CHAPTER 7
The Hydrogen Atom

Some mathematics again
7.1 Application of the Schrodinger Equation to the Hydrogen Atom

7.2 Solution of the Schrodinger Equation for Hydrogen
7.3 Quantum Numbers
7.6 Energy Levels and Probabilities of finding the electron/orbitals

7.4 Magnetic Effects on Atomic Spectra — The so-called normal
Zeeman Effect (which is only observed with crude spectrometers)

Stern — Gerlach experiment
7.5 Intrinsic Spin (nothing is spinning !!)
8.2 Total Angular Momentum

The atom of modern physics can be symbolized only through a partial differential
equation in an abstract space of many dimensions. All its qualities are inferential;
no material properties can be directly attributed to it. An understanding of the
atomic world in that primary sensuous fashion...is impossible.

- Werner Heisenberg
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coordinates dr- dr  r= [ 96 06 deh

52 oW For all time
— V2V + Ux)V¥ = ih — W(r, () = w(r)g—&uf independent potential
o as ’ energy functions

3D spherical potential, so we will end
up with three different quantum -
numbers, labels on the wavefunctions _ h

2m

V=4(r) + Ulr)y(r) = Eg(r)
Very high symmetry of the potential,
so lots of degeneracy Use reduced mass 1 of electron instead of m

Key to progress is

Separation of variables
U(r) = ¢(r, 6, d) = R(nNO(O)D(P) (8.11) for the stationary state _

wavefunction
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7.1: Application of the Schrodinger
Equation to the Hydrogen Atom

= Potential energy of the electron-proton system is electrostatic (no
magnetic effects in the beginning):

6’2

Vr)=-

4 7zg 1
= Rewrite the three-dimensional time-independent Schrodinger
Equation using spherical coordinates.

2 2 2 -
h 1 O V/(szy,z) N 0 l//(x,zy,z) 2 0 w(x,zy, z) —E-V({)
2my(x,y.2)| o Oy ez

For Hydrogen-like atoms (He* or Li**) hydrogenic
= Replace e? with Ze? (Z is the atomic number, Z = 1 for hydrogen).
s Use appropriate reduced mass p.

2
mM m Vz(r):_Ze

/Ll: =
m+M 1+% dreyr ’




Always use the symmetry of the problem

= The potential energy V(r) of a central force depends only on the
distance r between the proton and electron.

. el
x = rsin 0 cos ¢ -
y = rsin @ sin ¢ -

z=rcosf Hh"w,_h P TranSform to Spherical pOIar

HH—. I“},, H! '{'“.}

(xy2 coordinates because of the
radial symmetry.

r= \-"x2 + y2 + 22

0 = cos! % (Polar angle) LS

¢ = tan”! % (Azimuthal angle) en'th

7 Insert the Coulomb potential

KN into the transformed
azimuth "~/ . e .
——————————————— . Schrodinger equation.
following Thornton-Rex p. 240-246 ﬂ Equation 7.3

1 6( ,0 1 o8/(. .0 1 &%y 2
[rz "”]+ . [s1n9"”]+ VLB E-V)p =0
or ) r“sin@ o0 resin“ 0 é¢g- h

St‘*parati(m of variables
P(x) = P(r, 6, d) = R(NO(ODP(¢P) (8.11) for the stationary state

wavefunction 4



Application of the Schrodinger Equation

= The wave function  is a function of r, 6, @
— Equation is separabile.
— Solution are product of three functions.

— l//(?,@, ¢) — R(F)f(@)g(qﬁ) Equation 7.4

m We separate Schrodinger equation, eq. 7.3, into three separate
differential equations, each depending only on one coordinate: r, 6,

or¢

s From that we will get three quantum numbers, just as we had for
the 3D infinitely deep square well

Other books:  ii(r) = (1, 6, ¢) = R(1NO(6) P ()




7.2: Solution of the Schrodinger Equation
for Hydrogen

s Substitute Eq (7.4) into Eq (7.3) and separate the resulting
equation into three equations: R(r), f(0), and g(¢).

Separation of Variables
r.0.0)=R(r)/(0
= The derivatives from Eq (7.4) v(r.0.9) (r/(0)8(9)
Oy R oy _, of O o’g
- . v
or or 00 00 0O¢ ¢
s Substitute them into Eq (7.3)

2
ff%ﬁ“} kg [sin afj Rf g 2';‘(E V)Rfg =0
r- or or sin@ 00 r*sin*0 ¢ h

= Multiply both sides of Eq. above by - r2 sin? 6/ Rfg , rearrange

.0 2
_m 96[}”2 GRJ 2‘” r*sin” O(F — V)_smé?a[ 6f) 167%
R or\  or / 00 00) gog¢

sign error in book Equation 7.7



Solution of the Schrodinger Equation

= Only rand 6 appear on the left side and only ¢ appears on the right
side of Eq (7.7)

= The left side of the equation cannot change as ¢ changes.
= The right side cannot change with either r or 6.

Each side needs to be equal to a constant for the identity to be true.
Set the constant -m? equal to the right side of Eq (7.7) z

d? \
dg = —mgzg -------- azimuthal-angular equation
¢ 7 o
L

Equation 7.8

__¢ =
O+ 2m

= Itis convenient to choose a solution to be ™.

X

Figure 6.2 The angles ¢ and ¢ +

2w both indentify the same

meridian plane.

note the i in the exponent 7



Solution of the Schrodinger Equation

e™? satisfies Eq (7.8) for any value of m,.

The solution be single valued in order to have a valid solution for
any @, which is g(p)=g(p+2r)

g¢=0)=g(¢p=27) —— eo — ez”“me
m, to be zero or an integer (positive or negative) for this to be
true.

Set the left side of Eq (7.7) equal to —m;? and rearrange

Equation 7.9
m,?
1a[rzaR) 2;1; (- V)— 1 [ 6fj
Ror or h sin’ 0 fsmé’ 00 00

Everything depends on r on the left side and 6 on the right side of
this equation.




‘ Solution of the Schrodinger Equation

s Set each side of Eq (7.9) equal to constant £({ + 1) and rearrange

2
12 d [rz dRJ 24 {E V — h” 44 ;r 1)}{ = (0 ----Radial equation
r-dr dr h° 2u Equation 7.10

2
1d[3m9 df) {ﬁ(ﬁ +1)— e’ }f 0 ---- zenithal-angular
sin @ do do sin” @ equation

Equation 7.11

m Schrodinger equation has been separated into three ordinary
second-order differential equations [Eq (7.8), (7.10), and (7.11)],
each containing only one variable. Now solutions need to be
found for the boundary conditions ...

= No longer need of dealing with partial differentials !!

s Everything falls into place by boundary conditions, that wavefunction
amplitudes need 10 go to zero at infinity, that they need to be single
valued, .... 9




Types of Quantum Numbers

= The appropriate boundary conditions to Eq (7.10) and (7.11)
lead to the following restrictions on the quantum numbers £ and
my;

o £=0,1,2,3,...8<n,n>0 and positive integer
a m=-¢, -t+1,...,-2,-1,0,1,2,.¢.,¢-1,¢
a |mys?.

s The predicted (sharp) energy levels depend only on principle
quantum number n, lots of degeneracy

& = Eq
n _n—2 E, = E,whenn =1, ground state

= n >0, integer, all quantum numbers can become very large for
very highly excited states — transition to classical physics

n =7 max for ground state of all atoms, > approx. 50 to 500 for Rydberg atoms

How many periods are there in the periodic table of chemical elements?



Solution of the Radial Equation

s The radial equation is called the associated Laguerre equation
and the solutions R that satisfy the appropriate boundary
conditions are called associated Laguerre polynomials.

= Assume the ground state has £ = 0 and this requires m, = 0.
Eq (7.10) becomes

— | +—=(E-V)R=0
rzdr[r drj hz( )

s The derivative of rzcj: yields two terms (product rule).

Write those terms and insert the spherical electrostatic potential

energy dzR 2dR 2p( . e’ Bl
ar® rdr h2 dre,r

Equation 7.13 11



Solution of the Radial Equation

2
= Try a solution R = de ™'® dR__Lp dR_14

A is a normalization constant. dr 4, dr’  a,
a, is a constant with the dimension of length.
insert first and second derivatives of R into Eq (7.13).

1 2 2ue’ 2 \1
oy Ol Y e e S LY Eq (7.14)
a,” h dreah™ ay )r

= Condition to satisfy Eq (7.14) for any r > 0 for each of the two
expressions in parentheses to be zero.

Set the second parentheses equal to zero and solve for a,,. 47530772
ao —

pe’
Set the first parentheses equal to zero and solve for E in ground state.

Both equal to the Bohr’s results !! F=_ n’
Backed up by spectral lines !! T 9 ua,’

Other books often ignore the reduced mass refinement, but we need it

to explain differences in spectra of different isotopes of ions H, He*: Li** 2




Hydrogen Atom Radial Wave Functions

= First few radial wave functions R,

Hydrogen Atom Radial Wave Functions ,
. already normalized

n £ R, (r)
2 =
: ' (a0
r e—r/?a(,
2 0 e —————
( aﬂ)(2ﬂg)3/z
—r/2a,
) 1 Lt
ao V/3(2a,)"
1 2 7 r® )
3 0 27 — 18— + 2— | /3
(a)*"2 81\/3( a  ag)’
1 4 T\
3 1 ‘ e e
(@) 81\/6( ﬂo) ay
9
2 2 1 & 2 —r/3a,

— 5 €
(a0)®’2 81V30 ag
{2006 Brooks/Cale - Thomson

m  Subscripts on R specify the values of n and {.

associated Laguerre polynomials



Table 8.2 Some Remember: [and m,

All about ismc‘ztec‘ were constants used to
the zenith o — separate the
angle Polynomials rat _ _
P}“(cos 6) Schroédinger equation in
0 spherical coordinates,
P?i B . they were cleverly
L R chosen and become
i Wowdy uantum numbers
Py =4(3cos?0—1) 9
P = 4 sin 6 cos 0 . _
P3 =sin? 0 f o f(@) _ ®(8)
P§ = 24(5 cos® § — 3 cos 0) Solutions to the Angular equation
P3 = 6sin (5 cos? 6 — 1) s
p2 @ a2 1 d(. _d m
P{f—bsfn BheaR — [sm@f}t L+ ——5—|f=0
P = sin® 6 sin & do do sin” @
To be normalized for usages, so in present form less useful, see full "

table of normalized wavefunctions below



Products of solution of the “zenith and azimuth angle
dependence” Equations are spherical harmonics

. d*
= The solutions for Eq (7.8) 4 & __,, 2,
dg>

s are ™ ore ™

= Solutions to the angular and azimuthal equations are linked
because both have m.

s Group these solutions together into functions.

Y(0,0)= f(O)g(¢) ---- spherical harmonics

15



Normallzed Spherlcal Harmonics

0 0
1 0
1 =21
2 0
2 +1
2 =2
3 0
3 +1
3 2z
3 ==

@ 2006 Brooks/Cole - Thamson

ol / 15 . *id
-.-2 o sin # cos O e

1 /15 ;

= e 29 +2idh

4V 27 S e

(5 cos® @ — 3 cos 6)

| —
ﬁ

2

—_—

% —sin A(b cos® @ — 1) e~

3 |

10
—sin?# cos O ¢
2

o

*2idy

| —

1 (3
—./—sin®*0 ¢
8

[

*8id

+
3

Already normalized

Note that this gives
us insights in 3D,
none of this was
part of the Bohr
model

16



Solution of the Angular and Azimuthal

Equations

= The radial wave function R and the spherical harmonics Y
determine the probability density for the various quantum

states. The total wave function w(r.0,¢) depends on n, ¢,
and m,. The wave function becomes

Y nem, (7,0,9) =R,,(r)Y tm, (0,9)

Some books prefer product of three wave functions

Y(r) = Y(r, 6, ¢) = R(n)O(0) P ()

17



Table 6.1 Normalized Wave Functions of the Hydrogen Atom for n = 1, 2, and 3*

1 (] 0 ; L i —r/a, 1 —rl.n'ﬂu
or V2 az’? Vi a?
2 0 0 ; i L = —rf2a, ! (2 - L —nf2a,
e V2 I 2 a3? ap N2 ai? dg
2 1 0 . ECDE o 1 s : = T eWlacesp
N\ 2ar 2 Ve ay? dg 4N 2 3""2 dp
1 . V3 1 .
2 1 *1 e sin @ = iy : L e sin g ¢
o 2 V6 ad’? ao E\a’_aﬂ
1 1 - 1 r rl) )
30 0 9 — — 8—+ 2 | 27 — 181 42— |/
V2a V2 81\/’_ a2 ( aﬂ.) 81V37r a3 ( d g}
g 1 0 ; ﬁcggﬂ —r{3a, ‘V‘E (5_L)Lf‘ﬂ"3ﬂucgsﬂ
Vi 2 anf sIvea?\ @ aa 81V a3’ dg / ap
1 . "
3 1 =1 L = ﬁsin ﬂ e (5 _ P V¥ g gt
s 2 Blv”_ 2 81V ai? ag / do
1 V1o L | 2
5 3 B — 2" (3 costl — 1) L (3 cos? — 1)
V2n 4 81V3ﬂ agﬂ a% 81V6 am
. cea 1 _ .
3 2 .#] : e='® sin # cos @ ; izf /30, — i ¢ "3 gin @ cos @ e
V2n 8I1V30 a2? 81Va a? %
1 i v 4 _ 1 . 3
§ 3 = _- g ]5511123 ie r/3a, if 38 cin?g g2
V2x 81V30 aﬂ“ 1ﬁz*v’_ 32 ah

*The quantity a, = 4weA*me® = 3.202 % 107" m is equal to the radius of the innermost Bohr orbit.

P(r) = §(r, 0, ) =

R(NO(6)D ()

18



Principal Quantum Number n

Because only R(r) and potential energy function V(r) only depend on r
The result for this quantized energy is

2
E :—;t 82 i_ E() Just as in the
"2 \Ameyh

= The negative sigh means the energy E indicates that the electron
and proton are bound together. E; = E,/1

2 2 Bohr model
n n

As energy depends on n only, there will be a lot
of degeneracy due to the high symmetry of the
potential (a 3D sphere has the highest
symmetry that is possible in 3D)

19



Orbital Angular Momentum Quantum
Number {£ and spectroscopic notation

m Use letter names for the various £ values. When reference is to an
electron

m {= O 1 2 3 4 5...
Letter s p d f g h...

m electronic states are referred to by a combination of their n and {.
m A state withn=2and { =1 is called a 2p state.

= The boundary conditions require n > {.

Table 8.5 Spectroscopic Notation for
Atomic Shells and Subhells

= \When referred to the H atom S, P, D, .

n Shell Symbol € Symbol
1 K 0 s
9 L 1 b
3 M 2 d
4 N 3 1
5 0 4 ¢
6 P 5 h




Summary: Quantum Numbers

The three quantum numbers:

o n Principal quantum number
o { Orbital angular momentum quantum number
a m Magnetic quantum number

The boundary conditions wavefunctions go to zero at r goes to
infinity result in :

o n=1,2,3,4,... Integer

o £=0,1,2,3,...,n-1 Integer

a m=-¢,-¢+1,...,0,1,...,8-1,¢ Integer
The restrictions for quantum numbers:

o n>0

a £<nt, . =n-1

a |my ¢

21



Selection rules and intensity of spectral lines results from
oscillating expectation value calculations for 3D position x
in 3D =r

A property of these wave functions J |_|_[£_;I:1f_;' ax = 10 Simplified, but meant
n ot m
= for 3D

Oscillating expectation value determines the selection
rules for each system

Whereby n and m stand for combinations of all three quantum numbers

Each quantum number is connected to a conserved entity

n  Principal quantum number connected with total energy

£  Orbital angular momentum quantum number connected with magnitude
of angular momentum

m, Magnetic quantum number connected with z-component of angular
momentum vector

A perturbation is needed to change from one stationary state to another ”



Selection rules listed

Energy depends only on n, so lot of degeneracy

s For hydrogen (in the absence of a magnetic field), the energy
level depends on the principle quantum number n.

In ground state an atom cannot emit
radiation. It can absorb
electromagnetic radiation, or gain
energy through inelastic bombardment
by particles or addition of heat.

Only transitions with

- L=+-1,

ad af

Energy S P D F G m
(eg’) 1 og=0 ] 2 8 4
-0.8 4
15 3 / / k—-F series
S Part of Paschen
DI D series  Series ending in
-34 2 n=3
Two parts
E(eV)
to Balmer
. 1]
series #— 7
endinginn =2 s e ih—m__ o
—~— Pseries " At

n,-n; = 1,2, j. anything

Lyman series

—13.6

Allowed

ls

An arbitrary, all
consequences of the
forms of the
wavefunctions (as

= 13.6

1] —4—

Figure 8.8 Energylevel diagram of atomic hydrogen. Allowed photon transitions are

discussed earlier for harmonic

those obeying the selection rule Af = *1. The 3p— 2p transition (Af = 0) is said o

& 2006 Brooks/Cole - Thomson

be forbidden, though it may still occur (but only rarely).

- oscillator)

One unit of h-bar omega is removed by emission of photon, which has spin=1 23



Angular Momentum as function of
quantum number {

= Angular momentum is associated with both the R(r) and f(6) parts
of the full wave function.

= Classically, the orbital angular momentum L =Fx Pp with L =
mv, . for circular motion

S0 no electron goes
around the proton or
. Inant=0state. 7 - Joh-0 the common center of
mass, it does not have
j> angular momentum in

this state
New law of nature blatantly disagrees with Bohr's semi-
classical “planetary” model of electrons orbiting a nucleus L =
nh,n=1,2, 3, ... still quantized in units of A, just not integer units 24

s lisrelatedto Lby L =~/£(~+1)h




For large quantum numbers, we recover the classical results, i.e. the
classical angular momentum formula for this case

EXAMPLE 8.4 Orbital Quantum Number
for a Stone

A stone with mass 1.00 kg is whirled in a horizontal circle
of radius L.O0O m with a period of revoluton equal to
1.00 s. What value of orbital quantum number € de-
scribes this moton?

Solution The speed of the stone in s orbit is

2eR 2w(1.00 m)

= 700 < = 628 m/s

=

The corresponding angular momentum has magnitude
L| = mvR= (100 kg)(6.28 m/s) (1.00 m)
= 6.28 kg-m?/s
But angular momentum is quantized as V(£ + 1)A,
which is approximately £/ when € is large. Then
|L| 6.28 kg-m” /s
.f == == = a1 =
i 1.055 ¥ 107 kg-m~*/s

= 5.06 x 10%

Bohr’s correspondence principle

25



Angular momentum is subject to an uncertainty principle,
because it is momentum about a certain axis AL A ¢ <P/,

Only visualizations of mathematical models

- ~
. %

A i Figure 6.5 The uncertainty prin-
ciple prohibits the angular mo-
mentum vector L from having a

‘L‘ — I(I + 1) ‘h definite direction in space.

L We can just know the
L bk magnitude of the angular
momentum vector and one
of the components of this
vector, we choose the z-
component by convention,

note its connection to m,

This 0 is discrete not
coordinate 6, which is

(a) (b) continuous
(a) Forbidden by the uncertainty principle (b) about any
possible z-axis all the time %




Space quantization, a consequence of the uncertainty

principle and wavical properties

L A
Only
classically

Figure 8.6 The angular mo-
mentum L of an orbiting part-
cle is perpendicular to the
plane of the orbit. If the direc-
tion of L. were known precisely,
both the coordinate and mo-
mentum in the direction per-
pendicular to the orbit would
be known, in violaton of the
uncertainty principle.

-
A

What IL| = /6%
S L,=2h
wrong i
with L=0
(a)? e |
\

(a) (b)

Figure 8.7 (a) The allowed projections of the orbital angular momentum for the
case { = 2. (b) From a three-dimensional perspective, the orbital angular momentum
vector L lies on the surface of a cone. The fuzzy character of L, and L, is depicted by
allowing L to precess about the zaxis, so that L, and L, change continually while L,
maintains the Axed value myfi. _

Angular momentum is conserved in classical
physics, and as a rule of thumb, classically
conserved quantities are sharp in quantum
mechanics, also there is the uncertainty principle

Only the magnitude of angular momentum will have a sharp value
and one of its component, we typically choose the z- component 27



Magnetic Quantum Number m,

= The angle ¢ is a measure of the rotation about the z axis.
= The solution for g(#) specifies that m, is an integer and related to

the z component of L.
L =mh
= The relationshipof L, L,, £, and
m, for £ = 2.
s L=1/0(¢+Dh=-/6his fixed,
L, is quantized.
= Only certain orientations of L

are possible and this is called
space quantization.

This 0 is not I nyg

L. Phenomenon does not originate

: | cosf=——r = ——
coordinate 6! |L| VO + 1)

A with the electrostatic force law, is
a property of “quantum-space”
W= e m =
"% Whatis wrong
here ?

Y me =1

l —te o | =08 +1) R
¢ o 5 :\/aﬁ

\K1 unit of

AN me¢ = =1 angular
momentum
T . leaves with the
thg= — radiated
mmmmmmmmmmmmmm photon

What happens if m; and [ get very large? Bohr's correspondence pringjple



For classical physics, discrete zenith angle L A
0 becomes essentially zero, looks like a
continuous variable, uncertainty principle
IS no longer noticeable

EXAMPLE 8.6 Space Quantization for an
Atomic Electron

Consider an atomic electron in the £ = 3 state. Calculate Finally, we obtain the allowed values of # from
the magnitde |L| of the total angular momentum and I .
the allowed values of L, and #. cosh = —— = ,'r_

L] 23

Solution With ¢ = 3, Equation 8.16 gives
IL| =V3(3 + )& = 234

The allowed values of L, are myh, with my = 0, £1, £2,
and *3. This gives oK

IL.= —3h, —2h, -4, 0, &, 24, 3%

Substituting the values for my gives

cosfl = +0.866, +0.577, +0289, and 0O

B=*+30°, =548°, *732° and O0°

other angles for other angular momentum quantum numbers, always one unit of
angular momentum Is accepted or lost in an atomic transition that leads to a spectral
line 29




Probability Distribution Functions

= from wave functions one calculates the probability density
distributions of the electron.

: 3

s The “position” of the electron is spread over space and not well

defined. 1

s We use the radial wave function R(r) to calculate radial
probability distributions of the electron.

= The probability of finding the electron in a differential volume
elementdrisdP =y *(r,0,¢) w(r,0,¢) dr.

30



rsin g
= / rsin @ do
-\-\-""-\-\. IIl
W e ,
=3 wdl Ah _dr
s'f 7 do "3
\
Hhﬂ-\__h . _\____'_'_._.¢// __,_.-'—"-P. _—"—fﬂrﬂ
SN o = :
s “\-\_;\
E do Tl
II
|
|
|
i .__}J
X .
dt = (rsin & do)(rde) dr
=rZsin @ dr da db

Figure /-7 Volume element d7 in spherical coordinates.

P=[y*(r.0.4) y(r.0.9)-dr
dr =r*sin@ dr dO d¢

31



Radial part of Probability Distribution Functions

s The differential volume element in spherical polar coordinates is

2
dr=r"sin@ dr d0 d¢ Areboth 1 due to
normalization !
Therefore, /

/4 27
P(#)dr =r’R*(r)R(r) er. \f(@)\z sin @ dQJ. \g(qﬁ)\z dg
0 0
m We are at first interested in the radial dependence.
P(r)dr =r*R(r)’ dr

= The radial probability density is P, (r) = r?|R,(r)|? (and it depends
onlyonnand /.

all R(r) functions are real

32



Probability Distribution Functions

Radial wave functions (R, ;) Radial probahility distribution (£,;)

9— O.HJaO
n="1 I
1 0.3 Py
‘Rlﬁ
ol HEENEEEE ol L1 pr ety gty
] 5 10 15 1] 5 10 15

08—
n=2
0.4
0 Tt~ cspa
oSS T L ERER
] 5 10 15 20
0.4~ 0.2 9
0.9l o0 n=3
L\ R .
<2 R —
g
0 ——
—U.l""l""l"”l pla F )
0 5 10 15 0 5 10 15 210

,Ar)and P, (r) for
the lowest-lying
states of the
hydrogen atom.

2 In units of Bohr radius

It is always the states
with the highest [ for
each n that
“correspond” to the Bohr
radii.

Actually a, is just a length
scale as nothing is moving
in the ground state — no
angular momentum

Radius (ap)

Radius (ay)

(a) (b)

& 2006 Brooks/Cole - Thomson
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Why the extra r2 r, For all “hydrogen like” ions, i.e. He", Li**, ...
factor?, see also

sl 1

3 ;
Pl:{ ?’}I = ‘:;Z IEE—EE?H“,
0

= 2[R*R]

67.7%

p

~w/Z 485 a,

Figure 8.9 P(r) dris the pro (a) (b)

ability that the electron will pe

found in the volume of a spffer- Figure 8.10 (a) The curve P (r) representing the probability of finding the electron

ical shell with radius 3/ and
thickness dr. The shell
is just 471 dr.

probability density i (r) |°.

First Bohr radius, maximum of
probability density forn=1, 7= 0 <r> I: TP( ;r) dr
n,

Max of P, dP,,/dr=0 g

as a function of distance from the nucleus in a 1s hydrogen-like state. Note that the
probability takes its maximum value when r equals ap/Z. (b) The spherical electron
“cloud” for a hydrogen-like 1s state. The shading at every point is proportional to the

|s the expectation value of the smallest radius in the hydrogen atom also the Bohr "
radius, i.e. the length scale with the highest probability density?



EXAMPLE 8.8 Probabilities for the
Electron in Hydrogen
Calculate the probability that the electron in the ground

state of hydrogen will be found outside the first Bohr
radius.

Solution The probability is found by integrating the ra-
dial probability density for this state, Py (r), from the
Bohr radius ay to . Using Equation 8.43 with Z = 1 for
hydrogen gives

4 o
Br=—g— j rle 20 a dy
g Jay

We can put the integral in dimensionless form by chang-
ing variables from r to z = 2r/ay. Noting that z = 2 when
r= ay, and that dr = (a¢/2) dz, we get

oo

L [™ 1
P= —j e ide= —— {22 + 22+ 2} =52
2 Jo 2 2
This is about 0.677, or 67.7%.

EXAMPLE 8.9 The Electron-Proton

Separation in Hydrogen
Calculate the most probable distance of the electron
from the nucleus in the ground state of hydrogen, and
compare this with the average distance.

Solution The most probable distance is the value of r that
makes the radial probability P(r) a maximum. The slope
here is zero, so the most probable value of ris obtained by
setting dP/dr = 0 and solving for r. Using Equation 8.43
with Z= 1 for the 1s, or ground, state of hydrogen, we get

4\ d 4 9y2
0= (—5—) — (rle I} = ( ) g2/ 8y {—— + Er}
ay / dr i y

The right-hand side is zero for r= 0 and for r= a;.
Since P(0) = 0, r= 0 is a minimum of P(r), not a maxi-
mum. Thus, the most probable distance is

r=ay

The average distance is obtained from Equation 8.46,

which in this case becoes an expectation Value
{(r) = is J’f” rle2r/m gy
ag Jo
Again introducing z = 21/ ay, we obtain
= ﬁ ” Sz
(r) i J; e i

The definite integral on the right is one of a broader

class,
oo
j 2N 2dy = ml
0

whose value n! = n{n— 1) . . . (1) is established by re-
peated integration by parts. Then

3
(n==F@6) =—a
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Full Probability Distribution Functions

P= * : -d
= Calottes, complex conjugate j w*(r,0,9) y(r.0,9)-dr
squares of full wavefunctions m, (r,0,4)=R,, (F)Yi’mg (0.4)

Z % “

5
1

n
3p 14 3d

1 mg=0 m

(TR
[+ = o

n=3
€ =2
= ()

T
2p t
myg

!

Probabilities per unit volume fall of monotonically as r gets large, zero
at infinity, so isolated hydrogen atom has no real size

& 2006 Brooks/Caole - Thomsaon



These calotte models

5 {g} are just for some fixed
gs 2 value of probability
* density, e.g. 85 %,
w2 A1, mp=d w8, 8=T, mp=0 n=3£=2, m=0 some other books may

= 9 show them for 90 %
Figure 8.12 (a) The probability density |, |* for a hydrogen-like 2p state. Note the

axial symmetry about the zaxis. (b) and (c) The probability densities |¢(r) |2 for several
other hydrogen-like states. The electron “cloud” is axially symmetric about the z-axis
for all the hydrogen-like states ¢, (r).

1 |
[Yeply = TEIU":&U = thoy 1l \ j o /-/

- r— > —( y — —

Any two ~ Do e
wavefunctions can | 5 ‘ " o
be added to give (a) (b) (©)
another Figure 8.13 (a) Probability distribution for an electron in the hydrogenlike 2, state,

. described by the quantum numbers n = 2, £ =1, my = 0. (b) and (c) Probability distri-
WavefunCtlon butions for the 2f, and 2}1; states. The three distributions 2p,, Ep.. and 2f, have the
(I|nea r|ty Of the same structure, but differ in their spatial orientation.
Schrodinger
equation)
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D = N2
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Lo R Y

Figure 7-11 Probability densities W* for the n = 2 states in hydrogen. The probability is
spherically symmetric for € = 0. It is proportional to cos” for £ = 1, m = 0, and to sin# for
£ = 1. m = =1. The probability densities have rotational symmetry about the z axis. Thus, the
three-dimensional charge density for the £ = 1. m = 0 state is shaped roughly like a dumbbell,
while that for the € = 1, m = =1 states resembles a doughnut, or toroid. The shapes of these
distributions are typical for all atoms in § states (£ = 0) and P states (£ = 1) and play an
important role in molecular bonding. [This computer-generated plot courtesy of Paul Doherty,

The Exploratorium.]

You can rotate these figures around the z axis in your head in order to get
the calottes back
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So far the H atom model with a central
Coulomb potential energy function, how
does it hold up experimentally?

Measurements of spectral line are
energy-level measurements, can be
pretty accurate, many more than a
single atoms is typically involved, so we

get statistical results, later on we deal with
that kind of thing with statistical physics
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7.4 Magnetic effect on hydrogen atom spectra

= The Dutch physicist Pieter Zeeman (and 1902 physics Nobelist)
observed with a state of the art spectrometer of the time, (which we
would now consider pretty crude) that many spectral lines splitin a
magnetic field into three (and more) spectral lines, one stays at the
original position, the spacing of the other two depends linearly on the
strength of the magnetic field. It is called the Zeeman effect.

= A good theory of the hydrogen atom needs to explain this !!

Normal Zeeman effect, which is actually not observed with modern
spectrometers, historically “normal” because of easy explanation

Model the electron in the H atom as a small permanent magnet.

= Think of an electron as an orbiting circular current loop of / = dq / dt
around some nucleus (that was not known to exist at that time).

= The current loop has a magnetic moment y and the period T = 21rr/ v.
(don’t confuse this uy with reduced mass)

N where L = mvr is the magnitude of the orbital

—_ €
o= _%E angular momentum for a circular path.
40




‘ The “Normal” Zeeman Effect

We ignore space quantization and the uncertainty principle for the sake of the
(essentially wrong) argument
= When there is no magnetic field to align

ol

y them, i doesn’t have a effect on total

‘ © rron _energy. In an external magnetic field a
/T\\ ﬁ’[ °~  dipole has a potential energy
o : VB =—U- B

<‘~~\ If there is a magnetic field B in direction z, it will act on the
— magnetic moment, this brings in an (extra) potential energy
e e term into the Hamiltonian operator

moving in a circle has
angular momentum L. If the
particle has a positive charge,
the magnetic moment due to

the current is parallel to L. . .
p = S0 an external magnetic field should have an effect on

For - wLee . [}] . .
electron atoms, spectral lines are “fingerprint” characteristics of
opposite atoms, in an external magnetic field, each spectral line

direction should be splitting into three lines, distance between two
extra lines proportional to the strength of the magnetic field,
tested by experiment, observed, part of Nobel prize 41




Born: 25 May 1865

The Nobel Prize in Physics 1902 was awarded jointly to Hendrik Antoon
Lorentz and Pieter Zeeman "in recognition of the extraordinary
service they rendered by their researches into the
influence of magnetism upon radiation phenomena.”

Lorentz was postulating the existence of electrons in atoms well before
they were actually discovered by J.J. Thomson in 1897 and before there
was physical evidence of the existence of atoms by Einstein, 1905 (only

clever combination of literature values), experiments done in 1907 by
Perrin at higher level confirms atoms, nucleus 1913 (Rutherford’s group) 42



Back to quantum mechanics: as | L| magnitude and z-
component of L vector are both quantized in hydrogen

eh
M, =My =—Hph,
2m
Ug = eh/2m is called a Bohr
: magneton = 5.7858 10-° eV T-.
O
—"m0 7
mmmmmmmmmmmm : We get quantized contribution to the
potential energy (in the Hamiltonian),
s combined with space quantization, m
H = _”Bz / h being a positive,pzero,qor negative |

integer
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The “Normal” Zeeman Effect for Hydrogen

= The potential energy due to the external magnetic field is quantized
due to the magnetic quantum number m,.

Ve=—u B =+umB

=  When a magnetic field is applied, the otherwise degenerate 2p
level of atomic hydrogen is split into three different energy states
with energy difference of AE = ugB Am,.

(=1 il

m, Energy ) 1
E, + ugB o #=1 | AE=pu; B

0 E "= } AE ’

7 E— -3.4 eV - -1
M B):O E):BOE\

Unit vector in

Ug = eh / 2mis called a Bohr magneton, 9.27 1024 Ws T-1. z-direction

Don’t confuse ﬁ with the reduced mass of the electron u
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he “Normal” Zeeman Effect
= A transition from 2p to 1s. AE=2pg B

my The larger B, the larger the splitting, if

Al degengrate gy, ] B is switched off suddenly, the three

- 0 lines combine as if nothing ever

1 happened, total intensity of lines
remains constant in the splitting

Larmor frequency

B strength dependent
e _ eB \ J P

L. = hwymyg

2p

Energy

g (oy — @) @y (o + a)

Spectrum without Spectrum with magnetic
magnetic field field present

E=E,+ fioym F0rees with ‘_‘S_chrc'jdinger
[ t=0 YYY _ H-atom prediction”

B=0 B=nk k  parallel Z assuming there is no spin

What is really observed with good spectrometers: there are a lot more lines
in atomic spectra when they are in a magnetic field ! So called Anomalous
Zeeman effect, which is the only one observed with good spectrometers !!. e



EXAMPLE 0.1 Magnetic Energy of the Compare to 10.2 eV for transition to ground state

Electron in Hydrogen
Calculate the magnetic energy and Larmor frequency for =927 X% 107%] =579 X

3;] E]E_C[_TD“ in the 2 Zﬁllqumtif :’f h?’dmfogezf‘wlff‘;f;‘;““g the With n =2, { can be 0 or 1, and my is O(twice) and *1.
e+ 1) TR T e i i ) Thus, the magnetic energy U can be 0, +fwy, or —fiwy.

Solution Taking the z-axis along B, we calculate the In such applications, the energy quantum fw; is called
magnetic energy from Equation 9.7 as the Zeeman energy. This Zeeman energy divided by # is
the Larmor frequency:
st s O gy
P i meg = nwpmg 5.79 X 1072 eV
2m, 2m, i = — S — 8.80 X 10" rad/s

~ 6.58 X 10~ 10 gV -5
Fora 1.00 T field, the energy quantum fiw, has the value

oy, = %B = ugB = (9.27 X 1072 J/T)(1.00 T)

No magnetic field Magnetic field present

my = 1

=ity b=l mp = 0

34 eV mp = —1

Normal Zeeman effect Gy —dm — (hy * Ay
Clearly not to scale - —t There are
— fie
* actually

five lines,
A ] L my = 0 Slide 54

13.6ey "TLE=0

1 Tesla = 10,000 Gauss, magnetic field of earth surface: 0.3 to 0.6 Gauss 46



The Stern — Gerlach experiment early 1920s

= A beam of Ag (or H atoms) in the £ = 1 state passes through an
inhomogeneous magnetic field along the z direction.

designed to test ” z DX bute
Y South mg=—1 instead of
Space quantization Ll 3
Z

m€:0

I —

and gettin ———— b d
J : J 2 pstate pESE——Tp = +1 observe
something else  Awmic atoms

beam

oven

« V,=—uB v v - TF p as predicted from
B z g2 " Vp T | L4z

1 what we have learned
= b, =—(dV;/dz)= p,(dB/dz) so far

= The m, = +1 state will be deflected down, the m, = =1 state up, and the
m, = 0 state will not be deflected.

= If the space quantization were due to the magnetic quantum number
m,, and the total number of m, states is always odd (2¢ + 1) the
experiment should always produced an odd number of lines.

BUT always an even number of spots is observed !!! ¥



Easier: one outer s

(a)
n = 2, quite difficult * electron in ground state
Beam of
Atomic m= —1u B silver atoms
beam = r;:O R

[ =1

n =
) S ! TS C /
Inhomogeneous
magnetic field

(c)

Pred|Cted | < > Obsewed for n | Classical
but nOt = 1, l= O, but G]l:f; pattern 1
observed \ not predicted e A 2

from an oven (not shown) is coil.lmatcd into a honzontal line. (b) The pattern for the { = | case JIIuslratcd in (a] The three
images join at the edges and have different detailed shapes due to differences in the fifld inhomogeneity. (¢) The pattern Photographs made by Stern
observed for silver and hydrogen. and Gerlach with an atomic

beam of silver atoms.

(@) When the magnetic field
is zero, all atoms strike in a
single, undeviated line. 531
(b) When the magnetic field
is nonzero, the atoms strike in
upper and lower lines, curved
due to differing inhomo-
geneities. [From O. Stern

and W. Gerlach, Zeiischr.

. Physik 9, 349 (1922).]

There are more things in heaven and earth, Horatio, than are dreamt
of in your philosophy. - Hamlet (1.5.167-8)
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7.5: Intrinsic Spin | internal degree of freedom

Samuel Goudsmit and George Uhlenbeck (working with Paul Ehrenfest in
Leiden) proposed in 1925 that the electron must have an intrinsic angular
momentum and a magnetic moment on its own (it was identified later as a
fermion). Internal degree of freedom — from the outside it looks like a
magnetic moment which is just about twice as strong as usual)

Paul Ehrenfest showed that the surface of the spinning electron should be moving
faster than the speed of light if it were a little sphere (not difficult to show)

In order to explain experimental data on the anomalous Zeeman
effect, Goudsmit and Uhlenbeck proposed that the electron must have
an intrinsic spin quantum number s = 2, associated intrinsic
angular momentum, intrinsic magnetic momentum, everything worked
out fine

Wolfgang Pauli’s assistant Ralph Kronig, considered essentially the same idea a
year earlier, but Pauli said it was ludicrous and then used it in 1925 to derived his

exclusion principle on its basis ... “Kronig had almost invented spin / if Pauli had
not frightened him.” 50



One Hundred Years of Quantum Physics Science 11 Aug 2000:
Vol. 289, Issue 5481, pp. 893-898
Daniel Kleppner and Roman Jackiw DOI: 10.1126/science.289.5481.893

The principal players in the creation of quantum theory were young. In
1925, Pauli was 25 years old, Heisenberg 24, Dirac 23, Jordan 23, Fermi 24.
Schrodinger, at 36 years, was a late bloomer. Born and Bohr were older
yvet and it is significant that their contributions were largely interpretative.

In 1928 the revolution was finished and the foundations of quantum me-
chanics were essentially complete. The frenetic pace with which it occurred is
revealed by an anecdote recounted by Abraham Pais!. In 1925 the concept of
electron spin had been proposed by Samuel Goudsmit and George Uhlenbeck.
Bohr was deeply skeptical. In December he traveled to Leiden to attend the
jubilee of Hendrik A. Lorentz’s doctorate. Pauli met the train at Hamburg to
find out Bohr’s opinion about the possibility of electron spin. Bohr said the
proposal was “very, very interesting,” his well-known put down phrase. Later
at Leiden, Einstein and Paul Ehrenfest met Bohr's train, also to discuss spin.
There, Bohr explained his objection, but Einstein showed a way around it and
converted Bohr into a supporter. On his return journey, Bohr met up with
yet more discussants. When the train passed through Gottingen, Heisenberg

arX1v:quant-ph/0008092 vl 22 Aug 2000

and Jordan were waiting at the station to ask his opinion. And at the Berlin

station, Pauli was waiting, having traveled specially from Hamburg. Bohr told ——

them all that the discovery of the electron spin was a great advance. o



s=1

Spin is mathematically described by a spinor, loosely speaking a "square root" of
a vector, one has to make two full turns to reach the same state for fermions

Crucial in Dirac’s special relativity compliant version of the Schrodinger equation
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Intrinsic Spin / Internal degree of freedom

= The “spinning” electron reacts in a magnetic field similarly to an
orbiting electron.

= We should try to find its analogs to L, L, £, and m,.

= The magnetic spin quantum number m_ has only two values,
mg = t%.
A The electron’s spin will be either “up” or “down”
Nope, I"’ (again space quantization) and can never be
uncertainty ) “spinning” with its magnetic moment p, exactly
principle | <O> along the z axis. There is no preferred z-axis, so this
must be true about any axis I!!

‘S"‘: s(s+1D)h=~3/4n

S, = mh where m, = zi; or —3

e

Only two values, so no Bohr correspondence principle, spin corresponds to

nothing we are used to in classical physics, it’'s something in 4D space time ”



Slightly larger than 2 (2.0023..), effect of virtual particles

I ntn nS|C Sp| N that are allowed t}rilJ\nicertainty principle, remember the

Casimir force, Feynman!s quantum electro-dynamics

= The magnetic moment is i, = —(¢/m)S, or —2u,S/h.

= The coefficient of S/% is -2 as a consequence of special relativity

applied to quantum mechanics
New selection rule, there will later be

another one due to a coupling of spin
). and orbital angular momentum

. Error in 3 edition,
_8sM3S  eq. 7.34b, Thornton-
Rex corrected in 4t
edition

__gﬂiuBf‘__ﬂBE [ =
My =———= I and Hs 7

= The z component of SisS, =mh=+h/2.
= In{ =0 state —— no splitting due to ﬁlé mg==x7%

Am_ =0

there is still space quantization due to the
intrinsic spin.
= Apply m, and the corresponding potential energy becomes

e
Vg = —H -B= +ES -B B external magnetic field

Helps explaining what is really observed in atomic spectra with good
spectrometers instead of the “normal” Zeeman effect
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EXAMPLE 9.3 Zeeman Spectrum of Hydrogen
Including Spin

Examine the Zeeman spectrum produced by hydrogen
atoms initially in the n = 2 state when electron spin is
taken into account, assuming the atoms to be in a mag-

netic field of magnitude B = 1.00 L.

Solution The electron energies now have a magnetic
contribution from both the orbital and spin motions.
Choosing the zaxis along the direction of B, we calculate
the magnetic energy from Equations 9.6 and 9.12:

e

]

The energy (efi/2m,) B is the Zeeman energy upB or fiay ;
its value in this example is

ppB = (9.27 X 107 J/T)(1.00 T) = 9.27 X 107 ]
=5.79 X 1075 eV

For the n =2 state of hydrogen, the shell energy is
Ey = —(13.6 eV) /2% = —3.40 eV. Because my takes the

To be continued on slide 56

when external magnetic fields are very strong

values 0 (twice) and =1, there is an orbital contribution
to the magnetic energy Uy = mgher that introduces new
levels at Ey * hwy, as discussed in Example 9.1. The pres-
ence of electron spin splits each of these into a pair of
levels, the additional (spin) contribution to the energy
being U; = (gm,)hwy, (Fig. 9.9). Because g = 2 and m, is
iqlz for the electron, the spin energy in the field |Uj| is
again the Zeeman energy fiwy. Therefore, an electron in
this shell can have any one of the energies

Eo, Ey * hoy, Es = 2hwy

In making a downward transition to the n = 1 shell with
energy £} = —13.6 €V, the final state of the electron may
have energy E; + fiw;, or E; — fiwy, depending on the
orientation of its spin in the applied field. Therefore, the
energy of transition may be any one of the following pos-
sibilities:

ﬁEQ,], QEQ’] == .ﬁ,wld,

ﬁEg’l * 2hwy, ﬂEg,] *+ 3haoy,

Five spectral lines instead of 7

Am_ =0

Spin-orbit coupling contributes for fine structure of the spectra 5



Without spin With spin

e mr=l,m5=lf2
[ +1 T e my = 0,m = 1/2
| s t 5 i I =1
n=2m=5 0 i my = £l,m_ = ¥1/2
L e m = 0, m, = —1/2
=" mp = =1, m; = =1/2

Normal Zeeman, slide 46

. 1/9
n=1m=20 vy e i [=0
S ke —l;’ﬂ
there will be ,«Ln\
another selection 5 > orbidden

—{ +ar

rule due to a NE

coupling of spin ‘ H

and orbital a_ngular ' By . o There are actually 10
and magnetic M R gy R lines, unevenly spaced

e

/!
f
/
|
|
\

i T B by Am_ =0
!

momenta Spectrum without spin Spectrum with spin

Figure 9.9 (Example 9.3) Predicted Zeeman pattern and underlying atomic transi-
tions for an electron excited to the n = 2 state of hydrogen, when electron spin is
taken into account. Again, selection rules prohibit all but the colored transitions.
Because of the neglect of the spin—orbit interaction, the effect shown here (called the
Paschen—Back effect) is observed only in very intense applied magnetic fields.

Very strong external magnetic field, several Tesla o



Continuation from slide 55

Photons emitted with these energies have frequencies

@91, w9 = o, we1 * 21,

w91 % 3wy,

Therefore the spectrum should consist of the original
line at w9 flanked on both sides by satellite lines sepa-
rated from the original by the Larmor frequency, twice
the Larmor frequency, and three times this frequency.
Notice that the lines at w9} £ 2wy, and w9, = 3wy, appear
solely because of electron spin.

Again, however, the observed pattern is not the
predicted one. Selection rules inhibit transitions unless
m¢ + mg changes by 0, +1, or —1. This has the effect of

eliminating the satellites at w9 ; = 3w;. Furthermore, the
spin moment and the orbital moment of the electron
interact with each other, a circumstance not recognized in
our calculation. Only when this spin—orbit interaction
energy is small compared with the Zeeman energy, fiwr,
do we observe the spectral lines predicted here. This is
the case for the Paschen-Back effect, in which the
magnetic field applied to the atom is intense enough to
make fiw; the dominant energy. Typically, to observe the
Paschen-Back effect requires magnetic fields in excess of
several tesla.

In a zero magnetic field, we will also see the splitting of spectral

lines due to spin-orbit coupling

In a weak magnetic field, we will have both, the anomalous Zeeman
effect and spectral line splitting due to spin-orbit coupling

Am, = 0 because spin results in a magnetic effect, the selection
rules are due to electric dipole transitions, oscillating expectation

value for an electron (one negative charge), necessity to conserve
angular momentum by emitting or absorbing one photon 57



Spin-orbit coupling, angular momenta interact

pm=po+ ps= s a1 gS} g-= 2 Dirac (9.12) The total mngnetif moment
orl MMe. of an electron

Their magnetic moments also do interact !! Vector
sums. We don’t need an external magnetic field in
order to lift many of the degeneracies. This will have
observable consequences, anomalous Zeeman
effects (largely) explains all spectral lines of
hydrogen for strong and weak external magnetic
fields, Schrodinger model quantitatively very good —
basis for the structure of all other atoms — but
gualitatively a blunder as 4D space time and special
relativity neglected

A 5T quantum number leading
to a new selection rule j=€+s or j=l€—s =




Some new spectroscopy notation for
experimental spectra

For atomic states that may contain one or more electrons, the notation includes
the principal quantum number and the angular momenta quantum numbers. The total
orbital angular momentum quantum number is denoted by a capital letter in the same
sequence as in rule 1 above, i.e.. S P D F ... correspond to € values O 1 2 3. ... The
value of n is written as a prefix and the value of the total angular momentum quantum
number j by a subscript. The magnitude of the total spin quantum number s appears
as a left superscript in the form 2s + 1.!2 Thus, a state with € = 1, a P state, would be

written as redundant\

”_23+ 1&)

For example, the ground state of the hydrogen atom (n =1, € =0, s = 1/2) is
written 1° S, X read “one doublet S one-half.”” The n = 2 state can have € = 0 or
€ = 1, so the spectroscopic notation for these states is 22 S 22 , and 22P, -
(The principal quantum number and spin superscript are sometimes not included if

they are not needed in specific situations.)
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Figure 9.8 The .sp.in angular mo- Spin up . ] ]
o e o Spin-orbit coupling
allowed orientations of the spin
vector § for a spin é- particle, such
as the electron. s, n— po + s — 2_1? {L s gS} g ~ 2
Half of the hydrogen | orl s
atoms have spin up, i |S
the other half spin  ° y 2o " |
down after a [=1 N I T ﬂ[ ’
measurement, there I
. g S
is a superposition of Q\') Hydrogen
both states before L) i s
Spin down
measurement ’ . /=0
TWO electrons in same State Wi” Iead to Figure 9.11 The 2p level of hydrogen is split by_';he spin—orbit effect into a doublet
. . . separated t.)y the Spll:l—Ol"bi{ energy AE =5 107" eV. The .hl‘t;h.er energy state is fhe
cancellation of Spin, as one has spin up Eﬁgii‘,‘_;i‘;iﬁ;i'lii‘?‘%Sé‘f“i“s‘i‘.;ﬁﬁflﬁﬁ‘;éﬁiif S il pragl
and the Other Spln down bital motion with zero angular momentum.
https://phet.colorado.edu/de/simulation/stern-gerlach Jar file AE = 105 aV/
available - .
total (orbital plus spin) angular momentum J =L + S converted to magnetic
TS field next slide
1JI=Nj(j+ 1)A i=€+s5 or j=|€ —=s
J J
J. = mjh withm=jj57—1,...,—j

New selection rules: Am;‘ =0,+1, Aj=0, + 1 (all single-electron atom/ions) in
addition to AL =+ 1

We will have a lot of spin-orbit coupling with heavier atoms, e.g. Na
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Fine-Structure Splitting The fine-structure splitting of the 22P3;2
and 2°F, levels in hydrogen is 4.5 X 10~° eV. From this, estimate the magnetic
field that the 2p electron in hydrogen experiences. Assume B is parallel to the
Z axis.

Half of the hydrogen atoms
have spin up, the other half
spin down

SOLUTION

1. The energy of the 2p electrons is shifted U= —p'B=—p,B 2Py ‘ﬁB L bs
in the presence of a magnetic field by an 2P _* +uB
amount given by Equation 7-54: ___2;_ B _‘ju - _uTB_ "’l

112 I

2. Ulis positive or negative depending on AE=2U=2p,B T |V ﬁjB L 'u
the relative orientation of p and B, so the S
total energy difference AF between the

AU=2uB

two levels is

3. Since the magnetic moment of the AFE = 2ugB
electron is pp, W, = pwpand
s o AE
4. Solving this for B and substituting for B = PN
wpand the energy-splitting AF gives - i 45 % 10-5 eV
(2)(5.79 X 10-5eV/T 1S
~ 0397

Remarks: This is a substantial magnetic field, nearly 10,000 times Earth's aver-
age magnetic field.

Fine structure is due to spin orbit coupling,
there is also a contribution due to the
movement of the proton about the common

FIGURE 7-18 Fine-structure energy-level diagram. On the
left, the levels in the absence of a magnetic field are shown.
The effect of the magnetic field due to the relative motion of
the nucleus is shown on the right. Because of the spin-orbit
interaction, the magnetic field splits the 2P level into two
energy levels, with the j = 3/2 level having slightly greater
energy than the j = 1/2 level. The spectral line due to the
transition 2P — 15is therefore split into two lines of
slightly different wavelengths. (Diagram is not to scale.)

No external magnetic

center of mass with the electron, angular
momenta interact, so will magnetic momenta

flield, but spectral line
doublet 61



Total Angular Momentum is a sum

= [fjand m; are quantum numbers for the single electron

(hydrogen atom). —
J=+J(j+Dh

J,=mh

= Quantization of the magnitudes.
L=\i{(£+1Dh
S=4\s(s+1Dh
J=+Jj(j+Dh

= The total angular momentum quantum number for the single
electron can only have the values

. I e.g. index 2 after S or P,
j=f+s5 o j=|€— 5| 3/, after P from last slide

New selection rules: Am*j: 0,+1 Amis= 0, Aj = 0,1 o



Spectral line splitting due to total angular momentum

= Now the selection rules for a single-electron atom become
o An=anything Ae=x1 Am=0,%1 _0
0 Am;=0, £1 Aj=0, +1 Al =

= Hydrogen energy-level diagram for n = 2 and n = 3 with the spin-
orbit splitting.

n=3 -
Z
T Energy H,
Y
n=2 =-—
Unperturbed Fine structure due to spin-orbit coupling gets observed
(a) (b)

~ Reminder: selection rules make sure photon carries
away one unit of angular momentum = h-bar
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£+5 or j=|€—s|

http://enjoy.phy.ntnu.e
du.tw/data/458/www/si
mulations/simsb6fb.ht
ml?sim=SternGerlach __
Experiment

o __ N _ _ As one h-bar needs to be taken
Figure 7-16 (a) Simplified #‘EC[D!’de.Ei]]|LISII‘E]i1I‘lg the addition of orbital and spin angular away by an emltted photon, A[ —

momenta. The case shown is for £ = | and 5 = 5. There are two possible values of the

quantum number for the total angular momentum: j = £ + s =3and j = — 5 = 1. iN- i i “ ifi ”
(b} Vector addition of the orbital and spin angular momenta, also for the case £ = | and 1-1 ’Spln Or:blt Coupllng mOdIerS
5 = 1. According to the uncertainty principle, the vectors can lie anywhere on the cones, the SeleCtIOn ru|eS Of the
corresponding Lo the definite values of their £ components. Note in the middle sketch that there e '
are two ways of forming the states with j =3.m = Jand j =3.m. = 1. SChrOd'”ger model of H-atom !

Principal quantum number n mS quantum number 'yz, _1/2 , but S = ‘yz
in=1,28, « «

Orbital quantum number € The hyd rogen Wave funCtionS Serve
£ B vaptm—T) as approximations for the wave
Magnetic quantum number e fynctions of all other atoms !!!

mp =10, £1, £2, i o «y Xl
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‘ Fine structure of spectrum of hydrogen atom is explained by the

eigenfunctions of a more complicated Hamiltonian operator
Charles Galton Darwin

s H — H-lj + H]Eieéetic + HS-D- + HDarwiuiau-

L=0(S) it en;;ileiz} L=2(D) Correction for relativistic
kinetic energy only
n=1,AE =

Not Relativistic K.E. S L
exactly — —9050 x 10 eV

) PIN-0ri It coup mg
to scple so Schrodinger equation is

Lamb Shiff Spin-orbit coupling pretty QOOd apprOXimation

(13.6 eV ground state)

http://en.wikipedia.org/wiki/Fine _structure

Darwin Term

i i=1/2i1=10
2
All effects |AF = Eq(Za) ! _ i j=1+1/2
combined n 74+1/2  4n otherwise

There is also ultra-fine (or hyper-fine) structure in an isolated hydrogen atom,

it arises form interactions between the spins of the proton and electron o



EXAMPLE 9.4 The Sodium Doublet We use the same orbital notation for all atoms

The famed sodium doublet arises from the spin—orbit
splitting of the sodium 3p level, and consists of the
closely spaced pair of spectral lines at wavelengths of
588.995 nm and 589.592 nm. Show on an energy-level di-
agram the electronic transitions giving rise to these lines,
labeling the participating atomic states with their proper
spectroscopic designations. From the doublet spacing,
determine the magnitude of the spin—orbit energy.

Solution The outer electron in sodium is the first
electron to occupy the n = 3 shell, and it would go into
the lowest-energy subshell, the 3s or 35,9 level
The next-highest levels belong to the 3p subshell. The
2(2¢€ + 1) = 6 states of this subshell are grouped into
the 3P /9 level with two states, and the 3/%5,9 level with
four states. The spin—orbit effect splits these levels
by the spin—orbit energy. The outer electron, once 1t
is excited to either of these levels by some means (such
as an electric discharge in the sodium vapor ]amp},
returns to the 38,9 level with the emission of a pho-
ton. The two possible transitions 3,9 — 35,9 and
3Py 9 = 35,9 are shown in Figure 9.13. The emitted
photons have nearly the same energy but differ by
the small amount AE representing the spin—orbit split-
ting of the inital levels. Since £ = he/A for photons,
AE is found as
e fie he(ho — Ay)

AE=—— —=
A As A1Ag

For the sodium doublet, the observed wavelength differ-

ence is

Ao — Ay = 589.592 nm — 588.995 nm = 0.597 nm

Using thi

s with Ac = 1240 €V nm gives ~ 0.1%
(1240 eV-nm) (0.597 nm)

AR = 559,502 nm) (588.995 nm) _ — 0 % ey
Half of
Ground e At{{ 3Py, these .
state | " atoms spin
Sodium, a up, half of
single 3s them spin
electron 588.995nm  589592nm  dOWN for
3s' ground
state
3s - 3819
Figure 9.13 (LExample 9.4). The wansitions 3P0 — 35 0

and 3P o — 35, s9 that give rise to the sodium doublet. The
3p level of sodium is split by the spin—orbit effect, but the 3s

level is u
normally

naffected, In the sodium vapor lamp, electrons
in the % level are excited to the 3p levels by an

clectric discharge.

/

Because there is no spin-orbit effect in s sub-shell, as /=0 66



n >3 23”2 EP?."E EPHE E'DE'E.B.E EFTJ‘E,&E
With zero I = — — = [ |
external 76— —IP— & "
: Bs — bp— 5d
magnetic /
: % 4d
field -1 s %, N
e B
o
3 :,; 3d
45—?\9‘
_2 I g
s
B
3 =
i . should
sl oW e at
8/ slightly
g ‘-3/ different
ik / o heights
£
Very intense yellow
_5 —
514lgg—-—s——

More

Tradition tells us that Mrs. Bohr encountered an obviously sad young
== Wolfgang Pauli silting in the garden of Bohr’s Institute for Theoretical
Physics in Copenhagen and asked considerately if he was unhappy.
His reply was, “Of course I'm unhappy! I don’t understand the anom-
alous Zeeman effect!” On the home page we explain The Zeeman
Effect so you, too, won’t be unhappy: www.whfreeman.com/
tiplermodernphysicsSe. See also Equations 7-70 through 7-74 and
Figures 7-28 through 7-31 here.

Pauli’s exclusion principle
empirical: the quantum state
that a single electron occupies
has a distinct set of 4 quantum
numbers, n, {, m, and m_ (2 up
or down) - no other electron in
the same system can have the
same distinct set

Figure 7-22 Energy-level diagram for sodium (Na) with some transitions indicated.
Wavelengths shown are in nanometers. The spectral lines labeled D, and D, are very intense
and are responsible for the yellow color of lamps containing sodium. The energy splittings of
the D and F levels, also doublets, are not shown.

Later: electrons are fermions, only two of them with different spin state can
occupy each state that is determined by a set of three quantum numbers
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Overview transitions / selection Rules

s We use the wave functions to calculate transition probabilities for
the electron to change from one state to another. These
probabilities are proportional to the intensity of the spectral lines

Allowed transitions:

m Electrons absorbing or emitting photons to change states when
Al = £1 that corresponds to one unit of angular momentum and is
the spin of the photon, it's a boson, spin is 1

Forbidden transitions:

m Other transitions possible if system is disturbed but occur with
much smaller probabilities when Af # £1.
An = positive integer > 0 for downward transition

Because of these rules, Rydberg
= 1 -
Al ==l Ams =0 atoms, n = 100 or more are quite

Amf =0,+1 Aj=0, +1 stable in outer space

Am;=0,%1  Forsingle electron atoms and ions 68



TOPIC

RELEVANT EQUATIONS AND REMARKS

1. Schridinger equation in three
dimensions

The equation is solved for the hydrogen atom by separating it into three ordinary
differential equations, one for each coordinate r, 6, ¢. The quantum numbers . £,
and .fr[: arise from the boundary conditions to the solutions of these equations,

2. Quantization

Angular momentum LI=VE€E+Dh for £=0,1,23,... 7-22
z component of L L = mh for m=0,=*1,x2,... *f = m/ 7-23
kZ 232 ZZ .
Energy E = —(—E) * - _13éZev also for He*, Li** 7-24
& h n n’
3. Hydrogen wave functions W= C R .Y, (0,

where C ,, are normalization constants, R , are the radial functions, and ¥, are the
spherical harmonics.

4. Electron spin
Magnitude of §
z component of S

Stern-Gerlach experiment

The electron spin is not included in Schrédinger’s wave equation.
ISl=Vs(s+ Dh s=1 7-36
_=mh m = +1

This was the first direct observation of the electron spin.

5. Spin-orbit coupling

L and S add to give the total angular momentum J = L. + S, whose magnitude is
given by

Il = VG + D 7-53

where j= £ + sor |[? — 5|, This interaction leads to the fine-structure splitting of
the energy levels.

6. Exclusion principle

No more than one electron can occupy a given quantum state specified by a particular
set of the single-particle quantum numbers n. £, m,. and m .
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Table 8.4 The Radial Wavefunctions R,¢(r) of
Hydrogen-like Atoms for n = 1, 2, and 3

n ¢ R,.¢(r)

7 \3/2
_A) 9.~ 41/ a

4 (9 . /?) —Zr/2a,
ay

N

Zr —/:/"r:o

x )W
2 1
2ay \3 a
32 : 7 \2
c ( ) 27 + 2 (l‘{}) f,—Zr/fBag
3ay 3(?.0 27 \ ay

N8

N

4\/5 Zr (1 P Zr ) —7Zr/5ay
3  aq bay

G T V4

Z\FQ ( V4 ) o~ 71/3a
‘27\/3 g

(t'()
£

3ay

(8]

W(r, 0, p, 1) = R(r) Y§'"(6, p)e™ "

Table 8.3 The Spherical Harmonics ¥Y;"(0, ¢)

0
Yo =

A
Y =

=1
Yl =

-
twll 8
5 ~cos 6
Vo
- .
¥ -sin@- e=¢
2N om
5
% (3 cos?0 — 1)
-
15 . _
13—, — -sinf@-cos@- e
v 2
ll"'
% -sin® @ - ¢~ 21
2ar
| 7
iy— - (5 cos® @ — 3cos b)
i
21 : :
-sin @+ (5cos?0 — 1) ¢~@
105
I -sinZ @ cos §- ¢~21
3b . -
¢é —— -sin® 9. 39
"

All normalized, ready for use
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Table 6.1 Normalized Wave Functions of the Hydrogen Atom for n = 1, 2, and 3*

n | m D(p) O(r) R(n ulr, 8, ¢)
1 (] 0 ; L i —r/a, 1 —rl.n'ﬂu
V2a V2 ay’? Va3
2 0 0 —— . b : (z _ T |evi2e
e V2 I 2 a3? ap N2 ai? dg
) 1 0 ; ﬁcos f s —rf2a, : _t T e cpsp
N\ 2ar 2 Ve ay? dg 4N 2 3""2 dp
1 . V3 1 .
2 1 =*1 = sin f B B e - T e gin g &
V2 2 2V6 ad’? ao E\a’_aﬂ
1 1 P 1 A - T
§ @ B — — 8—+ 2 | 27— 18—+ 2—)6‘”’%
V2a V2 81\/’_ S ( @ ) 81V3m ai? ( b o4
g 1 0 ; ﬁcggﬂ —r{3a, ‘V‘E (5_L)Lf‘ﬂ"3ﬂucgsﬂ
Vi 2 anf sIvea?\ @ aa 81V a3’ dg / ap
1 " 4
3 1 =1 ! e ﬁsin f e (ﬁ S S T
s 2 Blv”_ 2 81V ai? ag / do
1 V1o L | 2
5 3 B — 2" (3 costl — 1) L (3 cos? — 1)
V2n 4 81V3ﬂ agﬂ a% 81V6 am
. " 1 _ .
3 2 .#] : e='® sin # cos @ ; if /30, — r T ¢ "gin g cos § e**¢
e 81V30 a? @ 81Vr a2 @
1 i v 4 _ 1 : :
§ 3 = _- g I3 sintd ie r/3a, if 30 cintg 2
V2x 81V30 aﬂ“ 1ﬁz*v’_ 32 ah
*The quantity a, = 4weA*me® = 3.202 % 107" m is equal to the radius of the innermost Bohr orbit.
Y(r) = Y(n 6, d) = R(HNO(HD(P)
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P(r) = P2 Rye(n)

2 (8.44)

P(r) dr is the probability that the electron will be found at a distance
between r and r + dr from the nucleus. The most probable distance is the

one that maximizes P(r) and generally differs from the average distance (1),
calculated as

(r) = f*’”‘ rP(r) dr (8.46)
0

The most probable values are found to coincide with the radii of the allowed
orbits in the Bohr theory.

4 quantum numbers at last
qrn-lfm{-m_,l. = Rnf}}mf ij for hydrogen in 4D space
time

where R , is the radial wave function. ¥, is the spherical harmonic. and X is the spinwave function

So all we have learned in 3D is valid when spin wave function is
multiplied in
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‘ Fermions have spin 2

1'II 2nd mnuwﬁun |:mr|||h1ril:r|!:tl1| outaid of
everyday matter exolic matter force particles (mass giving)  standard model
4 Y % Y A R N = N\ “,
g ~\
(" Vi
| ( (a 1276 A (,E
«— charge 5
u . c = S
io o A (S - E .
&< H spin 0, mass,
§§ ‘aw o - M g charge 0
s | b i
down sirange batt 2
|| g - ) |
1.
e .ujt)] BB |
T o electron l.i tay photon 4 E
§§< N < N
<22 « 017 E :." ;
V. V., o
n-numhuA H-neutrino E : i g
~ 1 Y, “ o i
) Y a Y “spin 2, mass 0
12 fermions (+12 anti-matter) 5 DOSONS (+1 opposits charged W) Spi , Mass v,
nemasmgmass = charge 0

-~ proton: two up one down quark, spin 72 —

neutron: one up two down quark, spin % B0Sons have integer spin, 0, 1, 2 .



“The best that most of us can hope
to achieve in physics is simply to
misunderstand at a deeper level.”

Wolfgang Pauli




3D visualization of quantum fluctuations of the QCD vacuum

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Improved
Operators/index.html 7



[ Quantum fluctuations can jiggle objects on
the human scale puvsy

1 July 2020, by Jennifer Chu

"What's special about this experiment is we've seen quantum effects on something
as large as a human," says Nergis Mavalvala, the Marble Professor and associate
head of the physics department at MIT. "We too, every nanosecond of our
existence, are being kicked around, buffeted by these quantum fluctuations. It's just
that the jitter of our existence, our thermal energy, is too large for these quantum
vacuum fluctuations to affect our motion measurably. With LIGO's mirrors, we've
done all this work to isolate them from thermally driven motion and other forces, so
that they are now still enough to be kicked around by quantum fluctuations and this
Spooky popcorn of the universe."

Quantum correlations betweenlight and the
kilogram-mass mirrors of LIGO

40 kg mass in LIGO experiments moves by 102 m due to
quantum noise, just as predicted from the uncertainty principle

https://doi.org/10.1038/s41586-020-2420-8  Haocun Yu'®, L. McCuller'®, M. Tse', N. Kijbunchoo?, L. Barsotti', N. Mavalvala' and other
members of the LIGO Scientific Collaboration*

Received: 3 February 2020

76



