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 6.0 Partial differentials John von Neumann: ”Young man, in mathematics you 
don’t understand things. You just get used to them.”

 6.1 The Schrödinger Wave Equation, Operators
 6.2 Expectation Values
 6.3 Infinite Square-Well Potential slide 29
 6.5 Three-Dimensional Infinite-Potential Well
 6.4 Finite Square-Well Potential
 6.6 Simple Harmonic Oscillator
 6.7 Barriers and Tunneling in some books an extra 

chapter due to its immense technical importance

CHAPTER 6
Quantum Mechanics IIQuantum Mechanics II

I think it is safe to say that no one understands quantum mechanics. Do not 
keep saying to yourself, if you can possibly avoid it, “But how can it be like 
that?” because you will get “down the drain” into a blind alley from which 
nobody has yet escaped. Nobody knows how it can be like that.

- Richard Feynman
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As a function of 3D space and time, separate

As a function of 3D space only, stationary state, small

V=V(x,y,z,t) Total energy
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Plane wave for electric 
field vector 

Light “wavicals” are special, they obey the time dependent 
Helmholtz (wave) equation

As we already know from special relativity, 
a massless particle has momentum

A light wave is its own probability density wave, idea by Einstein

fc 


hkp  
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Loved his pipe, wine, and many mistresses, kind of started biophysics in 1944 
with his booklet “What is life?”

left the top theoretical physics position in all of Germany (at Berlin University) on his own account in 
1933, .., 1938 after Austria was annexed, he left Graz despite orders to stay, his mother was half-
English, …Republic of Ireland remained neutral during WW II

Solve the steady state version of his 
equation for an electron acted upon by 
the Coulomb force that is due to a 
close by proton, and you have a 
model of the hydrogen atom - Energy 
quantization and 3 quantum numbers 
just follows from the mathematical 
process !! 

1933 for Oxford, later on Graz, Italy, Ireland
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6.1. The Schrödinger Wave Equation

 The Schrödinger wave equation in its time-dependent form for a particle subject to a 
potential energy function V in one dimension is

 The extension into three dimensions is

where

The statement is in both cases that operators act on the 
wave function, V = V(x,t) in the first equation for 1D, V = 
V(x,y,z,t) in the second equation for 3D, non-relativistic

Equivalent to time dependent 
Helmholtz (wave) equation, 
which can be derived from 
Newton’s force laws, BUT 
Schrödinger equation cannot be 
derived from anything else !!!

m = mass of electron, more precisely 
reduced mass

 
2

1

12 )().(),(),( xdtFtxVtxVtxV

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Comparison of Classical and Quantum 
Mechanics

 Newton’s second law and Schrödinger’s wave equation are 
both differential equations.

 Newton’s second law can be derived from the Schrödinger 
wave equation, so the latter is the more fundamental – cannot 
be derived from anything else.

 Classical mechanics only appears to be more precise because 
it deals with macroscopic phenomena. The underlying 
uncertainties in macroscopic measurements are just too small 
to be significant, the un-correctable “systematic residual/rest 
error” that is due to the uncertainty principle is too small to be 
noticed for heavy objects

Non-relativistic, m is constant and taken out of the 
differential d(m,v)

am
dt

xdmdt
xd

dt
xdmdt

vdmdt
pdF


 2

2
)(
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Free particle solution of the Schrödinger wave 

equation, harmonic/plane matter wave, V = 0 or constant

 The wave function for a plane wave 

which describes a wave moving in the x direction to the right from 
minus infinity to plus infinity (left it you change the sign). In general 
the amplitude (A) may also be complex. Out of the sum of infinitely 
many different plane matter waves, we can create wave packets, 
just as we did for classical waves earlier

 Wave functions are also not restricted to being real. All traveling 
matter waves are complex. Note that the sine term has an imaginary 
number in front of it. Only physically measurable quantities must be 
real. These include the probability of finding the particle someplace
(either at some particular time or all the time), momentum, energy, 
… anything you want to know

If V = 0 or not constant with time, it is no longer a free particle, then we can 
and need to normalize, setting the scale for all measurements by operators
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The potential 
energy function 
does not vary in 
space and time, 
it’s a constant, 
either zero or any 
value 

Quasi-Free particle wave function solves the Schrödinger equation with a 
constant potential, that can be set zero, postulating validity for V0 ≠ 0, i.e. as 
any function of time was quite a stretch

Free particle is analog of Newton’s first law

= ideal free particle, V0 = 0
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For a single plane wave,  = Aei(kx-ωt) ,representing a “completely 
spread-out” particle

Total energy = kinetic energy + potential energy in operator 
form, i.e. total energy is conserved on average, we ignore 
rest energy/special relativity, always need to make sure 
that particles move with v < 0.01 c or better 1/α ≈ 1/137

while there are undetectable energy fluctuations within the uncertainty limit, 
wave particle duality is taken care of by the i, i.e. going complex, into Hilbert 
space

),(),( txtxE  

Eigenfunctions of total energy En solve Schroedinger equation, En are 
eigenvalues (you may remember algebra of matrices, solving linear systems of equations)

),( txE 

Ψ(x,t) is eigenfunction of time 
dependent total energy operator
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Normalization and Probability
 The probability density P(x) dx of a particle being found between x

and x +-dx was given in the equation

 The probability of the particle being found between x1 and x2 is 
given by

 The wave function must be normalized so that the probability of the 
particle being found somewhere on the x axis (or within Δx) is 1 
(100%).

Since the only things we are allowed to know are all calculated from the wave 
function for a particular physical scenario V(x,t) function, normalization sets the 
scale for all other predictions/calculations

Compare previous chapter !!!

complex conjugate
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Need to fulfill this 
condition, 

(x,t) and *(x,t) both 
needs to have the same 
prefactor that is the 
square root of the 
reciprocal value of the 
integral when multiplied

It is going to be 1/Sqrt 
whatever the integral 
comes to

something finite

1
_

1*
_

1 




dx
finitesomethingfinitesomething

since Schrödinger 
equation is linear, a 
prefactor on both sides 
changes nothing
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try to normalize the wave function for a free 
particle

∞

No big deal, just a useful model, superposing of infinitely many plane 
waves with the right properties leads to any wave packet that we may 
need to normalize in order to set the physical scale right

What 
does this 
mean?

Probability of fining the particle is in each finite unit segment identical 
and finite, adding all of these unit segments together gives infinity – so 
the particle is to be found everywhere at any one time, better: one does 
not know where it is to be found at all

But no longer apply, 
definite and arbitrary 
E and p

here we have a E again
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Properties of valid wave functions

I. Boundary conditions, to make the mathematics 
work

1) In order to avoid infinite probabilities, the wave function must be finite 
everywhere.

2) In order to avoid multiple values of the probability, the wave function 
must be single valued everywhere.

3) For finite potentials, the wave function and its derivative must be 
continuous. This is required because the second-order derivative term 
in the wave equation must be single valued. (There are exceptions to 
this rule when V is approximated to be infinite – last chapter.)

4) In order to be able to normalize wave functions, they must approach 
zero as x approaches infinity.

 Wave functions that do not posses these mathematical 
properties do not correspond to physically realizable 
circumstances. BUT physics of the problem also needs to 
be captured by the boundary conditions
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Properties of valid wave functions II
II. Boundary condition, to bring the physics in

 Every problem has its specific wave function (that surely 
needs to get the maths of the Schrödinger equation right) 

 it all depends on the potential energy function, the physics 
of the problem to be solved is encoded there

 we need a function, not a vector so instead of force we use 
its scalar product with position

Fxk
kx

dx

d 
)

2
(

2

2
)()(

2kx
xUxV 

e.g. potential energy 
function of a spring, does 
not depend on time

Hooke’s law in 
Newton’s formulation

V1 can be set zero

 
2

1

12 xdFVVV


gradient of potential 
energy function = - force
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Probability P and probability density P(x)
of finding a particle

Two ways of dealing with

Cancel dx on both sides, and 
you get a formulae for the 
probability density at any x

Integrate both sides over some 
region of space and you get 
the probability of finding that 
“wavicel” in that region

In both cases, the wave function needs to be 
normalized, otherwise the result will be just 
proportional to finding the wavicel
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Time-Independent Schrödinger Equation 
– separation of space and time variables
 The potential in many cases will not depend on time, stationary states.
 In all of these cases, the wavefunction can be rewritten 

 And we can derive the time independent Schrödinger equation, take
,

divide by ψ(x)f(t) yields:

The left side depends only on time, and the right side depends only on 
spatial coordinates. Hence each side must be equal to the same 
constant. The time dependent side is

What might this B possibly be? The Schrödinger 
equation is a statement on the conservation of 
total energy, which is constant in a stationary 
state, i.e. does not change with time 
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 We integrate both sides and find:

where C is an integration constant that we choose to be 0. Therefore

This determines f to be

 This is known as the time-independent Schrödinger equation, and it is 
a fundamental equation in quantum mechanics.

Time-Independent Schrödinger Equation 
Continued

Dimensional analysis of the 
exponent leads to E ! What 
else could B possibly be? 
given the fact that the 
Schrödinger equation is a 
statement on the conservation 
of total energy, we also know 
from slide 10 that wavefunctions 
that solve the Schrödinger 
equation are eigenfunctions of the 
total energy operator

In order to do this, f(t) needs 
to be eigenfunction

Note that we now use (little) ψ(x) instead of (big) Ψ(x,t)

Total energy 
operator
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Stationary State

 The wave function can be written as:

 Whenever the potential energy function is not time dependent

 Integrand in probability density integral

becomes:

 The probability distributions are constant in time. This is a standing 
wave phenomena that is called a stationary state.

 E So whenever you see circular frequency omega, you can also 
think total energy divided by h-bar 


hkp   So whenever you see the wave number, you can also 

think linear momentum divided by h-bar 

Remember when you see E think ω
(or frequency) and vice versa
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6.2: Expectation Values, what one will measure on 
average is derived from correct wave function for a problem

 The expectation value is the expected result of the average of 
many measurements of a given quantity of many identical 
systems. The expectation value of x is denoted by <x>

 Any measurable quantity for which we can calculate the 
expectation value is called a physical observable. The 
expectation values of physical observables (for example, 
position, linear momentum, angular momentum, and energy) 
must be real, because the experimental results of 
measurements are real.

 The average value of x is 

3 3 4 4
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Continuous Expectation Values

 We can change from discrete to 
continuous variables by using the 
probability density P(x,t) of 
observing the particle at a particular 
x and t.

 Using a normalized wave function, 
the expectation value is:

 The expectation value of any 
observable, represented by an 
operator g(x,t), for a normalized 
wave function

x, g(x), and g(x,t) are operators !!!, x could also have been in the middle 
of conjugate complex wave function times wave function as it is the rule 
for all operators, where it is in this particular product does not mater
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Momentum Operator

 To find the expectation value of p, we first need to 
represent p in terms of x and t. Consider the derivative 
of the wave function of a free particle with respect to x:

With k = p / ħ we have

This yields

 This means we have derived the momentum operator 
.

 The expectation value of the momentum is


hkp  

i
i


1

*
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 The position x is its own operator [x] or x hat.

 The time derivative of the free-particle wave function is

Substituting ω = E / ħ yields

 The time dependent total energy operator is

 The expectation value of the total energy is

Position and Energy Operators

 E

A wavefunction that solves the Schroedinger equation is also an 
eigenfunction of the total energy operator (both in its time and position 
dependent forms, left and right hand side of Schrödinger equation) 

i
i



1

*
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For anything you want to know (and are allowed to know), there is an operator, the 
procedure is always the same to get the information out of the wave function that 
represents your problem, just let the correct operator loose on it, it’s that simple

Total energy

Total energy

i
i



1

H =
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Only three operators are fundamental

If you need an operator, make it up from the classical 
physics equation by replacing x, p, E(t) with their operators 

The new operator will have the same functional relationship 
for the x, p, E(t) operators as the classical physics 
equation, 

example kinetic energy operator

m

p
mvKE

22
1

2
2 

][ˆ xxx 

2
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imm

p
KEEKKE op 















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Some expectation values are sharp some 
others fuzzy

Since there is scatter in the actual positions 
(x), the calculated expectation value will 
have an uncertainty, fuzziness. (Note that x 
is its own operator.)

][ˆ xxx 

][ˆ xx

xx




Normalizing condition, note its effect !

How operators 
are typically 
written
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Some expectation values are sharp some 
others fuzzy, continued I

For any observable, fuzzy or not
If not fuzzy, ΔQ = 0

Because <Q2>= <Q>2

x may as well stand 
for any kind of 
operator Q

Eigenvalues of the wavefunctions that solved the Schroedinger equation are 
never fuzzy. How come?
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Some expectation values are sharp some 
others fuzzy, continued II

 Eigenvalues of operators are always sharp (an actual – physical -
measurement may give some variation in the result – random 
error, but the calculation gives zero (systematic) fuzziness

 Say Q is the Hamiltonian operator A wave function that solves this 
equation is an eigenfunction of this 
operator, E is the corresponding 
eigenvalue, apply this operator 
twice and you get E2 – which sure 
is the same as squaring to result of 
applying it once (E)

So if the time independent potential energy operator acts to confine a particle of 
mass m, we will have a discrete set of stationary states with total energies, E1, E2, ..

][ˆ][ˆ)( VVUUxU 
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If distance C to G is very short and 
voltage very high an infinitely deep 
square well will model this 
experiment pretty well, introduced in 
last chapter

Free to move, persist to exist, so it must be a standing wave, 
interference of two moving particles, let’s consider it ψ(x) as V 
is not V(t) 
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Physical boundary condition particle in box
 Boundary conditions of the potential dictate that the wave function 

must be zero at x = 0 and x = L. This yields valid solutions for 
integer values of n such that kL = nπ.

 The wave function is 
 We normalize the wave function

 The normalized wave function becomes



 These functions are identical to those obtained for a vibrating 
string with fixed ends (we could as well have solved the 
Helmholtz equation)

n
nk 

2

We obtain En either from the solution to the Schrödinger equation with U(x) = 0 
as eigenvalues, all expectation values are calculated by the procedure with the 
corresponding operators from the wave functions for the different states  
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6.3: Infinite Square-Well Potential

 a particle trapped in a box with “infinitely hard” walls that the particle cannot 
penetrate. This potential is called an infinite square well and is given by

 Clearly the wave function must be zero where the potential 
is infinite, 

there will be infinitely many En eigenvaules with their matching eigenfunctions

 Where the potential energy is zero inside the box, the Schrödinger
equation becomes where .

 The general solution is .

Note that this wave function is real because we are considering a standing 
wave, that is the sum (interference) of two waves moving in opposite directions

i

ee
xk

xikxik

n

nn

2
)sin(




B = 0, as just the sine term will do


2k

n
nk 

2
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Hamiltonian operator is just kinetic energy operator for this particular zero-
potential (no force inside the infinitely deep well with infinitely wide barriers)

Wavefunction 

that passes the Schrödinger equation test corresponds to a meaningful physical 
scenario in which kinetic (and total) energy is conserved

Let’s derive the formulae for the kinetic energy (which is an observable) - so we 
apply the kinetic energy operator to the physically meaningful wavefunciton

)sin(
2

)sin(
2

1
2

)(

2

2

2
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L

xn

L
E

L

xn

LL

n

L

n

mdx

xd

m

n

n










We could also have derived this formula over the expectation value approach

From En we move to kn

It’s also an eigenfunction of 
both the total energy 
operator and the 
Hamiltonian
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Quantized Energy

 The quantized wave number now becomes

 Solving for the total energy (in this case all kinetic) yields

 Note that the energy depends on the integer values of n. Hence the 
energy is quantized and nonzero for the ground state. 

 The special case of n = 1 is called the ground state energy.

There is an infinite number of energy levels, because the potential barrier is 
infinitely high, only an approximation, more like a model (limit) to think about

Ground state 
energy, zero 
point energy, 
there is no n = 0 
for this potential 
energy 
distribution

L/2

same sequence as in the Bohr model

Remember the nπ/L term twice in the 
product on last slide
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Niels Bohr’s 
correspondence 
principle
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Some “trajectories” of a particle in a box (infinite square well/ infinitely deep well) 
according to Newton's laws of classical mechanics (A), and according to the 
Schrödinger equation of quantum mechanics. In (B-F), the horizontal axis is 
position, and the vertical axis is the real part (blue) and imaginary part (red) of 
the wavefunction. The states (B,C,D) are energy eigenstates, but (E,F) are not. 

http://en.wikipedia.org/wiki/Particle_in_a_box

no potential energy 
in this scenario, 
there is a discrete 
set of wave 
numbers since an 
integral number of 
half-wavelength 
need to fit into the 
box. Infinitely 
many states.

for any kind 
of other 
calculation 
normalize

i

ee
xk

xikxik

n

nn

2
)sin(



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Normalization, to set the 
scale of a wave function

if we had not used a normalized wave 
function, the probability of finding the particle 
in the box would not be unity, and we would 
not have obtained our ~ 81.8% result 

…
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approximately

Bohr’s  
correspondence 
principle

The lowest quantum states, smallest n
are those that give results which are 
far from what one would expect from 
classical physics

Equal and constant probability density for classical particle, 
in case n is going to infinity 

i.e. one 
particle per L

Number of “wiggles” of 
2 = n

≈ 9.1%

If Δx <= 1% L ≈ dx, no need 
to integrate for approximation

+- 0.05% 
around 
5L/8 

n = 1
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Probability density of finding the particle in 
the second exited state at x = 1/6 L and 1/3 L

n = 3

max
2

)6
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sin(
2

)6
13

sin(
2
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



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min0)3
13

sin(
2

)3
13

sin(
2







L

L

LL

L

L
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Why divided by 
L (dimension 
reciprocal 
meter) ? 

Obviously 
because they 
are probability 
densities !!

Twice as high as classically expected, strange

classically not expected, but it is not 
classical particles we are dealing with !!  
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Probability of finding the particle in the second exited state 
in an x = +-1/1000 L segment centered around 1/6 L and 1/3 L

n = 3

?)
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Sure these results must be dimensionless as they are probabilities, smaller 
than 1 or (smaller than 100%) due to normalization

this time, let’s do the integrals

What will 
be the 
dimension?

LL

LL

LofunitsinLofunitsin
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Lx

L
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L
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
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  

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Sure, if the region/segment for which we want to calculate the probability of finding 
the particle there is very small, we can expand dx to Δx and obtain an approximate 
result (and get rid of dx that way, but beware P(x) ǂ 0 for sensible results

At the previous example, Δx = 2/1000 L, for n = 3, and at x = 1/6 L and 1/3 L

%4.0002.011
2

)6
13

sin(
2

)6
13

sin(
2







 L
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x
L

L
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L
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0002.00
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)3
13

sin(
2
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





 L
L

x
L

L

LL

L

L
xPsegment



Sure it is a very small segment of L for which we want to know the probability of 
finding the particle. For this very small segment, the probability of finding the 
quantum mechanical particle is quite high !

Sure this approximation doesn’t make sense if the probability density on 
which it is based is actually zero, there will nevertheless be a very small 
probability of finding the particle there when the integral is done

Too large by only ≈1.2 10-5 %

Instead of ≈ 1.2 10-5 %

n is set 1 here, but sure that is not a precondition for 
the approximation to work
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b
a

b

a

b

a

xAdxAdxA | 

For Δx = +- 0.01 L example around x = 5/8 L 
with n = 1 (given as index of P), take the 
average of the two limiting values

So a pretty good approximation, physics is the art of knowing which 
theory and approximation to use for a given problem

dx 

Δx

Solved integral, exact solution
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Approximation from last slide would 
give 20%
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Visualization 
of calculation 
in previous 
slides

At point x = 0.5 L for 
n = 1, quantum 
probability density is 
twice as high (2/L) as 
classical probability 
density (1/L) 
So for a +- 5% of L 
wide region around x 
= 0.5 L, we should 
expect something 
less than 20%

10% 
of L
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Important difference: expectation value of x and 
probability density of finding the particle at x or (in 
region around x) 
 Take the first exited state, n = 2, wavefunction has node (zero amplitude) at 

the middle of the box, so particle can never be found there …

 BUT, what is the expectation value of x (independent of position and time)?

2
)

2
sin()

2
sin(

2

0

2

L
dx

L

x
x

L

x

L
x

L

n  


)
2

sin(
2

2 L

x

L

  0)2
12

sin(
2

)
2

sin(
2

2 
L

L

LL

x

L


for x = ½ L

0)2
12

(sin
2

)}
2

sin(
2

{* 22
225.0 

L

L

LL

x

L
P L



What would have happened if our wavefunction was not normalized? We 
simply got a “quite useless result” that is only proportional to L/2 with an 
unknown factor of probability

No need to do an integral as we 
asked just for finding the particle at 
one specific position

Sure, we expect to find the particle on average (most often) in the middle of the box
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Given the 
stationary 
wave functions

i
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xk
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nn

2
)sin(




square of momentum is related to kinetic energy = 0, 
momentum has a spread due to uncertainty principle !! 

No surprise, momentum 
is a vector, goes back 
and forth with same 
value but different sign 

π

n

n2

n2

n2

n2

Note misprints in Tippler/Lewellyn !!
lets do it for all states

Take the 
square root of 
this and you 
have the 
magnitude of 
the momentum

n = 1

ti ne 
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So is p sharp? 

Nope, just look at the result of the calculation

0
4

(
2

22
22

2   L
pppn



full result for all n: p = <p> = 0 ± |p| = 0 ± sqroot <p2>

which is of course just a statement of the uncertainty 
principle   

The “stronger” the confinement, i.e. smaller L, the larger the uncertainty in 
x on the other hand, the “weaker” the confinement the less uncertainty of 
momentum 

For n = 2

22 = n2 
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Must p2 be sharp?

absolutely, because p2 = KE times 2m, no potential energy in 
the infinitely deep square well, so KE must be sharp (one 
value for each n only without any spread) because total E is 
sharp 

0( 2242  ppp

Remember, our wave function solved the Schroedinger equation

It is, therefore, an eigenfunction of the Hamiltonian operator, which is in this 
case just the kinetic energy operator,

Each time the kinetic energy operator operates on an eigenfunction, it returns 
the unchanged eigenfunction multiplied by the eigenvalue, 

0)2()2()2( 22  mKEmKEmKE



48ti ne  Adding this factor or both sides of the wavefunction changes 
nothing as the partial differential is with respect to x and not t

sine wave function can be 
replaced by “sum” of two 
complex wave functions divided 
by 2 i, these wave functions are 
actually the eigenfunctions of the 
momentum operator
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that’s how we derived 
that operator earlier

  dx
dx

d
i

dx

d
i  ))((*

22


  dx
dx
d

i
dx
d

i
dx
d

i
dx
d

i  ))()()((*
2222



0( 2242  ppp<p2> =

<p4> =

kind of result of doing something 4 
times is equal of doing it 22 times

Applying the operator to an eigenfunction twice gives you the square of the eigenvalue

as it is a standing wave no 
time dependency needs to 
be considered, d/dx 



49

Momentum eigenvalues for a particle in an infinitely deep well 
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operator
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Because the Schrödinger equation is linear: At any given instant in time, the wave 
function Ψ of a particle (or an isolated system) can be expressed as a linear 
superposition of a complete ortho-normal set {Ψn} of wave functions:

Ψ = c1 Ψ1 + c2 Ψ2 + c3 Ψ3 + c4 Ψ4 + … = Σ cn Ψn

Where prefactor an = │cn│
2 represents the probability that the system will be 

found in state Ψn
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So half of the time the system is found with momentum: 
L

n
pn




L

n
pn


And the other half of the time:

½ = 50 %
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2012

Usages of 
Particles in boxes

Remember 
general relativity

Superposition of states? Let’s use it for quantum computing



52

2012
Usages of 
Particles in a 
box

Bringing 
photons into a 
box, releasing 
them and 
manipulating 
them there, 
including 
measuring how 
many are there 
..



53

Quantum wires

Quantum dots

CdS2

Nobel prize 
chemistry 2014, 
super-resolution 
microscopy, Eric 
Betzig, Stefan W. 
Hell, William E. 
Moerner  
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 The wave function must be a function of all three spatial coordinates. 

We begin with the conservation of energy

 Multiply this by the wave function that depends on three spatial
variables to get

 Now consider momentum as an operator acting on the wave 
function. In this case, the operator must act twice on each dimension. 
Given:

 The (time independent) three dimensional Schrödinger equation

6.5: Three-Dimensional Infinite-Potential Well

First slide in this chapterV = U(x) but 
not of time
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Separation of variables, δ d

Many “things” are there three times, three dimensions, three sine functions, 
three k, three p, much depends on the “symmetry” of the potential 

Cubic box

x y z
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Degeneracy

 Analysis of the Schrödinger equation in three dimensions introduces 
three quantum numbers that quantize the energy in bound systems in 
3D. 

 A quantum state is degenerate when there is more than one wave 
function (eigenfunction) for a given energy (eigenvalue).

 Degeneracy results from particular symmetry properties of the 
potential energy function that describes the system. A perturbation of 
the potential energy can remove the degeneracy.

 Effects of external magnetic field will split spectral lines in atoms, 
predicted by Hendrik Lorentz, observed by his assistant Pieter Zeeman, 
joint Nobel prize 1902, mentioned on the introductory slides of several 
chapters

For a cubic box
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58More next chapter

Spherical potential, very 
high symmetry, a lot of 
degeneracy  

Central Coulomb force potential for 
hydrogen atom possesses highest 
possible 3D point symmetry

 sincos iei   sincos ie i 

H-atom
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6.4: Finite Square-Well Potential

 The finite square-well potential is

 The Schrödinger equation outside the finite well in regions I and III is

or using

yields . Considering that the wave function must be zero at 

infinity, the solutions for this equation are

Note the importance of the sign in the Schrödinger equation

We need four constants to 
“stitch” the wave function 
together, here we have A and B

α modified wave number “equivalent” of 
k in infinite deep square well
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 Inside the square well, where the potential energy function V is zero, the 

Schrödinger equation becomes where

 Instead of one sinusoidal solution we use 

 The boundary conditions require that

and the wave function must be smooth 

where the regions meet.

 Note that the 
wave function is 
nonzero outside 
of the box. 

Finite Square-Well Solution

There is a finite number of energy levels, because the potential barrier is 
finite in height, however shallow the well, there is at least one energy level

first derivatives with respect to 
x need to match
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)sin(
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We are gaining two 
more constant to fix !
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While physical boundary 
conditions were set by the shape 
of the potential energy function, 
mathematical boundary conditions 
emerge from the necessity of 
stitching the wave function 
together from the 3 spatial parts in 
the physical problem
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Penetration Depth

 The penetration depth is the distance outside the potential well where 
the probability density significantly decreases. It is given by

 It should not be surprising to find that the penetration distance that 
violates classical physics is proportional to Planck’s constant.

The higher n, the higher the leakage of the wave function into the barrier, 
so the higher energy levels can also be quite counterintuitive
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Idea of stitching wave 
functions together for different 
regions of the problem.

The regions around the 
troughs in this figure can be 
modeled by a parabolic 
function that facilitate 
harmonic oscillations
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6.6: Simple Harmonic Oscillator
 Simple harmonic oscillators describe many physical situations: 

springs, diatomic molecules, and atoms in a crystal 
approximately 

 “Hooke’s potential”

Let and which yields .

 
2

1

12 xdFVVV


2
)()(

2x
xUxV




Schrödinger equation for 
stationary states

m

 Classically: The smaller the mass and the “stiffer” the spring, the 
higher the frequency

)()( tVtU 

set V1 = 0
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Parabolic Potential Well

 Lowest energy level E0 cannot be zero, would violate uncertainty 
principle.

 The wave function solutions are where Hn(x) are 
Hermite polynomials of order n. H0(x) = 1, so the lowest quantum 
number is 0, the ground state wave function is a Gaussian

 In contrast to the particle in a box, where the oscillatory wave function is 
a sinusoidal curve, in this case the oscillatory behavior is due to the 
polynomial, which dominates at small x. The exponential tail is provided 
by the Gaussian function, which dominates at large x.

Gaussian function resulting in 
an uncertainty ΔxΔp =

2

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μ: mean (average)
σ: standard deviation

tail
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Analysis of the Parabolic Potential Well

 The energy levels are given by

 The zero point energy is called the Heisenberg 
limit:

 Classically, the probability of finding the mass is 
greatest at the ends of motion and smallest at the 
center (that is, proportional to the amount of time 
the mass spends at each position).

 Contrary to the classical oscillator, the largest 
probability density for the lowest energy state is for 
the particle to be at the center.

Remember Max Planck derived E = n hf for his resonators with n = +-1 
correctly, didn’t know about zero point energy and Heisenberg’s principle

Again leakage 
into barrier !
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Ground state, n = 0, is 
Gaussian



68

We will have selection rules
again when we apply the 
Schrödinger equation to the 
hydrogen atom

Oscillating expectation 
value between m and n 
quantum state
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If you have a chemistry background, did you ever wondered why 

is not observed, but                                ???

Quantum oscillations and tunneling !!! So no good chemistry without modern 
physics !!!
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We are not interested in time dependent details, so just use 
the time independent Schrödinger equation (as we are not 
interested in how exactly all of the wiggles move back), 
calculate just how much probability there is for a wave to get 
transmitted (i.e. how many of the incoming wavicles get 
through) and how many are reflected, no particle gets lost 

also note the 
dispersion of the 
pulse, all matter 
waves disperse – but 
the group velocity of 
the wavepacket is the 
same as the velocity 
of the particle 
(wavicel)

6.7: Barriers and Tunneling
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E > U0 for infinite and very large “step thickness”, so L does not 

show up in formulae, we get approximately

Why is there no direct reference to Planck’s constant ??

Only condition is that the De Broglie wavelength (or wavelength of 
electromagnetic wave) is on the same order of magnitude than the region 
where the U0 (refractive index) changes !!!
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As long as E < 
V0 only reflection 
if infinitely wide 
barrier L 

Only two regions 
for Schrödinger 
equation

If E < V0 there is 
complete reflection 
as long as barrier 
is infinitely thick

not traveling, real, but you 
cannot physically detect it there

→ ∞

E < U0

No transmission resonances for 
E > V0 because L infinite

Always reflection

→ ∞
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 Consider a particle of total energy E approaching a potential barrier of height V0 

and widths L and the potential (energy) everywhere else is zero.

 We will first consider the case when the energy is greater than the potential 
barrier.

 In regions I and III the wave numbers are:

 In the barrier region we have i.e.  is longer, 
smaller 
momentum, 
velocity, and total 
energy


2k

kp 

2

222

0 2mL

n
VEn


for

We can have resonant transmission, when wave 
that gets reflected at the second step cancels the 
wave that got reflected at the first step, so 100% 
transmission for precise En, e.g. optical coatingsAnyone remembers this 

term? n = 1, 2, 3 … Bohr’s correspondence principle

pk 

Bound 
system & 
stationary 
state

E > V0
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 The wave function will consist of an incident wave, a reflected wave, and a 
transmitted wave for simplicity (no mechanism for ditch or step region)

 The potential energies and the Schrödinger wave equation for the three 
regions are as follows:

 The corresponding solutions are:

 As the wave moves from left to right, we can specify the wave functions to:

Same wave as in Region I, but 
different amplitude

E > V0 in a general 
sense valid for ditch 
and step of length L

kII > k1 = k3 = kI
for finite ditch 
reverse 
relation for 
finite step 

Square step (or ditch)

(E - -V0) ditch
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Probability of Reflection and Transmission for square step 
potential (barrier) with final width L

 The probability of the particles being reflected R or 
transmitted T is:

 Because the particles must be either reflected or transmitted 
we have:  R + T = 1 (no particle gets stuck in a barrier ever)

 We have enough information to derive transmission 
probability

E higher than potential energy barrier Vo = Uo

Same traveling 
wave in both 
regions
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Different books:

U = V0  also kII = κ so look for the context

Transmission and 
Reflection must always 
add up to 100% (nothing gets 
stuck in the barrier)

Note that there is no h-bar directly, results 
carry over to any kind of classical wave, 
but there is now a L in an oscillating term

for some L, that does not 
allow T = 50% at E = U = V0

T = 1 when sine-term zero for resonance energies 
E1, E2, E3 which are a function of L

2

222

0 2mL

n
VEn




sin nπ = 0



77

Square ditch

 Consider a particle passing through a potential well region rather than through a 
potential barrier.

 particle speeds up passing the ditch region, because K = mv2 / 2 = E + V0.

According to quantum mechanics, reflection and transmission occur as a matter of 
principle, and the wavelength above the potential ditch is smaller than outside. When 
the width of the potential well is precisely equal to half-integral or integral units of the 
wavelength, the reflected waves are out of phase or in phase with the original wave, 
and cancellations or resonances may occur. The reflection/cancellation effects lead 
theoretically to pure transmission or pure reflection for certain wavelengths. 
(Theoretically because the stationary state does not continue forever so that E is 
absolutely sharp, uncertainty principle again)

For example, at the second boundary (x = L) for a wave on the right-hand side, the wave 
may reflect and be out of phase with the incident wave. The effect would be a 
cancellation inside the ditch.

IIIandIII k
VEm

k __
0 )}(({2







so λ shorter 
because k larger, 
higher momentum, 
velocity, kinetic 
energy
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Distributed Bragg reflector, for light and wavicels, using the ditch

λ0/4
Effect of each layer corresponds to “optical length”

λ0/2
There is a phase change on reflection 

Condition for constructive
interference, maximal transmission

Condition for destructive interference for 
several wavelengths simultaneously 
fulfilled with integer m > 1, several layers 
necessary to create an nearly total 
reflector

n0

λ nm

ns

top view

Stop band region

Effect of multiple layers

R
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n0 for air ≈ 1, n2 = nhigh, n1 = nlow , ns for substrate on which layers were deposited

Weak 
transmitted 
light in 
complementary 
colors

Strong reflected light

R + T = 1, nothing gets stuck in the ditch/barrier

White light

Wavicels behave just like Maxwellian light waves – which are also streams of photons
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https://en.wikipedia.org/wiki/Distributed_Bragg_reflector
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For barrier of finite widths, 
there will be reflection and 
transmission on both x = 0 
and  x = L

Two different scenarios

kII < k1 for step 
reverse of ditch

E > V0

→ ∞
no L

L

III  

E>V0=U0, but 
there is also 
reflection

(b)

0
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Reflection and transmission on each side of the barrier all 
the time (same for any discontinuity at step or ditch over 
which the wavical goes) 

Optimization for transmission: choosing V0 and L so that reflected 
wave and transmitted wave inside the barrier region (discontinuity) are in 
phase and reinforce each other, effect: strong attenuation of reflected 
wave

Both are modeled as quasi-traveling wavicals (i.e. complex, free particle with 
varying amplitudes but we do not care about time dependent details so we use 
just real functions to describe what is going on), anyway their superposition 
makes for a real valued function above the ditch or step

In order to calculate the amplitude of the transmitted wave, we need to fix 4 
unknown by 4 equations, wavefunction has to be continuous and its first 
derivative has to be smooth (just as we did for the finite square well) – but now 
multiple times as the first reflected wave in the barrier region gets transmitted 
to the left as well and reflected again …
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Tunneling
 Now we contrast classical and quantum physics, classically the particle does not 

have enough energy to “classically overcome” the potential energy barrier, E < V0.

 The quantum mechanical result, however, is one of the most remarkable features 
of modern physics, and there is ample experimental proof of its existence. There 
is a finite probability that the particle penetrates the barrier and emerges on the 
other side (no mechanistic description in the barrier).

 The wave function in region II becomes

 The transmission probability that 
describes the phenomenon of tunneling is

Note that this wave is not 
traveling, just rapidly decaying

when κL >> 1

Now it is about evanescent 
wave in barrier
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Note that this wave is not traveling, just rapidly decaying, but in the region of L we 
must have “formally” negative kinetic energy because energy is conserved 
(stationary state), the time – energy uncertainty principle allows for this negative 
kinetic energy to be “intellectually neutralized”, loosely speaking

E = KE + U, if E < U (as in barrier) KE is formally negative, no
big deal, we have seen strange things before

Classically forbidden 
region
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IIk
EUm



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

)(2

Potential energy of barrier larger than total energy of 
particle, which is all kinetic 

Different books use different symbols, give different 
versions of the same formulae
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summary

decreasing

Error in otherwise very good Harris book

-

For a specific L 
and U0
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“As much as 60% of the energy of waves
approaching the canyon normal to its axis 
was reflected, except for waves twice as 
long as the canyon width, which
were transmitted across with no 
reflection. … analogous to the 
quantum tunneling of a free 
particle through a classically 
impenetrable barrier.”

Water surface waves are faster 
above a ditch
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Quasi-particles because the quantum mechanics formalism is so successful



90

x

where ħ = h/2π, and σx, σp are the standard deviations of position and momentum

funny Quantum energy bank: your 
“quantum self” can get a no interest loan ΔE 
for a certain time Δt as long as ΔE Δt < h 

Macroscopic cats can’t do that, but macroscopic water waves can 
tunnel as well !!!

These parts of the cat 
should be in a different 
color for the amplitude 
of the evanescent wave

Not a square 1D 
barrier, so evanescent cat is difficult to model
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Analogy with Wave Optics

 If light passing through a glass prism reflects from an 
internal surface with an angle greater than the critical 
angle, total internal reflection occurs. However, the 
electromagnetic field is not exactly zero just outside 
the prism. If we bring another prism very close to the 
first one, experiments show that the electromagnetic 
wave (light) appears in the second prism.  

 The situation is analogous to the tunneling described 
here. This effect was observed by Newton and can be 
demonstrated with two prisms and a laser. The 
intensity of the second light beam decreases 
exponentially as the distance between the two prisms 
increases.
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Tunneling is just what waves like to do, observed macroscopically as well
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My research groups’ work
5 nm

http://www.ascimaging.com/content/pdf/s40679-015-0014-6.pdf

Doi: 10.1109/nnano.2019.2946597

Doi: 10.3390/sym10050133 magnus opus

arXiv:2009.08539 MS project Andrew Dempsey: 
arXiv:2009.08539 

arXiv:2108.00829Doi: 10.1107/S2053273322000845
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What Michael Hietscholdt’s group 
the last time Germany was world 
champion in soccer, tunneling 
observed while scanning !! The 
popular press called it nano-
soccer, but it is just a statistical 
process



96
Center for Nano-phase Materials Science, CNMS, Oak Ridge National Lab.
MS project with Tyler Bortel, Lee Field supposed to help him 
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Two protons (red) in a porphycene molecule deposited onto 
the surface of a perfect copper crystal (brown) can change 
their positions at nitrogen atoms (blue) depending on the 
position of a single copper atom (yellow).

The porphycene molecule 

"We were pretty surprised to find that after depositing the 
molecules on the copper substrate, hydrogen ions in the 
porphycene molecule formed a configuration that had never 
before been observed, despite many years of research on this 
compound," says Waluk. "Instead of being located in opposite 
corners of the tetragon formed by nitrogen atoms, the hydrogen 
atoms took positions next to each other."

The researchers then used the tungsten tip of the STM to place 
single copper atoms around the porphycene molecule, observing 
how the positions of the copper atoms affected tautomerization.

Waluk. Nature 
Chemistry, 2014

http://www.nature.com/nchem/journal/v6/n1/full/nchem.1804.html
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http://www.zurich.ibm.com/st/atomic_manipulation/pentacene.html

AFM image of a pentacene 
molecule. The five 
hexagonal carbon rings are 
resolved clearly and even 
the carbon-hydrogen bonds 
are imaged. 

Pauli’s exclusion principle 
means they never touch

Atomic force microscopy, 
many different kinds of 
scanning probe microscopes 
by same principle

Special functionalization

Could be 
further 
improved by 
enforcing point 
symmetry 2mm 
…

My group’s work 
minimizes this effect
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There is also radioactivity 
(from 1896 onwards): electrons 
and other particles, e.g. alpha 
particles, (nuclei of He, two 
proton + two neutrons) come 
out of the atoms of certain 
radioactive elements 

end of this course, nuclear 
physics
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Alpha-Particle Decay

Key idea: there must be an 
exponential relationship as 
obtained in tunneling
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Alpha-Particle Decay
 The phenomenon of tunneling explains the alpha-particle decay of heavy, 

radioactive nuclei.

 Inside the nucleus, an alpha particle feels the very strong, but short-range 
attractive nuclear force as well as the repulsive Coulomb force.

 The nuclear force dominates inside the nuclear radius where the potential is 
approximately a square well.

 The Coulomb force dominates 
outside the nuclear radius.

 The potential barrier at the nuclear 
radius is several times greater than 
the energy of an alpha particle.

 quantum mechanics predicts that the
alpha particle will tunnel through 

the barrier.

We have seen earlier that tunneling can 

often be approximated by exponential 

functions, e.g.

KE
Z

eR
2



L

R: decay rate, Geiger-
Nuttal relation
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R size of the nucleus, 
E is total classical
kinetic energy of the 
alpha particle (about 
3,730 times smaller 
than rest energy), so 
we get away with 
non-relativistic 
treatment

k is Coulomb’s constant here

a0
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All states are 
symmetric about x 
= 0, E1 and E2 are 
the same in both 
troughs by 
symmetry 

Only slowly with 
respect to molecular 
vibrations in general, 
but with a well 
defined (predictable) 
tunneling coefficient

There is no mechanism for tunneling, as fast as 
the uncertainty principle allows, some theorist say 
it takes no time at all

Approximately two 
Hooke potentials, 
harmonic oscillation 
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or on the same 
order of 
magnitude

energy function

only three operators 
are fundamental

If not a square barrier or ditch
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https://phet.colorado.edu/sims/cheerpj/quantum-
tunneling/latest/quantum-
tunneling.html?simulation=quantum-tunneling
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 https://www.youtube.com/watch?v=Hmy-
N4AFNDM

 To pronounce Albert Einstein correctly and 
then some …
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For finite square well, 

B*      C ≠ 0

ψ(L)* = A sin kL D ≠ 0

* **

*
*

* Infinitely deep
*

four equations for 
four unknown

*

*
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Aex


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From classical physics we have for the harmonic 
oscillator

tAtx sin)( or

Where A is amplitude, i.e. maximal x, and κ is spring constant, it can be 
shown that 

)(1 A
xA

dx

dP
 

Compare that to the harmonic quantum oscillator

1
2

}
12

1{
12

1 







n

x

ndx

dP 


We can “relate” A to α by setting these 
two equations equal and obtain



 m


Since α is constant

The higher the quantum number, the less the quantum oscillator overshoots its 
classical limit (and the less tunneling), Bohr’s correspondence principle

P. Sanghera, Quantum physics 
… Wiley 2011


12

__.__lim___




n
A classicalbehaveoscquantumwhereastaken


