' CHAPTER 6
Quantum Mechanics Il

s 6.0 Partial differentials John von Neumann: "Young man, in mathematics you
don’t understand things. You just get used to them.”

6.1 The Schrodinger Wave Equation, Operators
6.2 Expectation Values

6.3 Infinite Square-Well Potential slide 29

6.5 Three-Dimensional Infinite-Potential Well

6.4 Finite Square-Well Potential

6.6 Simple Harmonic Oscillator

6.7 Barriers and Tunneling in some books an extra
chapter due to its immense technical importance

I think it is safe to say that no one understands quantum mechanics. Do not
keep saying to yourself, if you can possibly avoid it, “But how can it be like
that?” because you will get “down the drain” into a blind alley from which
nobody has yet escaped. Nobody knows how it can be like that.

- Richard Feynma1m



y will often be time ¢ for 1D wave functions
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1Obtaining solutions to partial differential equations in separable form is called separation of vari-
ables. On separating variables, a partial differential equation in, say, N variables is reduced to N
ordinary differential equations, each involving only a single variable. The technique is a general
one which may be applied to many (but not all!) of the partial differential equations encoun-
tered in science and engineering applications.
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Felix Bloch

... in one of the next colloquia, Schrédinger gave a beautifully clear account
of how de Broglie associated a wave with a particle and how he [i.e., de
Broglie] could obtain the quantization rules ... by demanding that an inte-
ger number of waves should be fitted along a stationary orbit. When he had
finished Debye? casually remarked that he thought this way of talking was
rather childish ... [that to] deal properly with waves, one had to have a
wave equation.

1. Felix Bloch (1905-1983), Swiss American physicist. He 2. Peter J. W. ]jel;ye (1384_—-1966) Dutch American physi-
was a student at the University of Zurich and attended the col- : p o : :
cal chemist. He succeeded Einstein in the chair of theoretical

loquium referred to. The quote is from an address before the i . ) . g
American Physical Society in 1976. Bloch shared the 1952 physics at the University of Zurich and received the Nobel

Nobel Prize in Physics for measuring the magnetic moment of Prize in Chemistry in 1936.
the neutron, using a method that he invented that led to the de-

velopment of the analytical technique of nuclear magnetic

resonance (NMR) spectroscopy.

As a function of 3D space and time, separate
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As a function of 3D space only, stationary state, small



Light “wavicals” are special, they obey the time dependent
Helmholtz (wave) equation

n2 02 Plane wave for electric
0 ¢ = L 9*¢ cg[l". [) = (gn cos(kx — wl) field vector

ax:  c¢? or?

928 d*¢€ R
i I = —w?€ cos(kx — wf) = —w8(x.1
Py k“€ (x.1) Py 0 ) )
&2
K=-%  w=ke c=if

Using @ = E/h and p = fik for electromagnetic radiation, we have

As we already know from special relativity,
a massless particle has momentum

A light wave is its own probability density wave, idea by Einstein



Solve the steady state version of his
equation for an electron acted upon by
the Coulomb force that is due to a
close by proton, and you have a
model of the hydrogen atom - Energy
quantization and 3 quantum numbers
just follows from the mathematical

process !!

F,=—-F
Flzk ivey 2 1

. 12

3. Erwin R. J. A. Schridinger (1887-1961), Austrian physi-
cist. He succeeded Planck in the chair of theoretical physics at
the University of Berlin in 1928 following Planck’s retirement
and two years after publishing in rapid succession six papers
that set forth the theory of wave mechanics. For that work he
shared the Nobel Prize in Physics with P. A. M. Dirac in 1933.
He left Nazi-controlled Europe in 1940, moving his house-
hold to Ireland.

1933 for Oxford, later on Graz, Italy, Ireland

Loved his pipe, wine, and many mistresses, kind of started biophysics in 1944
with his booklet “What is life?”

left the top theoretical physics position in all of Germany (at Berlin University) on his own account in
1933, .., 1938 after Austria was annexed, he left Graz despite orders to stay, his mother was half-
English, ...Republic of Ireland remained neutral during WW Il



6.1. The Schrodinger Wave Equation

= The Schrodinger wave equation in its time-dependent form for a particle subject to a
potential energy function V in one dimension is

o¥(x,1)  h° &P (x,0)
ot 2m  ox’

m = mass of electron, more precisely
reduced mass

Equivalent to time dependent
Helmholtz (wave) equation,
which can be derived from
Newton’s force laws, BUT
Schrodinger equation cannot be

V(x,t)=V,(x,t)=V,(x.t)= jF(t) dx derived from anything else !!!

ih VW (x,1)

m The extension into three dlmenS|ons IS
2 2 2 2
zha—qJ (o LIJ+a LE+6 b +VY¥(x,y,z,1)
where i=+/—1 ot 2m O Oy oz>

The statement is in both cases that operators act on the
wave function, V = V(x,t) in the first equation for 1D, V =
V(x,y,z,t) in the second equation for 3D, non-relativistic



‘ Comparison of Classical and Quantum

MeChan ICS Non-relativistic, m is constant and taken out of the
differential d(m,v)

*_dzy_ v/ — (i) N5 .dzy —m-d
E=a =™ =M ) = g =4

= Newton’s second law and Schrodinger’'s wave equation are
both differential equations.

s Newton’s second law can be derived from the Schrodinger
wave equation, so the latter is the more fundamental — cannot
be derived from anything else.

m Classical mechanics only appears to be more precise because
it deals with macroscopic phenomena. The underlying
uncertainties in macroscopic measurements are just too small
to be significant, the un-correctable “systematic residual/rest
error’ that is due to the uncertainty principle is too small to be
noticed for heavy objects



Free particle solution of the Schrodinger wave
equation, harmonic/plane matter wave, V = 0 or constant

= The wave function for a plane wave
Y(x,t) = Ae"® ) = Alcos(kx < wf) +isin(kx — of)]

which describes a wave moving in the x direction.to the right from
minus infinity to plus infinity (left it you change the sign). In general

the amplitude (A) may also be complex. Out of the sum of infinitely
many different plane matter waves, we can create wave packets,
just as we did for classical waves earlier

m  Wave functions are also not restricted to being real. All traveling
matter waves are complex. Note that the sine term has an imaginary
number in front of it. Only physically measurable quantities must be
real. These include the probability of finding the particle someplace
(either at some particular time or all the time), momentum, energy,
... anything you want to know

If V # 0 or not constant with time, it is no longer a free particle, then we can
and need to normalize, setting the scale for all measurements by operators



2 9*W(x,t W(x. t
Ll J+V{x }T{x,t)zfﬁa %0

Free particle is analog of Newton’s first law

2m  9x? 1
W(x, 1) = Ae'**—«) = deal free particle, V, =0
= Al|cos(kx — wt) + i sinlkx — wf)]
s .
%2 (ik)?Aeitkx—w) = — 2 av = —jmAeikr—o) = —j,
¢ de at

Substituting these derivatives into the Schrodinger equation with V{.x,}({= V_ gives

ot 12

W(—kz‘l’} + V¥ = if(—iw)¥ The potential

- energy function
does not vary in
space and time,
it's a constant,

212 .
hk . e either zero or any
2m L value

Quasi-Free particle wave function solves the Schrodinger equation with a
constant potential, that can be set zero, postulating validity for V, # 0, I.e. as
any function of time was quite a stretch 9

or




Y (x,t) is eigenfunction of time
dependent total energy operator
T R A4
= : =+ Ux)V = ifi dr =EFE-Y(x,t)=ho-¥Y(x,t)
2m  dx ot iz ,
r p

+V .
2m E TYm tV

For a single plane wave, ¥ = Aeikxwi) .representing a “completely
spread-out” particle
72 92 x. 1)

2m  ox>

ho =

dW (XXt
+ Vix. DU, 1) = ih :?( ] =E-‘Pf(x,t)

Total energy = kinetic energy + potential energy in operator
form, i.e. total energy is conserved on average, we ignore
rest energy/special relativity, always need to make sure
that particles move with v < 0.01 c or better '/, = /.5,

while there are undetectable energy fluctuations within the uncertainty limit,
wave particle duality is taken care of by the i, i.e. going complex, into Hilbert
space

Eigenfunctions of total energy E_ solve Schroedinger equation, E, are

eigenvalues (you may remember algebra of matrices, solving linear systems of equations)

10



Normalization and Probability

= The probability density P(x) dx of a particle being found between x

and x +-dx was given in the equation
/ complex conjugate

P(x) dx =¥ * (x,) P (x,1) dx
= The probability of the particle being found between x, and x, is
given by

P:Ixzkp*kpdx

= The wave function must be normalized so that the probability of the
particle being found somewhere on the x axis (or within Ax) is 1
(100%).

* % Compare previous chapter !l
b (x,t)LP(x,t) adx =1
—a0

Since the only things we are allowed to know are all calculated from the wave —
function for a particular physical scenario V(x,t) function, normalization sets the
scale for all other predictions/calculations



N}ed to fulfill this
condition,

Y(x,t) and Y*(x,t) both
needs to have the same
prefactor that is the
square root of the
reciprocal value of the
integral when multiplied

It is going to be 1/Sqrt
whatever the integral
comes to

r W (e )W (x, 1) dx = 1

I Y *(x,1)¥(x,1) dx = something finite

Yedx=1

5
o \/S0mething_ finite \/S0mething_ finite

since Schrodinger
equation is linear, a
prefactor on both sides
changes nothing

h* *W(x.1) AW (x. 1)
L V(L )W, 1) = ih—
2m ax- ot

12



‘try to normalize the wave function for a free
particle
Y(x,t) = Ae"™ ) = Alcos(kx — ot) + isin(kx — ot)]

r W * (e )W (x.1) d = ©0

Probability of fining the particle is in each finite unit segment identical

\c;Vhatth' and finite, adding all of these unit segments together gives infinity — so
€S o S the particle is to be found everywhere at any one time, better: one does
mean not know where it is to be found at all
¥
1 % here we have a AE again
But AEAL = ? no longer apply, = ;-:-'-"ﬁ*-,_% 1 f \ Y i
" definite and arbitra ry vV WV VWV VY WV WY ‘ :
ApyAx=—- Eandp | B

No big deal, just a useful model, superposing of infinitely many plane
waves with the right properties leads to any wave packet that we may

need to normalize in order to set the physical scale right © ,
W(x, 1) = a(k) AR ey gy,




Properties of valid wave functions

|. Boundary conditions, to make the mathematics

1)
2)

3)

4)

work

In order to avoid infinite probabilities, the wave function must be finite
everywhere.

In order to avoid multiple values of the probability, the wave function
must be single valued everywhere.

For finite potentials, the wave function and its derivative must be
continuous. This is required because the second-order derivative term
in the wave equation must be single valued. (There are exceptions to
this rule when V'is approximated to be infinite — last chapter.)

In order to be able to normalize wave functions, they must approach
zero as x approaches infinity.

y(x) — 0 fast enough as x — = oo so that the normalization integral, Equation
6-20, remains bounded.

Wave functions that do not posses these mathematical
properties do not correspond to physically realizable
circumstances. BUT physics of the problem also needs to
be captured by the boundary conditions

P(x. 1) dx = W¥(x, DW(x, 1) dx = [W(x, )] dx y



Properties of valid wave functions ||
ll. Boundary condition, to bring the physics in

m Every problem has its specific wave function (that surely
needs to get the maths of the Schrodinger equation right)

= it all depends on the potential energy function, the physics
of the problem to be solved is encoded there

= we need a function, not a vector so instead of force we use

energy function = - force
2 o2 d kx’ . =
AVzlg—Kz—!F-dx V(X):U(X):T dx( 5 )—k\X\——‘F‘

e.g. potential energy
function of a spring, does Hooke's law in

not depend on time Newton’s formulation

V., can be set zero



' Probability P and probability density P(x)

of finding a particle
Two ways of dealing with

P(x) dx =¥ * (x,1)¥(x.1) dx

Cancel dx on both sides, and

P(x) a{: o (x’ li)LIJ(x, I) % you get_ a formul_ae for the
probability density at any x

X Integrate both sides over some
. 3k region of space and you get
P T J. LIJ LIJ Cir the probability of finding that
|

“wavicel” in that region

In both cases, the wave function needs to be

normalized, otherwise the result will be just
proportional to finding the wavicel

16



Time-Independent Schrodinger Equation
— separation of space and time variables

m The potential in many cases will not depend on time, stationary states.
= [n all of these cases, the wavefunction can be rewritten

Fx,)=w(x) (1)

= And we can derive the time independent Schrodinger equation, take

v L0 SAOLRZC)

& +V (x)y(x) /(1)
divide by w(x)f(t) yields:

2m o’

o 1 df@)_ 1 d*w(x)
1) dt 2my(x) dx’
The left side depends only on time, and the right side depends only on

spatial coordinates. Hence each side must be equal to the same
constant. The time dependent side is

+V(x)

1 d
f =B  What might this B possibly be? The Schrodinger

f dt — equation is a statement on the conservation of
total energy, which is constant in a stationary
state, i.e. does not change with time



Time-Independent Schrodinger Equation
Continued m}‘g B

= We integrate both sides and find: i% ch{ = IB d ihlnf=Bt+C

where C is an integration constant that we choose to be 0. Therefore

Bt Dimensional analysis of the
Inf= i exponent leads to E ! \What
else could B possibly be?
This determines fto be £(7) _ Bt _ - iBtih given the fact that the

Schrodinger equation is a

In order to do this, f(f) needs 1 df(r) g statement on the conservation

to be eigenfunctio @) dt Bl of total energy, we also know

h2 d2 (x) from slide 10 that wavefunctions
Total energy V/2 V() (x) = Ep(x) that solve the Schrédinger
operator 2m  dx equation are eigenfunctions of the
total energy operator
m This is known as the time-independent Schrodinger equation, and it is

a fundamental equation in quantum mechanics.

Note that we now use (little) y(x) instead of (big) W(x,t) 18



Stationary State

Remember when you see E think w
(or frequency) and vice versa

= The wave function can be written as: W(x,#) = y(x)e '
m  Whenever the potential energy function is not time dependent

2 ot —iot
= Integrand in probability density integral PH*Y =y (x)(e™e ™)
becomes: \p#\wp _ V,2(x)

= The probability distributions are constant in time. This is a standing

wave phenomena that is called a stationary state.
E = h O So whenever you see circular frequency omega, you can also

think total energy divided by h-bar

— bk = h So whenever you see the wave number, you can also
p A think linear momentum divided by h-bar

19



6.2: Expectation Values, what one will measure on
average is derived from correct wave function for a problem

= The expectation value is the expected result of the average of
many measurements of a given quantity of many identical
systems. The expectation value of x is denoted by <x>

= Any measurable quantity for which we can calculate the
expectation value is called a physical observable. The
expectation values of physical observables (for example,
position, linear momentum, angular momentum, and energy)
must be real, because the experimental results of
measurements are real.

= The average value of x is

N x,
— N+ Nyxy + Ny, + Nox, +. z

x — 373!
Ni+Ny+N;+N,+... ZNI.

!

20



Continuous Expectation Values

= We can change from discrete to J"” xP(x) dx
continuous variables by usingthe . _J-w
probability density P(x,t) of = P(x) dx
observing the particle at a particular -

x and t.

T YW ()W (x,0) d
= Using a normalized wave function, <x>:jmx (x,0)¥(x,7) dx

th tati lue is: ®
e expectation an ue is J‘ W * (x, ) (x. 1) dx
{ = W (x. HxW(x, 1) dx —

o —00

= The expectation value of any <g(x)> _ J‘w P (x,)g(x)¥(x,1) dx

observable, represented by an
operator g(x,t), for a normalized
wave function

X, g(x), and g(x,t) are operators !!!, x could also have been in the middle
of conjugate complex wave function times wave function as it is the rule

for all operators, where it is in this particular product does not mater .



Momentum Operator

= To find the expectation value of p, we first need to
represent p in terms of x and t. Consider the derivative
of the wave function of a free particle with respect to x:

VY O, i s
— [ef(kx mt)] — ke’ ™) — ik
ox Ox s - 5
p p = =
Withk=p/h wehave . =!, T A
ox h l _
This yields  p[w(x,1)] = —ih O L P i
ox 5
= This means we have derived the momentum operatorp = —iha—
X
= The expectation value of the momentum is .-
p)=-in|” wren 050
ox

~ 1 oo ﬁ
qr:e:(___>11,r dx = .
| I i ox (p?) =

w(ﬁixﬁ d)l’a’t
! - I 0X I ox 22



Position and Energy Operators

= The position x is its own operator [X] or X hat.
= The time derivative of the free-particle wave function is

oY 0 [ I(kx—a)t):| ine B _ i
of ot

OV (x.1) E=h-o
Substituting w = E/ h yields [LP(x )] =ih o
. |
= The time dependent total energy operator is E=ih;3 —l,=l
t —_—
= The expectation value of the total energy is

oV (x,t
—th. Y *(x,1) ( )

A wavefunction that solves the Schroedinger equation is also an
eigenfunction of the total energy operator (both in its time and position
dependent forms, left and right hand side of Schrodinger equation)

23



Table 6-1 Some quantum-mechanical operators

Symbol Physical quantity Operator

fix) Any function of x—e.g., the position x, flx)
the potential energy V(x), etc.

h o . :
P, x component of momentum — :— p —p—1 h —
[ dx a
X
h a 1
P. y component of momentum — .
y i dy — =1
, hod —1
P, z component of momentum 155
2
H=E Hamiltonian (time independent) ,JOP + V(x) Total energy
2m
E Total (time dependent) j .
ime dependen ih—
otal energy P o
h?  9?
E, Kinetic energ e
k = 2m 9x2
5 @
L z component of angular momentum —Lﬁ£

For anything you want to know (and are allowed to know), there is an operator, the
procedure is always the same to get the information out of the wave function that
represents your problem, just let the correct operator loose on it, it's that simple



Only three operators are fundamental

If you need an operator, make it up from the classical
physics equation by replacing x, p, E(t) with their operators

The new operator will have the same functional relationship
for the x, p, E(t) operators as the classical physics
equation,

example kinetic energy operator

2

KE = lzmv2 A
2m

n: o’

2m | ox”

A2
_kb-kE =P _ 1/ . iny.—inly-_
[KE]_KE_KEop_zm—Am (=ih—)-(-ih—) =

x=x=[x]

25



Some expectation values are sharp some
others fuzzy

Table 6.1 Hypothetical Data Set for Position of a Particle X=<x>
as Recorded in Repeated Trials

A
Position Position Position ZX=|X ]
Trial (arbitrary units) Trial (arbitrary units) Trial (arbitrary units)

1 x; = 2.5 7 x7 = 8.0 13 x13 = 4.2

2 X9 = 3.7 8 Xg = 6.4 14 X114 = 8.8

3 x3 =14 9 xg = 4.1 15 x15 = 6.2 How operators
4 % & 79 10 - 16 == 7 are typically

5 X = 6.2 11 X11 = 7.0 17 X197 = 5.4 W”tten

6 x6 = 5.4 12 x12 = 3.3 18 xi3 = 5.3 A

. 25+37+14+ »~~+B4+b53} _ ..

x = T = 5.46

Since there is scatter in the actual positions
(x), the calculated expectation value will
have an uncertainty, fuzziness. (Note that x
is its own operator.)

(x) = j x| W (x, t) |2 dx

— [t
J W dy = |
o Normalizing condition, note its effect ! 26



Some expectation values are sharp some
others fuzzy, continued |

In classical physics all observables are sharp.l?’

BWe discount in this discussion any random errors of measurement. In principle at least, the
imprecision resulting from such errors can be reduced to arbitrarily low levels.

standard deviation, o, of the data, defined as
— o=\(x*) — (72
2
E(X'E:_ - J{)
Writing out the square i N
under the radical gives X may as well stand
3 (x;)2 _ (%) (1 ) o for any kind of
L 9(x et @23 =)= - 2® (@ + (3?2
= ® ==+ @2|5)= () -20@ + @ operator Q

=) — (@?

Ax, is often called the wncertainty in position  Ax = \/ (x?) — {x)?

The degree to which particle position is fuzzy is given by the magnitude of Ax;

If not fuzzy, AQ =0

Because <Q?>= <Q>2

For any observable, fuzzy ornot ~ AQ = (02 — ()2

Eigenvalues of the wavefunctions that solved the Schroedinger equation are
never fuzzy. How come? o



Some expectation values are sharp some
others fuzzy, continued Il

m Eigenvalues of operators are always sharp (an actual — physical -
measurement may give some variation in the result — random
error, but the calculation gives zero (systematic) fuzziness

= Say Q is the Hamiltonian operator A \ave function that solves this
72 ra'?l,lf equation is an eigenfunction of this

— 5 + U(x)d(x) = Efr(x) operator, E is the corresponding
2m  dx eigenvalue, apply this operator
A A twice and you get E2— which sure
U(X) =U = [U] =V = [V] is the same as squaring to result of
applying it once (E)

UThe eigenvalue problem for any operator [Q] is [Q ] = qif; that is, the result of the opera-
tion [Q] on some function ¢ is simply to return a multiple g of the same function. This is
possible only for certain special functions i, the eigenfunctions, and then only for certain spe-
cial values of g, the eigenvalues. Generally, [ Q] is known; the eigenfunctions and eigenvalues
are found by imposing the eigenvalue condition.

So if the time independent potential energy operator acts to confine a particle of
mass m, we will have a discrete set of stationary states with total energies, E,, E2, .



Figure 6-1 (a) The electron
placed between the two sets
of electrodes C and grids &
experiences no force in the
region between the grids,

which are at ground potential.

However, in the regions
between each Cand G is a
repelling electric field whose
strength depends upon the
magnitude of V. (b) If Vis
small, then the electron’s
potential energy versus x has
low, sloping “walls.” (¢) If V
is large, the “walls™ become
very high and steep,
becoming infinitely high for

V — oo,

If distance C to G is very short and
voltage very high an infinitely deep
square well will model this '

Free to move, persist to exist, so it must be a standing wave,
interference of two moving particles, let’s consider it y(x) as V

is not V(t) (a) EIEjrctron
_/c| 16 7 al 10\ _
— || 1| —
L = ¥y
(b)
Potential
enerqgy \ /—
| | .~
CG GC X
(c) A
Potential /
energy
] -
CaG G C X

experiment pretty well, introduced in

|astchapter

29



Physical boundary condition particle in box

s Boundary conditions of the potential dictate that the wave function
must be zero at x = 0 and x = L. This yields valid solutions for

integer values of n such that kL = nrr.
an integral number of half wavelengths fit into the length L
k = 2%

h -
.. '//n(x)ZASin nrx ”EZL = Lididyews
m | he wave function is L

m \We normalize the wave function

o0 % L . -
[iminic o [i{)a-

m [ he normalized wave function becomes

_ 0= 2 sin[ "

s These functions are identical to those obtained for a vibrating
string with fixed ends (we could as well have solved the
Helmholtz equation)

We obtain E either from the solution to the Schrodinger equation with U(x) =0

as eigenvalues, all expectation values are calculated by the procedure with the
corresponding operators from the wave functions for the different states



‘ 6.3: Infinite Square-Well Potential

m a particle trapped in a box with “infinitely hard” walls that the particle cannot
penetrate. This potential is called an infinite square well and is given by

< > A :
I/(x):{gO g;g’jil‘ n—=1~L n=1,2.3... !

m  Clearly the wave function must be zero where the potential
is infinite, ° x :
there will be infinitely many E_ eigenvaules with their matching eigenfunctions

m  Where the potential energy is zero inside the box, the Schrodinger I = 277
equation becomes d2 where B
v 2mkE 2 2
w=—k"y k=~2mE/h

> K - -
m The general solution is : n(k x) = il
yw(x)=Asinkx + Bcoskx SURA,X) = 2
B =0, as just the sine term will do k, = 2%

Note that this wave function is real because we are considering a standing
wave, that is the sum (interference) of two waves moving in opposite directions



Hamiltonian operator is just kinetic energy operator for this particular zero-
potential (no force inside the infinitely deep well with infinitely wide barriers)

_ It's also an eigenfunction of
Wavefunction (x) = g i nzTx both the total energy
Y o operator and the
L L o
Hamiltonian

that passes the Schrodinger equation test corresponds to a meaningful physical
scenario in which kinetic (and total) energy is conserved

Let’s derive the formulae for the kinetic energy (which is an observable) - so we
apply the kinetic energy operator to the physically meaningful wavefunciton

2 d2 2 .
_h l//nz(x) nTonzm o nw 1. gsm(@)
2m dx 2m L L L L
=F . 2 sin(@) FromE, we movetok, } — \/2mE/h2
"\ L L

We could also have derived this formula over the expectation value approach 3



Quantized Energy

. nr  |2mk,
= The quantized wave number now becomes k,=—=

L \ #
] Solving for the total energy (in this case all kinetic) yields

) z°h? Remember the nt/L term twice in the
(n=12,3,...) :
product on last slide

= Note that the energy depends on the integer values of n. Hence the
energy is quantized and nonzero for the ground state.

242
. . z°h
= The special case of n = 1 is called the ground state energy. F; = 5
L/2 - - 2mL
L A *Energy A
Ul N LN W Ground state
25E;  energy, Zero
Wy — o] g Pointenergy,
qu thereisnon=0
o [ 1+, for this potential
El'\ energy
’ S 5 distribution

Position

same sequence as in the Bohr model

& 2006 Brooks/Cole - Thomson

There is an infinite number of energy levels, because the potential barrier is
infinitely high, only an approximation, more like a model (limit) to think about




EXAMPLE 6.5 Energy Quantization for a
Macroscopic Object

A small object of mass 1.00 mg is confined to move be-
tween two rigid walls separated by 1.00 cm. (a) Calculate
the minimum speed of the object. (b) If the speed of the
object is 3.00 cm/s, find the corresponding value of n.

Solution Treating this as a particle in a box, the energy
of the particle can only be one of the values given by
Equation 6.17, or
LS [y 9 C ()
nZarh? n2h?

E. = — = — -
* Oml2 Sl 2

The minimum energy results from taking n = 1. For
m = 1.00 mg and L = 1.00 cm, we calculate

If, instead, the speed of the particle is v = 3.00 cm/s,
then its energy is
mv®  (1.00 X 107°%kg) (3.00 X 1072 m/s)?
N 9
=450 X 10719]

E=

This, too, must be one of the special values [, To find
which one, we solve for the quantum number n, obtaining
\N8mI2E
h
V(8.00 X 10710 kg-m?) (4.50 X 10710])
6.626 X 10734 -5

n =

=9.05 X 102

(6.626 X 1073 J-5)2 )
= S0 = =540 X 10778]
8.00 X 10710 kg~ m? ;

E

- s . o 2 .
Because the energy is all kinetic, £} = mv]/2 and the
minimum speed vy of the particle 1s

o1 = V2(5.49 X 10758 ) /(1.00 X 1075 kg)
= 3.31 X 10726 m /s

This speed is immeasurably small, so that for practical
purposes the object can be considered to be at rest
Indeed, the time required for an object with this speed
to move the 1.00 cm separating the walls is about

3 X 10?35, or about 1 million times the present age of
the Universe! It is reassuring to verify that quantum me-
chanics applied to macroscopic objects does not contra-
dict our everyday experiences.

Niels Bohr's
correspondence
principle
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http://en.wikipedia.org/wiki/Particle in a box

A B
. _f""d-'_--.\.-_
C D

5 J:{; —iwat () .
Un(z,1) 0 "

kn—ﬁ_ where n = {1,2,3
n?hir? g
En, = a 1o o ot _ ik
Ok x) =
sin(k, x) %
h‘ no potential energy
E =hw = 7 in this scenario,
for any kind ~ there is a discrete
of other set of wave
calculation numbers since an
normalize integral number of
half-wavelength
1| = need to fit into the
: | — 1/ 1 Dbox. Infinitely

many states.

Some “trajectories” of a particle in a box (infinite square well/ infinitely deep well)
according to Newton's laws of classical mechanics (A), and according to the

Schrodinger equation of quantum mechanics. In (B-F), the horizontal axis is

position, and the vertical axis is the real part (blue) and imaginary part (red) of
the wavefunction. The states (B,C,D) are energy eigenstates, but (E,F) are not. 35




The integral is evaluated with the help of the trigonometric identity 2 sin? =

1 — cos 26:
Normalization, to set the

scale of a wave function

-_f_m

J VEW dx = 1 quires 1 = A%L/2, or

niwx

L
sin?
0

Only the first term contributes to the integral, because the cosine integrates to
sin(2nmx/L), which vanishes at the limits 0 and L. Thus, normalization re-

i i
) dx = %J' [1 — cos(2nmx/L)] dx
0

A= (6.19)

EXAMPLE 6.7 Probabilities for a Particle
in a Box

A particle is known to be in the ground state of an infi-
nite square well with length L. Calculate the probability
that this particle will be found in the middle half of the
well, that i1s, between x = L/4 and x = 3L/4.

Solution The probability density is given by |¢,|* with
n = 1 for the ground state. Thus, the probability is

3L/4 Q 3L/4
P= j ‘ n |2 dx = (;) J sin?(mx/ L) dx
L/4 L/ Ji4

1 3L/4
= (T) J [1 — cos(2mx/L)] dx
I A I

- I T I L 3L/4
{5l o sin(27x/L) 7

1 1
=,——( )[—I—I]=[J.818...
9} 9

Notice that this i1s considerably larger than % which

would be expected for a classical particle that spends
equal time in all parts of the well.

if we had not used a normalized wave
/4 function, the probability of finding the particle

in the box would not be unity, and we would
not have obtained our ~ 81.8% result 36



L4

| X Lf42
about 1.7 percent J Pixy e = J _Sinz(ﬂ_x) 2o
; L B B

n="1 Letting u = mx/L, hence dx = L du/w, and noting the appropriate change in the
limits on the integral, we have that
e A 1
= —f —— =) = 0091

0

/4

e _ 0 9 in2
+- 0.05% J ;sinzudu :%(%_ SH; u)
around o -

'79-1|% | 5|L/8| |

: T o L ) The lowest quantum states, smallest n

Figure 6-6 The probability density Us2(x) versus x for a particle in the are those that g|Ve reSU|tS Wh ICh are
ground state of an infinite square well potential. The probability of finding far from what one would expect from

the particle in the region 0 < x < L/4 is represented by the larger shaded ] .
area. The narrow shaded band illustrates the probability of finding the ClaSSICal phySICS

particle within Ax = 0.01L around the point where x = 5L/8.

x ¥

<= 10 ~ . Quantum-mechanical
If Ax 1% L = dx, no need approximately Suaiuer

to integrate for approximation o
ﬂ ﬂ Classical distribution
1
Number of “wiggles” of J l.e. one
0

L X particle per L

y2=n

Bohr Figure 6-5 Probability distribution for n = 10 for the infinite square well potential. The
onrs dashed line is the classical probability density P = 1/L, which is equal to the quantum-

Correspondence mechanical distribution averaged over a region Ax containing several oscillations. A physical
measurement with resolution Ax will yield the classical result if n is so large that J*(x) has

many oscillations in Ax.

Equal and constant probability density for classical particle,
in case n is going to infinity

principle




‘Probability density of finding the particle in
the second exited state at x ="1/;Land /5 L

2 . (nzx _ PR =y (x)(e" e ™)
— i n=3
Vn(X) \/;SIH[ L j PP = 2 (x)

P(x)ﬁé =¥*(x,)\¥(x,1) dx Why divided by

1 1 L (dimension
> 3m-y L [o 3m-) L _
— sin( % )- 2 sin( % )= 2 — max remprocal
L L L L L meter) ?
Twice as high as classically expected, strange

Obviously
\/ZSiIl( A ) . \/ZSiIl( A ) — 0 =min because th_e.y
L L L L are probability
classically not expected, but it is not _densities !

classical particles we are dealing with !l
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Probability of finding the particle in the second exited state
in an x = +-/,,,, L segment centered around /s L and '/; L

2 : niwTx PR — Z(x)(eia)te—mx)
O
L) M0 gy
P(x) d)c == LIJ * (x: t)LP(x: t) d)c this time, let’s do the integrals

x2=(é+10100)L > 3 7 3 What will
. 7C * Xin _units_of L . 7C * Xin _units_of L
P= [ [Fsin(mt ity |2 Gl gy bethe
1 L L L L dimension?
= 000’
;“10100 1o
P:z J‘ Sin2(37Z"Xin_units_of_L).dx:z.{Xin_units_of_L_ L .Sin(“.)}HL*‘lOlOOL
L RS L L 2 67 gL—mL

—L
371000

Sure these results must be dimensionless as they are probabilities, smaller

than 1 or (smaller than 100%) due to normalization 5



Sure, if the region/segment for which we want to calculate the probability of finding
the particle there is very small, we can expand dx to Ax and obtain an approximate
result (and get rid of dx that way, but beware P(x) # O for sensible results

2 TX
e o T ameony i n is set 1 here, but sure that is not a precondition for
P 1 P{ I) ‘&I T SN ‘&x the approximation to work

At the previous example, Ax =2/,,,, L, forn=3,andatx=",Land '/; L

3z- 1L 3z- 1L
Psegment'Ax:\/%Sin( l% )\/%Sln( [% )A)CZEIIOOOZL:OZI'%

oo large by only =1.2 105 %

Sure it is a very small segment of L for which we want to know the probability of
finding the particle. For this very small segment, the probability of finding the
quantum mechanical particle is quite high !

37- 1L 37- 1L
Psegment'AX:\/ZSin( A )\/ZSIH( A )AXZEOOOOQ,L:O
L L L L L

Instead of = 1.2 10° %

Sure this approximation doesn’t make sense if the probability density on
which it is based is actually zero, there will nevertheless be a very small
probability of finding the particle there when the integral is done
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b
2 For Ax = +- 0.01 L example around x = 5/8 L

P suig] B
—— Sl | — \ax
1 j with n = 1 (given as index of P), take the

ab L L
2 average of the two limiting values

b
T s m(a+b
:ﬂ—J‘smE ( ) jA dx—AIdx—Ax|
ke " dx g
Z. . 7(a+b) v
~ —sin’ x| A\ X
L 2L g
D . S e !
E X —sInT | — x‘ B, A0
1s; SL L . .
ety T 8 T Solved integral, exact solution
8 100 & 100 sL L
- g 100
— Sz 2 P1 L x—isit{zﬂ}
~ 2sin m L 27 L )zt
8 100 g8 100
_iisin(5x+ 2 JJF 1 sin(sx 2z J
3.41421% 7100 27 (4 100) 27\ 4 100
So a pretty good approximation, physics is the art of knowing which y

theory and approximation to use for a given problem



Find the probability that a particle trapped in a box L wide can be found between 0.45L and
0.55L for the ground and first excited states.

Solution

This part of the box is one-tenth of the boxs width and is centered on the middle of the box
(Fig. 5.6). Classically we would expect the particle to be in this region 10 percent of the time.
Quantum mechanics gives quite different predictions that depend on the quantum number of
the particle’s state. From Egs. (5.2) and (5.46) the probability of finding the particle between x;
and x; when it is in the nth state is

P jxllufr Pt j T
. = = — Sin
KX . n [ E

X

[x 1 . 2nmx ]x’
=i sin
L inT L X

Here x; = 0.45L and x; = 0.55L. For the ground state, which corresponds to n = 1, we have
P, ., = 0.198 = 19.8 percent Approximation from last slide would
give 20%
This is about twice the classical probability. For the first excited state, which corresponds to
n = 2, we have

Py x, = 0.0065 = 0.65 percent

This low tigure is consistent with the probability density of hifn|2 = 0 at x = 0.5L.
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Visualization
of calculation
in previous
slides

L -/\/\

10%
of L

life 12

At point x = 0.5 L for
n =1, quantum
probability density is
twice as high (2/L) as
classical probability
density (1/L)
Sofora+-5% of L
wide region around x
= 0.5 L, we should
expect something
less than 20%

- Figure 5.6 The probability P, .. of finding a particle in the box of Fig. 5.5 between x; = 0.45L and

x; = 0.55L is equal to the area under the [|* curves between these limits.
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‘ Important difference: expectation value of x and
probability density of finding the particle at x or (in

region around Xx)

m Take the first exited state, n = 2, wavefunction has node (zero amplitude) at
the middle of the box, so particle can never be found there ...

forx="%L
W, Z\/% Sln(z—m) \\/7? \/7 sm(zﬂ/ L) 0

I —sin(—) =

No need to do an integral as we 27z/L
asked just for finding the particle at £osz = =1 _Sm(—)} = Sm (—=)=0
one specific position

m BUT, what is the expectation value of x (independent of position and time)?

<x>,,=" [sin(Z) - xsin(*) - dx zg

Sure, we expect to find the particle on average (most often) in the middle of the box
What would have happened if our wavefunction was not normalized? We

simply got a “quite useless result” that is only proportional to -/, with an
unknown factor of probability
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Given the
stationary

vcoim
wave functions

DVVNINAEN Expectation Values for p and p? Find {p) and {p?) for the ground-

state wave function of the infinite square well. (Before we calculate them, what do

you think the results will be?) lets do it for all states
soution  Note misprints in Tippler/Lewellyn !!

We can ignore the time dependence of W, in which case we have

nmwx —la) 4

L
2 2 1
(p) = O( 7 sin \/gsinl;i)dx
n=1 \_Aig . TX TX T

sin—cos—dx = 0
L L

The particle is equally as likely to be moving in the —x as in the +x direction, so its
average momentum is zero.
Similarly, since

RARIN,
i 0x\i ox ¥

N2
n
v

o _ﬁz(_«_ﬂlf )
dx? 12 Take the

oy B o N2 square root of
L this and
/ you
we have ?2 have the
_ Pt magnitude of
(pz} o I2 f iljlbdx g

the momentum

square of momentum is related to kinetic energy * 0,
momentum has a spread due to uncertainty principle !!

sin(k x) =<

nr  |2mk,
kn = = 5
1 h
ik, x —ik,x
— e
2i

No surprise, momentum
is a vector, goes back
and forth with same
value but different sign

Figure 6.5 A particle of mass
m and speed v bouncing elasti-
cally between two impenetrable
walls.

AQ = (@) — (Q)?



‘ So is p sharp? /22= n2

éfﬂzhz
Ap,_, =\/(<p2 >—<p>2 :\/ 2

Nope, just look at the result of the calculation

-0

full result for all n: p = <p> =0 % [p| = 0 + sqroot <p2>

which is of course just a statement of the uncertainty

principle
A= .J(f >1 —{x)i
fi 2 ¥ d h
A Ap, = 9 < J{}.Slﬂ?’f _{ % | 0.2658L “; F E
Forn=2 o

= 0.2658L

- The “stronger” the confinement, i.e. smaller L, the larger the uncertainty in
x on the other hand, the “weaker” the confinement the less uncertainty of
momentum 46



Must p? be sharp?

absolutely, because p? = KE times 2m, no potential energy in
the infinitely deep square well, so KE must be sharp (one
value for each n only without any spread) because total E is

sharp
Apzz\/(<p4>—<p2 >* =0

Remember, our wave function solved the Schroedinger equation

A(KE -2m) = /< (KE -2m)? > — < (KE -2m) >* =0

It is, therefore, an eigenfunction of the Hamiltonian operator, which is in this
case just the kinetic energy operator,

Each time the kinetic energy operator operates on an eigenfunction, it returns
the unchanged eigenfunction multiplied by the eigenvalue,
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ik x —ik x

‘ . e’ —e sine wave function can be
Sln(k x) — replaced by “sum” of two
& 21 complex wave functions divided
A o | by 2 i, these wave functions are
L as it is a standing wave no actually the eigenfunctions of the
P= —Th - time dependency needs to momentum operator
be considered, d/dx
. O ik x .3 .1 ik x ik x ik x that’'s how we derived
lhae " =ih-ik,e™ =-hke" =—p.e” that operator earlier
2
. 0 2 dk,xN\ __ 22 2a ik, x 2 _ik,x 2 _ik,x 2 ik,x
(zha—) (e )=i"h a—(e )=(ih-ik ) e =(-hk ) e =p, e
X X

Applying the operator to an eigenfunction twice gives you the square of the eigenvalue

d d 2 4 2.2
<p2> = * (—ih ——)—i1h — W - dx Ap z\/(<p >—<p > =0
> = [y * (-ih— ) (ih— Sy

kind of result of doing something 4
<p*> = IW*( zh—)( zh—)( zh—)( zh—) tlmes is equal of doing it 22 times

—iw.t Adding this factor or both sides of the wavefunction changes
n

nothing as the partial differential is with respect to x and not t *



‘ Momentum eigenvalues for a particle in an infinitely deep well

2 . (nxx
W (x) = Esm I, Eigenfunctions of the momentum operator
ik x —ik x \ 1 )
e" —e " + inmc/L B 1 '
sin(k x) = v, =€ and — __e—mmc/L

lA?nW; :p;'ﬂ; and DWW, =DV,

Eiw+ :iﬂeim@ — @tf =pryt p, = nzn Eigenvalues
ide' " 021 L 27l L of the

momentum
Ei'ﬂ_ :_iin_ﬂe_mu :_@V oy ___nzh  operator
ide " Q2 L 2, " Pn =77

Eigenvalues have no spread, a set of discrete values and function of integer n

h 2mk
=+,2mE = i% =+kh from boundary conditions &, = nfx =/ iZz R

—

Py




Because the Schrodinger equation is linear: At any given instant in time, the wave
function W of a particle (or an isolated system) can be expressed as a linear
superposition of a complete ortho-normal set {¥_} of wave functions:

Y=c, ¥, +c,¥Y,+c; WY, +c, ¥V, +...=2¢c ¥,

Where prefactor a, = | c,| 2 represents the probability that the system will be
found in state W,

ikyx —ik,x ik, x . —ik,x
V2sin(k,x) =2 (> >=ﬁ;. + ﬁ;
l l l

Vasingk,of <[t f+ et %=50%

. nah
So half of the time the system is found with momentum: P, = T
And the other half of the time: p = nzh .



A possible application of ion traps that many scientists dream of is the quantum computer. In present-day
U Sag eS Of classical computers the smallest unit of information is a bit that takes the value of either 1 or 0. In a
. . quantum computer, however, the basic unirt of informartion — a quantum bir or qubir - can be 1 and 0
Pa rtl Cl eS I n boxes at the same rime. Two quantum bits can simultaneously take on four values — 00, 01, 10 and 11 - and
each additional qubit doubles the amount of possible states. For n quantum bits there are 2® possible
states, and a quantum computer of only 300 qubits could hold 2°* values simultaneously, more than

the number of atoms in the universe.

Superposition of states? Let’s use it for guantum computing 2012

A laser is used to suppress the ion’s

thermal motion in the trap, and to electrode DAVID J. WINELAND

Resiokand s M foninee o, U.S. citizen. Born 1944 in Milwaukee, WI, USA. Ph.D.
1970 from Harvard University, Cambridge, MA, USA.
Group Leader and NIST Fellow at National Institute
of Standards and Technology [NIST] and University of
Colorado Boulder, CO, USA.

www.nist.gov/pml/divé88/grpl 0¥index.cfm

New clocks

Electrodes keep the beryllium
ions inside a trap.

David Wineland and his team of researchers
have also used ions in a trap to build a clock
that is a hundred times more precise than the

caesium-based atomic clocks which are currently

1 2 |
Al ) = Z1oitk,x—wt) _ ,—itk,x+ o)
"(I, ) Zf\/;[E e ]

Figure 2. In DavidWineland's laboratory in Boulder, Colorado, electrically charged atoms or ions are kept inside a trap by surrounding
electric fields. One of the secrets behind Wineland's breakthrough is mastery of the art of using laser beams and creating laser pulses.
A laser is used to put the ion in its lowest energy state and thus enabling the study of quantum phenormena with the trapped ion.

the standard tor our measurement of time. 'l

GPS we rely on time signals from satellites with clocks that are routinely calibrated, because gravity

Remem ber is somewhat weaker several hundred kilometres up in the sky. With an optical clock it is possible to

general relat|V|ty measure a difference in the passage of time when the clocks speed is changed by less than 10 metres 51
per second, or when graviry is alrered as a consequence of a difference in height of only 30 centimetres.



2012

Rydberg atoms - roughly 1,000 times
larger than typical atoms -

are sent through the cavity one by one.

At the exit the atom can reveal
the presence or absence of a photon
inside the cavity.

Figure 3. In the Serge Haroche Laboratory in Paris

photon without destroying it.

Usages of
Particles in a
box

Photons bounce back and forth inside

a small cavily between two mirrors for
more than a tenth of a second. Before it
disappears the photon will have travelled
a distance of one trip around the Earth.

N

SERGE HAROCHE

French citizen. Born 1944 in Casablanca, Morocco.
Ph.D. 1971 from Université Pierre et Marie Curie, Paris,
France. Professor at Collége de France and Ecole
Normale Supérieure, Paris, France.

www.college-de-france.fr/site/
en-serge-haroche/biography.htm

Bringing
photons into a
box, releasing
them and
manipulating
them there,
including
measuring how
many are there

>

mperature of almost absolute zero, the microwave photons
bounce back and ferth inside a small cavity between twﬂ mtrran Thé mirrors are so reflective that a single photon stays fer more
than a tenth of a secand before it is lost. During its long life time, many quantum manipulations can be performed with the trapped

52



Quantum Wells

Development of techniques for fabricating devices whose dimensions are of the order
of nanometers. called nanostructures. has made possible the construction of quantum
wells. These are finite potential wells of one. two, and three dimensions that can chan-
nel electron movement in selected directions. A one-dimensional quantum well is a thin
layer of material that confines particles to within the dimension perpendicular to the
layer’s surface but does not restrict motion in the other two dimensions. In the case of
three-dimensional wells, called quantum dots, electrons are restricted entirely to quan-
tized energy states within the well. A ubiquitous current application of quantum wells
is the diode lasers that read CDs, DVDs, and bar codes. Quantum dots have potential
applications in data storage and quantum computers, devices that may greatly enhance
computing power and speed.

One-dimensional quantum wells, called quantum wires, offer the possibility of
dramatically increasing the speed that electrons move through a device in selected di-
rections. This in turn would increase the speed with which signals move between cir-
cuit elements in computer systems. Figure 6-15 is an outline of how such a well might
be formed.

(a) Energy i i

Quantum wires

Quantum dots

L
|
|
|
|
|
|
.-"_l _"-1\

2.3 » 5.5

Size (nanometers)

What is a quantum dot’

« Manocrystals
« 2-10 nm digm

miconducio
obéfprize

hemistry 2014,

gy B f'":,super-resolution

S A% microscopy, Eric
Betzig, Stefan W.

Hell, William E.
Moerner

(b) Energy

.~ Potential well

\
|
|
|
1
L 0 i

Figure 6-15 (a) Two infinite square wells of different widths L, and L,, each containing the
same number of electrons, are put together. An electron from well 1 moves to the lowest empty
level of well 2. (b) The energies of the two highest electrons are equalized, but the unequal

charge in the two wells distorts the energy-level structure. The distortion of the lowest empty

Cds,

levels in each well results in a potential well at the junction between the wells. The orientation
of the newly formed well is perpendicular to the plane of the figure. 53



6.5: Three-Dimensional Infinite-Potential Well

= The wave function must be a function of all three spatial coordinates.
2

We begin with the conservation of energy F =K +V = ;LJFV
= Multiply this by the wave function that depends on three spatial

variables to get P>

—w+Vwy=Ey
2m

=  Now consider momentum as an operator acting on the wave
function. In this case, the operator must act twice on each dimension.
Given:

P =p. +p, -|-p227 and pxl//:—iha— pyy/:—iha';/ le//=—iha—w

= The (time independent) three dimensional Schrodinger equation

_ +Vy=FEy
2m\ ox? 6y2 oz” _ L

V = U(x) but First slide in this chapter
not of time

hZ
h’ (azv/ N o’y N azv/] or _ZmVVH Vy =Ey
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Separation of variables, & > d

f.

b(x, ¥, 2) = U, (X)W, (YNb,(2)

P(x, y.2) = Asink xsink,ysink,z k., = nmw/L
2 2 2z
EZE{I{E + k2 + k2) E:(pIer}.ﬂLpz) p. = hk, and so forth
2m ! 5 9 2m

Many “things” are there three times, three dimensions, three sine functions,
three k, three p, much depends on the “symmetry” of the potential

T
nnpng . ZmLz (Hl + ”’2 _|_ ‘”’5) CUbIC bOX
L1EL2=L3 L1<L2<L3

. Y . WL
SN S11
L=,

Ej9p = Epqp = Egpq = 9E;

Ep11 = Eqp1 = Eq12 = 6E;4

Eiy = 3E, (n% n2 n?;)
(a) (b) 4 — e —
y 2 2 2
2m \L; L L

Figure 7-1 Energy-level diagram for (a) cubic infinite square well potential and () noncubic
infinite square well. In the cubic well, the energy levels above the ground state are threefold
degenerate; i.e., there are three wave functions having the same energy. The degeneracy is
removed when the symmetry of the potential is removed, as in (£). The diagram is only schematic, 55
and none of the levels in (&) necessarily has the same value of the energy as any level in (a).




Degeneracy

Analysis of the Schrodinger equation in three dimensions introduces
three quantum numbers that quantize the energy in bound systems in
3D.

A quantum state is degenerate when there is more than one wave
function (eigenfunction) for a given energy (eigenvalue).

Degeneracy results from particular Symmetry properties of the

potential energy function that describes the system. A perturbation of
the potential energy can remove the degeneracy.

For a cubic box LI == LE — L_%'

Effects of external magnetic field will split spectral lines in atoms,
predicted by Hendrik Lorentz, observed by his assistant Pieter Zeeman,

joint Nobel prize 1902, mentioned on the introductory slides of several
chapters %



Table 8.1 Quantum Numbers and Degeneracies
of the Energy Levels for a Particle
Confined to a Cubic Box*

ny ns ns n? Degeneracy
1 | 1 3 None
1 1 2 6
1 A 1 §] Threefold
2 | 1 6
1 2 2 9
2 | 2 9 Threefold
2 2 1 9
1 1 3 11
1 3 1 11 Threefold
3 1 1 11
2 2 2 12 None

*Note: n° = n? + ?1% + ng.

Figure 8.4 Probability density (unnormalized) for a particle in a box: (a) ground
state, |W11]% (b) and (c) first excited states, | %311 |? and | W9 |%. Plots are for |¥|? in
the plane z = %L. In this plane, |Wy;3|? (not shown) is indistinguishable from | ¥y |



Central Coulomb force potential for
hydrogen atom possesses highest j
possible 3D point symmetry

H-atom /f?””

. . - A
Spherical potential, very /
high symmetry, a lot of P )
degeneracy \

The three lowest-energy states of hydrogen.

More next chapter ¢/ = cos@+isind e’ =cos@—isiné 58
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6.4: Finite Square-Well Potential

Vo, x<0 region I
= The finite square-well potential is ¥V(x)=< 0 0O<x<L regionll
Vo, x=>L region III

= The Schrodinger equation outside the finite well in regions | and Ill is

2 2
—;Z lfixg/ =FE -V, regions |, Il or using a’ = 2m(V, _E)/h2
my
, Note the importance of the sign in the Schrodinger equation
dy

yields e a’y. Considering that the wave function must be zero at
X

infinity, the solutions for this equation are w;(x) = 4e** region [, x <0

V() i (x)=Be™  region I, x > L
Vo

We need four constants to
“stitch” the wave function
together, here we have A and B

Region I | Region II | Region III

0 L
Position a modified wave number “equivalent” of

 ——— k in infinite deep square well
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Finite Square-Well Solution g -<"=¢

2i

—ikx ikx —ikx

e +e

cos(kx) = 5

Inside the square well, where the potential energy function V' is zero, the

k =\ (2mE)/ h>

Schrodinger equation becomes

dz'l/ 2
PR

Instead of one sinusoidal solution we use
t,trth= Csinkx + D coskx

forO<x<L or Wy = Ce’kx _|_De_’kx

The boundary conditions require that

and the wave function must be smooth

where the regions meet.

Note that the
wave function is
nonzero outside
of the box.

E

Yo

region I, O<x < L

We are gaining two
more constant to fix !

first derivatives with respect to

X need to match

U

Wave function

il

Uy

— e T

/'\

=
gExponcn tial

[

0

e

!

L

X

[“—

0 L

Position

There is a finite number of energy levels, because the potential barrier is

finite in height, however shallow the well, there is at least one energy level
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Wix) |

Figure 6-11 Functions satisfying the Schridinger equation with wavelengths near the critical
wavelength A . If A is slightly greater than A, the function approaches infinity like that in
Figure 6-10. At the wavelength A, the function and its slope appmach zero together. This is
an acceptable wave function correspnndmg to the energy E, = h* "—‘mh%. If A is slightly less
than A . the function crosses the x axis while the slope is stlll negative. The slope becomes
more negalive because its rate of change 1" is now negative. This function approaches negative
infinity at large x. [This computer-generated plot courtesy of Paul Doherty, The Exploratorium.]

While physical boundary
conditions were set by the shape
of the potential energy function,
mathematical boundary conditions
emerge from the necessity of
stitching the wave function

More

—

In most cases the solution of finite well problems involves transcendental
equations and is very difficult. For some finite potentials, however, graph-
ical solutions are relatively simple and provide both insights and numeri-
cal results. As an example, we have included the Graphical Solution of the
Finite Square Well on the home page: www.whfreeman.com/tiplermodern
physicsSe. See also Equations 6-36 through 6-43 and Figure 6-14 here.

together from the 3 spatial parts In
the physical problem
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Penetration Depth

= The penetration depth is the distance outside the potential well where
the probability density significantly decreases. It is given by

(5~1 h s ﬁ

“a  \2m(V,—E) N

= |t should not be surprising to find that the penetration distance that
violates classical physics is proportional to Planck’s constant.

The higher n, the higher the leakage of the wave function into the barrier,
so the higher energy levels can also be quite counterintuitive

: n2a2h2 i 5
f gy =5 - n=1,.2,.
T 9m(L + 26)2
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Estimate the ground—state energy for an electron confined to a potential well of

width 0.200 nm and height 100 eV.

Solution We solve Equations 6.21 and 6.22 together, using an iterative procedure.
Because we expect E << U(= 100 eV), we estimate the decay length & by first ne-
glecting E to get

h (197.3 eV-nm/c)

2mlU \IQ(BII X 10° eV/rE)(IOO eV)
= 0.0195 nm

5~

Thus, the effective width of the (infinite) well is L + 26 = 0.239 nm, for which we
calculate the ground-state energy:
72(197.3 eV-nm/ ¢)?

E=~ : — = 6.58 eV
9(511 X 10°eV/2)(0.239 nm)2

From this Ewe calculate U — E = 93.42 eV and a new decay length

(197.3 eV-nm/c)

5 =
V2(511 X 103 eV/2) (93.42 V)

= (0.0202 nm

This, in turn, increases the effectuve well width to 0.240 nm and lowers the ground-
state energy to E = 6.53 €V. The iterative process is repeated until the desired
accuracy 1s achieved. Another iteration gives the same result to the accuracy reported.
This is in excellent agreement with the exact value, about 6.52 €V for this case. e
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|
|
I
I
|
|
]
I

|
|
|
]
|

i b

Stable Unstable Stable

Figure 6.17 A general poten-
tial function U(x). The points
labeled @ and ¢ are positions of
stable equilibrium, for which
dU/dx =0 and d2U/dx?> 0.
Point b is a position of unsta-
ble equilibrium, for which

dU/dx = 0 and d?U/ dx? < (.

|dea of stitching wave
functions together for different
regions of the problem.

The regions around the
troughs in this figure can be
modeled by a parabolic
function that facilitate
harmonic oscillations
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6.6: Simple Harmonic Oscillator

= Simple harmonic oscillators describe many physical situations:
springs, diatomic molecules, and atoms in a crystal
approximately

2
Voo AV =V,~V,=—[F-di  setV,=0
1
B V()
St
z 5
S E Simple .
= o harmonic
. B= = motion
—>F =—y(x — x5) § 2 ‘\\ \//
5] s \ /
T X ! /
X XU O |
\ o *o | Diatomic
F,qlgll.]brmm Position molecule
position o)

= “Hooke’s potential” V(x)=U(x)= KXT + U(t) =V (t)

d*v  2m Kx’ 2mE  mxx’
) :_? E_T v=|- 52 + % ¥  Schrédinger equation for
L stationary states

2
Let «*-"% and 5-2"£ which yields f;;:(azxz_ B
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Classically: w:JE The smaller the mass and the “stiffer” the spring, the
m  higher the frequency



Parabolic Potential \Well Gaussian function resulting in
an uncertainty AxAp = %

Vi)

/ 2
mK-x
& () -
_ 4. 2h
. Yo €
E 1 . (x—p)*
& V=gt Yo Exponential 1 - 2

______________ B f. . /7 tail p(x)=———e *°
i i ’ \2or
| | | u: mean (average)

: X
i3 [/ —a a . .
o: standard deviation

Position

= Lowest energy level E, cannot be zero, would violate uncertainty
principle. a2/
= The wave function solutions are ¥n = ,(X)e where H.(x) are

Hermite polynomials of order n. Hy(x) = 1, so the lowest quantum
number is 0, the ground state wave function is a Gaussian

= |n contrast to the particle in a box, where the oscillatory wave function is
a sinusoidal curve, in this case the oscillatory behavior is due to the
polynomial, which dominates at small x. The exponential tail is provided
by the Gaussian function, which dominates at large x.
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‘ Analysis of the Parabolic Potential Well

Vix)

mK
222
T°h

W (x) =(

Ground state, n =0, is
Gaussian

J% e_(MAhj.xz

#":l]!

A
L

I
[y |2
[l
i
|‘f-’|12

=
e

(b

Again leakage
into barrier !

K
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“The energy levels are given by
E =(n+ %)h\/x/m =(n+ %)ha)
= The zero point energy is called the Heisenberg

limit: E, - lha)
2

—4 -3

-2 -1 0 1 2 3 4

= Classically, the probability of finding the mass is
greatest at the ends of motion and smallest at the
center (that is, proportional to the amount of time
the mass spends at each position).

= Contrary to the classical oscillator, the largest
probability density for the lowest energy state is for
the particle to be at the center.

Remember I\?i']ax Planck derived AE = An hf for his resonators with An = +-1 .

correctly, didn’t know about zero point energy and Heisenberg’s principle



A property of these wave functions that we will state without proof is that
_ Oescillating expectation

J W dx=0 unless n=m= | 6-59
— value between m and n

This property places a condition on transitions that may occur between allowed states. q uantum state
This condition, called a selection rule. limits the amount by which n can change for
(electric dipole) radiation emitted or absorbed by a simple harmonic oscillator:

The quantum number of the final state must be 1 less than or 1 greater than

that of the initial state. We will have selection rules
This selection rule is usually written again when we apply the
An = =1 6-60  Schrodinger equation to the

Since the difference in energy between two successive states is hw. this is the energy hyd rogen atom
of the photon emitted or absorbed in an electric dipole transition. The frequency of the
photon is therefore equal to the classical frequency of the oscillator, as was assumed
by Planck in his derivation of the blackbody radiation formula. Figure 6-20 shows an
energy level diagram for the simple harmonic oscillator, with the allowed energy

transitions indicated by vertical arrows. \
Vix) = %K)ﬁ2 = w22
\ /55 = (5+ 1)hw
\\ E,=(4+)ho
. 1 \ E,=(3+ %)ﬁo:-
= (n+ Dk n=01,2... \ At
\\ / E;=(1+2)ho
~_1_>"Fo=3"0 N
0 X

Figure 6-20 Energy levels in the simple harmonic oscillator potential. Transitions obeying

the selection rule An = =1 are indicated by the arrows (those pointing up indicate absorption).

Since the levels have equal spacing, the same energy fuw is emitted or absorbed in all allowed
transitions. For this special potential, the frequency of the emitted or absorbed photon equals 68
the frequency of oscillation, as predicted by classical theory.




If you have a chemistry background, did you ever wondered why

H -
H H H

7 N\

H H H

_ is not observed, but ?7?7?

H
H H

A\

Quantum oscillations and tunneling ! So no good chemistry without modern
physics !!!
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one-dimensional wave packet representing
|‘P[x, t) |2 ra T a particle incident on a step potential for

| . .
6.7: Barrlers and Tunnelln Figure 6-23 Time development of a

= et ; ,
/ \ ﬁf’i‘f"" L E = V. The position of a classical particle
4{‘: AT I,HJ\I |D - el is indicated by the dot. Note that part of the
e ﬁ*";ﬁ_", -7/ e ‘F}{' »f“' " - packet is transmitted and part is reflected.
s i - e J U“ \ Lt'":i{:"’ - The sharp spikes that appear are artifacts of
P =7\ g the discontinuity in the slope of Vix) atx = 0.
H_,.r-"‘"r" J{f;ﬁ’#ﬂ:f‘ "'x\ . irj\?_?"'j:'ﬁ x 4 4
A e _,,»-,.f‘-,-ﬁ*"’;"'/f K e T also note the
e = N ) .
e i 8T\ = dispersion of the
T = e
S J; ,}f\\ pulse, all matter
T e T B oo waves disperse — but
—T-"-'Ff"f:: =T —_— e i = ("/ﬂ\ e H
™ i - the group velocity of
- o = AT s )
J T i _—===" /~__.. the wavepacket is the
e il T oo :
T ST same as the velocity
- _— - = 5-\?— b H
i el of the particle
o (wavicel)

We are not interested in time dependent details, so just use
the time independent Schrodinger equation (as we are not
interested in how exactly all of the wiggles move back),
calculate just how much probability there is for a wave to get
transmitted (i.e. how many of the incoming wavicles get
through) and how many are reflected, no particle gets lost 70




E > U, for infinite and very large “step thickness”, so L does not
show up in formulae, W& get approximately

Finally, we express the probabilities in terms of U, and E. Using the defi-
nitions of k and k', we have

T=4({/E+ VE - U, i

(VE - VE - u,)’ s
(VE+ VE-U)

Notably, expressions (6-7) are essentially identical to those giving
reflected and transmitted intensities of a light wave normally incident on the
interface_between two media. Those for light differ only in that \/E and

E — U, proportional to the speeds in the two regions, are replaced by the
speeds ¢/n, where n is the medium’s refractive index. The behaviors are com-

pletely analogous. The most important point here is that, contrary to the classi-
cal expectation, the reflection probability is nonzero.

Only condition is that the De Broglie wavelength (or wavelength of

electromagnetic wave) is on the same order of magnitude than the region
where the U, (refractive index) changes !!!

Why is there no direct reference to Planck’s constant ??
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Figure 6-24 (a) A potential
step. Particles are incident
on the step from the left
moving toward the right,
each with total energy

E < V,.(b) The wave
transmitted into region II is
a decreasing exponential.
However, the value of R in
this case is 1 and no net
energy is transmitted.

Only two regions
for Schrodinger
equation

If E <V,thereis
complete reflection
as long as barrier
is infinitely thick

Figure 6-25 Reflection
coefficient R and transmission
coefficient T for a potential
step V, high versus energy £
(in units of V).

E<Uy ]

Always reflection

(a) Energy &
V(x)=V, o0
V(x) =0 £
0 x
As lon E <
i s long as

(b)

V, only reflection
if infinitely wide
barrier L —

|

X

not traveling, real, but you
cannot physically detect it there

No transmission resonances for
E >V, because L infinite

Top of step
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= Consider a particle of total energy E approaching a potential barrier of height V,,
and widths L and the potential (energy) everywhere else is zero.

= We will first consider the case when the energy is greater than the potential
barrier.

= Inregions | and Ill the wave numbers are: ;. — . = VZmE g =2% kh=p

l.e. A is longer,

= In the barrier region we have by = \/2m(E ) where V =V,

V(x) smaller
E>V momentum,
0 V() velocity, and total
E Incident energy
PO .| S ——— === \NN\N> p =hk
Particle \NNN>
Transmitted
v e VAYAYAYS
Bound 0 Reflected
system & |
stationary 0 L *
X
Stale pegion]  RegionIl Region III 0 L

aaaaaaaaaaaaaaaaaaaa
© 2006 BrooksCole - Thomson

2h2 We can have resonant transmission, when wave
for E V + that gets reflected at the second step cancels the
/ 2mL wave that got reflected at the first step, so 100%
transmission for precise E,, e.g. optical coatings
73

Anyone remembers this
term? n=1,2,3 ... Bohr's correspondence principle



‘ Square step (or ditch)

The wave function will consist of an incident wave, a reflected wave, and a
transmitted wave for simplicity (no mechanism for ditch or step region)

m The potential energies and the Schrodinger wave equation for the three

. 2
regions are as follows: : _ A7y, 2m .
Region I (x <0) V=0 de 2 5 By, =0 (E - 'VO) ditch
E >V,in a general 2
0 ; B d Vi 2m
sense valid for ditch Regionll(O<x<l) V=V = on+ 5 (E=Volyn =
and step of length L 2
P J Regionlll (x>L) V=0 d—"’;ﬂ 2—’"15 wi =0
dx h*
K, > Kk, =k, =Kk
. . _ [ 1 3 |
= The corresponding solutions are: | | for finite ditch
Region I (x < 0) W = Ae™* B *1* reverse
Region 1 (0<x <L) wy =Ce™™ 4 De * relation for
Region Il (x> L)  wy = Fe™ +Ge ™~ finite step

= As the wave moves from left to right, we can specify the wave functions to:

Incident wave w(incident) = Ae™r*

ibx Same wave as in Region I, but
Reflected wave w; (reflected) = Be ™ —different amplitude

Transmitted wave wyy (transmitted) = Fe™*

74



Probability of Reflection and Transmission for square step
potential (barrier) with final width L

The probability of the particles being reflected R or
transmitted T is: o wellected)” _ B*B

w(incident)> A*A4

Same traveling
wave in both
P Y (transmitted)\z _F *F regions

i, (incident)” ~ A*A4

Because the particles must be either reflected or transmitted
we have: R+ T =1 (no particle gets stuck in a barrier ever)

We have enough information to derive transmission
probability

_ -1
|1, Vo sin” (kL) L _\PmETy)
AE(E -V,) i h

E higher than potential energy barrier V= U, 75



Note that there is no h-bar directly, results

carry over to any kind of classical wave, for some L, that does not
but there is now a L in an oscillating term I' allowT=50%atE=U=YV,
A
=
I 1 |
| | |
| | |
r | |
: | I | ]
sinnT=0 — - - e
0 U E‘Ll I"ﬂ f‘.,g

T =1 when sine-term zero for resonance energies

E,, E,, E; which are a function of L Figure "8 A <betch of the

T 2 232 o i o
ey = 2m(E -V,) E =V _|_” zh transmission coefficient T(FE)
h n_ 0 2 . : ; :

mL for a square barrier. Oscillation

Transmission and im 1(F) with E, and the trans-

Reflection must always mission resonances at Fy, ko,

add up to 100% (nothing gets and [, are turther evidence for
stuck in the barrier) the wave nature of matter.

Different books:

U =V, also k= k so look for the context y



Square ditch v g N2mUE=(T)

17 7 > kl _and _III
Particle E
® >

V=20 V=20 so A shorter
because K larger,
higher momentum,
V=V, velocity, kinetic

0 L energy

qqqqqqqqqqqqqq

potential barrier.
= particle speeds up passing the ditch region, because K=mv? /2 = E + V,,.

According to quantum mechanics, reflection and transmission occur as a matter of
principle, and the wavelength above the potential ditch is smaller than outside. When
the width of the potential well is precisely equal to half-integral or integral units of the
wavelength, the reflected waves are out of phase or in phase with the original wave,
and cancellations or resonances may occur. The reflection/cancellation effects lead
theoretically to pure transmission or pure reflection for certain wavelengths.
(Theoretically because the stationary state does not continue forever so that E is
absolutely sharp, uncertainty principle again)

For example, at the second boundary (x = L) for a wave on the right-hand side, the wave
may reflect and be out of phase with the incident wave. The effect would be a
cancellation inside the ditch.
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Distributed Bragg reflector, for light and wavicels, using the ditch
top view

Ny N Ny ng Effect of each layer corresponds to “optical Iength”)\O/4

M2 Phasensprung : ,
ng bei Reilektioh There is a phase change on reflection "o
»> = n
<= — s 0
d d
- L > Hr-»
A A Condition for constructive
2npdy + 5 = 2ngdyg + 5 — m)\ interference, maximal transmission
(Zm _ 1)’\ s !EfWultiple laye
ngdg = nrdp = 1 T

- _ _ \d region
Condition for destructive interference for

several wavelengths simultaneously

fulfilled with integer m > 1, several layers
necessary to create an nearly total HERRE
I’eﬂeCtOF 0.0 0.2 0.4 06 03 10 78




10 (n2)2Y — g (ng)2 it R=1
7, (n2)2N + ny(ng )2V _ i¥-yeo

n, for air =1, n, = n,p, Ny = Ny, , N for substrate on which layers were deposited

Weak
transmitted
light in
complementary

colors
<

White light

Strong reflected light

R + T = 1, nothing gets stuck in the ditch/barrier

Wavicels behave just like Maxwellian light waves — which are also streams of photons



¥

a E
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Figure 6-22 (a) A potential step. Particles are incident on the step from the left toward the
right, each with total energy E > V. (b) The wavelength of the incident wave (Region I) is

shorter than that of the transmitted wave (Region I1). Since k, < k,, |C[2 > |A[% however,

sy Two different scenarjos b
0 (b)
(a) Energy A
E —> OO0 .—>———E; ——————————— > - L
Particle
nolL Y=t ¢
V(x)=0 x
0 “"; 0 L
I Il R,_iglo_nl Region II  Region III
» K, < k, for step
- : w)  reverse of ditch e 1
% 1 2 3 ; 5 \NNNA~
AN A s
TR rsE <« NN Transmitted
- Reflected
\// \/ 0 \_/ )
A >4, .
| I 0 L

For barrier of finite widths,

there will be reflection and

the transmission coefficient T << 1. transmiSSion on bOth X = O
and x=1L
4 sin( V2m(E — Ug) L/h| 7 E>V,=U, but
smz[\/Zm(E U,) L/ﬁ] + 4(E/U0)[(E/U0) ] N ~ thereis also
: 1 reflection
4(E/U0)W 7 |
J i =
@ 2m(E — Uy) Lik] + 4(E/U)|(E/Uy) = 1] — o | T

0 i"rolt‘fl 1:;2 fi"s — 81



Reflection and transmission on each side of the barrier all
the time (same for any discontinuity at step or ditch over
which the wavical goes)

Optimization for transmission: choosing V, and L so that reflected
wave and transmitted wave inside the barrier region (discontinuity) are in
phase and reinforce each other, effect: strong attenuation of reflected
wave

Both are modeled as quasi-traveling wavicals (i.e. complex, free particle with
varying amplitudes but we do not care about time dependent details so we use
just real functions to describe what is going on), anyway their superposition
makes for a real valued function above the ditch or step

In order to calculate the amplitude of the transmitted wave, we need to fix 4
unknown by 4 equations, wavefunction has to be continuous and its first
derivative has to be smooth (just as we did for the finite square well) — but now
multiple times as the first reflected wave in the barrier region gets transmitted
to the left as well and reflected again ...
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. Now it is about evanescent | . e —e T e _1
Tunne“ng sinh r = = =5

wave in barrier o -

= Now we contrast classical and quantum physics, classically the particle does not
have enough energy to “classically overcome” the potential energy barrier, E < V,,.

V(x)
P (x) Quantum
. behavior
5 Classical
§ behavior :
o5 Ei{ponential
I 11 11 /\ {\
| P i
o —— Yo [ 0 L SN e ¢
j LSinusoidal
X Sinusoidal
0 L

= The quantum mechanical result, however, is one of the most remarkable features
of modern physics, and there is ample experimental proof of its existence. There
is a finite probability that the particle penetrates the barrier and emerges on the
other side (no mechanistic description in the barrier).

= The wave function in region Il becomes ~Ce™ + D™ where = \/Zm(Zo - k)

= The transmission probability that {\rl;)\t/ZI::at tl:"; ‘r’;a‘i’gl s dg%; o
describes the phenomenon of tunneling is 9. pialy ying

7% sinhz(id,)}l

B E E =Pl T:|: =it
when kL >>1 |T _16%[1—%}3 4E(WV, - E)




Note that this wave is not traveling, just rapidly decaying, but in the region of L we
must have “formally” negative kinetic energy because energy is conserved
(stationary state), the time — energy uncertainty principle allows for this negative
kinetic energy to be “intellectually neutralized”, loosely speaking

Classically forbidden

f region

(incident)
Ae TR e (transmitted)
(reflected) —  [p T

B8 m—

(a) (b)

Figure 7.2 (a) A typical stationary-state wave for a particle in the presence of a square
barrier. The energy I of the particle is less than the barrier height U. Since the
wave amplitude is nonzero in the barrier, there is some probability of finding the

particle there. (b) Decomposition of the stationary wave into incident, reflected, and
transmitted waves.

E=KE + U, if E <U (as in barrier) KE is formally negative, no

big deal, we have seen strange things before H



Potential energy of barrier larger than total energy of
particle, which is all kinetic

1 U? , = 2m(U — E
T(E) ={] - 4[E(U—E)]Smh2aL} a:\/ m( ):K-:kH

h

Different books use different symbols, give different
versions of the same formulae
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summary

Both are, in general, nonzero—a par
can't surmount classically. It is immhuth S§
some mysterious fluctuation in its energy, allo
the contrary, from the start, we assum
well defined. The particle never has
Instead, it “tunnels” through, and the |
that there be such a possibility. The solution
combination of incident and reflected waves, ¢
wm. At x = 0, it smoothly joins a function !
off (the € in the exponentialldecreasingCe™*
at x = L, this smoothly joins a transmitted wave of po:
no physically acceptable solution that is ere
Figure 6.7 shows wave functions (rallm &
gies incident on a barrier from the left. Note that the w
kinetic energy increases. At energy E,, the exponential
rier is rapid, and little transmission occurs. At Ez., w
height, the wave decays less rapidly, leaving a larger transi
E3 is above the barrier, but we see evidence of signif ificant
is of smaller amplitude to the right of the barrier than
wavelength is longer when it is “over” the barrier, m
there. Energy E, happens to be the first transmission re
the right is of precnsely the same amplitude as on ﬂa- :
rier's width is 1& Not coincidentally, this is just the
expect for maximum transmission of a light wave t
rounded by air. At Es, though not a transmission
occurs—the amplitude on the right is only slightly lm
Figure 6.8 shows reflection and transmission p:
incident on the same barrier as in Figure 6.7, mﬂh
indicated by dashed lines. Although reﬂéﬁim« d
transmission for £ > U, both occur at all e
nances. Inthelxrth—)oo thebm hecomes
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EXAMPLE 7.1 Transmission Coefficient
for an Oxide Layer

Two copper conducting wires are separated by an msulat-
ing oxide layer (CuO). Modeling the oxide layer as a
square barrier of height 10.0 €V, estimate the transmis-
sion coefficient for penetration by 7.00-eV electrons
(a) if the layer thickness is 5.00 nm and (b) if the layer
thickness is 1.00 nm.

Solution From Equation 7.6 we calculate a for this
case, using i = 1.973 keV-A/c and m. = 511 keV/¢? for
electrons to get

~ \om (U~ E)
i

|'|2 I-' . W 2 9‘. J b4 —3 1 F 5
_ N (511 keV ,f’t_](d('Ud 1077 keV) — 0.8875 A~
1.973 keV-A/¢

The transmission coefficient from Equation 7.9 1s then

1 [ 102 L ) =1
T = {1 i —[ ]sinhz(o_gg"fﬁ A_I)L}

41 7(8)
Substituting L = 50.0 A (5.00 nm) gives
T=0.963 X 10738

a fillltzlstic_zill}-' small number on the order of 10728 With
L=10.0A (1.00 nm), however, we find

T=0.657 X 1077

We see that reducing the laver thickness by a factor of 5
enhances the likelihood of penetration by nearly 31 or-
ders of magnitude!

0 U? e
1(F) = .1 E & T m sinh“al.

where sinh denotes the hyperbolic sine function: sinh x = (¢* — ¢ %) /2.

Approximate transmission
coefficient of a barrier with

arbitrary shape

T(E) =~ exp (—% \2m J VU(x) — E (L\‘)

(7.10)

The integral in Equation 7.10 is taken over the range of x where U(x) > L,

called the classically forbidden region because a classical particle in

this interval would have to have a negative value of kinetic energy (an

impossibility!).
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Reflection and tunneling of ocean waves observed at a submarine

S e GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L10602, doi:10.1029/2005GL022834, 2005

Jim Thomson
WHOI-MIT Joint Program in Oceanography, Woods Hole, Massachusetts, USA

Steve Elgar “As much as 60% of the energy of waves
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA approaCh i ng the Canyon normal to itS aXiS
. H. C. Herbers .
S o, s i was reflected, except for waves twice as

long as the canyon width, which
were transmitted across with no

reflection. ... analogous to the
quantum tunneling of a free
particle through a classically
impenetrable barrier.”

Water surface waves are faster
above a ditch

Figure 1. Map of underwater bathymetry (curves are
depth contours in m below mean sea level) and aeral
photograph of the adjacent land near two submarine
canyons on the Southem California coast. The Scripps
Institution of Oceanography (SIO) pier is between Scripps
(the narrow canyon north of the pier) and La Jolla (the wider
canyon south of the pier) submarine canyons. The circles on
either side of La Jolla submarine canyon are locations of
pressure gauges and current meters mounted 1 m above the
seafloor for 4 weeks during fall of 2003.
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Reflection and tunneling of ocean waves observed at a submarine

canyon

Jim Thomson
WHOI-MIT Joint Program in Oceanography, Woods Hole, Massachusetts, USA

Steve Elgar
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

T. H. C. Herbers
Naval Postgraduate School, Monterey, California, USA

GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L10602, doi:10.1029/2005GL022834, 2005

Figure 3. Schematic diagrams showing partial reflection
of an oblique wave by a submarine canyon and quantum
tunneling across an energy barrer. (a) Partial reflection of
an obliquely incident wave (yellow curve) over the
measured canyon bathymetry (shaded surface). A decaying
wave over the canyon excites a transmitted wave on the far
side, even though there 1s no propagation within the canyon.
The transmitted wave preserves the angle 0 relative to the
cross-canyon coordinate y, while the reflected wave reverses
the angle. Depth is measured in meters below mean sea
level, and a rectangular idealization of the canyon cross-
section with 2#=20m, A,= 115 m, and W= 365 m 1s shown
as a grey dashed line between the south (s) and north (n)
mstrument sites. (b) Quantum tunneling of a free particle
(vellow curve) with energy E through a finite width W
region of potential energy U, where £ < U and the region is
classically forbidden. The scale of the decaymg solution in
the forbidden region is set by the de Broglie wavelength of
the particle.

Quasi-particles because the quantum mechanics formalism is so successful
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I
Macroscopic cats can’t do that, DUL ngacroscopLC water waves can

tunnel as well !!! 3h1]:} = HIIJ

.3 I These parts of the cat
bz, t) = ——a0(z, 1) + s should be in a different
color for the amplitude

of the evanescent wave
R i

" 4 v
(

—tha ik ika
RE E+ 7 Te g
Not a square 1D
barrier, so evanescent cat is difficult to model

Fi funny Quantum energy bank: your

ﬂ;I: ﬂp E;‘J h EFEEFP :_-“-* A “‘quantum _self” can get a no interest loan AE
X for a certain time At as long as AE At <h

where h = h/2m, and o, o, are the standard deviations of position and momentuny



Analogy with Wave Optics

If light passing through a glass prism reflects from an
internal surface with an angle greater than the critical
angle, total internal reflection occurs. However, the
electromagnetic field is not exactly zero just outside
the prism. If we bring another prism very close to the
first one, experiments show that the electromagnetic
wave (light) appears in the second prism.

The situation is analogous to the tunneling described
here. This effect was observed by Newton and can be
demonstrated with two prisms and a laser. The
intensity of the second light beam decreases
exponentially as the distance between the two prisms
increases.

(a)

(b)

& 2006 Brooks/Cale - Thomson
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Tunneling is just what waves like to do, observed macroscopically as well

(a)

Figure 7.5 (a) Total internal reflection of light waves at a glass—air boundary. An evanes-
cent wave penetrates into the space beyond the reflecting surface. (b) Frustrated total in-
ternal reflection. The evanescent wave is “picked up” by a neighboring surface, resulting
in transmission across the gap. Notice that the light beam does not appear in the gap.
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(a)

Material

(b)

Material

Empty space

g

Empty Prohe
space

Figure 3 (a) The wavelunc-
tion of an electron in the sur-
face of the material to be stud-
ied. The wavefunction extends
bevond the surface into the
empty region. (b) The sharp up
of a conducting probe is
brought close to the surface.
The wavefunction of a surface
electron penetrates into the tip.
so that the electron can “tun-
nel” from surface to up. Com-
pare this figure to Figure 7.2a.
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p4 - density map from p4 symmet
2 & T . = 3

Figure 6-29 Schematic illustration of the path of the probe of an STM (dashed line) scanned
across the surface of a sample while maintaining constant tunneling current. The probe has an
extremely sharp microtip of atomic dimensions. Tunneling occurs over a small area across the
narrow gap, allowing very small features (even individual atoms) to be imaged. as indicated by

the dashed line.

http://www.ascimaging.com/content/pdf/s40679-015-0014-6. g ===

arXiv:2009.08539 MS project Andrew Dempsey:
arXiv:2009.08539

Doi: 10.3390/sym10050133 magnus opus

My research groups’ work

Doi: 10.1109/nnan0.2019.2946597
Doi: 10.1107/52053273322000845 grXiv:2108.00829




What Michael Hietscholdt's group
the last time Germany was world
observed while scanning !! The

champion in soccer, tunneling
popular press called it nano-
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Center for no-phase Materials Science,NMS, Oak Ridge National Lab.
MS project with Tyler Bortel, Lee Field supposed to help him




The porphycene molecule

"We were pretty surprised to find that after depositing the
molecules on the copper substrate, hydrogen ions in the
porphycene molecule formed a configuration that had never
before been observed, despite many years of research on this
compound,"” says Waluk. "Instead of being located in opposite
corners of the tetragon formed by nitrogen atoms, the hydrogen
atoms took positions next to each other."

The researchers then used the tungsten tip of the STM to place
single copper atoms around the porphycene molecule, observing
how the positions of the copper atoms affected tautomerization.

http://www.nature.com/nchem/journal/v6/n1/full/nchem.1804.html

Two protons (red) in a porphycene molecule deposited onto
the surface of a perfect copper crystal (brown) can change
their positions at nitrogen atoms (blue) depending on the
position of a single copper atom (yellow).

Waluk. Nature
Chemistry, 2014
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POl  Atomic force microscopy,
Feedback many different kinds of
Electronics ) .

scanning probe microscopes

by same principle
Photodiode

Laser

Pauli’s exclusion principle
means they never toucanfact
Sample Surface

my group's work

L minimizes this effect Special functionalization

=/ Cantile

substrate

AFM image of a pentacene Could be
molecule. The five further
hexagonal carbon rings are improved by

enforcing point
symmetry 2mm

resolved clearly and even
the carbon-hydrogen bonds
are imaged.

http://www.zurich.ibm.com/st/atomic_manipulation/pentacene.html o5



‘There IS also radioactivity
(from 1896 onwards): electrons
and other particles, e.g. alpha
particles, (nuclei of He, two
proton + two neutrons) come
out of the atoms of cert
radioactive elements

Terrestrial heat flow
. 44.2 trillion watts

‘ Radiogenic heat :
Uranium / thorium / others A

€7 Approx. 21 trillion watts .Priml

" / .

end of this course, nuclear
physics
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Alpha-Particle Decay

e All a particles emitted from any one source have nearly the same energy
and, for all known emitters, emerge with kinetic energies in the same nar-
row range, from about 4 to 9 MeV.

e In contrast to the uniformity of energies, the half-life of the emitter (time
taken for half of the emitting substance to decay) varies over an enor-

mous range—more than 20 orders of magnitude!—according to the
emitting element (Table 7.1).

Table 7.1 Characteristics of Some

Common « Emitters ! In?2 0.693
Element a Energy Half-Life*/ A A
“1*Po 8.95 MeV 208 X 10775
290Cm 6.40 MeV 97 days decay rate A
“35Ra 4.90 MeV 1.60 x 103yr  the probability of a emission per unit time
239 105 MeV ¢ 1010 or _
S0 Th 05 Mey 141 X107y Key idea: there must be an
*Note that half-lives range over 24 orders of magni- expo_nent!al relathnshlp as
tude when a energy changes by a factor of 2. — obtained in tunnellng
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Alpha-Particle Decay

s The phenomenon of tunneling explains the alpha-particle decay of heavy,
radioactive nuclei.

= Inside the nucleus, an alpha particle feels the very strong, but short-range
attractive nuclear force as well as the repulsive Coulomb force.

= The nuclear force dominates inside the nuclear radius where the potential is
approximately a square well. Vir)

m  The Coulomb force dominates
outside the nuclear radius. Vol --

m The potential barrier at the nuclear
radius is several times greater than
the energy of an alpha patrticle.

m quantum mechanics predicts that the
alpha particle will tunnel through "™ r'=ry+L

the barrier. Radius
We have seen earlier that tunneling can
often be approximated by exponential
functions, e.q.

Coulomb potential
/f energy

T —

¥

L is about 107 m, or 10 fm

& 2005 Brooks/Cole - Thuus

R: decay rate, Geiger-
Nuttal relation 1ot




0 The radioactive decay process also can be understood in terms of
the time evolution of a nonstationary state, in this case one representing the «
particle initually confined to the parent nucleus. Solving the Schrodinger equa-
tion for the time-dependent waveform in this instance is complicated, making
numerical studies the option of choice here. The interested reader is referred
to our companion Web site for further details and a fully quantum-mechanical

simulation of a decay from an unstable nucleus. Go to http://info.brookscole.
com/mp3e, select QMTools Simulations — Leaky Wells (Tutorial) and follow
the on-site instructions.

I3 TR Transmission coefficient for
I(E) = exp {—4772’ VTO + 8 \‘ } (7.13) « particles of an unstable
% )

nucleus

In this expl‘ession,ao = ﬁg/makr)? is a kind of “Bohr” radius for the a particle. R si fth |
The mass of the a particle is mq = 7295me, so 1y has the value ay/7295 = .SIZG of the nl.‘lC eus,
7.25 X 1073 A, or 7.25 fm. The length rg, in turn, defines a convenient energy E is total classical
unit [y analogous to the Rydberg in atomic physics: Kinetic energy of the
alpha particle (about

ke k2 \( a
% = ( : )( “0) = (13.6 V) (7295) = 0.0993 MeV

" 9 \ 2ag /\ 70 3,730 times smaller
To obtain decay rates, 7([) must be multiplied by the number of collisions than rest enerQY)a SO
per second that an a particle makes with the nuclear barrier. This collision we get away with
frequency fis the reciprocal of the transit time for the a particle crossing the ot
. e _ e non-relativistic
nucleus, or f= v/2R, where vis the speed of the a particle inside the nucleus.
In most cases, [is about 102! collisions per second (see Problem 17). The treatment

decay rate A (the probability of @ emission per unit time) is then

A= [T(E) = 102 exp{—4m\Ey F + 8VZ(R/n)) K18 Coulomb’s constant here |



X\{ EXPLORING There is no mechanism for tunneling, as fast as
the uncertainty principle allows, some theorist say
- NH; Atomic Clock

it takes no time at all

Barrier penetration also takes place in the case of the periodic inversion of the ammo-

nia molecule. The NH; molecule has two equilibrium configurations, as illustrated in )

Figure 6-31a. The three hydrogen atoms are arranged in a plane. The nitrogen atom os- Only SIOWIy with
cillates between two equilibrium positions equidistant from each of the H atoms above respect to molecular
an’d .below 1Ihe plane. Th? potential energﬁf funutu?n V(x) acting on the N at.om‘ has two vibrations in general,
minima located symmetrically about the center of the plane, as shown in Figure 6-315b.
The N atom is bound to the molecule, so the energy is quantized and the lower states but with a well

lie well below the central maximum of the potential. The central maximum presents a defined (predictable)
barrier to the N atoms in the lower states through which they sl tunnel back and . .
forth.!'” The oscillation frequency = 2.3786 X 10'° Hz when the atom is in the state tunne“ng coefficient

characterized by the energy E, in Figure 6-31b. This frequency is quite low compared

with the frequencies of most molecular vibrations. a fact that allowed the N atom tun- All states are
neling frequency in NH; to be used as the standard in the first aromic clocks, devices .
that now provide the world’s standard for precision timekeeping. sSym metric about x

=0,E,and E, are

(b) Vix) § the same in both
\ troughs by
(% \ /’f\ Symmetry
0 Approximately two

Hooke potentials,
harmonic oscillation

Figure 6-31 (a) The NH, molecule oscillates between the two equilibrium positions
shown. The H atoms form a plane; the N atom is colored. (/) The potential energy of the N
atom. where x is the distance above and below the plane of the H atoms. Several of the
allowed energies. including the two lowest shown, lie below the top of the central barrier
through which the N atom tunnels. 103




Time independent, one space dimension

Normalization condition

Acceptability conditions

—h? d*Y(x)

- — =
o dx? V(x)b(x) = EY(x) 6-18
+oo
J WE(x, HW(x, 1) dx = 1 6-9
and
+oo
J UF(0l(x) dx = 1 6-20

1. Y(x) must exist and satisfy the Schrodinger equation.
2. i(x) and d{s/dx must be continuous.

3. P(x) and dis/dx must be finite.

4. (x) and dis/dx must be single valued.

5. Yi(x) — O fast enough as x — *o0 so that the normalization integral,
Equation 6-20, remains bounded.

2. Infinite square well

Allowed energies

Wave functions

n*E n=123,... 6-24

U, (x) \F el 12,3 6-32
X)=_[—Sin—— B= 0 2 3 ... -
A L L '
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3. Finite square well For a finite well of width L the allowed energies E_ in the well are lower
than the corresponding levels for an infinite well. There is always at least
one allowed energy (bound state) in a finite well.

4. Expectation values and operators The expectation or average value of a physical quantity represented by an
operator, such as the momentum operator Pop is given by
only three operators e B
_ * dx = # = — W dx 6-48
are fundamental ) L W P J_ v ( ax)"’

5. Simple harmonic oscillator

or on the same
Allowed energies E = (n - %)ﬁm B T G A order of 6-56
magnitude

4

energy-function
6. Reflection and transmission When the powlﬁfchanges abruptly in a distance small compared to the
de Broglie wavelength, a particle m@y be reflected even though E = V(x).

A particle rﬁ@f also penetrate into a region where £ < V(x).

Plane wave l-epresentat‘mn ‘Ifk(x. [ = Aplkx—wl) — Alcos(kx — wt) + i sin(kx — wi))
for a free particle

26 om P B (Y oY &Y

o Mx) — ih— =— + + +VY¥Y(x,y,z,t
dx? h [U(x) = El(x) ot 2m 6x2 6)/2 622 ( g )
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218 A T — 9 If not a square barrier or ditch
RE) + T(E) =1 gpy ~exp (—%ﬁzmjwﬁ(x) —E rz’x) q



https://phet.colorado.edu/sims/cheerpj/quantum-
tunneling/latest/quantum-
tunneling.html?simulation=quantum-tunneling
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m https://www.youtube.com/watch?v=Hmy-
N4AFNDM

= To pronounce Albert Einstein correctly and
then some ...
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EXAMPLE 6.9 Energy of a Finite Well: Exact Treatment

Impose matching conditions on the interior and exterior wavefunctons and show
how these lead to energy quantization for the finite square well.

Solution The exterior waveluncuons are the decaying exponenual [uncuons
given by Equaton 6.20 with decay constant o = [2m(U — E) /A% The interior
wave is an oscilladon with wavenumber & = (2mE/#2) /2 having the same form as
that for the infinite well, Equaton 6.15; here we write it as

ix) = Csinkx + Dcoskx for0 < x< L

To join this smoothly onto the exterior wave, we insist that the waveluncuon and its

Slcipr_' be conunuous at the well edges = Dand = L. At x = 0 the conditons for four equatlons for
smooth joining require four unknown

1,!.-{:1:}*2 A'sin kx + B'cos kx for 0 < x< L (6.15)

B0y = B =0 (continuity at x = 0)

¥ (6.16) * Infinitely deep
(L) = Asin K. =0 (continuity at x = L)

The last condition requires that k. = nw, where n is any positive integer.”

r{ x)
h{x) = Beo* forx > L

A= ff_'lr:l.'.' < U’ {E‘.ED}

YFor n=10 (E=10), Schrodinger’s equation requires dafr/ dx? = ), whose solution is given by

NI x) = Ax + B for some choice of constants A and B For this wavefunction to vanish at

For flnlte Square We”’ x= 0 and x = I, both A and B must be zero, leaving ffr(x) = 0 everywhere. In such a case the par-

ticle is nowhere to be found; that is, no description is possible when E = 0. Also, the inclusion of

B* —» C # O negative integers n < {} produces no new states, because n;ha.nging the §ig'n of n merely changes
the sign of the wavefunction, lr::u:ling to the same probabilities as for positive integers.

w(l)*=AsinkL »D #0 109




A=D (continuity of )

ad = kC (.:;_m unuity of ﬂ)
’ tlx

Dmviding the second equation by the first eliminates A, leaving

P r

b k
In the same way, smooth joining at x = L requires

Csinkl. + Dcoskl. = Be b (conunuity of i)

) d
kC coskl. — kD sinkL. = —aBe L (::::-nl.imm:r' ﬂfd—tp)
X
Again dividing the second equation by the first eliminates B. Then replacing C/D
with «/k gives
la/klcoskl. — sinkl. o

(ae/k)sinkl + coskl. K

For a specihed well height U7 and width 1, this last relaton can only be satshed for
special values of E (E i1s contained in both k and «). For any other energies, the
waveform will not match smoothly at the well edges, leaving a waveluncuon that is
physically inadmissable., (Note that the equation cannot be solved explicitly for E
rather, solutions must be obtained using numerncal or graphical methods. )
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From classical physics we have for the harmonic P. Sanghera, Quantum physics
oscillator ... Wiley 2011

dzx(t)

K x(t)=0 Nt . x(f)= Asin ot

- x=Ae

Where A is amplitude, i.e. maximal x, and K is spring constant, it can be
shown that

Z—i):Am/l—(%)

Compare that to the harmonic quantum oscillator

L We can “relate” A to a by setting these
dx z\ 2+l 2n+1} two equations equal and obtain
Since a is constant
| _ 2n+1 / i
taken _as 1im_where quantum _osc. behave classical o o =—
h

The higher the quantum number, the less the quantum oscillator overshoots its
classical limit (and the less tunneling), Bohr’s correspondence principle
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