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Two-way interferometers with which-way detectors are not only of importance in physical research,
they are also a useful teaching device. A number of basic issues can be illustrated and discussed, even
at the level of undergraduate teaching. Among these issues are: the physical meaning of a state vector;
entangled systems; Einstein-Podolsky-Rosen correlations; statistical operators and the as-if realities
associated with them; quantum erasure; Schrödinger’s cat; and, finally, wave-particle duality.
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1. Introduction

1.1. Motivation, objective, and outline

More than once, I have come across statements such
as “The formalism of quantum mechanics is well estab-
lished, and there are a number of good textbooks that
treat the subject satisfactorily. But the physical interpre-
tation of the formalism is still under debate, and there
are a number of questions that still lack a satisfactory
answer.” I disagree for two reasons.

First, I cannot imagine teaching the formalism inde-
pendently of the interpretation. Before one can write the
Schrödinger equation on the blackboard, one must have
already explained the significance of the wave function
that is differentiated.1 Otherwise the equation is mean-
ingless and has no right to appear in a physics lecture.

Second, all the allegedly unanswerable questions show
up in discussions of measurements on quantum objects,
and I am convinced that there are no questions in this
context that cannot be dealt with in an introductory
course on quantum mechanics. It is the objective of
these notes to supply a concise exposition that is based on
which-way detection in simple two-way interferometers.

After a brief repetition of the basics of two-way inter-
ferometers in section 2, we turn to which-way detection in
section 3. There we meet Einstein-Podolsky-Rosen cor-
relations and recall, in passing, what is meant by phrases
like “the system is in a certain state.” In section 4, three
experimental set-ups are sketched that illustrate differ-
ent methods of incorporating devices for which-way de-
tection into standard interferometers. After dealing with
the notion of entanglement in section 5, we are ready
for a discussion of the physical meaning of the statistical
operator (section 6). The ground is then prepared for a
short lesson about quantum erasure in section 7. Some

1Of course, the interpretation of the wave function, say, may
be subject to refinements when our understanding evolves,
but there is an agreed-upon interpretation at each stage of
the development.
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objections are shown to be invalid, and that brings up
the subject of state reduction (section 8). When offering
additional remarks on quantum erasure, in section 9, we
run into Schrödinger’s cat. Finally, section 10 deals with
wave-particle duality in a quantitative manner.

The material is well suited for an undergraduate course
because the mathematical aspects are rather elementary.
Some basic knowledge about Hilbert space vectors, self-
adjoint and unitary operators, and the like suffices for
sections 2–9. In section 10, some properties of the trace-
class norm are made use of; although this might not be
standard course material, it can be supplied easily.

The presentation is entirely in the language of quan-
tum kinematics, no dynamical equations are employed.
The students must only know that the transition from
“before” to “after” is effected by a unitary transforma-
tion. Detailed temporal evolution plays no role, but the
causal order in which things happen is relevant, of course.

This is not to say that time dependences can always
be ignored in discussions of quantum measurements. All
measurements take time (and they also happen inside a
certain spatial region). Some phenomena, such as the
quantum Zeno effect, can only be understood by paying
careful attention to the evolution. This subject matter
is, however, beyond the scope of these notes, and I refer
the reader to A. Schenzle’s instructive article [1].

Occasionally, I remark on things that will strike the
experienced reader as rather elementary. These remarks
are meant for those undergraduates who study the ma-
terial without a teacher’s guidance.

1.2. A confession

In the opening paragraphs I have already offered a per-
sonal opinion. Perhaps I should confess more thoroughly
where I stand.

Quantum mechanics, as I understand it, is solidly
founded on experimental findings2 and the theoretical
conclusions drawn by M. Planck, A. Einstein, N. Bohr,
W. Heisenberg, W. Pauli, E. Schrödinger, and P. A. M.
Dirac, to name the main contributors. One can learn
the subject from the classic textbooks by P. A. M. Dirac
[3], D. Bohm [4], and K. Gottfried [5]; J. von Neumann’s
book [6] puts particular emphasis on mathematical as-
pects; a modern text that is much to my liking is the
one by L. E. Ballentine [7].3 In addition, E. Schrödin-
ger’s seminal essay of 1935 [8] — best remembered for a

2Attempts to infer quantum mechanics from some mathe-
matical statements are misguided, in my opinion, irrespective
of how convincing the arguments may appear at first glance.
A recent example is F. H. Fröhner’s undertaking [2] who be-
lieves, so it seems, that all of quantum mechanics follows from
the Riesz-Fejér theorem.

3There are, of course, other books worthy of recommenda-
tion. Nothing is implied by not mentioning them.

marginal issue, the cat example — is recommended read-
ing, and so are G. Süßmann’s [9] and N. G. van Kampen’s
[10] remarks on quantum measurements.

Quantum mechanics works (and so does its relativis-
tic extension, renormalized quantum field theory). Dur-
ing the seven decades since its conception, we have not
become aware of a single observational fact in disagree-
ment with quantum mechanical predictions. Although
this large body of evidence lends strong support to the
judgment that quantum mechanics provides for a con-
sistent picture of the physical world, the logical possi-
bility of a future failure is not excluded, of course. As
soon as such a failure will have occurred, we’ll be living
through exciting times and something profoundly new
will be learned. For the time being, however, there is no
need for modifications of quantum mechanics.

Some are bound to disagree with the last sentence be-
cause they feel uneasy with the fundamentally probabilis-
tic world view of quantum mechanics, and an intrinsically
deterministic universe is philosophically more appealing
to them. The pseudo-classical mechanics invented by
D. Bohm [11,12] is the prime example. By construction,
Bohmian mechanics agrees with quantum mechanics as
far as its experimentally testable aspects are concerned,
and has additional elements (namely hypothetical parti-
cle trajectories) that are of no consequence. In addition,
these trajectories possess extremely implausible proper-
ties [13–15] that invalidate the realistic interpretation in-
tended by D. Bohm.

Quantum mechanics deals with the behavior of atomic
systems and, in particular, with measurements on them.
For the concept of a measurement to be meaningful, it is
necessary — as W. Heisenberg and N. Bohr have empha-
sized — that the physical world can be divided into the
atomic system under study, whose quantum properties
are important, and the rest, whose quantum properties
are irrelevant. The measuring apparatus (a photographic
plate, say, or a Geiger counter) is part of the “rest.” Of
course, this does not deny that the apparatus exhibits
quantum features itself — the contrary is true: the photo-
graphic process and the mechanism of the Geiger counter
rely on quantum processes — but only that these aspects
are presently irrelevant.

Consider, for example, a magnetic silver atom that
passes through the inhomogeneous magnetic field of a
Stern-Gerlach apparatus and then hits a glass plate; pho-
tographic development eventually reveals whether the
atom was deflected up or down. Here we are studying
the quantum properties of atomic magnetism. Do the
quantum mechanical details of the chemistry of the pho-
tographic process matter? No, they don’t. Our conclu-
sions concerning the magnetic atoms are not altered if we
use another detection process instead of the glass plate.

We can, therefore, ignore the technical details of the
detection and simply speak of a detector for the atoms.
In a next step we recognize that the detector actually de-
termines the position of the atom. So we learn that the
crucial element of the apparatus is the inhomogeneous
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magnetic field because it encodes the information about
the magnetic moment in the center-of-mass motion. This
leads us to regarding one center-of-mass coordinate as the
basic physical quantity carrying the measurement result.
That coordinate is then the quantum marker4 in this
example. The glass plate et cetera amplifies the datum
recorded by the marker, and as a result of the amplifica-
tion we can register the outcome and tell our colleagues
what has been found.

One could insist that the measurement is completed
only after the amplification has turned the information
stored in the center-of-mass state (the marker state) into
a macroscopically recognizable signal. But it is clear that
the essential step is the one in which the information is
encoded in the center-of-mass motion.

The amplification is part of the final measurement of
the marker state, the so-called “reading of the marker.”
Prior to the amplification we could, in this example, ma-
nipulate the center-of-mass motion with the intention to
read the marker in a different way. This freedom is par-
ticularly important in sections 7 and 9.

The possibility of dividing the physical world into the
quantum system of interest and the (quasi-)classical rest
is a fundamental empirical fact. Without this division,
one could not speak sensibly about measurements on
quantum systems, because there wouldn’t be any clas-
sical systems for reference. The division is not only pos-
sible, it is also necessary.5

Whereas it is a healthy attitude of working physicists
to simply accept this division as an empirical fact, one
can, and should, ask

Can quantum mechanics explain why the
quantum/classical division is possible? (1)

For reasons such as the ones discussed in section 9.3, I am
confident that the answer will be “yes” eventually. But,
admittedly, the case is not closed as yet. There are others
who have seemingly convinced themselves that quantum
mechanics does not rise to this challenge. The late J. Bell
was arguably the most outspoken advocate of this point
of view. He put “measurement” on his list of forbidden
words [16,17] — in fact, he declared it “the very worst
word on this list” — and claimed that quantum mechan-
ics “carries within itself the seed of its own destruction”
[18]. Myself, I find it impossible to agree with J. Bell and
recognize my own convictions in the replies by N. G. van
Kampen [19], by the late R. Peierls [20], and by K. Gott-
fried [21].

4What I call the marker here is alternatively termed meter
or even detector in the literature. Since macroscopic devices
are frequently associated both with meters (such as ther-
mometers) and with detectors (such as Geiger counters), I
suggest to use the less provocative word “marker” instead.

5As a consequence, I have no use for a “wave function of the
universe.” But that’s a side issue.

The interference of alternatives is characteristic of
quantum systems; classical alternatives do not interfere.6
It should be clear that there is a border regime where
quantum interferences are faint, and therefore a sharp
boundary cannot exist. Nevertheless, one is almost al-
ways sure whether certain degrees of freedom are on the
quantum side or on the classical side. And in the case of
doubt, one plays it safe and enlarges the quantum system
— one “shifts the Heisenberg cut” as the phrase goes.

Quantum mechanics has been accused of being incom-
plete or inexact or simply ill-defined because there is
no formal procedure that would draw a unique divid-
ing line between the quantum system and the classical
rest. These charges are unfounded. It is the nature of
the Heisenberg cut that it can be shifted to some extent,
but not arbitrarily. There are always certain degrees of
freedom that are undoubtedly on one side of the cut or
on the other. One can reasonably, and in a generally
agreed-upon way, speak of day and night without ever
assigning to dawn a uniquely defined instant in time.7

An affirmative answer to (1) needs a mechanism
that explains why alternatives have different interference
properties on the opposite sides of the quantum/classical
border. In one approach, exemplified by the Ghirardi-
Rimini-Weber scheme [22], the dynamical equations of
quantum mechanics are modified; in view of their ad-hoc
nature, however, such schemes are hardly convincing. I
have much more sympathy for the other, conservative,
approach that does not give up lightly what has been
hard won; it takes quantum mechanics at its face value
and searches for the said mechanism by investigating the
quantum properties of systems with very many degrees
of freedom. The decoherence process studied by W. H.
Zurek [23] and others is very likely an essential ingredi-
ent.

An important aspect of the question (1) concerns the
occurrence of factual events, that is: local interactions
that have surely happened. Rain is falling independently
of any manipulation by an experimenter. The formation
of each individual rain drop depends on quantum pro-
cesses at its initial stage; once it is formed, a drop is a
classical object and undoubtedly in existence. More ele-
mentary than this formation process are scattering events
in which a few particles participate only. In a recent
proposal by R. Haag [24], the emphasis is shifted from
measurements and their results to events as (one of) the
fundamental concept(s). This intriguing program has not
been worked out as yet to the extent necessary for a final
judgment; I do think, however, that it opens a new front
at which (1) can be attacked.

6In anticipation of the discussion in section 9.3.2 I note that,
therefore, there are no physical observables associated with
selfadjoint operators that are sensitive to interferences be-
tween classical alternatives.

7I owe this telling analogy to H.-J. Briegel.
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2. Two-way interferometers

In a double-slit interferometer the pattern on the
screen originates in the state vector

|ψ〉 =
1√
2

(
|S1〉+ |S2〉

)
, (2)

where |S1〉, |S2〉 symbolize the amplitudes of slit 1 and
slit 2, respectively. These amplitudes are orthonormal,

〈Sj |Sk〉 = δjk , (3)

and thus |ψ〉 is properly normalized. The corresponding
statistical operator (vulgo the density matrix)

ρ
(0)
Q = |ψ〉〈ψ| = 1

2
(
|S1〉〈S1|︸ ︷︷ ︸

slit 1

+ |S2〉〈S2|︸ ︷︷ ︸
slit 2

)
+

1
2
(
|S1〉〈S2|+ |S2〉〈S1|︸ ︷︷ ︸

cross terms

)
(4)

is half the sum of the single-slit contributions plus cross
terms, which give rise to the double-slit interference pat-
tern.

It is clear that this mathematical structure is com-
mon to all (symmetric) two-way interferometers, such as
double-slit interferometers (for light, electrons, neutrons,
or atoms), or Mach-Zehnder interferometers, both of the
optical and of the neutron kind, or biprism interferome-
ters, with light or electrons, or Stern-Gerlach interferom-
eters for magnetic atoms, or Ramsey-Bordé interferome-
ters for two-level atoms, or photon-pair interferometers,
et cetera.8 We shall continue to speak of slit 1, slit 2, the
screen, . . . , but the reader should keep in mind that the
double-slit interferometer is just a stand-in for all two-
way interferometers. Further, rather than speaking of
particles or waves we use the noun quanton (suggested
by M. Bunge as reported by J.-M. Lévy-Leblond [26]) as
a generic term for the interfering quantum object (pho-
ton, electron, neutron, atom, . . . ). The subscript Q in
(4) anticipated this terminology.

In the spirit of this implicit generality we shall not pay
attention to the subtleties of the pattern formation on
the screen (such as the keeping apart of the single-slit
diffraction pattern from the double-slit interference pat-
tern that we are interested in, or the necessity to inte-
grate over the various arrival times). Instead we exhibit
the interference pattern in the probability p(φ) of finding
the superposition

|S(φ)〉 =
1√
2

(
|S1〉+ |S2〉 eiφ)

, (5)

8By now there is an extensive literature on interferometers.
The review articles in reference [25] report the state of the
art.

where φ is the interferometric phase difference.9 In the
state characterized by (2) or (4), this probability is

p(0)(φ) = 〈S(φ)|ψ〉 2 = trQ
{
|S(φ)〉〈S(φ)|ρ(0)

Q

}
=

1
2
(1 + cosφ) . (6)

Its φ dependence exhibits interference fringes, and since
the extreme values of p(0)(φ) are

p
(0)
max = 1 , p

(0)
min = 0 , (7)

the visibility V(0) of these fringes,

V(0) =
p
(0)
max − p

(0)
min

p
(0)
max + p

(0)
min

= 1 , (8)

is as large as it can possibly be.
Perhaps unnecessarily I note that the piece of informa-

tion “the quanton has a 50:50 chance of passing through
slit 1 or slit 2” is not sufficient to determine ρ(0)

Q of (4).
All statistical operators of the form

ρ
(0)
Q,ε =

1
2
(
|S1〉〈S1|+ |S2〉〈S2|

)
+

1
2
(
|S1〉ε∗〈S2|+ |S2〉ε〈S1|

)
(9)

are consistent with this information, not only the ε = 1
version of (4). The positivity of ρ(0)

Q,ε requires ε ≤ 1
but no further restrictions apply to the complex num-
ber ε. Knowledge of the degree of coherence between the
two quantum alternatives “through slit 1” and “through
slit 2” as well as of their phase relation is needed to fix
the value of ε.

3. Which-way detection, EPR correlations

Now let us consider the more complicated situation
in which the interferometer is supplemented by a device
for which-way (WW) detection. A few quantum degrees
of freedom of this device constitute the WW marker.10
Eventually an amplification will enable the experimenter
to read the marker, thereby extracting the WW informa-
tion stored in the marker state.

The quanton interacts with the marker. Ideally, two
orthonormal states |M1〉 and |M2〉 of the marker get then
correlated with the amplitudes |S1〉 and |S2〉 of the two

9The value of φ is determined, for example, by the site where
the quanton hits the screen of a double-slit interferometer,
or by the difference in the optical path lengths of a Mach-
Zehnder interferometer; see section 4.

10More than “a few” lead to the situation discussed in section
9.3.
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slits, so that the combined system of interfering quanton
and WW marker has the state vector

|Ψ〉 =
1√
2

(
|M1, S1〉+ |M2, S2〉

)
(10)

and a corresponding statistical operator11

P = |Ψ〉〈Ψ|

=
1
2
(
|M1, S1〉〈M1, S1|+ |M2, S2〉〈M2, S2|

)
+

1
2
(
|M1, S1〉〈M2, S2|+ |M2, S2〉〈M1, S1|

)
. (11)

Again we recognize contributions that refer to one way
only or to both ways.

The purpose of the WW marker should be obvious.
If we find the marker in state |M1〉 then the quanton is
surely in state |S1〉, and likewise for |M2〉 and |S2〉. In
other words:

Knowing that the WW marker is in state
|M1〉 or |M2〉 is tantamount to knowing
that the quanton is in state |S1〉 or |S2〉,
respectively.

(12)

Therefore, it is now possible to manipulate the quanton
— for example, by making a measurement on it — with-
out losing the information whether the quanton is in state
|S1〉 or |S2〉, because this WW information is stored in
the WW marker.

Correlations of the Einstein-Podolsky-Rosen (EPR)
type [27] are exploited here. Their reality can be demon-
strated experimentally, possibly in the manner Alice and
Bob do it in section 8. But one must not be led astray by
extreme operationalism: The EPR correlations exist ir-
respective of their observation by a human observer, they
are a physical property of the combined quanton-marker
system in the state |Ψ〉 of (10).12

The phrase “the quanton is in state |S1〉” is short-
hand for “the statistical properties of (future) measure-
ments on the quanton are correctly predicted by the
statistical operator ρQ = |S1〉〈S1|.” — This minimal-
istic interpretation of state vectors and statistical op-
erators is quite sufficient. One might, of course, try
to go beyond this minimalism and give additional on-
tological meaning to the state vector, perhaps respond-
ing to a philosophical impetus. In doing so, one should
however remember N. G. van Kampen’s caveat: Who-
ever endows |S1〉 (or any other state vector |. . .〉) with
more meaning than is needed for computing observable

11The letter P is the upper case of ρ, not of p.
12N. D. Mermin has recently advertised his “Ithaca interpre-

tation” [28] whose central theme is the assertion that corre-
lations (of the EPR type) are real and that they are the only
real thing. I have much sympathy for this point of view.

phenomena is responsible for the consequences (Theo-
rem IV in reference [10]). — Similarly, the phrase “the
WW marker is found in |M1〉” abbreviates a statement
such as “the result of a measurement of the observable
M = |M1〉〈M1| − |M2〉〈M2| is the eigenvalue M′ = 1.”13

Having the WW information safely stored we can now
think of looking for the interference pattern. Inasmuch as
knowing the way gives evidence of the quanton’s particle
aspects, whereas the observation of interference fringes
manifests the quanton’s wave aspects, we expect that
complementarity prevents us from getting both. Indeed,
the quanton’s statistical operator that is needed in the
trace of (6), obtained by tracing P over the marker’s de-
gree(s) of freedom,

ρQ = trM {P} =
1
2
(
|S1〉〈S1|+ |S2〉〈S2|

)
, (13)

no longer contains the cross terms of (4); now the pattern

p(φ) = trQ
{
|S(φ)〉〈S(φ)|ρQ

}
=

1
2

(14)

is just the fringeless background of the single-slit contri-
butions.

The fringes disappear whether we read the WW mar-
ker to learn about the way or not. The transition from
ρ
(0)
Q of (4) to ρQ of (13) (termed the “collapse of the wave

function” in some jargon) is not caused by the acquisition
of human knowledge; surely, “it has nothing to do with
the mind” (J. A. Wheeler as quoted by R. Haag [33]).

4. Examples of interferometers with which-way
marking

A first example for an interferometer with a which-
way detection device, the thought experiment of reference
[34], is sketched in figure 1. The two slits of a Young in-
terferometer are illuminated by atomic de Broglie waves.
Prior to reaching the slits, the atoms pass through res-
onators; the de Broglie waves are precollimated (by some
equipment not shown in the figure) so that the partial
amplitudes fit through the entrance and exit holes of the

13“Measurement” means a traditional von Neumann mea-
surement, where the possible outcomes are the eigenvalues of
the observable in question. Y. Aharonov and L. Vaidman, in
collaboration with D. Z. Albert and J. Anandan, have recently
introduced the intriguing and useful concepts of weak mea-
surement [29,30] and protective measurement [31,32], where
other properties of the measured observable are more relevant.
At their final stage, however, a von Neumann measurement
determines the position, say, of a pointer variable. — I am
grateful for the enjoyable and instructive discussions with Y.
Aharonov on these matters.
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|S1〉
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FIG. 1. Atomic de Broglie waves, indicated by symbolic
wave trains, are collimated so that they pass through res-
onators before reaching the slits of a Young’s double-slit in-
terferometer. At most one atom at a time is in the apparatus.
The atom emits a photon into the resonator it traverses. The
atom is the quanton; the relevant photonic degrees of free-
dom constitute the marker. The wave trains are shown at
three different instants: before entering the resonators; af-
ter emerging from them, but before reaching the slits; after
having been diffracted at the slits. The state vector |Ψ〉 of
equation (10) refers to the latter instant.

resonators. The resonators are initially empty, and mat-
ters are arranged such that each atom emits — with cer-
tainty — a photon into a privileged mode of the resonator
it traverses.

This is then the situation: The atom is the quanton,
and its center-of-mass degrees of freedom are the ones
relevant for the interferometer. The marker is made up
by the photonic degrees of freedom of the selected res-
onator modes. The quanton states |S1〉 and |S2〉 are the
diffracted de Broglie waves, as indicated in figure 1, and

|M1〉 ≡ “one photon in the 1st resonator,
none in the 2nd,”

|M2〉 ≡ “one photon in the 2nd resonator,
none in the 1st,”

(15)

specifies the significance of the marker states. The value
of the interferometric phase φ of equation (5) is deter-
mined by the site at which the atom hits the screen.

In the second example of figure 2 we have a Mach-
Zehnder interferometer for light, operated in a one-pho-
ton-at-a-time fashion. The entering photon encounters a
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|S(φ)〉

|S(φ + π)〉
FIG. 2. A polarized photon enters a Mach-Zehnder in-

terferometer through a half-transparent mirror HTM. The
transmitted amplitude passes through a half-wave plate HWP
which changes the polarization to an orthogonal one. The
quanton is made up by the orbital degrees of freedom of the
photon, the polarization is the marker. A phase shifter PS
and a second HTM combine the quanton states so that the
superpositions |S(φ)〉 and |S(φ + π)〉 of equation (5) emerge
at the two output ports.

half-transparent mirror (HTM); the two resulting parts
of the photon’s orbital amplitude are the quanton states
|S1〉 and |S2〉. A phase shifter (PS) and a second HTM
make the superposition |S(φ)〉 leave at the symmetric
output port and the orthogonal one, that is: |S(φ+ π)〉,
at the asymmetric one.

The polarization of the photon is used for WW mark-
ing. For this purpose, all entering photons are polarized
horizontally, say. A half-wave plate (HWP) in the |S1〉
arm of the interferometer turns the polarization from
horizontal to vertical. Here, the photon’s polarization
degree-of-freedom constitutes the marker in accordance
with

|M1〉 ≡ “vertically polarized,”
|M2〉 ≡ “horizontally polarized.” (16)

It is, of course, necessary to detect the photons at the
output together with their polarization.

A Mach-Zehnder interferometer is also employed in the
third example (figure 3), which is a variant of problem 9-6
in L. E. Ballentine’s textbook [7]. Here we begin with a
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FIG. 3. A source of entangled photon pairs SEPP emits
polarization-entangled EPR pairs. One photon, the quanton,
propagates to the right and enters a Mach-Zehnder interfer-
ometer through a polarizing beam splitter PBS. Vertical po-
larization (v) is reflected, horizontal polarization (h) is trans-
mitted. The latter is changed to vertical also by a HWP. The
second photon of the pair, whose polarization is the marker,
propagates upwards and is detected behind another PBS.

source of entangled photon pairs (SEPP).14 It emits EPR
pairs of photons going to the right or going up, so that
one photon is polarized horizontally and the other one
vertically. The emitted pairs are in a state such as

1√
2

(
|h→, v↑〉+ |v→,h↑〉

)
, (17)

where, for instance, h→ means “horizontally polarized
photons goes to the right.”

Of each pair, the photon that goes to the right is the
quanton. It enters a Mach-Zehnder interferometer with a
polarizing beam splitter (PBS) at the entrance, which re-
flects vertically polarized photons and transmits horizon-
tally polarized ones. The transmitted amplitude passes
through a HWP, so that the quanton photon is surely po-
larized vertically when it reaches the PS and HTM that
probe for |S(φ)〉 and |S(φ+ π)〉.

The polarization of the up-going photon is used for
WW marking. The states |M1〉 and |M2〉 stand for verti-
cal and horizontal polarization, respectively, and can be
probed by ordinary photodetection behind another PBS.

The three examples exhibit three different methods for
WW marking. In figure 1 another physical system (the

14Such sources are actually available, see reference [35]; the
recent teleportation experiments [36,37] made use of SEPPs.

resonators with their photon modes) is used. By con-
trast, in figure 2 the same physical object — the photon
— serves both as quanton (orbital motion) and as marker
(polarization). In these two examples, the WW mark-
ing is done during the passage of the quanton through
the apparatus, and one could operate the interferome-
ter without WW marking. Not so in the third example,
where the quanton and the marker are created jointly (by
the SEPP) and are in the entangled quanton-and-marker
state to begin with. As a consequence, the way through
the interferometer can be known even before the quan-
ton reaches the entry port. In other words, the way is
predictable in the set-up of figure 3, and therefore this
set-up exemplifies the situation considered by G. Jaeger,
A. Shimony, and L. Vaidman in reference [38].

The thought experiment of figure 1 will most likely
never be realized, but there are other, more realistic,
schemes in which a privileged photon mode of a resonator
is used for WW marking. In particular, Ramsey interfer-
ometers for atoms in Rydberg states are well suited for
this purpose. One can either use a resonant interaction,
as in the proposal of reference [39], or a dispersive inter-
action, as in the experiment reported in reference [40].
The systematic loss of the fringe visibility has been ob-
served in this experiment, but WW information has not
been extracted as yet.

P. G. Kwiat and P. D. D. Schwindt of Los Alamos Na-
tional Laboratory have recently built the interferometer
of figure 2 [41]. They have not only succeeded in demon-
strating the systematic dependence of the fringe visibility
on the parameters, but have also obtained WW informa-
tion from the final polarization state (in the quantitative
manner discussed in section 10). This two-fold challenge
has also been met by S. Dürr, T. Nonn, and G. Rempe
of the University of Konstanz who have built an atom
interferometer that uses hyperfine sublevels for the WW
marking [42,43].

Finally, concerning figure 3, this should be a relatively
easy experiment if a SEPP is at hand. An actual realiza-
tion could be very rewarding, in particular because the
feature of “late choice” (see section 7) can be incorpo-
rated rather simply.

5. Entanglement and correlations

As long as there is no further interaction between the
quanton and the WW marker, the statistical operator
ρQ of (13) obtains independently of the history of the
WW marker after the quanton-marker interaction. The
statistical properties of all measurements that could be
performed on the quanton are correctly predicted by this
ρQ. Accordingly, this statistical operator characterizes
the state of the quanton after its interaction with the
WW marker just like ρ(0)

Q of (4) did before the interaction.
Likewise we have a statistical operator for the WW

marker,
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ρM = trQ {P} =
1
2
(
|M1〉〈M1|+ |M2〉〈M2|

)
, (18)

which characterizes the marker state after the interac-
tion. The (direct) product of ρM and ρQ,

ρM ρQ =
1
4
(
|M1, S1〉〈M1, S1|+ |M2, S2〉〈M2, S2|

+ |M1, S2〉〈M1, S2|+ |M2, S1〉〈M2, S1|
)
,

(19)

differs from P of (11). This is no surprise, of course,
because the quanton and the marker are entangled (Ger-
man: verschränkt or verheddert, as coined by E. Schrö-
dinger [8]) if P of (11) applies, but they would not be
entangled if the product ρM ρQ represented their statis-
tical properties. As a consequence of this entanglement,
joint probabilities of measurements on both the quanton
and the marker are not simply equal to the product of
the individual probabilities. For instance, the probability
for finding the quanton in state |S1〉 is 50%, and this is
also the probability for finding the WW marker in state
|M2〉; but the joint probability for finding the quanton
in state |S1〉 and also the marker in state |M2〉 is 0% —
not 25% as would be the case if (19) were the statistical
operator. This exemplifies the general situation:

Entanglement between different degrees
of freedom results in correlations between
the results of measurements on the sub-
systems.

(20)

And vice versa: if measurement results are correlated,
then the subsystems must be entangled.15

We note that the entanglement of two subsystems can
be of a purely classical nature. For the quanton-and-
marker system this would be the case, for example, if its
statistical operator were given by

1
2
(
|M1, S1〉〈M1, S1|+ |M2, S2〉〈M2, S2|

)
, (21)

where the cross terms of (11) are missing. The corre-
sponding situation would be this one: Either the state
|M1, S1〉 is realized or the state |M2, S2〉 (with equal prob-
ability), but we don’t know which one. In other words:
(21) represents a classical mixture of disentangled states.
Inasmuch as statement (12) is as true for (21) as it is for
(11), the statistical operator (21) surely describes an en-
tangled quanton-and-marker system. But, owing to the
absence of the cross terms in (21), the correlations are
here not of the quantum-mechanical EPR type.

15There may also be correlations of a different kind for mea-
surements on a single degree of freedom in the sense that the
expectation values of two observables A and B and of their
symmetrized product AB + BA are such that 〈AB + BA〉 does
not equal twice the product of 〈A〉 and 〈B〉. Such correlations
are ubiquitous, but they are clearly of quite a different nature
than the EPR ones.

6. Mixtures, blends, and as-if-realities

6.1. Blends correspond to as-if-realities

If the interferometer is operated such that only one way
is realized with certainty, then one has ρQ = |S1〉〈S1| or
ρQ = |S2〉〈S2|, of course. The statistical operator ρQ of
(13) is a 50:50 blend of these cases. Does this mean that
the quanton is either in state |S1〉 or in state |S2〉 but
we simply don’t know in which one? This interpretation
suggests itself and does not lead to inconsistencies. One
must, however, be aware that it represents only an as-if-
reality. The statistical predictions resulting from ρQ of
(13) are such that it appears as if the quanton were in
|S1〉 or |S2〉. Equally well one can regard this ρQ as a
50:50 blend of another pair of orthonormal states, such
as

|S̃1〉 = |S1〉 cosϑ+ |S2〉 eiϕ sinϑ ,

|S̃2〉 = |S2〉 cosϑ− |S1〉 e−iϕ sinϑ (22)

because

ρQ =
1
2
(
|S̃1〉〈S̃1|+ |S̃2〉〈S̃2|

)
(23)

holds not only for the ϑ = 0 case of equation (13) but
for all values of the parameters ϑ and ϕ. Consequently,
it is also as if the quanton were either in state |S̃1〉 or in
|S̃2〉, but we don’t know in which one.

In equations (13) and (23) we have a simple example
for the general observation that a statistical operator can
be mingled from (projectors to) pure states in a plethora
of different choices, with a corresponding abundance of
equally good as-if-realities. Following G. Süßmann [9]
we say that there are many blends (German: Gemenge),
exemplified by the right-hand sides of (13) and (23), that
make up one and the same mixture (German: Gemisch),
exemplified by the identical left-hand sides.

In general terms, any decomposition of a statistical
operator into a convex sum of projectors (the statistical
operators of pure states),

ρ =
∑

k

wkρk (24a)

with

ρ2
k = ρk , tr {ρk} = 1 , wk > 0 ,

∑
k

wk = 1 , (24b)

identifies one of the blends that compose the given mix-
ture ρ. Each blend is associated with an interpretation
in terms of an as-if-reality: “The system is in one of the
states ρk, with statistical weights wk, but we don’t know
in which one.” which yields a consistent picture of the
phenomena — nothing more, and nothing less.

It is not necessary that the ρk’s are mutually orthog-
onal in equations (24). If they happen to be, then we
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are dealing with (one of) the spectral decomposition(s)
of the mixture ρ. Such blends are mathematically par-
ticular, but not physically.

Further we note that the sums in (24) could be inte-
grals. For example,

ρQ =
∫ π/2

0

dϑ sin(2ϑ)
∫ 2π

0

dϕ
2π

|S̃1〉〈S̃1| (25)

blends ρQ from all possible projectors |S̃1〉〈S̃1| with sta-
tistical weights that are uniform in cos(2ϑ) and ϕ.

6.2. All blends are equal

Repeated measurements on quantons prepared in the
same mixture cannot, by any means, distinguish one
blend, or one as-if-reality, from the other. Whereas it is
a matter of personal taste or preconceptions whether one
regards this impossibility as an indication that quantum
mechanics does not provide for a complete description,
it is certainly not a matter of opinion that this impossi-
bility is fundamental.16 For, if one could tell one blend
from the other (hypothetical nonlinear additions to the
Schrödinger equation would enable one to achieve this)
then one could send signals at arbitrary speed [44] and
get in violent conflict with Einsteinian causality.

The marker-quanton entanglement in (10) and (11)
and, in particular, the resulting equivalence stated in (12)
invite the surmise that the ϑ = 0 blend (13) is, in some
sense, more physical than the ϑ 6= 0 ones of (23), irrespec-
tive of what is said in the preceding paragraph. After all,
couldn’t it be that, paraphrasing Orwell, all as-if-realities
are equal but some are more equal than others? No, cer-
tainly not, because we can cast the state vector (10) into
the form

|Ψ〉 =
1√
2

(
|M̃1, S̃1〉+ |M̃2, S̃2〉

)
(26)

where

|M̃1〉 = |M1〉 cosϑ+ |M2〉 e−iϕ sinϑ ,

|M̃2〉 = |M2〉 cosϑ− |M1〉 eiϕ sinϑ (27)

are the superpositions of the marker states that corre-
spond to (22). Accordingly, the correlations between
|M̃1〉 and |S̃1〉 as well as |M̃2〉 and |S̃2〉 are equally strong
for all values of ϑ and ϕ; the ϑ = 0 case of (12) is not
distinguished at all. Indeed, we can generalize this state-
ment about EPR correlations:

16L. E. Ballentine discusses, in section 9-4 of his textbook
[7], an instructive example of two equivalent as-if-realities and
reports a historical incident that illustrates well the confusion
that may arise when the as-if character is not appreciated.

Irrespective of the chosen setting of the
parameters ϑ and ϕ, knowing that the
WW marker is in state |M̃1〉 or |M̃2〉 is
tantamount to knowing that the quanton
is in state |S̃1〉 or |S̃2〉, respectively.

(28)

As a consequence, in repeated experiments that are all
accounted for by the statistical operator of (11), the ex-
perimenter can choose, at his discretion, how he wants
to analyze the data. Each quanton can be identified as
the member of either the subensemble specified by |S̃1〉
or the one specified by |S̃2〉, whereby the values of ϑ and
ϕ can vary from one quanton to the next — at least in
principle, if not in practice. This sorting of quantons into
subensembles is done with the aid of a measurement of
the marker state — that is: a certain “reading of the
marker” — a measurement that discriminates between
|M̃1〉 and |M̃2〉, and does not involve an observation of
the quanton itself.

Let us take a look at the interference pattern from the
point of view offered by the as-if-reality that goes with
the blend of (23). To avoid ambiguities we restrict ϑ and
ϕ to the ranges 0 ≤ ϑ ≤ π/4, 0 ≤ ϕ < 2π, which are
large enough to cover all possibilities.17 We have

p(φ) =
1
2
〈S(φ)|S̃1〉

2
+

1
2
〈S(φ)|S̃2〉

2
=

1
2

(29)

with

〈S(φ)|S̃1〉
2

=
1
2
[
1 + sin(2ϑ) cos(φ− ϕ)

]
(30a)

and

〈S(φ)|S̃2〉
2

=
1
2
[
1− sin(2ϑ) cos(φ− ϕ)

]
. (30b)

Thus it is as if p(φ) = 1
2 obtains because there are

“really” two patterns, each with a fringe visibility of
V = sin(2ϑ) and the fringes shifted by ϕ and ϕ + π,
respectively, as compared with the pattern of (6). In
the fringeless sum of (29), the crests of (30a) meet the
troughs of (30b) and vice versa.

7. Quantum erasure

We are now prepared for discussing the kind of sort-
ing that goes by the name of quantum erasure. Consider
the following scenario. A quanton is sent through the
interferometer equipped with the WW detection device,
so that (11) gives a correct account of the statistical pre-
dictions of the experiment. The interferometer phase φ
is set to a chosen value, and the observable

17This ϑ range is only half of the range of integration in (25)
because the replacements ϑ → π/2−ϑ, ϕ → ϕ±π would just

exchange |S̃1〉〈S̃1| and |S̃2〉〈S̃2|.

9(February 28, 2002)



O(φ) = |S(φ)〉〈S(φ)| (31)

is measured. In accordance with (14) the measurement
results 0 and 1 are equally probable. Another measure-
ment determines whether the WW marker is in state
|M1〉 or in |M2〉. We adopt this color coding: Find-
ing |M1〉 identifies the quanton as a member of the
blue subensemble, and the quanton belongs to the yel-
low subensemble if |M2〉 is found. We have ϑ = 0 here,
and equations (30) tell us that in both subensembles the
eigenvalues of O(φ) occur with the same frequency. In
other words: The blue quantons exhibit no interference
fringes, nor do the yellow ones.

Of course, this is not surprising, but expected because
the blue quantons are those which are known to have
taken the way through slit 1 and the yellow ones the way
through slit 2. We are just repeating what is stated in
(12).

Alternatively, the experimenter can decide to make an-
other measurement on the marker, one that distinguishes
|M̃1〉 from |M̃2〉 of (27) for a setting of ϑ and ϕ. In par-
ticular, the choice ϑ = π/4, ϕ = 0 leads to the distinction
of

|M+〉 =
1√
2

(
|M1〉+ |M2〉

)
(32a)

and

|M−〉 =
1√
2

(
|M2〉 − |M1〉

)
. (32b)

In the set-up of figure 3, for example, such a |M+〉/|M−〉
distinction is done by turning the polarization-sensitive
beam splitter in the marker part by 45◦.

We extend the color coding: Finding the marker state
|M+〉 puts the quanton into the red subensemble, and
finding |M−〉 puts it into the green one. According to
(30a), the red quantons exhibit the original interference
pattern of (6) with perfect fringe visibility, and the green
quantons yield the antifringes.

Again, this shouldn’t come as a surprise because we
are simply facing a special case of (28), namely this one:
Each red quanton is known to be in the state

|S+〉 =
1√
2

(
|S1〉+ |S2〉

)
(33a)

and each green one is in

|S−〉 =
1√
2

(
|S2〉 − |S1〉

)
. (33b)

For the red quantons and the green ones it is unknown
through which slit they passed — in fact not just un-
known, but rather unknowable. As a consequence, the
alternatives interfere.

As soon as the |M+〉/|M−〉-distinguishing measure-
ment has been made, it is no longer possible to make

the |M1〉/|M2〉 distinction, because these two measure-
ments are incompatible. There is hardly a point in look-
ing for |M1〉 or |M2〉 when it is already known that the
marker is in state |M+〉, say, since we learn nothing
about the state of the marker prior to the |M+〉/|M−〉-
distinguishing measurement. In a manner of speaking,
the |M+〉/|M−〉-distinguishing measurement has erased
whatever WW information was there before. This cir-
cumstance gave the name quantum erasure (QE) to the
red/green sorting [45,34,46]. We shall therefore speak of
the QE measurement when the |M+〉/|M−〉 distinction
is made, and of the WW measurement in case of the
|M1〉/|M2〉 distinction.

Inasmuch as WW information is particlelike and inter-
ference fringes are evidence for wavelike properties, one
could also say that the WW sorting processes the data
such that a particle experiment is effectively carried out,
whereas the QE sorting amounts to doing a wave experi-
ment. The freedom of deciding at a very late stage, pos-
sibly after the performance of the interferometric O(φ)
measurement, whether the quanton in question will be
part of the particle experiment or of the wave experi-
ment, demonstrates that QE offers a particular realiza-
tion of experiments with delayed choice, which were first
discussed by C. F. von Weizsäcker in 1941 [47] and be-
came popular from 1978 on as a result of J. A. Wheeler’s
efforts [48].

In the set-up of figure 3, for example, the marker pho-
ton, which propagates upwards from the SEPP, can be
sent on a detour through a long fiber. The experimenter
can then first check at which output port the quanton
photon emerges from the Mach-Zehnder interferometer,
and then choose one of the sortings. This late-choice
aspect of QE is especially intriguing.

For each quanton traversing the interferometer two
measurements are made, the measurement of O(φ) on
the quanton and the WW or the QE measurement on
the WW marker. Does the joint probability of getting
O(φ) = 1 and ending up in the red ensemble, say, depend
on the order in which the two measurements are per-
formed? Surely it doesn’t because the two measurements
refer to different degrees of freedom; the corresponding
operators commute. Therefore, the experimenter can
first measure O(φ) and then decide whether the quanton
in question should get a red/green label (QE sorting) or
a blue/yellow label (WW sorting). This freedom enables
the experimenter to sort the data in fancy manners if he
likes to do so. For instance, quantons that hit one half
of the screen of a two-slit interferometer could be labeled
by blue and yellow, and those hitting the other half by
red and green. In view of (28), it is clear that much more
complicated sorting schemes are conceivable.

8. Post festum

No one doubts that these joint probabilities are in-
dependent of the order in which the O(φ) measurement
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and the sorting measurement are done for each individ-
ual quanton. Nevertheless, objections have been raised
against the statement that the temporal order is truly
without significance, and thus against the freedom of a
late choice between the WW and the QE sorting. In
particular, it has been argued — both in private and
in public; recently and eloquently by U. Morhoff [49] —
that the reading of the WW marker must be done before
the O(φ) measurement is performed. Or, put differently,
one has to sort the quanton into one of the color-coded
subensembles first and then determine its contribution to
the interference pattern. When O(φ) is measured first,
so the critics assert, nothing can be learned from a sub-
sequent, post festum reading of the WW marker.

I disagree [50] because this critique is at odds with the
objective nature of the EPR correlations (28) that link
quanton states to corresponding marker states.

Consider the situation in which O(φ) of (31) has been
measured and the eigenvalue 1 found. This characterizes
a subensemble, for which the statistical operator of the
marker is

ρM =
trQ {O(φ)PO(φ)}

trM trQ {O(φ)PO(φ)}
= |M(φ)〉〈M(φ)| (34)

with

|M(φ)〉 =
1√
2

(
|M1〉+ |M2〉 e−iφ)

. (35)

The conditional probabilities for the outcomes of the
WW measurement are then

blue: 〈M1|M(φ)〉 2 =
1
2
,

yellow: 〈M2|M(φ)〉 2 =
1
2
, (36)

and those of the QE measurement are

red: 〈M+|M(φ)〉 2 =
1
2
(1 + cosφ) ,

green: 〈M−|M(φ)〉 2 =
1
2
(1− cosφ) . (37)

So, this subensemble contains equal numbers of blue and
yellow quantons but the relative frequency of red and
green ones will be biased if cosφ 6= 0.

Once more, there is no surprise. As soon as the eigen-
value 1 of O(φ) has been found, it is known that the
quanton is in state |S(φ)〉 which, according to (28), is tan-
tamount to knowing that the marker is in state |M(φ)〉,
as is confirmed by (34). And the probabilities that the
quanton is blue, yellow, red, or green are the ones stated
above.

The said critics do not dispute these facts, but they
give them a twist to arrive at their central argument,
which is essentially as follows. Having found the eigen-
value 1 of O(φ), the statistical operator of the joint
quanton-marker system is no longer given by P of (11)

but rather by the one of the subensemble characterized
by the measurement result, that is

P(φ) = |M(φ), S(φ)〉〈M(φ), S(φ)|
= |Ψ(φ)〉〈Ψ(φ)| = ρMρQ . (38)

As indicated, this factors into a marker part with ρM
of (34) and a quanton part with ρQ equal to O(φ) of
(31), and therefore there is no entanglement between the
marker and the quanton in P(φ). In other words: The
equivalence stated in (28) is not true for P(φ), only for P.
And so, the critics conclude, after the O(φ) measurement
has been performed, measurements on the marker will no
longer tell us anything about the state of the quanton.

Superficially it appears that a valid objection has been
raised. Actually, however, the critics are missing the
point.

The purpose of the WW marker is to store information
about the state of the quanton. Manipulations of, such
as measurements on, the quanton do not affect what is
stored in the WW marker. Perhaps the following scene
from the lab illustrates the issue. Student Alice has the
job of making measurements on the quanton, student
Bob reads the WW marker. Two experimental situa-
tions, E1 and E2, are of interest:

E1: Bob finds the marker in state |M̃1〉 and tells Al-
ice about it. Then Alice makes a |S̃1〉/|S̃2〉-distin-
guishing measurement on the quanton as a test of
the prediction that the quanton is in state |S̃1〉. In-
deed, this is what she will always find under the
circumstances stated, and so Alice confirms what
is said in (28).

E2: Bob finds the marker in state |M̃1〉 and tells Al-
ice about it. But before the message arrives, Al-
ice measures O(φ). Upon Bob’s request to confirm
that the quanton is in state |S̃1〉, she replies: Sorry,
too late. — In many repetitions of these circum-
stances, Alice will confirm that the results of the
O(φ) measurement are statistically consistent with
Bob’s findings about the marker state.

E2 has occurred and the supervisor turns to Alice with
the question: “Unfortunately Bob’s message has arrived
after your O(φ) measurement. If you had made the
|S̃1〉/|S̃2〉 distinction, as in E1, instead of measuring
O(φ), what would you have found?” Undoubtedly she
answers: “I would have found |S̃1〉, of course!” because
this is the logical implication of the empirical experience
gained in E1. Naturally, the supervisor is pleased.

The day after, Alice falls ill and Chuck takes her place.
At the end of the day the supervisor comes to the lab and
asks Chuck the very same question to which Alice had
responded so pleasingly. Chuck, however, gives a differ-
ent answer; he says: “Textbooks on quantum mechanics
warn against making statements about the hypothetical
outcome of measurements that haven’t been performed
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and can no longer been made. Therefore, I’d say there
is no sensible answer to your question.” The supervisor
isn’t happy at all with this reply, because Chuck ignores
the lesson of E1.

Very often, statements about the outcomes of measure-
ments that could have been performed but have not been
made actually, do not make much sense — very often, but
not always. Alice is on safe ground here because of her
E1 experience. Her answer is not imprudent, but demon-
strates a thorough understanding of the characteristics of
the experiment.

Does Alice’s answer “I would have found |S̃1〉, of
course!” depend on the time when Bob makes his mea-
surement? No, it doesn’t because the correlations of (28)
are reciprocal, so that the roles of Alice and Bob can be
interchanged in E1. According to the post-festum crit-
ics, however, Alice’s answer should depend on the timing.
When her measurement is first, she should give Chuck’s
answer. The critics’ fallacy is thus brought to light: Their
reasoning is at variance with the empirical reality of the
EPR correlations stated in (28) and confirmed by E1.
Case closed.

The critics are led astray by regarding the state reduc-
tion that turns P of (11) into P(φ) of (38) as a physical
process, not as the mental process it is. This point of
view necessarily requires that the original state vector
|Ψ〉 of (10) as well as the reduced one, |Ψ(φ)〉 of (38),
are regarded as real physical objects, rather than as the
book-keeping devices that they are. We recall the rec-
ommended minimalistic interpretation: The state vector
|Ψ〉 serves the sole purpose of summarizing concisely our
knowledge about the entangled quanton-and-marker sys-
tem; in conjunction with the known dynamics, it enables
us to make correct predictions about the statistical prop-
erties of future measurements. Whoever endows |Ψ〉 with
more meaning than that . . .

The notion of state reduction that just came up is noth-
ing mysterious. It is dictated by the rules of correct book-
keeping. We begin with a statistical operator P that
refers to a certain ensemble (here: of quantons entan-
gled with WW markers) and summarizes what we know
about it. Then a measurement result (here: “O(φ) equals
1”) is used to identify a subensemble. Probabilistic pre-
dictions concerning this subensemble cannot be based
on the original P, but must rely on a suitably refined
Psub (here: P(φ)) that accounts for the defining proper-
ties of the subensemble. In other words: Psub yields the
correct conditional probabilities, conditioned on the said
measurement result. The transition P → Psub is the cor-
responding state reduction. Clearly, it is not a physical
process, but a mental one that simply reflects the change
in our knowledge about the system. In addition, state
reduction is not a specialty of quantum mechanics; it is a
technical device of all statistical theories: “when I toss a
coin the 50–50 probability distribution changes abruptly
if I look at the outcome” (N. G. van Kampen [19]).

9. What does a quantum eraser erase?

9.1. More realistic which-way markers

The analysis of sections 2 and 7 owes its simplicity to
the idealization that the pure states |M1〉 and |M2〉 suf-
fice for an appropriate description of the WW marker.
We lift this restriction now and suppose more generally
that the WW marker is initially prepared in a state char-
acterized by the statistical operator ρ(0)

M . The quanton is
initially in the state |ψ〉 of (2), so that ρ(0)

Q of (4) is the
initial statistical operator, for which we now write more
compactly

ρ
(0)
Q =

1
2
(
σ†σ + σσ† + σ + σ†

)
(39)

where

σ = |S2〉〈S1| , σ† = |S1〉〈S2| (40)

are obvious analogs of spin-flip operators.
The net effect of the interaction that creates the entan-

glement between marker and quanton is accounted for by
two unitary operators, U1 and U2, one for each way, that
is:

ρ
(0)
M →

{
U†

1ρ
(0)
M U1 ≡ ρ

(1)
M for way 1 ,

U†
2ρ

(0)
M U2 ≡ ρ

(2)
M for way 2 .

(41)

Inasmuch as σ†σ and σσ† are the projectors that select
the ways, the unitary operator that transforms the joint
marker-quanton system is

UM&Q = σ†σU1 + σσ†U2 , (42)

and the entangled state

P = U†
M&Qρ

(0)
M ρ

(0)
Q UM&Q (43)

results from the marker-quanton interaction. Its explicit
form is

P =
1
2
(
σ†σρ

(1)
M︸ ︷︷ ︸

slit 1

+σσ†ρ
(2)
M︸ ︷︷ ︸

slit 2

+σρ̃M + σ†ρ̃†M︸ ︷︷ ︸
cross terms

)
(44)

where the single-slit contributions involve the marker
states ρ(1)

M and ρ(2)
M corresponding to them, and the cross

terms contain

ρ̃M = U†
2ρ

(0)
M U1 (45)

and its adjoint. Of course, the statistical operator of (11)
is a particular realization of (44); for example, the choice
ρ
(0)
M = |M1〉〈M1| in conjunction with U1 = 1 and U2 such

that 〈M1|U2 = 〈M2| turns (44) into (11).
Partial traces produce the statistical operators for the

WW marker,
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ρM = trQ {P} =
1
2
(
ρ
(1)
M + ρ

(2)
M

)
, (46)

and for the quanton

ρQ = trM {P} =
1
2
(
σ†σ + σσ† + Cσ + C∗σ†

)
. (47)

The significance of the complex number

C = trM {ρ̃M} = trM
{

U†
2ρ

(0)
M U1

}
(48)

is revealed by a glance at the resulting interference pat-
tern,

p(φ) = trQ
{

O(φ)ρQ

}
=

1
2
[
1 + Re

(
e−iφC

)]
. (49)

Inasmuch as

pmax

pmin

}
=

1
2
(
1± C

)
(50)

are the extreme values of p(φ), the fringe visibility V
equals the modulus of C,

V = C , (51)

and the argument of C determines the location of the
crests and troughs.

A well functioning WW detection device is such that
ρ
(1)
M and ρ

(2)
M can be kept apart. (The relevant numer-

ical measure is introduced in section 10; here we’ll get
around without technicalities of this kind.) It is clear
that both the initial marker state ρ(0)

M and the unitary
operators U1, U2 must be chosen judiciously to achieve
well distinguishable final marker states.

A particularly unfortunate choice is exemplified by

ρ
(0)
M =

1
2
(
|M1〉〈M1|+ |M2〉〈M2|

)
(52a)

in conjunction with

U1 = 1 ,

U2 = |M1〉〈M2|+ |M2〉〈M1|+ · · · , (52b)

where the ellipsis indicates those irrelevant pieces of U2

that act on marker states orthogonal to both |M1〉 and
|M2〉. Here one gets

ρ
(1)
M = ρ

(2)
M = ρ

(0)
M (52c)

so that no WW information is available, and

ρ̃M =
1
2
(
|M2〉〈M1|+ |M2〉〈M1|

)
, (52d)

implying

C = 0 ,V = 0 , (52e)

is bad news too: No fringes.

9.2. The as-if-reality of quantum erasure

This simple example illustrates graphically that the
lack of WW information does not ensure good fringe vis-
ibility, nor does a fringeless pattern indicate that WW
information has become available. The implication works
only in the opposite directions:

Full fringe visibility precludes any WW
information, and the acquisition of com-
plete WW knowledge enforces the disap-
pearance of interference fringes.

(53)

Intermediate situations are the subject of section 10.
In section 7 we mentioned that the data sorting called

quantum erasure got its name because in the course
of performing QE the WW information is lost — it is
“erased.” Now we are facing a new situation in which
the interference fringes are gone, but no WW informa-
tion has been gained to compensate for the loss. Is a
data sorting of the QE type still possible although there
is no WW information that could be erased?

Yes, QE is still possible. We justify this affirmative
answer in the general context of (44). To perform QE one
makes a measurement on the marker that distinguishes
the states |αν〉 whose defining property is

U1|αν〉 = U2|αν〉 eiαν . (54)

These |αν〉’s are the eigenstates of the unitary operator
U†

2U1 and the phase factors exp(iαν) are the respective
eigenvalues. When the marker is found in the state |αν〉,
the corresponding subensemble of quantons is character-
ized by

ρ
(ν)
Q =

1
2
(
σ†σ + σσ† + eiανσ + e−iανσ†

)
. (55)

Since this is essentially ρQ of (47) with C → exp(iαν),
the interference pattern of this subensemble is [cf. (49)]

p(ν)(φ) =
1
2
[
1 + cos(φ− αν)

]
. (56)

So, when the quantons are sorted according to the re-
sult of the |αν〉-distinguishing measurement, then each
subensemble shows an interference pattern with unit
fringe visibility. Therefore, the said measurement is a
QE measurement. This analysis does not make use of
any special properties of U1 and U2, and makes no refer-
ence at all to ρ(0)

M . Consequently, it is indeed true that
QE can be performed even in the unfortunate case spec-
ified by (52).

We have thus seen quite explicitly that QE is possible
even if there is no WW information to be erased. If it’s
not the WW information, then what does a quantum
eraser erase?

The answer is based on the observation that there is
an as-if-reality to ρQ of (47) that goes with the ρ(ν)

Q ’s of
(55):
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ρQ =
∑

ν

w(ν)ρ
(ν)
Q , (57)

where the weights w(ν) are, of course, just the probabili-
ties for finding the marker in the respective |αν〉 states,

w(ν) = 〈αν |ρM|αν〉 . (58)

The identities

w(ν) = e−iαν 〈αν |ρ̃M|αν〉 = eiαν 〈αν |ρ̃†M|αν〉 (59)

are the essential ingredients in showing that the right-
hand sides of (47) and (57) are the same. Equations (56)
and (57) tell us that there is (at least) one as-if-reality
to ρQ in which each alternative exhibits an interference
pattern with unit fringe visibility.

The question, What does a quantum eraser erase?,
asked in the title of this section, is therefore answered
as follows:

A quantum eraser removes the cover that
hides the as-if-reality of alternatives with
maximal fringe visibility.

(60)

If there is WW information stored in the marker before-
hand, then it is erased when QE is performed. In general,
however, the availability of WW information is not a pre-
condition for QE.18

9.3. Schrödinger’s cat

9.3.1. Interferences between live and dead cats? No!

The affirmative “Yes, QE is still possible.” is reas-
suring, but it is not a claim of practical feasibility. On
the contrary, the requirement of distinguishing the eigen-
states |αν〉 of U†

2U1 from each other can and will be pro-
hibitively difficult under the typical circumstances of an
experiment. In particular, if the marker is itself a macro-
scopic piece of the WW detection device so that ρ(0)

M as
well as U1 and U2 make reference to very many degrees
of freedom, QE is simply impossible, and the interference
fringes cannot be retrieved.

Such is the situation in E. Schrödinger’s (in)famous
cat example [8], where a radioactive atom is the quanton
(|S1〉: excited atom, |S2〉: ground-state atom) that gets
entangled with a Geiger counter, a hammer, some poi-
sonous gas, . . . , and finally the cat. The marker consists
of all this equipment plus those parts of the environment
with which the Geiger counter, . . . , the cat are interact-
ing during the period of interest.19 It is clear that any
attempt to do QE on a macroscopic marker like this one,

18Therefore, one could lament that quantum erasure is a
misnomer. But, who knows a more fitting term?

19That includes the quantized radiation field with its infinity
of photon degrees of freedom.

with the aim of finding interferences between |S1〉 and
|S2〉 is bound to fail, simply because U1 and U2 cannot
be known with the necessary precision, if for no other
reason.

Before turning to E. Schrödinger’s cat problem, let
us briefly mention a technical point. In general, the
unitary evolution that entangles the atom (≡ quanton)
with the marker (≡ cat plus . . . ) is not of the sim-
ple form assumed in section 9.1. Rather, we begin with
ρ
(0)
Q = σ†σ = |S1〉〈S1| (atom excited) and an initial mar-

ker state ρ(0)
M that represents our very limited knowledge

about the Geiger counter, . . . , the cat plus the environ-
ment. Then

UM&Q = σ†σV1 + σ†V2 + σV3 + σσ†V4 (61)

is acting where V1, . . . , V4 affect only the marker vari-
ables. This results in a final P of the form (44) with

ρ
(1)
M ∝ V †

1 ρ
(0)
M V1 (live cat),

ρ
(2)
M ∝ V †

2 ρ
(0)
M V2 (dead cat),

ρ̃M ∝ V †
2 ρ

(0)
M V1 (“live&dead” cat).

(62)

Now, whereas UM&Q is unitary, the operators V1, . . . , V4

need not be unitary themselves and, as a rule, they will
not be. Then it is possible, and indeed plausible, that the
cross term ρ̃M vanishes,20 although both ρ(1)

M and ρ(2)
M are

nonzero, and QE cannot be done in the first place. An
elementary example for this situation (with no relevance
for E. Schrödinger’s cat!) is provided by a marker that
has only two possible states |M1〉 and |M2〉; then

V1 = V4 = |M2〉〈M1| , V2 = V3 = |M1〉〈M2| (63)

are such that UM&Q is unitary, and ρ̃M = 0 obtains for
ρ
(0)
M of (52a) while ρ(1)

M and ρ(2)
M project to |M1〉 and |M2〉,

respectively.
In a popular jargon any entangled state of a quantum

degree of freedom and a macroscopic marker is called a
Schrödinger cat.21 In this sense (44) represents a cat if the
experimenter can distinguish between ρ(1)

M and ρ(2)
M with-

out further ado. It thus seems that “Schrödinger cat” is
just another word for an entangled system. And so one
should think that everything worth saying has been said
about his cat, in the more than sixty years since E. Schrö-
dinger published his Generalbeichte (general confession).

20In the jargon of reference [23] one could say: The entangled
system suffers from decoherence.

21Sometimes the term is also applied to superpositions of
macroscopically different states of a single quantum degree
of freedom; see, for example, reference [40]. This usage is
misleading and should be discouraged, the more so because
such superpositions are common in standard interferometric
devices.

14(February 28, 2002)



Nevertheless, there is continuing interest in the subject
and the question

Why do we never see interferences be-
tween the dead and the live cat?

(64a)

is still being asked, which repeats (1), in essence.
Let us answer this question at the example of the

Schrödinger cat (44). A look at ρM of (46), which is
simply half the sum of ρ(1)

M (live cat) and ρ(2)
M (dead cat),

justifies this immediate reply:

Because there are no interference terms in
the final state of the cat.

(64b)

It is true that there are such terms in P of (44), viz. the
contributions involving ρ̃M (provided that ρ̃M does not
vanish to begin with). But if ρ(1)

M and ρ
(2)
M are macro-

scopically different, then the visibility V is surely zero,
and the statistical operator ρQ of (47) contains no trace
of these interference terms either.

In other words: Neither a measurement on the mar-
ker (the cat) alone, nor a measurement on the quan-
ton alone is sensitive to the presence of the interference
terms in P. One would have to measure a joint observ-
able (which one?), or better: form subensembles of cats
according to the outcomes of suitable measurements on
the quanton. Consider, for example, the quanton observ-
able Q = σ + σ† with eigenvalues Q′ = ±1. This yields
subensembles characterized by

ρ
(±)
M =

1
2
(
ρ
(1)
M + ρ

(2)
M

)
± 1

2
(
ρ̃†M + ρ̃M

)
. (65)

[Since ρ(1)
M and ρ

(2)
M are assumed to be macroscopically

different, ρ̃M must be traceless; see section 10. Thus,
ρ
(±)
M is properly normalized to unit trace.] Cross terms

are present here, and so one could expect that each
subensemble would exhibit interferences between ρ(1)

M and
ρ
(2)
M — between the live state and the dead state of each

cat plus . . . , so to say.
Now, just like the cross terms in ρQ of (47) are notice-

able only if an appropriate observable is measured, such
as O(φ) of (31), the demonstration of these life/death in-
terferences requires a corresponding marker observable.
Naming this observable is easy if the marker is as simple
as in sections 2–8, but utterly impossible for a macro-
scopic device that deserves to be called a Schrödinger
cat. Phrased in words that summarize to some extent
the findings of G. Süßmann [9] and A. Peres [51]: The
cross terms ±

(
ρ̃†M+ρ̃M

)
in (65) are ineffective, they are of

no phenomenological consequences; the phenomenology
associated with ρ

(±)
M is indiscernible from the one that

goes with ρM = 1
2

(
ρ
(+)
M + ρ

(−)
M

)
of (46).

9.3.2. Selfadjoint operators and physical observables

“Naming this observable” is not only a matter of iden-
tifying a selfadjoint operator that is sensitive to the cross

terms, which task is not so difficult, but rather a mat-
ter of finding an observable, that is: a physical quan-
tity that can be measured. Whereas we take for granted
that there is a corresponding selfadjoint operator to each
observable22 (at least if we pay the price of some ide-
alizations), there is no reason why we should have an
observable to each selfadjoint operator.

Here I am disagreeing with P. A. M. Dirac because I
think that he is asking for too much in his well-known
statement (page 37 in reference [3], wording adapted to
the present conventions23):

The question now presents itself — Can ev-
ery selfadjoint operator be measured? The
answer theoretically is yes. In practice it may
be awkward, or perhaps even beyond the in-
genuity of the experimenter, to devise an ap-
paratus which could measure some particular
selfadjoint operator, but the theory always al-
lows one to imagine that the measurement
can be made.24

The logical development of quantum mechanics does not
need the axiom of a one-to-one correspondence between
observables and selfadjoint operators. And, isn’t it much
more plausible, in view of the very few fundamental inter-
actions in physics, that only a small subset of all think-
able selfadjoint operators correspond to physical observ-
ables?

22This excuses sloppy formulations such as “the quanton ob-
servable Q” in the stead of something more precise such as
“the selfadjoint operator Q that corresponds to the x compo-
nent of the quanton’s spin vector” and the like.

23P. A. M. Dirac’s terminology is different from the modern
one; in particular, his ‘real dynamical variable’ is today’s ‘Her-
mitean operator’ and his ‘observables’ are today’s ‘selfadjoint
operators.’

24This succinct quote is taken from the fourth edition (1958)
of P. A. M. Dirac’s seminal textbook; the corresponding sec-
tion of the third edition (1947) is worded identically. The
second edition (1935) contains statements that amount to the
same (see pages 28–30, 37 and 38), but there is nothing anal-
ogous in the first edition (1930).
It is also remarkable that P. A. M. Dirac knew about the

difference between Hermitean and selfadjoint operators and
that he appreciated its physical significance at the time when
he completed the second edition (November 1934), but not
when he wrote the first edition. Presumably, this is evidence
for lessons learned from J. von Neumann’s book of 1932 [6].
A different attitude can also be encountered. When the

mathematical physicist K. O. Friedrichs visited W. Heisen-
berg in the early 1930s and told him (proudly, I imagine) that
the mathematicians had made an important contribution to
the development of quantum mechanics by clarifying the said
difference, W. Heisenberg responded with the question: “Is
there one?” (I owe this charming anecdote to R. Haag.)
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A much referred-to statement to the same extent can
be found in J. von Neumann’s book (page 167 of the
German edition of reference [6], page 313 in the English
translation):

Den physikalischen Größen eines quanten-
mechanischen Systems sind, wie wir wissen,
die hypermaximalen Hermiteschen Operato-
ren eindeutig zugeordnet [. . . ], und es ist
zweckmäßig anzunehmen, daß diese Zuord-
nung eine ein-eindeutige ist — d. h. daß wirk-
lich jeder hypermaximale Hermitesche Ope-
rator einer physikalischen Größe entspricht.
(In III.3. machten wir hiervon gelegentlich
auch Gebrauch.)25

The remark in parentheses sounds as if the one-to-one
correspondence — which, as I said above, is not needed
as a building block of quantum mechanics — were used
by J. von Neumann in an important argument. A look
at his section III.3, however, reveals that this is not the
case. What he has actually made use of in this section is
a much weaker property, namely that if X and Y are the
selfadjoint operators of two physical quantities that can
be measured simultaneously, then there are also observ-
ables that correspond to the linear combinations xX+yY
with numerical coefficients x and y. Indeed, if you can
simultaneously measure X and Y then you have already
measured all such linear combinations. Surely, this very
special case of simultaneously observable physical quan-
tities cannot be regarded as evidence in support of the
general claim of a one-to-one correspondence.

Harkening back to what is said about the Heisenberg
cut in the Introduction, we note a similar (and related26)
situation here. No formal criterion is at hand that would
enable us to judge whether any given selfadjoint operator
corresponds to a physical observable.27 And for reasons
analogous to the ones that deny a rigorously definable
location for the Heisenberg cut, such a criterion cannot
exist.

25In R. T. Beyer’s translation:

There corresponds to each physical quantity of a
quantum mechanical system, a unique hypermaxi-
mal Hermitian operator, as we know [. . . ], and it is
convenient to assume that this correspondence is
one-to-one — that is, that actually each hypermax-
imal operator corresponds to a physical quantity.
(We also made occasional use of this in III.3.)

A “hypermaximal Hermitian” operator is a selfadjoint one.
26Recall footnote 6.
27Of course, a physical observable must not be in conflict

with the conservation of electric charge — in other words, it
must be gauge invariant — but this condition, plus a couple
of similarly elementary ones, is not enough.

9.3.3. Additional remarks

In addition to this notorious problem of identifying an
appropriate physical quantity of the marker to be mea-
sured, in correlation with the outcome of the Q measure-
ment on the quanton that identifies the subensembles of
(65), there is the challenge to reproduce the initial con-
ditions implicit in ρ

(0)
M with the precision that is neces-

sary to avoid a complete washing-out of the interference
pattern looked for. In conclusion, one must agree with
E. Schrödinger’s judgment that the notion of a superpo-
sition state of a live and a dead cat is burlesk (ludicrous).

A remark on the notion of “superposition of two sta-
tistical operators,” such as ρ(1)

M and ρ(2)
M , is in order. Su-

perpositions of two (normalized) state vectors, |ψ1〉 and
|ψ2〉, are familiar textbook matter: Linear combinations
|ψ〉 = |ψ1〉α1 + |ψ2〉α2, with complex coefficients, are also
acceptable state vectors; the requirement

α1
2 + α2

2 + 2Re
(
α∗1α2〈ψ1|ψ2〉

)
= 1 (66a)

ensures proper normalization. Superpositions of two
statistical operators, ρ1 and ρ2, are constructed analo-
gously. First one finds (Hilbert-Schmidt) operators A1

and A2 such that ρ1 = A†1A1 and ρ2 = A†2A2, then
A = α1A1 + α2A2 yields the superposition ρ = A†A.
Here the normalization is enforced by the analogous re-
striction

α1
2 + α2

2 + 2Re
(
α∗1α2 tr

{
A†1A2

})
= 1 (66b)

on α1 and α2. For example, the statistical operators ρM

of (46) and ρ(±)
M of (65) are superpositions of ρ(1)

M and ρ(2)
M .

If ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2| represent pure states,
the state-vector superpositions yield ρ = |ψ〉〈ψ| which are
particular statistical-operator superpositions; the latter
kind is more general, however. Of course, there is no
guarantee that arbitrary superpositions ρ of two physical
states ρ1 and ρ2 are also physical, as is demonstrated by
E. Schrödinger’s cat example.

10. Wave-particle duality

10.1. Distinguishability of the ways

For 0 < C < 1, we have fringes of reduced visibility in
(49). Is there also a limited amount of WW information
available? Inasmuch as an interference pattern is a man-
ifestation of the wave aspects of the quanton, whereas
WW knowledge documents its particle aspects, we are
heading for a quantitative statement about wave-particle
duality. The principle of complementarity28 implies that
wave and particle aspects are mutually exclusive, in the

28A technical definition is given in reference [34].
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sense of (53), but it says nothing quantitative about the
possible compromises.

We must read the WW marker to extract WW in-
formation, that is to say: we must measure a marker
observable W [with (nondegenerate) eigenvalues W and
eigenstates |W 〉] and see what we can infer from the mea-
surement result.

Suppose that the eigenvalue W is found. In view of
(46), this happens with the probability

〈W |ρM|W 〉 =
1
2
〈W |ρ(1)

M |W 〉︸ ︷︷ ︸
slit 1

+
1
2
〈W |ρ(2)

M |W 〉︸ ︷︷ ︸
slit 2

. (67)

Unless the contribution of one of the slits vanishes, we
cannot be certain about the way. But we know which way
to bet on, namely on the one that contributes most to
the probability 〈W |ρM|W 〉.29 After many repetitions, the
betting odds are given by the “likelihood LW for guessing
the way right,”

LW =
∑
W

Max
{1

2
〈W |ρ(1)

M |W 〉︸ ︷︷ ︸
slit 1

,
1
2
〈W |ρ(2)

M |W 〉︸ ︷︷ ︸
slit 2

}
. (68)

The value of LW depends, of course, on the observable
W that we choose to measure.

Since we guess right for 50% of the quantons when
betting at random, LW ≥ 1

2 must hold. And if we are
lucky and know the way for each quanton with certainty,
then LW = 1. It is therefore natural to quantify the
acquired WW knowledge by the number

KW = 2LW − 1 , 0 ≤ KW ≤ 1 , (69)

so that

KW = 0 : no WW knowledge,

KW = 1 : full WW knowledge.
(70)

As a consequence of (68), KW is given by30

KW =
1
2

∑
W

〈W |
(
ρ
(1)
M − ρ

(2)
M

)
|W 〉 . (71)

The largest possible value of KW is the distinguishabil-
ity D of the ways,

D ≡ Max
W

KW . (72)

Inasmuch as the distinguishability D represents Nature’s
information about the ways whereas the knowledge KW

29This betting strategy was introduced by W. K. Wootters
and W. H. Zurek [52].

30The identity Max{x, y} = 1
2
(x + y) + 1

2
x− y is used in

the transition from (68) to (71).

is what Man can learn from measuring the observable W,
the inequality

KW ≤ D (73)

states an obvious hierarchy: Man cannot be smarter than
Nature. In passing we note that the numbers LW, KW,
and D quantify information or knowledge without invok-
ing an entropic concept of some kind.

The equal sign holds in (73) when the eigenstates |W 〉
of W are also eigenstates of ρ(1)

M − ρ
(2)
M ; then the moduli

of the eigenvalues of ρ(1)
M − ρ

(2)
M are summed in (71), so

that the distinguishability is explicitly given by

D =
1
2

trM
{
ρ
(1)
M − ρ

(2)
M

}
. (74)

Thus, mathematically speaking, D is the distance be-
tween 1

2ρ
(1)
M and 1

2ρ
(2)
M in the trace-class norm.

10.2. A digression: Asymmetric interferometers

Which-way information of a different kind is available
in asymmetric interferometers where the a priori proba-
bilities of the alternatives “through slit 1” and “through
slit 2” are different. Then the way is predictable to some
extent, so that we have some WW knowledge even with-
out any WW marking.

In case of such an asymmetry, the initial statistical
operator of the quanton is of the general form

ρ
(0)
Q,asym = w1σ

†σ + w2σσ
† +

√
w1w2

(
εσ + ε∗σ†

)
, (75)

where w1 and w2 are the respective probabilities for the
two ways (w1 + w2 = 1, of course). The parameter ε
plays the same role here as in equation (9), which is the
w1 = w2 = 1

2 version of (75). When betting on the more
probable way, we get an a priori likelihood of

La priori = Max{w1, w2} ≡
1
2
(
1 + P

)
, (76)

which identifies the predictability P of the ways,31

P = w1 − w2 . (77)

With a WW detection device in place, corresponding ex-
pressions for KW and D are found. They are obtained
from (71) and (74), respectively by the replacements
1
2ρ

(1)
M → w1ρ

(1)
M and 1

2ρ
(2)
M → w2ρ

(2)
M . The inequality (73)

is then supplemented by

31If something is known about the process of formation of
the mixture ρ

(0)
Q,asym, that is: if a particular blend can be phys-

ically distinguished, then the a priori likelihood and thus the
predictability can be larger; see reference [38] for a discussion
of such situations. Equations (78) and (80) are equally valid
under these circumstances.
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P ≤ KW , (78)

which sets an obvious lower bound on the knowledge KW.
For the statistical operator (75) the fringes have an a

priori visibility V0 that is given by

V0 = 2
√
w1w2 ε . (79)

As a consequence of the positivity of ρ(0)
Q,asym — which

requires ε ≤ 1 — the predictability P and the a priori
visibility V0 must obey the inequality

P2 + V2
0 ≤ 1 . (80)

This observation has been made — implicitly or explicitly
— by a number of authors in various physical contexts
in which alternatives can become predictable to some ex-
tent. I am aware of references [38,52–59]; the measure-
ments on neutrons and photons reported in [53,54] and
[57], respectively, are consistent with (80).

10.3. An inequality

The fringe visibility V of (51) and the distinguishability
D of (74) quantify the wave aspects of the quanton and its
particle aspects, respectively, and so the stage is set for
the quantitative statement about wave-particle duality.
It reads [60]

D2 + V2 ≤ 1 . (81)

Clearly, the extreme cases of (53), viz

V = 1 implies D = 0 ,

D = 1 implies V = 0 ,
(82)

are an immediate consequence of (81), and there is room
for the example of equations (52) in which V = 0 and
D = 0.

The equal sign holds in (81) if ρ(0)
M represents a pure

state, because then we have32

ρ
(0)
M = |M (0)〉〈M (0)| ,

ρ
(1)
M = |M (1)〉〈M (1)| with |M (1)〉 = U†

1 |M (0)〉 ,

ρ
(2)
M = |M (2)〉〈M (2)| with |M (2)〉 = U†

2 |M (0)〉 ,

ρ̃M = |M (2)〉〈M (1)| , (83a)

and the non-zero eigenvalues of ρ(1)
M − ρ

(2)
M are given by

±
(
1− 〈M (1)|M (2)〉

2)1/2, so that

32Note that |M (1)〉 and |M (2)〉 need not be orthogonal to

each other. An analogous remark applies to |M (1)
k 〉 and |M (2)

k 〉
in (86).

D =
√

1− 〈M (1)|M (2)〉
2

(83b)

and

V = trM {ρ̃M} = 〈M (1)|M (2)〉 . (83c)

Indeed, the upper limit of (81) is reached.
For a proof of the duality relation (81) we follow the

strategy of [60]; situations that are more general than
the ones considered here — in particular, the extension to
asymmetric interferometers and the complications arising
from quanton-marker couplings of the form (61) — are
dealt with in references [61,62]. First, we employ the
spectral decomposition of ρ(0)

M ,

ρ
(0)
M =

∑
k

mk|Mk〉〈Mk| (84a)

with

mk ≥ 0 ,
∑

k

mk = 1 , 〈Mj |Mk〉 = δjk , (84b)

in ρ(1)
M and ρ(2)

M to arrive at

ρ
(1)
M − ρ

(2)
M =

∑
k

mk

(
|M (1)

k 〉〈M (1)
k | − |M (2)

k 〉〈M (2)
k |

)
(85)

where

|M (1)
k 〉 = U†

1 |M
(0)
k 〉 , |M (2)

k 〉 = U†
2 |M

(0)
k 〉 . (86)

Then we make use of the triangle inequality

tr { ρa − ρb } ≤ tr { ρa }+ tr { ρb } , (87)

valid for any two trace-class operators ρa and ρb, to es-
tablish

D ≤ 1
2

∑
k

mk trM
{
|M(1)

k 〉〈M(1)
k | − |M(2)

k 〉〈M(2)
k |

}
.

(88)

The lesson learned at the example of equations (83) en-
ables us to evaluate these simpler traces, and we find

D ≤
∑

k

mk

√
1− 〈M (1)

k |M (2)
k 〉

2
. (89)

It is convenient to express the amplitudes 〈M (1)
k |M (2)

k 〉 in
terms of two angle variables ϑk and ϕk,

〈M (1)
k |M (2)

k 〉 = sinϑk eiϕk (90)

with 0 ≤ ϑk ≤ π/2 and 0 ≤ ϕk < 2π, so that

D ≤
∑

k

mk cosϑk . (91)
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Likewise, the visibility is given by

V =
∑

k

mk〈M (1)
k |M (2)

k 〉 =
∑

k

mk sinϑk eiϕk . (92)

In conjunction with (91) this yields

D2 + V2 ≤
∑

j

mj

∑
k

mk

[
· · ·

]
, (93)

where [· · ·] = cosϑj cosϑk + sinϑj sinϑk cos(ϕj − ϕk) is
the scalar product of two unit vectors in spherical coor-
dinates, so that [· · ·] ≤ 1, and we get

D2 + V2 ≤
(∑

k

mk

)2

=
(

trM
{
ρ
(0)
M

})2

= 1 , (94)

which is (81), indeed.
We emphasize that the proof of the duality relation

(81) does not invoke an uncertainty relation of the Hei-
senberg-Robertson kind [63,64], that is:

δX δY ≥ 1
2
〈i[X,Y ]〉 (95)

for the spreads of two observables X and Y and the ex-
pectation value of their commutator, and the same re-
mark applies to the more general treatments in [61,62].
Indeed, the mathematics used in demonstrating (95) is
quite different and more elementary: One notes that the
expectation value

〈
A†A

〉
is nonnegative and exploits this

fact for A = δY (X−〈X〉)±iδX(Y −〈Y 〉). The conclusion

The duality relation (81) and the uncer-
tainty relation (95) are logically indepen-
dent statements. Both are consequences
of the rules of the game we call quantum
mechanics, but one does not imply the
other.

(96)

is justified by this observation.
One should appreciate that (81) leaves a lot of room for

simultaneous manifestations of wave and particle prop-
erties between the two extreme cases of (53) or (82). For
example, we could have KW = D = 80% so that we can
guess the way right for (1+D)/2 = 90% of the quantons
while building up an interference pattern with a fringe
visibility of as much as V =

√
1−D2 = 60%. And even

if we know the way with a confidence of (1+D)/2 = 99%,
we may still have well visible fringes with V = 20%. In
the related, yet somewhat different, context of (80) D. M.
Greenberger and A. Yasin [58] remark that this “amazing
result testifies to the power of the superposition princi-
ple” — a good line to end on.
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[2] F. H. Fröhner, Z. Naturforsch. 53a, 637 (1998).

[3] P. A. M. Dirac, The Principles of Quantum Mechanics
(4th edition, Oxford University Press, Oxford, 1958).

[4] D. Bohm, Quantum Theory (Prentice Hall, New York,
1951).

[5] K. Gottfried, Quantum Mechanics, Volume I: Fundamen-
tals (Benjamin, New York, 1966).

[6] J. von Neumann, Mathematische Grundlagen der Quan-
tenmechanik (Springer, Berlin, 1932); English transla-
tion by R. T. Beyer, Mathematical Foundations of Quan-
tum Mechanics (Princeton University Press, Princeton,
1955).

[7] L. E. Ballentine, Quantum Mechanics (1st edition, Pren-
tice Hall, Englewood Cliffs,1990; 2nd edition, World Sci-
entific, Singapore, 1998).

[8] E. Schrödinger, Naturwissenschaften 23, 807 & 823 &
844 (1935); English translation by J. D. Trimmer, Proc.
Am. Philos. Soc. 124, 323 (1980); the latter reprinted
in [65].
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