CHAPTER 5

Wave Properties of Matter and Quantum Mechanics |

s 5.1 X-Ray Scattering (review and some more
material)

s 5.2 De Broglie Waves

s 5.3 Electron Scattering / Transmission electron
microscopy

= 5.4 Wave Motion
= 5.5 Waves or Particles?
s 5.6 Uncertainty Principle

s 5.7 Probability, Wave Functions, double slit
experiments, and the Copenhagen Interpretation

m 5.8 Particle in a Box

| thus arrived at the overall concept which guided my studies: for both
matter and radiations, light in particular, it is necessary to introduce the
corpuscle concept and the wave concept at the same time.

- Louis de Broglie, 1929 1
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5.1: X-Ray Scattering

= 1912, Max von Laue suggested that if x rays were a form

of electromagnetic radiation, interference effects should be

observed.

s Crystals act as three-dimensional gratings, scattering the

waves and producing observable interference effects
shown a few months later experlmentally
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1ig. 4-4(1). Fricdrich & Knipping®s first succesfal diffraction photograph.

Fig. 4=4(2). Fricdrich & Knipping"s imperoved set-up.




Laboratory based single crystal diffractometer



This is actually a
quasicrystal, you can tell
from the 10 fold rotation
symmetry

The image is a flat section
through reciprocal/Fourier
space

As a Fourier transform is a
good mathematical model
for the diffraction of X-rays
by crystals (most ordinary
condensed matter) and
quasicrystals (some
extraordinary condensed
matter)




Bragg's Law revisited

= William Lawrence Bragg (son) interpreted the x-ray scattering as the “specular
reflection” (constructive interference) of the incident x-ray beam from a unique

set of planes of atoms within the crystal.
= There are two conditions for constructive interference of the scattered x rays:
Q

1) The net plane spacing is
so that a path lengths
differences arise for the
incoming beam that must
be an integral number of
wavelengths.

Angle between incoming
and reflected beam must
then be 20

Only as a byproduct of (1)
and (2) the angle of
incidence equals the angle

of “reflection”

3)

= Bragg’s Law:
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The Bragg Spectrometer !

X-ray tube

= Bragg spectrometers (invented by Wilhelm Henry et
Bragg, father) to measure X-ray wavelengths by ) W \@
scattering from crystals. The intensity of a diffracted \ T i
beam is determined as a function of scattering T I |ﬂl”%(’_,L
angle by rotating the crystal and/or the detector. We j Vi
have seen it used in the Compton experiment | \

= When a monochromatic beam of X rays passes e e
through the powdered crystal, the dots become a
series of rings.
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Powder diffractometry is the most important usage of X-rays
in industry and possibly for mankind o



5.2: De Broglie Waves

= Prince Louis V. de Broglie suggested that massive particles (i.e.
matter) should have wave properties similar to electromagnetic
radiation.

= The energy can be written analogous to photons hf = pc = p/’l,f

= The wavelength of a matter wave is called the de Broglie
wavelength (by special relativity there is always a moving observer)
so that:

h | thus arrived at the overall concept which guided
l —r my studies: for both matter and radiations, light in
particular, it is necessary to introduce the corpuscle
p concept and the wave concept at the same time.
What apl?"es to mass - Louis de Broglie, 1929
less part|c|es E = pc = We have a second
hf, i.e. photons, also equation for momentum of
applies to massive a maSSive partiCIe in

particles — quite strange  addition to p =mv



platypus

_h
0= = hk

for all quantum
mechanical
particles, not just
photons

http://usatoday30.usatoday.com/tech/science/genetics/2008-05-08-
platypus-genetic-map N.htm, Ornithorhynchus anatinus, platipus

“Australia's unique duck-billed platypus is part bird, part reptile and part
mammal according to its gene map.

The platypus is classed as a mammal because it has fur and feeds its
young with milk. They hatch from eggs. It flaps a beaver-like tail. But it also

~ has bird and reptile features — a duck-like bill and webbed feet, and lives

mostly underwater. Males have venom-filled spurs on their heels.” 10



Bohr’'s Quantization Condition / standing waves

= Bohr’'s crucial assumptions concerning his hydrogen atom model was
that the angular momentum of the electron-nucleus system in a
stationary state is an integral multiple of h/21r.

= One can justify this by saying that the electron is a standing wave (in an
circular orbit) around the proton. This standing wave will have nodes and

be an integral number of wavelengths. ——
h h
- 2T =NA=Nn—
= [he angular momentum becomes:
nh
L=rp=—=nh
27[ Figure 5.2 Standing waves fit
to a circular Bohr orbit. In this
. L . particular diagram, three wave-
Wthh IS |dentlca| to BOhr,S lengths are fit to the orbit, cor-
. . responding to the n = 3 energy
crUCIaI assumptlon state of the Bohr theory.

Linear momentum is quantized as well, how come ? because total

energy is quantized in bound systems ! B



‘ The important new physics is that the electron is some kind
of a standing wave that reinforces itself while orbiting the
proton, circumference circle 21T r

If the wave is along the circumference of a
circle, that works, but there are many other
possible scenarios

Fundamertal ,,_._-_r:_ . _::33

152 Harmonic

First Owertonz e #,Pf-:___h_‘_____._ﬂ_ — 2008 Braoks/Cole - Thamson

2red Harmenic T

Second Overtore c’:wf;i‘i’r:} 22 W2 . .

0d b 32 for all higher harmonics, 2, 3,
Third Cvertone W

e ST 3 ...walls need to be apart

Ard 3o on. | 42w, distances w, = n2 21 a,

While this model is aesthetically less pleasing, it gives the very same predictions as the
Bohr model, so is for physics just as good, linear momentum is quantized here 12



So a “charged wave-particle thingy in a set of boxes model” makes the
same predictions, we only need to fix the widths of the boxes to certain
values of a certain constant and quantum jumps are then from one box to
the next.

The features of this model are that De Broglie’s equation is valid, we have
standing waves, and integral number of waves need to fit into the box in
order to make them a standing wave, with that we have linear momentum
and kinetic energy quantized, no need to consider any potential energy, so
total energy is quantized — isn’t that great and ridiculous

Since this model is in agreement with experimental evidence, it has just as
much predictive power as the Bohr model (but disagrees with Rutherford’s
experiment)

can claim to be just as right (or just as ridiculous) as the Bohr model - for
the purpose of explaining spectral lines - with the electron (particle) going
around the positively charged nucleus (another particle) in a circle
Bound system, particle in a box, it persist to exist, does not
blow up, does not disappear by some miraculous process, is
— always there going back and forth between the walls, won’t ——
stand still 3



5.3: Electron Scatterlng/lefractlon

Any experimental evidence?

sure in abundance

Several
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so low
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Figure 5.4 A schematic diagram of the Davisson—Germer apparatus.
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Figure 5.5 A polar plot of scattered intensity versus scattering angle for 54-eV elec-
trons, based on the original work of Davisson and Germer. The scattered intensity is

proportional to the distance of the point from the origin in this plot.

Figure 5-6 A series of
polar graphs of Davisson and
Germer’s data at electron
accelerating potentials from
36 V to 68 V. Note the
development of the peak at

¢ = 50° to a maximum

when Vu =54 V.

Figure 5-4 Scattering of
electrons by a crystal.
Electron waves are strongly
scattered if the Bragg
condition nA = 2d sin#8 is
met. This is equivalent to
the condition nA = D sino.

Between incident beam and
reflected beam, there is
always 20, the glancing
angle, with © as Bragg angle

ad

) 50° /7

48V

60V 64V 68V

Low energy electrons go only a
few atomic layers deep

15



a=90.0° V=540V, and ¢ = 50.0°

%JHEUE = ¢V v = N2Ve/me

h h
A= =

| r
MeV \2 Ve,

6.63 X 1073*]-s
V2(54.0 V) (1.60 X 10719 C)(9.11 X 103! kg)
= 167 X 10~ Y= 1.67A

A=

d was known to be 2.15 A from x-ray diffraction measurements,

dsin ¢ = nA

A = (2.15 A) (sin 50.0°) = 1.65 A

As the energy of the electrons is
so low, resulting in speeds
much below 1% of c, we can
use classical physics for
momentum for these particles
with mass, (many GeV to TeV in
accelerators are relativistic
particles)

Y Y

i
L ///
Note that this d is not a net B -

plane spacing, it's one of the |Hg_,

shortest distances of the 2D

> --0--—-a-—-

5 - asne - m 2D surface grating

SU rfaCe arrangement Of atomS Figure 5.6 Constructive interference of electron matter waves scattered from a single

layer of atoms at an angle ¢.

Rows of atoms act as surface grating, note
Bragg's diffraction equations, but the same

that this is not W. L.
kind of effect
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m Davisson and Germer experimentally observed that electrons were diffracted
much like x rays in nickel crystals, just trying to continue with prior research, no

knowledge of De Broglie’s hypothesis at that time

Filament

Movable
&, electron
X2, detector

—_——

Electron
'
beam -
' -

m George P. Thomson (1892-1975), son of J. J.
Thomson, knew about De Broglie's hypothesis
and set out to prove (or disprove) it, build the first
high energy electron diffraction camera

m reported seeing the effects of electron diffraction
in transmission experiments. The first target was
celluloid, and soon after that gold, aluminum, and
platinum were used. The randomly oriented
polycrystalline sample of SnO, produces rings as
shown in the figure at right.

siny =sin (180 —vy)

Incident beam

sin o

|

Nobel prize 1937
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Incident
beam

Intense
reflected
beam

20=40=2(90°-0©)
sin 2¢ = sin 180° - 26

A =2d, sin ©
Bragg equation

18



h h When acceleration voltages are small, we can get
L= e —— away with the non-relativistic expression for KE,
V szk EK y g

Here is Davisson’s account of the connection between de Broglie’s predictions
and their experimental verification:

20k Perhaps no idea in physics has received so rapid or so intensive development
as this one. De Broglie himself was in the van of this development, but the
chief contributions were made by the older and more experienced
Schrodinger. It would be pleasant to tell you that no sooner had Elsasser's
= ? suggestion appeared than the experiments were begun in New York which
1.0 4 resulted in a demonstration of electron diffraction— pleasanter still to say
4 that the work was begun the day after copies of de Broglie's thesis reached
05 America. The true story contains less of perspicacity and more of chance. ..
It was discovered, purely by accident, that the intensity of elastic scattering
0 | | | | I [of electrons] varies with the orientations of the scattering crystals. Out of
0 0.05 0.10 0.15 0.20 0.25 this grew, quite naturally, an investigation of elastic scattering by a single
V2 crystal of predetermined orientation. . . Thus the New York experiment was
not, at its inception, a test of wave theory. Only in the summer of 1926, after
| had discussed the investigation in England with Richardson, Born, Franck
and others, did it take on this character.’

Figure 5-5 Test of the de Broglie formula A = h/p. The
wavelength is computed from a plot of the diffraction
data plotted against V /%, where V,, is the accelerating
voltage. The straight line is 1.226V '/ nm as predicted
from A = h(2mE)~'/2. These are the data referred to in

the quotation from Davisson’s Nobel lecture. (X From . .

observations with diffraction apparatus; G same, the technique is now known as low energy
particularly reliable; [ same. grazing beams. © From H H

observations with reflection apparatus.) [From Nobel Prize € I eCtrO n d Iffra Ctlon ( LE E D) an d ava I ua b I €
Lectures: Physics (Amsterdam and New York: Elsevier, Su rfa ce Ch ara Cte nzat' on tool th at N eed S U Itra

© Nobel Foundation, 1964).]

high vacuum for clean surfaces

19



camera lengths, |

Ancdenanschiliss "
=] |+ Leuchtschirm
/’
Gmhindﬂ'r | o = Kamera
e r—— <
AL S 000 F=m e
! : .I 'I L | i ——— - e |
i k| | N
"l .T |# _.'_,-" . ; Bt . .
Wehneltzylinder Graphitfolie Elakiron j
BVaKUIeMe _,./')‘ J/
Glaskuge! Beugungsninge

p=me-v particle

me C = ﬁ . k Wave — mﬂ' Y= % = _},. = ."]‘?;F]-'L-" Bild auf dem Monitar
either I >>r, PN
%me . VE ——— Eglearr?é/e oy = f%_ X = F_Enl:-],er_.-' . or flat screen O e T L\J‘
| (both in TEM) S
2dsino, =n- A

vermessene

tﬂn E ¥ — n | % gungadnge
Bragg equation, typically ©, between primary fl ! <; ry
beam and diffracted beams always 2 ©

By measuring r, and knowing I one can determine the ratio A/d,
characteristic of the crystalline material !!! But why are there rings?? 2



Electron Source

Condenser lens

Object on fine grid

Objective lens

Projector lens

!
Photographic plate {
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(a) (b)

Figure 5.11

Light Source

Condenser lens

—l Screen

(a) Schematic drawing of a transmission electron microscope with mag-

netic lenses. (b) Schematic of a light-projection microscope.

- Typical acceleration voltages are
hundreds of thousands of eV

- —Electron gun
L\/_I/——Elcctmn beam

P

Magnetic
lenses

Current
varied to
change
focal

length

Fine e-beam
scans specimen

Specimen 2

Cj Scan

— generator

Y

CRT
[] display
Beam
scannipg

==

A
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Bl
- /”‘kpl} amplifier

Secondary
electrons

Figure 5.15 The working parts of a scanning electron microscope.

SEM

Typical acceleration voltages
are tens of thousands of eV

Collector & /
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LUf}GUN

: _/‘ SPRAY APERTURE
.

FIRST CONDENSER LENS

SECOND CONDENSER LENS
@ @— DOUBLE DEFLECTION COIL
STIGMATOR

FINAL (OBJECTIVE) LENS

BEAM LIMITING APERTURE
X-RAY DETECTOR
(WDS OR EDS)

PMT AMP
SCAN GENERATO?

SPECIMEN

SECONDARY ELECTRON
DETECTOR

TO DOUBLE — "
DEFLECTION COIL

MAGNIFICATION CONTROL

Figure 1.11. Schematic drawing of the electron and x-ray optics of a combined
SEM-EPMA.

Is there something very
important missing in
these images 7?77
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dead spider with a thin
coating of Au in order to
make it conductive for
better image contrast

(a) (b)

Figure 5.14 (a) A SEM micrograph showing blood cells in a tiny artery. (b) A SEM
micrograph of a single neuron (X4000). (P Motta & S. Correr/Photo Researchers, Inc.,
David McCarthy/Photo Researchers, Inc.)

Alternatively, one may give the magnification, but it is “bad
taste” in the community of electron microscopists

23



http://en.wikipedia.org/wiki/File:SEM_Zoom.ogg

The video starts at 25x, about 6 mm across the whole field
of view, and zooms in to 12000x, about 12 um across the
whole field of view. The spherical objects are glass beads
with a diameter of 10 ym, similar in diameter to a red
blood cell.

Magnification of a couple of hundred thousand times are possible
with modern SEMs

24



world’s first ever
SEM (with
transmission
capabilities, so
also a STEM)

Count Manfred
von Ardenne, (the
red baron), 1937

No academic
affiliation, private
laboratory, partly
sponsored by the
German post
office as part of
the development
of television

— 'L
| 8%
o

Commercialized
as late as 1965

. in England, later

on in Germany
and many other
manufactures
including FEI

25



Table top SEM, 350,000 x, 15 keV, with inbuilt spectrometer for
characteristics X-rays




Electron gun
Cathode

Anode

Electromagnetic
lens

Core

= : Coil
Electromagnetic
condenser

lens Electron
beam

Specimen

——Specimen
chamber
door

Screen .
Projector

. lens
Visual

transmission

Photo
chamber (b)

(a)

Figure 5.13 (a) Diagram of a transmission electron microscope. (b) A |

same TEM. (W, Ormerod/ Visuals Unlimited)

Tomography:
http://en.wikipedia.org/wiki/Transmi
ssion_electron_microscopy




Imaging mode Diffraction mode

_ ElectronGun

= —— _ System of condenser lenses <] =
= — Condenser aperture = —

Speumen

_ Objectivelens

In back focal plane of

Objective lens __Objective aperture

In image plane of

___Selected area aperture R Objective lens

Intermediate lens
(strength changes between two regimes)

Projector lens

g
Image Diffraction pattern



Logo of the Springer-Nature on-line journal
“Advanced Structural and Chemical Imaging’

0
combines an atomic ?
o*0

resolution Z-contrast image
of a grain boundary in Eu-
doped SrTiO5 with an in
situ image of FtsZ type
filaments (proteins) of
Arabidopsis thaliana
wrapped around.

)

the spacing of Sr atoms is i
approximately 0.4 nm. The 0%,
frieze group of the grain

boundary is p711g

iy
0.



EXAMPLE 5.3 Thermal Neutrons

What kinetic energy (in electron volts) should neutrons
have if they are to be diffracted from crystals?

Solution Appreciable diffraction will occur if the de
Broglie wavelength of the neutron is of the same order of
magnitude as the interatomic distance. Taking A = 1.00 A,
we find

h 6.63 X 107]-s

p= T - 1.00 X 10710 m

= 6.63 X 107 kg-m/s

The kinetic energy is given by
P (663X 107%]5*
2m, 2(1.66 X 10—27 kg)

1.82 X 10720 ] = 0.0825 eV

Note that these neutrons are nonrelativistic because K is
much less than the neutron rest energy of 940 MeV,
and so our use of the classical expression K= p?/2m,
is justified. Because the average thermal energy of a par-

Figure 5-11 Neutron Laue pattern of NaCl. Compare this
with the x-ray Laue pattern in Figure 3-14. [Courtesy of
E. 0. Wollan and C. G. Shull.]

ticle in thermal equilibrium is %kBT tor each indepen-
dent direction of motion, neutrons at room temperature
(300 K) possess a kinetic energy of

K=3kpT = (1.50)(8.62 X 1077 eV/K) (300 K)
= 0.0388 eV

Thus “thermal neutrons,” or neutrons in thermal equilib-
rium with matter at room temperature, possess energies of
the right order of magnitude to diffract appreciably from
single crystals. Neutrons produced in a nuclear reactor are
far too energetic to produce diffraction from crystals and
must be slowed down in a graphite column as they leave
the reactor. In the graphite moderator, repeated collisions
with carbon atoms ultimately reduce the average neutron
energies to the average thermal energy of the carbon
atoms. When this occurs, these so-called thermalized neu-
trons possess a distribution of velocities and a correspond-
ing distribution of de Broglie wavelengths with average
wavelengths comparable to crystal spacings.

Electrons are about 2,000 times lighter
than neutrons, to have a wavelength
that is suitable for diffraction on crystals,
they need to have the same (or more)
momentum as these neutrons, i.e. much
~ higher speeds, in electron microscopes
they are at relativistic speeds )



E? = (pc)* + (mc?)?

Writing E,, for the rest energy mc? of the particle for convenience.

this becomes

E? = (pc) + E}

Since the total energy E = E, + E,. Equation 5-8 becomes

(B, + EP ={(peP+E}
that, when solved for p. yields

QEE, + B3

(&

P

from which de Broglie equation for special relativity

y — he
(2E,E, + E)'\2

This can be written in a particularly useful way applicable to any
particle of any energy by dividing the numerator and denominator by

T — 2 ae e
the rest energy E; = mc* as follows:

he/mc? h/mc

Note the
scaling in
powers of 10
onyandx, 102
could also be
alogqyscale 1o

Ln

Ln

h==

h = iy =
(RE,E, + E)'2/E, |[2E/E,) + (E,/E,’1"?

Recognizing h/mc as the Compton wavelength A _of the particle of
mass m (see Section 3-4), we have that, for any particle,

A,

" [2E/E,) + (EJE]'"

No special relativity
needed

108

Ae = hime
Ey=mc2

Kl
T II|IIII T II|IIII T II|IIII'

102L  where y is the
Lorentz factor

-4
10° 107% 4072 1 102 10%

EJE, = V-1

Figure 5-13 The de Broglie wavelength \
expressed in units of the Compton wavelength A_
for a particle of mass m versus the Kinetic energy
of the particle £, expressed in units of its

rest energy E, = mc*. For protons and neutrons
E, = 0.938 GeV and A, = 1.32 fm. For electrons
E, = 0.511 MeV and A_ = 0.00234 nm.

an alternative formula for the de Broglie wavelength derived from special
relativity and insights from the analysis of the Compton experiment



Rutherford’s a-particles
had energies on the
order of magnitude 5
MeV, experiments are
now done with GeV
particles, so 200 times
more energy

Will they behave “more
like” bullets or waves?

Figure 5-12 Nuclei
provide scatterers whose
dimensions are of the order
of 1075 m. Here the
diffraction of 1-GeV
protons from oxygen nuclei
result in a pattern similar to
that of a single slit.

10" —
100
107"
1072
1073

10~4

Intensity of scattered beam of protons

107"

| | | | | | |
0 2 4 6 8 101214 16 18 20 22 24 26 28

Scattering angle, degrees

15

So protons of sufficiently high energy are diffracted by the internal
structure of the nuclei, the higher the energy the smaller the length scale

32



5.4: Wave Motion

Classical waves and light can be represented by a wave function. A
1D sinusoidal wave traveling to the right (positive x-axis) with time is
represented by
s 27
F(x,1) = Asin 7("_‘”) expression in [ ] must be dimensionless

This is a solution to the wave equation (time dependent Helmholtz
equation in Europe)

2w 1 82w The really great thing is that any wave needs to
3 = 5 <7 be a solution to this equation, can be derived
Ox Vo ot from Newton’s laws in case of classical waves

Define the wave number k and the angular frequency w as:

27 27

Wave-number K=—— and @ =—  Angular frequency

The wave function is now: W(x, t) = A sin (kx — wit).

y(x, 1) = y,cos(kx — wt) = y,cos2m ( = ) = yﬂcosT(,\: — )

¥ t 27T

A i 33



Wave Properties

= The phase velocity is the velocity of a point on the wave that has a
given phase (for example, the crest) and is given by
_ Ao w =21 f

1% — = __
Php ke

W (x,1)

= A phase constant @ shifts the wave:
Y(x,t) = Asin(kx — ot + ¢).

@ in radian, 360° = 21T rad

- A

A sinusoidal wave represents a

free particle, not part of a system, —_—t= ()
not bound to anything, basically — =t
the only particle in the whole of Phase shift of 11/2
the universe, a model, but good changes sine into

approximation for many purposes cosine 34



W.(x, ) = A sin (kx — wt) are both azLP B 1 aZLIJ

— _ solutions to > 92 )
+ W, (x, f) = A cos (kx — wt) ax Y, at
V..o (x, t) = A {cos (kx — wt) + sin (kx — wt)} Since this is a linear equation,
the sum of two solutions will
That’s all fine for traveling classical also be a solution, constant
waves and light, but factors do not matter either

e' ™™™ = cos(kx — o) + i sin(kx — ct)
W omplex (X; t) = A {cos (kx — wt) +isin (kx — wt)} solves both
the time dependent Helmholtz equation and the Schrodinger
equation which is in its time dependent form also complex
(and linear as well), next section of the course, quick glance

OF(x,t) A 0¥ (x,0)
ot 2m  ox’

Wave function for traveling matter waves need to be
complex, standing matter waves are real by superposition

ih +VP(x, 1) i=-/_1



Principle of Superposition of waves

When two or more waves traverse the same region, they act independently
of each other.

Combining two cos waves with very similar frequency and wave number

yield cos
Y(x,1)=Y,(x,1)+¥,(x,1)= ZA(% X — ATQI‘) cos(k, x — @, 1)

When many more waves are combined, the phase of the wave oscillates
within an envelope that denotes the maximum displacement of the
combined waves.

When combining (infinitely many) waves with different amplitudes and
frequencies and wave numbers, a pulse, or wave packet, is formed which
moves at a group velocity:

Superimposing many many different
sinusoidal waves

Uy = Aw [ Ak.

Details in the following slides 36
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Superposition of many different
sinusoidal waves to a blob, which
represents a particle, this blob
travels with the group velocity =
velocity of the particle that it

represents
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Figure 5-16 (a) Superposition of seven sinusoids y,(x, ) = ¥, cos(kx — wt) with uniformly spaced wave numbers ranging

from k = (2m)9 10 k = (2w)15 with ¢ = 0. The maximum amplitude is | at the center of the range (k = (2w)12), decreasing

15

o 1/2, 1/3, and 1/4, respectively, for the waves on each side of the central wave. (b) The sum yw(x, 0) = E ¥ix, () is maximum

i=9

at x = 0 with additional maxima equally spaced along the =x axis. (¢) Amplitudes of the sinusoids v, versus wave number . 37



Figure 5.17 Representing a particle with matter waves: (a) particle of mass m and
speed vg; (b) superposition of many matter waves with a spread of wavelengths cen-
tered on Ay = I/ mvy correctly represents a particle.

Group velocity and phase velocity are
different, a wave group moves with the group
velocity — which de Broglie showed to be the
same as the velocity of the particle v,

‘fl' 1:-__ —
-'-l

LT

Figure 5-14 (a) Wave

pulse moving along a string.
A pulse has a beginning

and an end; i.e., it is
localized, unlike a pure
harmonic wave, which goes
on forever in space and time.
(b) A wave packet formed
by the superposition of
harmonic waves.

The waves that form the pulse have a wide range of phase velocities, wave numbers,

intensities, angular frequencies.



Phenomena of beats, two superimposed waves

A A k. + k o, + o
yx. 1) = yocos(klx - mlt) + Y,c08 (kzx — w,f) = y(x,1) = 2y,cos (Tkx - 7(01‘) cos( ! > 2% — 5 21‘)

| | -
y(x,1)) = 2y,co8 (;&k}: = ;Am) cos(kx — wt)

_ o = (0, + w,)/2
Ak = k, — k, small if waves  © oy i)t large if waves

Ao = o, — o, are similar k=(k +k)/2  are similar

The wave within the envelope moves with the speed @/k. the phase velocity v due to
the second cosine term. If we write the first (amplitude-modulating) term as
cos {%Ak[x — (Aw/Ak) t]}, we see that the envelope moves with speed Aw/Ak. The
speed of the envelope is called the group velocity Ver

(w9 —w)/2 Ao

(o T w9)/2  wyp U = — =
. ¥ P k2 Ry (ke —ky)/2 Ak
high low

Figure 5-15 Two waves of slightly different wavelength and frequency
produce beats. (a¢) Shows y(x) at a given instant for each of the two
waves. The waves are in phase at the origin. but because of the
difference in wavelength, they become out of phase and then in phase
again. (b) The sum of these waves. The spatial extent of the group Ax is
inversely proportional to the difference in wave numbers Ak, where &

is related to the wavelength by k = 2/\. Identical figures are obtained
if v is plotted versus time t at a fixed point x. In that case the extent in
time Ar is inversely proportional to the frequency difference Aw.




Mathematical uncertainty principle for the scenario of beats

; 1 ) - . .
Y, 1)) = 2y,c05 (;MI _ _Mr) cosix —an  Note that this is a function of 2 variables

It is interesting that our simple two-wave model also shows the general prin-

y Broad ciples given by Equations 5.16 and 5.17. If we call (rather artificially) the spa-

High rl‘~fl“‘5'“c‘ waye ““‘IOP‘“ tial extent of our group the distance between adjacent minima (labeled Ax in

’1 ‘?4.0% AT"‘ Figure 5.12), we find from the envelope term 2A4 cos(%Akx) the condition
h %Ak Ax= mor

[‘\ /\ ﬂ ﬂ AkAx = 27 (5.18)
f\\ N [\ Here, Ak = ko — k) is the range of wavenumbers present. Likewise, if x is

held constant and ¢ is allowed to vary in the envelope portion of Equation

COS|———=

|
/ l \ | 1
[ \ 27 5.14, the result is 5(ws — wy) At = 7, or
SN / i , bwy — )
g l = ~ |
A | N — ! Aw At =27 (5.19)
! s ! Therefore, Equations 5.18 and 5.19 agree with the general principles, respec-

tively, of Ak Ax = 1 and Aw Al = 1.

Figure 5.19 Superposition of two waves of slightly different wavelengths resulting in
primitive wave groups; { has been set equal to zero in Equation 5.14.

For infinitely many waves
with enormously range of AxAk =1 N = de Broglie
frequencies and wave

numbers, we get these AtAw = 1 f=
mathematical uncertainties

P
% Planck-Einstein
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5.4 FOURIER INTEGRALS

In this secton we show in detail how to construct wave groups, or pulses, that are
truly localized in space or time and also show that very general reciprocity relations
of the type AkAx = 1 and AwA{ = 1 hold for these pulses.

To form a true pulse that is zero everywhere outside of a finite spatial range Ax
requires adding together an infinite number of harmonic waves with continuously
varying wavelengths and amplitudes. This addition can be done with a Fourier inte-
gral, which is defined as follows:

fx) = a(k) e**dk (5.26)

1 f e
N2qr 4%
Here f(x) is a spatially localized wave group, a(k) gives the amount or amplitude of
the wave with wavenumber k = (27/A) to be added, and ¢** = cos kx + i sin kx is
Euler’s compact expression for a harmonic wave. The amplitude distribution func-

tion a(k) can be obtained if f(x) i1s known by using the symmetric formula

1 e :
Ay~ a(k) = —j (x) e Rx gy (5.27)
Ak, -Ax~1 eyl I
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m Loosely speaking,

= These integrals are reciprocal-"symmetric” to each other, obviously
eXtimes ex=¢e% =1

= because f(x) and a(k) are reciprocal to each other we speak of direct
or physical space and reciprocal of Fourier space (sometimes
diffraction space)

https://www.youtube.com/watch?v=MBnnXbOM5S4

A mixture of maths+physics+entertainment, a whole visual series:
3Blue1Brown channel

Visualization Fourier transform:
https://www.youtube.com/watch?v=spUNpyF58BY &t=12s

Fourier series
https://www.youtube.com/watch?v=r6sGWTCMz2k
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Equations 5.26 and 5.27 apply to the case of a spatial pulse at fixed tume, but it is
important to note that they are mathematically identical to the case of a time pulse
passing a fixed position. This case is common in electrical engineering and involves
adding together a continuously varying set of frequencies:

| s |
V(t) = _J g(m)ef“”":dw (5.28)
N2 J—=
1 [ |
glw) = V(t) et (5.29)

27 J—=

where V() 1s the strength of a signal as a function of ume, and g(w) 1s the spectral
content of the signal and gives the amount of the harmonic wave with frequency w
that is present.

Aw- At =1
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Ax-Ak =1 multiply with #

Ax-Ak-h~=h whatisAk-Hh ? itis actually Ap why?
27 . .

because k= — and with de Broglie p = hk

leading by differentiation and expansion to deltas Ap =hAk so Ax - Ap =T

At-Aw =1 multiply with #
At-Aw-h ~h whatis Aw-h ? itisactually AE  why? , because
w=2rx-f  andwith Plank-Einstein F =hA®

leading by differentiation and expansion to deltas AE =IA®w so At-AE = h

GREAT out of two mathematical uncertainties, we derived
by physical interpretation of a matter wave pulse (using de -
Broglie and Planck-Einstein) Heisenberg'’s uncertainty principle



m _
Yo
o Q— x
Ak, -Ax =1

| Modern physics backed up by experiments

Ak, -Ay =1 Mathem_ati_cal ‘\ E=h-w
uncertainties |

Ak_-Az ~1 dE=h-dw

Aw- At =1 AE =7 -Aw
Aprxzh | U. = v px:hkx
| 5 “ dp. =hdk,

Apy Ay =n Heisenberg's |
Ap. Az~ uncertainties
AE -At = h

—_— e Apx = hAkx
p, =hk,

dp, = hdk,
Ap, =nAk,

(b) A

& 2005 Brooks/Cole - Thomson



Gaussian Function and wave packet

= A Gaussian wave packet may approximate the envelope of a certain

PUISe Wave- \p(x, 0) = W(x) = de ™ cos(kyx)
i (x)

I

N
*QL J,U* )
\ /
Gaussian \ 7
L[\
k l

<A x

—ARZAx?

(a) (b)

_do
= The group velocity is = dk :

2 2005 Brooks/Cole = Thomsan
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Fourier transform of Gaussian or normal distribution function, (zero mean
and standard deviation o).

¥ rj
(t)=——exp| -- —co<f<oo
1 o2 ﬂp{ ] h

2 r I 3 7 2 ? 2
=(2?IO‘}IJ€J.}J|:- S --z-fr'+20-2fwr+(o-*fm)‘-(g' i ) J]dr
2 =0
_ep-g’w /2 1T (t+iglo )
which can be rewritten as ~ $/*’ S ovom L °F [ 267 ](ﬁ
g(w)= ex;v[-g_ ® ]
Finally this can be shown to give N2 2

which is also a Gaussian distribution with zero mean but with standard
deviation equal to 1/0,i.e. o, 0, =1

The narrower in time a pulse is, the greater the spread of its frequency

components. That's again the mathematical uncertainty principle.



for the ideal of a Gaussian wave packet only

If a measurement of position is made with precision Ax and a simultane-
ous measurement of momentum in the x direction is made with preci-
sion Ap,, then the product of the two uncertainties can never be smaller
than A#/2. That is,

ApyAx = i (5.31)

)

-

There can be three components of vector p in 3D, so three times
(5.31)

The uncertainty principle has actually nothing to do with
measurements, repeated measurements won't do you any good, it is
loosely speaking a systematic rest error that nobody can correct, just
nature is at the quantum level a bit fuzzy, doesn’t behave as we are
used to from classical physics for large objects.

Given for one instant an intelligence which could comprehend
ﬁ all the forces by which nature is animated and the respective
positions of the things which compose it...nothing would be
uncertain, and the future as the past would be laid out before
its eyes. Pierre Simon de Laplace, 1776

Energy-time uncertainty

AEAL =

principle 9
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EXAMPLE 5.8 The Uncertainty Principle
Changes Nothing for
Macroscopic Objects

(a) Show that the spread of velocities caused by the un-
certainty principle does not have measurable conse-
quences for macroscopic objects (objects that are large
compared with atoms) by considering a 100-g racquetball
confined to a room 15 m on a side. Assume the ball is
moving at 2.0 m/s along the x axis.

Solution

A 105 X 1073 ]s
2Ax 2X 15m

Ap, = = 3.5 X 10730 kg-m/s

Thus the minimum spread in velocity i1s given by

e 305 X =i, P 5
_ Ap, _ 3.05 X 10 kg-m/s 3.5 X 10-35 m/s
m 0.100 kg

Av,

This gives a relative uncertainty of

5 —35
Av, _ 3.5 X 1072 = gy po
Uy 2.0

which is certainly not measurable.

(b) If the ball were to suddenly move along the y axis
perpendicular to its well-defined classical trajectory along
x, how far would it move in | s? Assume that the ball
moves in the y direction with the top speed in the spread
Awy produced by the uncertainty principle.

Solution It is important to realize that uncertainty rela-
tions hold in the y and z directions as well as in the x
direction. This means that Ap, Ax= /2, Ap, Ay=h/2,
and Ap, Az = /2 and because all the positi(}ﬁ uncertain-
ties are equal, all of the velocity spreads are equal. Conse-
quently, we have Ay, = 3.5 X 1073 m/s and the ball
moves 3.5 X 1073 m in the y direction in 1s. This dis-
tance is again an immeasurably small quantity, being
10~ times the size of a nucleus!

Exercise 4 How long would it take the ball to
move 50 cm in the y direction? (The age of the
universe is thought to be 15 billion years, give or take a
few billion).

One billion years = 3.154 10'® seconds
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Probability of finding a particle at a certain
pOint in Space and time, modification of same slide will be

shown later on again
= The “square” of wave function determines the likelihood (or

probability) of finding a particle at a particular position in space at
a given time. 5
P(y)dy ="Y(y.0)" dy

= The total probability of finding the electron is 1 (or 100%). Forcing
this condition on the wave function is called normalization.

Im P(y) dy = Im ‘LIJ(y,l‘)‘z dy =1 If wave function is normalized !!

I‘P (. 0)-¥(y,1)-dy = something ¥, ... (V1) = %/wme hing Y(y,1)

dy for no particular reason, it's just 1D dx, (in 3D space with time

separated (not 4D) as the particle doesn’t move very fast) >



Probability and square of Wave Function

= The square of wave function determines the likelihood (or

probability) of finding a particle at a particular position in space at
a given time.

P(y) dy _ ‘LP(J/J)E dy dy for no particular reason, it's just 1D dx

= The total probability of finding the electron is 100%. Forcing this
condition on the wave function is called normalization.

J:P(y) dy = IZLP( v dy=1

Walter Huilel Nobel Prize 1954 to Max Born: “"for his
Erwin with his psi can do fundamental research in quantum
Caleulatons quite a few. mechanics, especially for his statistical

5 g has it been see : i 1 "
But pme-tiing lasnol been spen interpretation of the wave function

Just what does psi really mean?
(English translation by Felix Bloch)

Normalization sets a scale to all

51
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pq —gqp = hj2mi

“somewhere here” at a cemetery
of Gottingen/Germany are the
remains of the GREAT Max Born
and his lovely wife

By observation of known examples solved by guess-work he found this
rule and applied it successfully to simple examples such as the harmonic and
anharmonic oscillator.

This was in the summer of 1925. Heisenberg, plagued by hay fever took
leave for a course of treatment by the sea and gave me his paper for publica-
tion if I thought I could do something with it.

The significance of the idea was at once clear to me and [ sent the manu-
script to the Zeitschrift fiir Physik. I could not take my mind off Heisenberg’s
multiplication rule, and after a week of intensive thought and trial T suddenly
remembered an algebraic theory which I had learned from my teacher,
Professor Rosanes, in Breslau. Such square arrays are well known to math-
ematicians and, in conjunction with a specific rule for multiplication, are
called matrices. [ applied this rule to Heisenberg's quantum condition and
found that this agreed in the diagonal terms. It was easy to guess what the
remaining quantities must be, namely, zero; and at once there stood before
me the peculiar formula

pq —qp = hf2zi

This meant that coordinates g and momenta p cannot be represented by

CIaSS|CaI phyS|CS pq . qp — O figure values but by symbols, the product of which depends upon the order

of multiplication - they are said to be « non-commuting ».

http://www.nobelprize.org/nobel prizes/physics/laureates/1954/born-lecture.pdf
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The art of guessing correct formulae, which deviate from the classical for-
mulae, yet contain them as a limiting case according to the correspondence
principle, was brought to a high degree of perfection. A paper of mine,

Heisenberg, who at that time was my assistant, brought this period to a
sudden end®. He cut the Gordian knot by means of a philosophical prin-
ciple and replaced guess-work by a mathematical rule. The principle states
that concepts and representations that do not correspond to physically ob-
servable facts are not to be used in theoretical description. Einstein used the

same principle when, in setting up his theory of relativity, he eliminated the
concepts of absolute velocity of a body and of absolute simultaneity of two
events at different places. Heisenberg banished the picture of electron orbits
with definite radii and periods of rotation because these quantities are not
observable, and insisted that the theory be built up by means of the square
arrays mentioned above. Instead of describing the motion by giving a co-
ordinate as a function of time, x(t), an array of transition amplitudes xm»
should be determined. To me the decisive part of his work is the demand
to determine a rule by which from a given



AREY | Sy K, o s mas the array for the square | (x2),; (x2),5 .- ...

— = e m— e R — — o m— m— e = e m—

can be found (or, more general, the multiplication rule for such arrays).

== By observation of known examples solved by guess-work he found this

rule and applied it successfully to simple examples such as the harmonic and
anharmonic oscillator.

This was in the summer of 1925. Heisenberg, plagued by hay fever took
leave for a course of treatment by the sea and gave me his paper for publica-
tion if I thought I could do something with it.

The significance of the idea was at once clear to me and I sent the manu-
script to the Zeitschrift fiir Physik. I could not take my mind off Heisenberg's
multiplication rule, and after a week of intensive thought and trial I suddenly
remembered an algebraic theory which I had learned from my teacher,
Professor Rosanes, in Breslau. Such square arrays are well known to math-
ematicians and, in conjunction with a specific rule for multiplication, are
called matrices. I applied this rule to Heisenberg's quantum condition and
found that this agreed in the diagonal terms. It was easy to guess what the
remaining quantities must be, namely, zero; and at once there stood before
me the peculiar formula
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pq —qp = hj2mi

This meant that coordinates g and momenta p cannot be represented by
figure values but by symbols, the product of which depends upon the order
of multiplication - they are said to be « non-commuting ».

This was left to Schrodinger, and [ immediately took up his method since it
held promise of leading to an interpretation of the yfunction. Again an idea
of Einstein’s gave me the lead. He had tried to make the duality of particles -
light quanta or photons - and waves comprehensible by interpreting the
square of the optical wave amplitudes as probability density for the occur-
rence of photons. This concept could at once be carried over to the y-func-
tion: [|% ought to represent the probability density for electrons (or other
particles). It was easy to assert this, but how could it be proved?

atomic collision processes suggested themselves

ally, as it is called. In this way it was possible to get a theoretical basis" for
the assumptions of Bohr's theory which had been experimentally confirmed
by Franck and Hertz. Soon Wentzel “succeeded in deriving Rutherford’s =
famous formula for the scattering of o-particles from my theory. 55



deeply. Ishould like only to say this: the determinism of classical physics
turns out to be an illusion, created by overrating mathematico-logical con-
cepts. It is an idol, not an ideal in scientific research and cannot, therefore,
be used as an objection to the essentially indeterministic statistical interpre-

tation of quantum mechanics.

The latest research on nuclei and elementary particles has led us, how-
ever, to limits beyond which this system of concepts itself does not appear to
suffice. The lesson to be learned from what I have told of the origin of
quantum mechanics is that probable refinements of mathematical methods
will not suffice to produce a satisfactory theory, but that somewhere in our
doctrine is hidden a concept, unjustified by experience, which we must elim-
inate to open up the road.

5. W. Heisenberg, Z. Physik, 33 (1925) 879.

17. M. Born, Z. Physik, 37 (1926) 863 ; 38 (1926) 803 ; Gottinger Nachr. Math. Phys.
KI., (1926) 146.

The two Nobel prize papers mentioned above.

56



Dispersion

= Considering the group velocity of a de Broglie wave packet yields:
L _dE pc
® dp E

= The relationship between the phase velocity and the group velocity is

do d
U
& dk dk

v
k Y g
V) =Von +K-

= Hence the group velocity may be greater or less than the phase
velocity. A medium is called nondispersive when the phase velocity
is the same for all frequencies and equal to the group velocity.

All matter waves are dispersing — they do not need a medium to
— travel in, it's simply a consequence of the uncertainty principle, a light ——
pulse in vacuum does not disperse, a light signal in a glass fiber does
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Figure 5-19 A three-dimensional wave packet
representing a particle moving along the x axis.
The dot indicates the position of a classical
particle. Note that the packet spreads out in the x
and y directions. This spreading is due (o
dispersion, resulting from the fact that the phase
velocity of the individual waves making up the
packet depends on the wavelength of the waves.
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5.5: Waves or Particles?

= Young’s double-slit diffraction experiment
demonstrates the wave property of light.

= However, dimming the light results in
single flashes on the screen
representative of particles.

(a) 20 counts

Incident
light waves

—>=

o

/ Screen
> |<— f———

[>>d,
far fleld o

i€ 2008 Brooks/Cole - Thomson WI OI lg

Same applies to particles with mass !!!!

(d) ~4000 counts

nnnnnnnnnnnnnnnnnnnn



Electron Double-Slit Experiment

s C. Jonsson of Tubingen,
Germany, succeeded in 1961
in showing double-slit
interference effects for
electrons by constructing
very narrow slits and using
relatively large distances
between the slits and the
observation screen.

= This experiment demonstrated
that precisely the same
behavior occurs for both light
(waves) and electrons
(particles).
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(a)

@ 2005 Brooks/Cole - Thomson

(b)

(d)

(f)
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http://en.wikipedia.org/wiki/Double-slit_experiment



sinc function, is the Fourier transform of the rectangular function

sin{rx)

.......................

For any wave,
the local
amplitude
squared gives
the local
iIntensity, number
of constituent
particles

Same applies in
principle to wave
functions

See also: http://en.wikipedia.org/wiki/Sinc_function
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y
a, d, and A have to be on a similar order, d >> a for 4
easily observable diffraction effects

azzzasm®
A R =]
Electrons v SN ey """‘#___#,,f'*"
O ; :__ rrrrr T _...__'_...-""'-"H
Ol T ‘H__,ﬂ--*""‘lg
O d |l ####::F ——————————————————————
O i —L:—- -.FB
O
envelope Electrton __—

detector

sin” (/)
](a’d’ﬂ’) = [(aadaﬂ') = ]max COSz(g-d ‘Siﬂ@) . —é

C79%

Superposition part

a is widths of the slit, a is

. . counts
phase difference in rad :

min

© 2005 Brooks/Cole - Thomson



Only one slit open

I(a)=1(a,4) =1maXM

distance slit to detector much larger than widths of slit,
Fraunhofer (far field) diffraction pattern

a and A have to be on the same order for easily
obseryable diffraction effects

25

where o phase difference,
dimensionless

a slit widths, unit m

the “oscillating term” is
also know as the square
of a (cardinal) sinc

function
_—

counts/min




Both slits open

s
(a,d,2)=1(a,d,2) =1, cos’ (% d -sin®)- lsm (5)]

(@)’

path difference o and a (slit
widths) as defined earlier for
single slit; d distance
between the two slits, for
easy observation of
diffraction, d and A of the
same order, also d >> a

|\F| l"'J + ILPQ |2
Not observed 2T
a=—a-sin®
Table 5.1 A
Case Wavefunction Counts/Minute at Screen
Electron is measured to pass ¥V, or Wy W 2+ |Wy?
through slit 1 or slit 2
No measurements made on v, + WV (W 2+ |Ws|? + 2|, ||Ws] cos ¢

electron at slits

@& 2005 Brooks/Cole - Thomson

If you don’t have information on which slit the particle went
through, you have the interference pattern, ask Andres La Rosa 66



Matter waves are complex and have amplitude and phase,
assume the same amplitude, but there is a phase difference

e' ™ = cos(kx — at) + i sin(kx — o)

The waves spread
out after the slit
and interfere, the
square of the
amplitude after
interference gets
registered as
individual particles

@ 2005 Brooks/Cole - Thomson

|‘P1+qj2

c=\/a2+b2—2ab-sin®

)|




Which slit”? — standard explanation

m To determine which slit the electron went through: We set up a light
shining on the double slit and use a powerful microscope to look at the
region. After the electron passes through one of the slits, light bounces
off the electron; we observe the reflected light, so we know which slit
the electron came through (we gained which-way information).

= Use a subscript “ph” to denote variables for light (photon). Therefore the
momentum of the photon is

N
p= > —
p ﬂ‘ph d
_ h h
= The momentum of the electrons will be on the order of p = R ~ ri
el

= The difficulty is that the momentum of the photons used to determine
which slit the electron went through is sufficiently great to strongly
modify the momentum of the electron itself, thus changing the direction
of the electron! The attempt to identify which slit the electron is passing
through will in itself destroy the double slit interference pattern.
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Before
collision

Incident
photon

Electron

(a)

After
collision

Scattered
photon

Recoiling
electron

(b)

Figure 5.26 A thought experi-

ment for viewing an electron
with a powerful microscope.

(a) The electron 1s shown be-

fore colliding with the photon.

(b) The electron recoils (is dis-
turbed) as a result of the colli-

sion with the photon.

|

|

|

|

|

|

(4

=]

= X ’.
p=h/A . (7]

Sc&[terﬂc! P
/
photon F
2,
I 7
N
e~ initially S |
at rest

y

Incident photon
bo = h/ A

X

& 2005 Brooks/Cole - Thomson

Since the
uncertainty principle
is really a statement

about accuracy
rather than
precision, there is a
non-classical kind of
“systematic rest
error’ that cannot be
corrected for

In classical physics
this is simply
ignored as things
are large in
comparison to
electrons, atoms,
molecules, nano-

crystals ...
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Detecting Unscattered
H particles electron

Scattered
electron
Scattering of the electrons (that come

through the both slits) on a bunch of
massive detecting particles, result
destruction of the interference pattern

Screen

© 2005 Brooks/Cole - Thomson

For more what is really going on. PH 411 Andres LaRosa 70



The Copenhagen Interpretation

= Copenhagen’s interpretation of the wave function (quantum mechanics in
its “final” and current form) consists of 3 (to 4) principles:

1)  The complementarity principle of Bohr
2)  The uncertainty principle of Heisenberg

3) The statistical interpretation of Born, based on detection
probabilities determined by squares of wave functions

4) Bohr’'s correspondence principle (for reasonable quantum mechanics ideas) —
doesn’t capture wave — particle duality, build bridge to classical physics, ad hoc
quantization to explain the spectral lines of hydrogen-like atoms and +ions

= Together these concepts form a logical interpretation of the physical
meaning of quantum theory. According to the Copenhagen interpretation,
physics needs to make predictions on the outcomes of future experiments
(measurement) on the basis of the theoretical analysis of previous
experiments (measurements)

= Physics is not about “the truth’, questions that cannot be answered by
experiments (measurements) are meaningless to the modern physicist.
Philosophers, priests, gurus, ... can be asked these questions and often
answer them. Problem: they tend to disagree ... (and want to get paid)
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The physicist Max Born, an important contributor to the foundations of

quantum theory, had this to say about the particle—wave dilemma:

The ultimate origin of the difficulty lies in the fact (or philosophical principle)
that we are compelled to use the words of common language when we wish to de-
scribe a phenomenon, not by logical or mathematical analysis, but by a picture
appealing to the imagination. Common language has grown by everyday experi-
ence and can never surpass these limits. Classical physics has restricted itself to
the use of concepts of this kind; by analyzing visible motions it has developed two
ways of representing them by elementary processes: moving particles and waves.
There is no other way of giving a pictorial description of motions—we have to
apply it even in the region of atomic processes, where classical physics breaks
down.

Every process can be interpreted either in terms of corpuscles or in terms of
waves, but on the other hand it is beyond our power to produce proof that it is actu-
ally corpuscles or waves with which we are dealing, for we cannot simultaneously de-
termine all the other properties which are distinctive of a corpuscle or of a wave, as
the case may be. We can therefore say that the wave and corpuscular descriptions
are only to be regarded as complementary ways of viewing one and the same objec-
tive process, a process which only in definite limiting cases admits of complete picto-

rial i]][E]"pI‘EtEI[iD]].IE
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5.8: Particle in an infinitely deep Box

= A particle of mass m is trapped in a one-dimensional box of width [, but not under the
influence of a force, so no potential energy
= The particle is treated as a standing wave.
= The box puts boundary conditions on the wave. The wave function must be zero at the
walls of the box and on the outside.
= In order for the probability to vanish at the walls, we must have an integral number of half
wavelengths in the box.
nl 24 —fik ="
T=t o 4,=" (1=123.) 7 hk ="/
n
= The energy of the particle is 1 pz hz
E=KE =—-mv’= = 5
2 2m  2mA” o
= As wavelengths and momenta are quantized, so will be total energy (which is all kinetic (as

potential energy inside box is zero, infinity outside)

2 2 2
n:h[”j 2 " (n=1,2,3,..)
2m\ 24 8m/l

= A particle in a box will possess at any one time one of these discrete energies. Transitions
between the energy levels are possible, if the particle is charged, these transitions are akin
to the spectral lines of atoms.
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Probability of finding the Particle in a certain region of

space

n The probability of observing the
particle between x and x + dx in each
state is

P, dxoc|¥, (x) dx

Since there is dx, we need to integrate over
the region we are interested in

All other observable quantities will be
obtained by integrations as well.

m Note that E, = 0 is not a possible
energy level, there is no quantum
number n =0, so E, is ground state
also called zero point energy in a
quantum oscillator

u The concept of energy levels, as first
discussed in the Bohr model, has
surfaced in a natural way by using
matter waves.

‘21 2006 Brooks/Cole - Thomson

We analyze the same model in the next chapter with operators on wave

functions and expectation value integrals (that tell us all there can be known) ™



‘ Minimum Energy of a Particle in a Box Ap.-Ax~h
An important consequence of the uncertainty principle is that a particle confined to a finite
space cannot have zero Kinetic energy. Let us consider the case of a one-dimensional
“box™ of length L. If we know that the particle is in the box, Ax is not larger than L.
This implies that Ap is at least i/ L. (Since we are interested in orders of magnitude, we
will ignore the 1/2 in the minimum uncertainty product. In general, distributions are not
Gaussian anyway, so ApAx will be larger than 7/2.) Let us take the standard deviation

as a measure of Ap,
(Apy = (p — PR, = P*—2pp +P%),, = P — P°

[f the box is symmetric, p will be zero since the particle moves to the left as often as to
the right. Then

. £\2 This formula was derived
(Apy =p° = (E) earlier, n = 1
2 2 2
En=h[”] - . (=123 )
and the average Kinetic energy is / 2m\ 2/ 8mf
_ F ;2 Pretty good match
E = = for low n 5.28

om 2ml?

Thus, we see that the uncertainty principle indicates that the minimum energy of a
particle (any particle) in a “box™ (any kind of “box™) cannot be zero. This minimum
energy given by Equation 5-28 for a particle in a one-dimensional box is called the
i 1 T

zero point energy. -




1st relation

Widths of Spectral Lines

Equation 5-27 implies that the energy of a system cannot be measured exactly unless an
infinite amount of time is available for the measurement. If an atom is in an excited state,
it does not remain in that state indefinitely but makes transitions to lower energy states
until it reaches the ground state. The decay of an excited state is a statistical process.

We can take the mean time for decay 7, called the lifetime, to be a measure of
the time available to determine the energy of the state. For atomic transitions, 7 is of the
order of 107% 5. The uncertainty in the energy corresponding to this time is

h o 658 X 1016V -
AE =~ = e CV% 1076V
5

This uncertainty in energy causes a spread A\ in the wavelength of the light emitted.
For transitions to the ground state, which has a perfectly certain energy E, because of
its infinite lifetime, the percentage spread in wavelength can be calculated from

AE-At = h

i =i % Something like that is

JE— N often on exams, i.e. first
A? ' taking differentials, then

(AE] = e 2N expanding into deltas
& for smoothly varying

thus, functions
By dividing 3 with AN __AE
N E-—E,

The energy width AE = #i/71 is called the natural line width



TOPIC

RELEVANT EQUATIONS AND REMARKS

1. De Broglie relations

f=E/h 5-1
A=h/p 5-2

Electrons and all other particles exhibit the wave properties of interference
and diffraction

2. Detecting electron waves

Davisson and Germer

Showed that electron waves diffracted from a single Ni crystal according

to Bragg's equation N1 ch better to only use Bragg’s equation
m=Dsine - and remember that between printary beam

3. Wave packets

and diffraction beam there is always 20

Wi i oy Ldy 511
e -
ave equation s
Uncertainty relations AkAx ~ 1 5-17
AwAr ~ 1 5-18
Wave speed v, = A=k
dl‘.l.} dvp =
Group (packet) speed i + kg 5-16
Matter waves The wave packet moves with the particle speed; i.e., the particle speed is
the group speed v .
4. Probabilistic interpretation The magnitude square of the wave function is proportional to the probability
of observing a particle in the region dx at x and 1.
P(x)dx = [W|%dx 5-23
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5. Heisenberg uncertainty principle AxAp =1h ] 5-26
for Gaussians only
AEAt =1 h 5-27

where each of the uncertainties is defined to be the standard deviation.

2 2
n(n h
Particle in a box B, B — | = n’ 5 n=1,23,..) 5-28
2m\ 24 8mf
The minimum energy of any particle in any “box™ cannot be zero.
Energy of H atom The Heisenberg principle predicts E_. = —13.6 eV in agreement with
the Bohr model.

particles. Both matter and radiation have both particle and wave aspects. When emis-
sion and absorption are being studied. it is the particle aspects that are dominant.
When matter and radiation propagate through space. wave aspects dominate. Notice
that emission and absorption are events characterized by exchange of energy and dis-
crete locations. For example. light strikes the retina of your eye and a photon is ab-
sorbed, transferring its energy to a particular rod or cone: an observation has occurred.
This illustrates the point that ebservations of matter and radiation are described in
terms of the particle aspects. On the other hand, predicting the intensity distribution
of the light on your retina involves consideration of the amplitudes of waves that have
propagated through space and been diffracted at the pupil. Thus, predictions. i.e., a
priori statements about what may be observed. are described in terms of the wave as-
pects. Let’s elaborate on this just a bit.

e' ™ = cos(kx — at) + i sin(kx — ar) T



Every phenomenon is describable by a wave function that is the solution of a ____
wave equation. The wave function for light is the electric field (x, t) (in one space
dimension), which is the solution of a wave equation like Equation 5-11. We have
called the wave function for an electron W(x, t). We will study the wave equation of
which W is the solution, called the Schrddinger equation, in the next chapter. The
magnitude squared of the wave function gives the probability per unit volume that the
electron, if looked for, will be found in a given volume or région. The wave function
exhibits the classical wave properties of interference and diffyaction. In order to pre-
dict where an electron, or other particle, is likely to be, we myst find the wave func-
tion by methods similar to those of classical wave theory. Wheg the electron (or light)
interacts and exchanges energy and momentum, the wave funclion is changed by the
interaction. The interaction can be described by classical particlg theory, as is done in
the Compton effect. There are times when classical particle theonyy and classical wave
theory give the same results. If the wavelength is much smaller\than any object or
aperture, particle theory can be used as well as wave theory to degcribe wave propa-
gation because diffraction and interference effects are too small to be observed.
Common examples are geometrical optics, which is really a particie theory. and the
motion of baseballs and jet aircraft. If one is interested only in timg averages of en-
ergy and momentum exchange, the wave theory works as well as thg particle theory.,
For example, the wave theory of light correctly predicts that the total §lectron current
in the photoelectric effect is proportional to the intensity of the light. e to the

discussion of wave-particle duality was given by R. P. Feynman. and we unce rtainty princip|e,
have used it as the basis of our explanation on the home page of the Two-
Slit Interference Pattern for electrons: whfreeman.com/tiplermodern we Can Only make

physicsSe/. See also Figures 5-21 and 5-22 and Equation 5-29 here. statistical inferences




Position-momentum Uncertainty, summary

= |tis impossible to know simultaneously with arbitrary
accuracy/precision, the values of k, p and x for a particle in a bound
system. The wave number k may be rewritten as
I 2r 2@ 2z p

A e Ph

m For the case of a Gaussian wave packet we have

AkAx:A—pr:l
h 2

for a Gaussian wave packet being a very particular case of “minimal
extend in space and time” , we have as Heisenberg’s uncertainty

principle: Ap. Ax> 721

A free particle has the very same probability density per unit length and
time everywhere, so it can be found “everywhere/anywhere with the same __
very low probability”, but it can have any value of momentum and kinetic

energy as it is not part of a bound system o



Energy - time Uncertainty summary

= Because we are uncertain of the exact position of a particle, for example
an electron somewhere inside an atom (bound by potential energy), the
particle can’t have zero kinetic and total energy

= A completely free particle being represented by a complex harmonic
wave has no energy uncertainty

= The energy uncertainty of a Gaussian wave packet is

Aw AE 1
AE=hAf=h 5 h Ao , 5
combined with the angular frequency relation
h
Energy-Time Uncertainty Principle: AL At > 5

A bound particle (in a system must have quantized energy levels, with an
energy uncertainty that depends on the life time of the particle in anyone
state, similarly its kinetic energy and momentum are only knowable within
the limits of the uncertainty principle ... undisturbed ground state has no

AE, but still Ap as there is an uncertainty in location v



How does a particle ever jump from one energy level to another, it's again the
energy time uncertainty, all fields fluctuate statistically, the electric field being due
to virtual photon (we cannot see them because the exist below the uncertainty
principle limit) means that virtual photons of different sizes come into being out of
“nothing” and disappear into “nothing” Al allowed by the

uncertainty principle, we

‘/never observe them, but
4.~ they are there because

we have measurable
consequences of them in
quantum electrodynamics
(QED which has been
tested to 1 part in 1072),
e.g. e as we know it is the
fully screened charge of
the electron, at distances

fluctuations smaller than Compton
- . - . wavelength of an electron
http://en.wikipedia.org/wiki/Casimir_effect charge (e) and a increase

“Because the strength of the force falls off rapidly with distance, it is measurable only
when the distance between the objects is extremely small. On a submicron scale,
this force becomes so strong that it becomes the dominant force between uncharged
conductors. In fact, at separations of 10 nm—about 100 times the typical size of an

- atom—the Casimir effect produces the equivalent of 1 atmosphere of pressure
(101.325 kPa, 1.01325 bar), the precise value depending on surface geometry and

other factors.” better modern physics books such as Beiser mention this
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