8-18-32-32-10-2	Dubnium [268] 2-8-18-32-32-11-2	Seaborgium [269] 2-8-18-32-32-12-2	Bohrium [270] 2-8-18-32-32-13-2	Hassium [277] 2-8-18-32-32-14-2		and the second second	Roentgenium [282]	and the second second second	Nihonium [286] 2-8-18-32-32-18-3	Flerovium [289] 2-8-18-32-32-18-4	Mose [2 2-8-18-;
								f	hlad	-				


f-block

15 boxes each??, f means l = 3, max. number of electrons in f-sub-shell $2(2 l + 1) \stackrel{15}{=} 14$

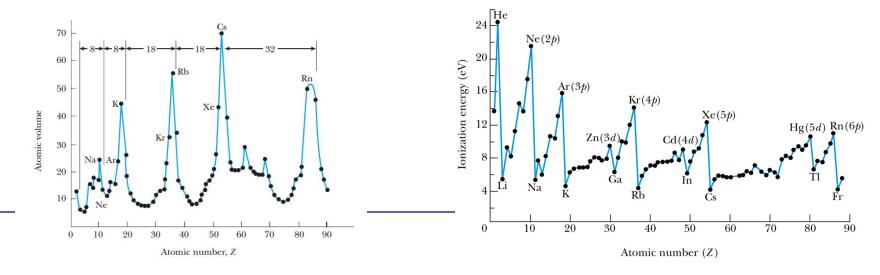


There are 14 = 2(6+1) f-boxes, but both Ce and Th just start with **one** electron in the boxes of the d-block, so it is not obvious if La should be in the same column as Sc and Y, or if Lu and Lr should be in the same column as these two. Actually it is Lu (Lutetium) and Lr (Lawrencium).

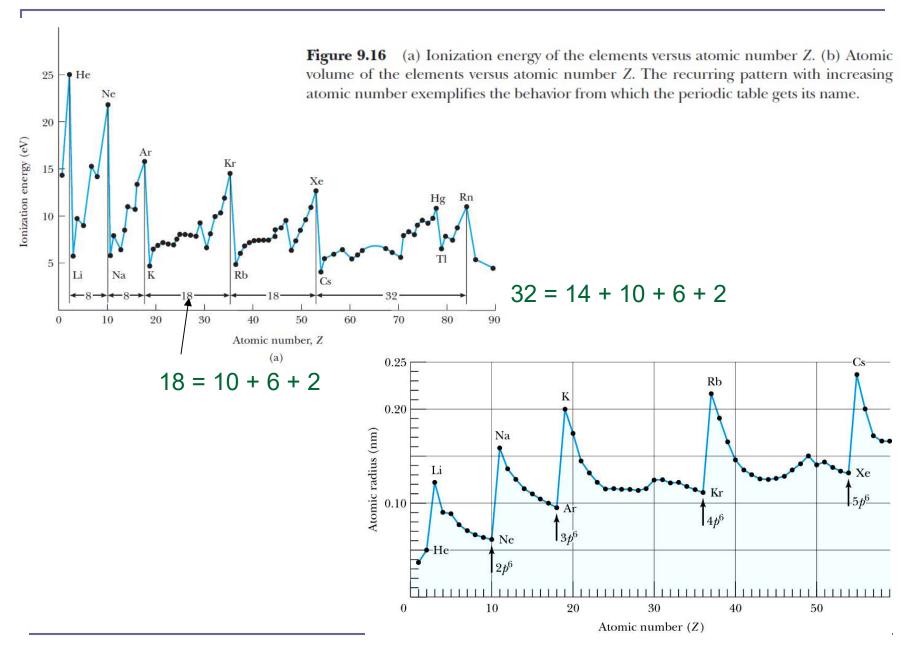
Note that La is #57, Lu is #71 and its next neighbor is Hf with #72

No question marks, this is the more systematic way to show the periodic table

Groups and Periods in Periodic Table


Groups:

- Vertical columns.
- □ Same number of electrons in the ℓ orbits.
- Can form similar chemical bonds as these are determined by the outermost (most loosely bound) electrons


Periods:

all atoms have about the same size

- Horizontal rows.
- Correspond to filling of the sub-shells.
- Beginning of each period shows in atomic radii plot, end of each period shows more or less in ionization energy.

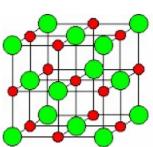
© 2006 Brooks/Cole - Thomson

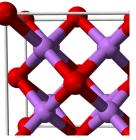
© 2006 Brooks/Cole - Thomson

20

The Periodic Table

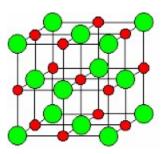
Inert Gases:


- Last column of the periodic table
- Closed p sub-shell except helium (which has closed s sub-shell)
- Zero net electronic spin and large ionization energy
- Their atoms interact only very weakly with each other, mono-atomic gasses


Alkalis:

- Single s electron outside an inner core, largest atomic radii
- Easily form positive ions with a charge +1e, highly reactive
- Lowest ionization energies
- Form chemical compounds with valence number 1, e.g. Li₂O (lithia, 8 Li cations and 4 O anions per unit cell of a crystal), for molecules: H₂O
- Electrical conductivity in metals is good as the electron joins the free electron cloud easily

Alkaline Earths:


- Two s electrons in outer sub-shell
- In chemical compounds with valence number 2, e.g. MgO (magnesia), 4 Mg + 4 O per unit cell of a crystal

The Periodic Table

Halogens:

- Need just one more shared electron to fill outermost subshell
- Form strong ionic bonds with the alkalis, e.g. NaCl
- More stable configurations occur when p subshell is completely filled, therefore highly reactive

Transition Metals:

- Three rows of elements in which the 3*d*, 4*d*, and 5*d* are being filled
- Properties primarily determined by the s and p electrons, rather than by the d subshell being filled, which are further inside the atoms
- Initially *d*-shell electrons with unpaired spins, Hund's rule, cause of ferromagnetism
- As the *d* subshell is filled further, the magnetic moments, and the tendency for neighboring atoms to align spins are reduced
 22

The Periodic Table

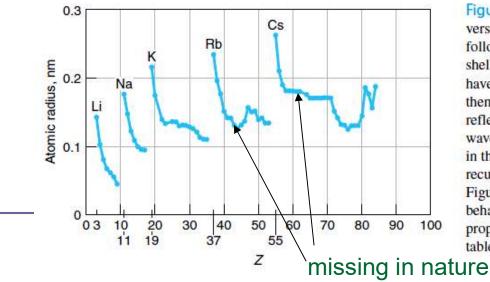
Lanthanides (rare earths), starts with La

- Have the outermost 6*s*² sub-shell completed
- As also occurs in the 3d sub-shell, the electrons in the 4f sub-shell prefer unpaired electrons (Hund's rule) contribute to ferromagnetic effects

Actinides: (all radioactive), starts with Ac

Inner sub-shells are being filled while the $7s^2$ sub-shell is completed

- Difficult to obtain chemical data because they are all radioactive (last stable atom is Bi, # 83)
- Commercial usage of U, Pu, Am


Summary

Physical foundations are electronic structures

their consequences are all of chemistry !!! The **exclusion principle** states that no two electrons can be in the same quantum state; that is, no two electrons can have the same four quantum numbers. The exclusion principle derives from the notion that electrons are identical particles called **fermions.** Fermions are described by wavefunctions that are antisymmetric in the electron coordinates. Wavefunctions that are symmetric in the particle coordinates describe another class of objects called **bosons**, to which no exclusion principle applies. All known particles are either fermions or bosons. An example of a boson is the photon.

Using the exclusion principle and the principle of minimum energy, one can determine the electronic configurations of the elements. This serves as a basis for understanding atomic structure and the physical and chemical properties of the elements.

All atoms in crystals are of about the same size, 0.1 - 0.5 nm diameter, in fact, their size is inferred on how much space they take up in crystals

Figure 7-21 The atomic radii versus *Z* shows a sharp rise following the completion of a shell as the next electron must have the next larger *n*. The radii then decline with increasing *Z*, reflecting the penetration of wave functions of the electrons in the developing shell. The recurring patterns here and in Figure 7-20 are examples of the behavior of many atomic properties that give the periodic table its name. Periodic physical and chemical properties of atoms are due to periodic electronic structures, chemical properties depend strongly on the outermost electrons, ferromagnetic properties are due to unpaired spins in d and f orbitals (Hund's rule)

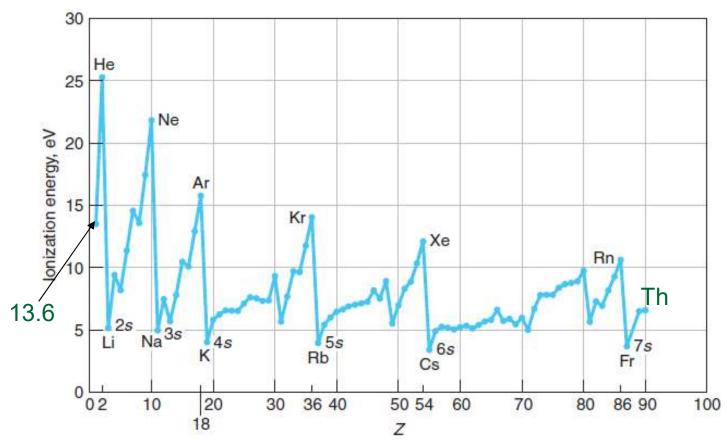
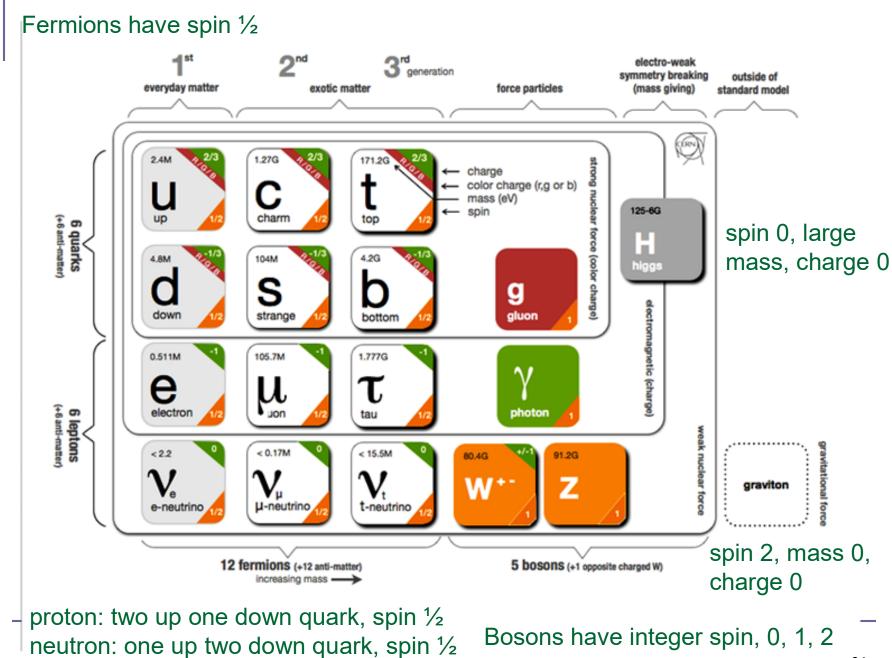



Figure 7-20 First ionization energy vs. Z up to Z = 90. The energy is the binding energy of the last electron in the atom. This energy increases with Z until a shell is closed at Z values of 2, 10, 18, 36, 54, and 86. The next electron must go into the next higher shell and hence is farther from the center of core charge and thus less tightly bound. The ionization potential (in volts) is numerically equal to the ionization energy (in eV).

