o

scular Structure

We add the reactions K+4.34 eV — K*+e andI+e” — I +3.06 eV to obtain
K +1—K* +1" +(434-3.06) eV . The activation energy is 1.28 eV,

13 7
5_1'5;4_6[_12[3) +6(f5] }
g d v r

13 7
1
At r =1, we have d—u=O.Here (EJ =——[£J ,E=2'1/6,
dr tp rw) T

o=2"15(0.305) nm=[ 0272 nm=o0 |.

Then also

~1/6 2 -1/6., \6 ‘ .
u(ru)=4e[(—z - “’J _[E—T"] ]+Ea:4e[%—%]+}3“=—e+£ﬂ

0 o

e=E,-U(ry) =128 eV +3.37 eV =[ 465 eV =¢ |.

-2l 4]
(22

i ¢ ) dF 4e . o\
o find the maximum force we calculate o = -156| —| + 42| — | {=0 when
T [e s 7
o 42, \Y6
Truptare [156)

13/6 7/6
_ 4(465 eV) [12( 42 ) _6(%) ]=_41.0 eV/nm

T 0.272 nm 156
-19
= —41.03-‘1’(109_“&“ =—655 nN
JD’ m

Therefore the applied force required to rupture the molecule is | +6.55 nN | away

from the center.
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Molecular Structure

111 (a)

We add the reactions K+ 434 eV > K¥ +e” and [+e” -1 +3.06 eV to obtain
K+1—K* +1" +(434—3.06) eV . The activation energy is 1.28 eV

13 7
ffﬂzﬁ[_u(z) +6(z) ]
dr o i ¥

13 7
At r=r, we have E-l-]f:O.IrIere (EJ =l(£] ,2:2_1/6,
dr Ty 2\nn ) 1

o=2"Y6(0.305) nm= .

Then also

-1/6 12 -1/6 6
u(r0)=4e[[uJ —(Z—J-CL] }rEa :45[1—1}5,, =—e+E,
."’0 Tﬂ 4 2

e=E,-U(r,)=128 eV +3.37 eV=| 4.65eV =€ |.

du del (o\® (o
P‘”-‘?—ﬂu(?) %) }

‘ 14 8
To find the maximum force we calculate %Ii = i?—[—156(9:) + 42(2) } =0 when
r o r r
o 43 )1/ 8
s

rupture
13/6 7/6
P = A48 W1 29 (2] |=-s10 ev/run

max 0072 nm | \156 156
19
o0 Nm (o5 N
1077 m

Therefore the applied force required to rupture the molecule is | +6.55 nlN | away
from the center.
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¥ 2 2
For the I=1 1o =2 transition, AE=hf = 122+1) Zi(l + D or hf = % Solving for I gives

2 -34
S M BEXIOT TS g 46x10% kg m? p= 12 = 114x10°% kg,
W 27z'f  (22%)(230x10" Hz) 1y 111y

12
Ry= (é) =0.113 nm, same as Example 11.1.

2
(a) The separation between two adjacent rotationally levels is given by AE = (hTJI,

where [ is the quantum number of the higher level. Therefore

AE
AEj=—%
10 %

Ay =645 =6(1.35 cm)=8.10 cm
¢ 3.00x10" cm/s

fio=7

= =3.70 GHz
Ao 8.10 cm

2

/]
() AEy, =hfyp =Ti

R 1055x107*7.s
27 fiy  (27)(3.70%x10° Hz)

I=453%x10"* kg-m?

2
HCl molecule in the [ =1 rotational energy level: Ry =1.275 A, E,, = [%Jl(l +1).Forl=1,

2 2 23\1/2
Pt :(E)ﬁ
2 e I

[=| M2 |2 :[MJR,% =[0:9722 ux1.66x10% kg/u]x(1275x10° m)’
iy + g Tu+35u

=2.62x107" kg-m?

1.055x107 J-s
2.62x107™Y kg -m?

Thenlafore, = (?J-ﬁf = [

}E =569x10™ rad/s.

_omgmy,  (Tw)(35u)
my+m, (Lu+35u)

[3—5] u=162x10"" kg
36 :
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(@  I=pR2=(162x1077 kg)(1.28x107° m)* =2.65x10¥ kg-m?

E = (%]l(l 1)

22 (1054x107s)"
21~ 2x2.65%x107Y kg m®

=21x1072 1=131x107% eV

Eo =(131x107 eV)i(I+1)

1=0 By =0

=1 E. =262x107 eV
1=32 E. =786x107° eV
1=3 E =157x107% eV

‘ Kx*
b) U= 7 U =015 eV when x =001 nm

K(10™ m)’
(015 eV)(16x107 J/eV) B

2
K =480 N/m
1/2 1/2
1(K 1 480 13
=B st T | =866%10° H
f Zﬁ[ﬂj 2ﬁ[1.62><10‘27] % z

(©) Emw= (U + %)hf

hf =(6.63x107% ] 5)(8.66 10" Hz)=574x107* ]=0.359 eV
Ej= % =2.87x107% J=0179 eV

= KA? . 2.87%x 1072 ]:M

E ;
2

2E\V? 1
Ay = [—K—] =1.09%107" m=0.109A=0.0109 nm

E: :%hf:8.61 %107 J=0538 eV

2E\Y? 1
A1=(?) =1.89x107™" m=0.189A =0.0189 nm

he he
=AE . or A .. =

A

max

Rotational
AEmin = El:l - E1=0 = 262 X ].Oﬁ3 EV

he =12.400 eV -A

12400
WaE" " w5l (0

=473%10° A=473x10"* m (microwave range).
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11-11

11-13

CHAPTER 11 MOLECULAR STRUCTURE

Vibrational
A'Emjn = hf
he ke ¢ 3.00%x10° m/s

= M M R = ___—~—=3_46x10“6ﬁ1=3.46 infrared range).
X AE., B f 866x10" Hz - el

muR & muRy

The angular momentum of this system is L= =muwR. According to Bohr theory,

hi .
L must be a multiple of #, L=muR, =nk,or v= .. with n=1, 2, ... . The energy of rotation

mR,
is then
1 2 1 9 nh z T’lzhz
E=—mv" +—mv” =m ey n=1, 2,
2 2 mRQ mRU

From Equation 11.5 the allowed energies of rotation are

A2
E

{a+1}, =01, 2 <

rot
cm

where I, is the moment of inertia about the center of mass. In the present case, we have

2 2 %
{52 () 2
2 2 2
Thus,

Eppe =—{I0+1) 1=0,1,2,....

We see that I(I+1) replaces n® in the Bohr result. The two are indistinguishable for large
quantum numbers (Correspondence Principle), but disagree markedly when # (or [) is small.

In particular, E,, can be zero according to Quantum Mechanics, while the minimum
hz
rotational energy in the Bohr theory is 2 forn=1.
kg

du, I+ Dn?
— :#CUS(R:‘RO)"(*H‘“)—— or

R uR?

At equilibrium separation R, Uy is a minimum: 0=

2
R, =R, LA+ [L

2 3
Hroy \ R
correction, and may be approximated by substituting for R its approximate value Ry to get the
— +10%( 1

next approximation R; = R, e _ﬁs_
0 0

wyRE
J. For I << E-‘}Lu, the second term on the right represents a small

J. The value of U 4 at R, is the energy offset Li;:

272 2 2 2
11+ 1)k J A+ D _[l(H])h ”I(Hl)h +1}

1 5
Uy =U,4(R)=—pw =
=il {uZwSR? 2uR? | 2uR? || P03RS

I+ 1R?
2uRZ
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The curvature at the new equilibrium point is

) U _ 02+ 31+ 1n>
- 0
dr* R, URE |

and is identified with g} to get the corrected oscillator frequency

311+ )R> 31(1 + 1)A* ,
W :(034'———2——4—“‘:&')34'———2—.4— ‘
MR H"Ry

Since the second term on the right is small by assumption, @, differs little from w,, so that we |
may write o} — 0% =(w; - @y @ +0y) =20 Aw. The fractional change in frequency is then [

Aw _3l0+1DA?
w, 24 @R
|

1

2 2
h
11-15 The Morse levels are given by E., = (’U +12)Fm)—[v +E) (_a))_ The excitation energy from ‘

0 7 |

level v to level v+1 is
2 2 5 "
AEyp, = (Tﬂréjha)ﬂ(v-'r E) Ec_u)__(v +l)hw+(v +l) (@)
2 2) 4l 2 2) 4,
2 2 2
=ha- (v+§] —(wl) @D 4ol 1- @1 22 ||.
. 2) | 4o 2,

| Ttis clear from this expression that AE;, diminishes steadily as v increases. The excitation
| energy could never be negative, however, so that v must not exceed the value that makes

2U ) . . ;
‘ AE. 4, vanish: 1= ;_uw—(v +1) Of Vo = ?0— _1. With this value for v, the vibrational energy 15
@

' 0

—(1/2)hw]” 2
‘ E.p =2l 'lha)— [2U, —(1/2) @] il (ha) .
2 4, 16U,

2y, . . . .
‘ If ~ﬁ—” is not an integer, then v, and the corresponding E.y, will be somewhat smaller than

| @
2
tional energy will never exceed Uy — (0] ; |
16U, |

\ . . ;
the values given. However, the maximum vibra

‘ 11-19 To the left and right of the barrier site y/is the waveform of a free particle with wavenumber

172
| k=(2”;E) :
h

| w(x)= Asin(kx)+ Beos(kx) 0<x<

2
' w(x) = Fsin(kx) + G cos(kx) %s x<L
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The infinite walls at the edges of the well require w(0)=w(L)=0, 0r B=0 and G=—Ftan(kL) _ .;
leaving

w(x)= Asin(kx) 0<x<

2
w(x) = F{sin(kx) — tan(kL) cos(kx)} = Csin(kx — kL) % <x<L

For waves antisymmetric about the midpoint of the well, w(%) =0 and the delta barrier is "

ineffective: the slope Z—W is continuous at %, leading to C =+A. For this case %: ns, and
X

g 8.3 |
R : el B

2m(L/2) : |

|

as befits an infinite well of width %

w
&

e e R e R e

.. . . L .
The remaining stationary states are waves symmetric about Py and require C =—A for

continuity of y: Their energies are found by applying the slope condition with C =—A to get
; 2
-Ak COS(E) - Ak cos(-k—‘['-) = (2"18 )A sin(ﬁJ or tan[k—LJ = 2B (E‘-J . Solutions to this
2 2 i 2 2/  {mSLN\2

equation may be found graphically as the intersections of the curve y =tanx with the line
2

mSL

ZkZ

and E, = 5 ., Only values of x,, greater than zero need be considered,
m

y=-ax having slope —or=-

(see the Figure above). From the points of intersection x,

we find k, = Zzﬂ

since the wave function is unchanged when k is replaced by —k, and k=0 leads to y(x)=0
2. 2:2

h

M—T forS—>wandn=1, 2, ...
2m(L/2)
the same energies found for the antisymmetric waves considered previously. Thus, in this
limit the energy levels all are doubly degenerate, As S — 0 the roots become

n 3z n?m’h*
D ——

2" 2 2ml?

everywhere. As S — o we see that x, —»nz, giving E, =

= % (n odd), giving E, = n=1, 3, ... . These are the energies for the

symmetric waves of the infinite well with no barrier, as expected for S=0.
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The ground state wave is symmetric about %, and is described by the root x;, which varies

T - .
anywhere between — and 7according to 5. The ground state energy is

_RA(2xy /L) 2xin?
T 2m mI®

E

The first excited state wave is antisymmetric, with energy

_z'nt 2n%H
2m(Lj2)*  mL*

2

which coincides with E; in the limit 5 — ee.

By trial and error, we discover that the choice R =1.44 (bohr) minimizes the expression for
E,ot 50 that this is the equilibrium separation R;.

The effective spring constant K is the curvature of E,;(R) evaluated at the equilibrium point
R, =1.44. Using the given approximation to the second derivative with an increment
AR =0.01, we find '

dzEtot

K="t 2103
darR? |,
o

(An increment ten times as large changes the result by less than one unit in the last decimal
place.) This value for Kis in (Ry /bohr? ). The conversion to SI units is accomplished with the
help of the relations 1 Ry =13.6 eV = 2176107 J, and 1 bohr =0.529 A =5.29x10™"" m.

Then K =1.03 Ry/bohr?® =801 ]/ m? =801 N/m. The result is larger than the experimental
value because our neglect of electron-electron repulsion leads to a potential well much deeper
than the actual one, producing a larger curvature.
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The Solid State

12-1

12-3

12-5

12-7

ake’ B e Lo
Urnota = Ustenctive W epuisive == + pr At equilibrium, Ur,,, reaches its minimum value,
daul. oke*  mB . - )
—;“Eai =0=+—————. Calling the equilibrium separation ,, we may solve for B
¥ r r
mB oke®
AR
oke®
B=—

Substituting into the expression for Uy, we find

oke® 5 (0”"‘32/’””‘)”(;'171

{2
T ty To m)

UD:_

of2)o-8

19 2%
U =—(17476)(9x10° Nm?/ cz){(l'ﬁ—xm—c)—l(l —1)

0.281x107° m 8
U=-1.25x10"" J = -7.84 V. The ionic cohesive energy is U = 7.84 eV/ Na*-Cl~ pair.

ke ke*  ke®  ke*  ke®  ke® ke ke? e 1 1 1
Userr-— 4 —+ — - — ———+————— =2 — || I ——F+=——+...
7 r 2r  2r 3r 3Ir 4r dr 7 2 3 4
2.3 4 2
buth1{1+x):ng-m+f*w—x—+... 50 U:—M.
2 3 4 r
9 2 /~2 -1932
ake? 1) (1.7476)(9.00x10” Nm /C?)(1.60%10 )
(a) U] = (1 - "] = 1o
T m 0.314x10
(1—%]:1.14x10’13 J=712 eV/K*-QlI
b) Atomic cohesive energy = ionic cohesive energy + energy needed to remove an

electron from Cl” - energy gained by adding the electron to
K* =712 eV +3.61eV-434eV=639 eV/KCL.
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129 (a) Tg]e—*ﬁdt =-Ne"|" =-N[e™ -¢"]=N
0

(b) | £= (%JT[%NJE_U Tdt= 1]?(%)3'*/ ’ d—: = '.:'Ize‘zdz

0 ]

Z=1 dv=e¢%dz

—Z

dz=du Vv=—g

50 nfze’zdz = (fze“z)
0

: +fedz=0-¢"" : =1. Therefore, f = 7.
0

— il _
(© Similarly +* = (%]j(ﬁ)e—t/ “dt . Integrating by parts twice, gives t* =277,
ol T
12-11  (a) Equation 12.12 was J =nev;. As v, = ¢E, | =neyE. Also comparing Equation 12.10,
vy = ME, and v, = ¢#E, one has y:e—f.
e me

(b) As J=0F and | = Jgectrans + Jholes =M€l E+ pett,E, o =nep, +pejt,
(c) The electron drift velocity is given by
04 = fyE=(3900 cm?/Vs)(100 V/cm)=3.9%10° cm/s.
(d) An intrinsic semiconductor has n = p. Thus
o =nept, + pett, = pe(ft, +1,)=(3.0x10" em™)(16x10™ C)(5800 cm®/Vs)

=0.028 A/V cm=0.028 (Qcm)™ =2.8(Qm)™

p:—1—=0.36Qm
o

12-13  (a) We assume all expressions still hold with v . replaced by vp.

om,
ne?

o= =(160x10%) " (@m)T =6.25x107 (Qm)™
P

# ofe”
n=—m

ma

n=585x10% ¢ /m?

[ 22 V6.02x10% atoms/k mole)(105x10° kg/m?) 1omole
atom 108 g

(6.25x107 )(Qm) (911 x 107" kg)

T= 5 =3.80% 10 s (no change of course from
(5.85%x10% e7/m*)(1L6x1077 C)

Equation 12.10).
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. 1’,'2, [

(b) NOW L= UFT arld UF =[“2&) ‘
m

|

4 6x107 Jev "

g = 2X5 8er16>3<110 eV 1™ 1 39108 mys.
9.11x107 kg

L=(139x10° nys)(38x107 5)=527x10" m=527 A =527 nm

(©) The approximate lattice spacing in silver may be calculated from the density and the
molar weight. The calculation is the same as the 7 calculation. Thus,
(# of Ag atoms) / m?® =5.85x10% . Assuming each silver atom fits in a cube of side, d,

3 _ 2831 3
d* =(5.85x10 ) m /atom |
d=257x10"" m

-8
’ L_ 5.27><10_10 _ 205,
d 257%x10 “

12-15  (a) E, =114 eV for 5i
hf =1.14 eV = (L14 eV)(1.6x107" J/eV)=182 %107 J |

f=275%10" Hz

8
(b) c=1f,'z1:£—i<—1—0—m/i—:1.09x10"6m I

f 2.75%10% Hz |
2A=1090 nm (in the infrared region)

| 12-17  (a) Potential
| t |
“
- ——
= |
PR (PP —— -—- R<lU
U I II m
> X
x=0 x=a
Yy =A™ Kn=[2m(U - E)]¥>
wy = Beoskx +Csinkx kh = (2mE)"?
Y =De ™

2
In region I and III the wave equation has the form a ngX) =K2y(x) with

| 2m(U ~ E)]Y/?

K= [ . This equation has solutions of the form

w(x)= Ae™ forx<0 (region )
| wy =De ™ forxz0 (region III)
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(b)

[2mE]Y?
h

d2y(x) _

In region [l where U(x) =0 we have o —k%p(x) with k= . This
e

equation has trigonometric solutions

wy(x)=Bcoskx+Csinkx 0<x<a

(2mE)Y?
A

with k= . The wave function and its slope are continuous everywhere, and

in particular at the well edges x=0 and x =a. Thus, we must require

A=B [continuity of y(x) at x=0]
= v dy(x) . _
KA=kC continuity of I atx=0
x
Beoskx+Csinkx = De™™ [continuity of y(x) at x=4]
_Bksinkx +Ckcoskx =—DKe™ [Continuity of 4 !Z(x) atx= u:|
x

There are four equations in the four coefficients A, B, C, D. Use the first equation to

eliminate A. Then from the second equation we obtain B = (%}C Divide the last two

equations to eliminate D.

—Bksinkx+Ckcoskx _ DKe %*

Beoskr+Csinkx ~ De™

Cross multiply, gather terms and write B in terms of C. Then we have
B Yo k ,
= Cksinka+Ckcoska=~K X IC coska ~KCsinka.

Divide out C and gather terms to obtain (K> - k*)sinks = —2kacos k. Now substitute

2m(U - E) ¥*
[ R ]

k = (2mE)Y? cos ka . This equation simplifies to:

Usinka =-2[E(LI - E)]I/ 2 coska, which is a transcendental equation for the bound
energy states. Rearranging,

172 _
tan® ka:tanz[(sz) ]a = 4E(1 - E) .

h 2

The energy equation is a transcendental equation and can be solved for the roots, E,

by using Newton's root formula as an iterative method employing a computer. If you
know the form of f(x)} then you can approximate the value of x for which f(x)=0.

Choose an initial value of x. The energy equation can be written as

1/2
f(E)= tanz[@?—}u —[4E(UI- E)]U2 =0.
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In this _
Probler approximate by using the energy for an electron in a well. The first
Bluesg €Neros i, HZthz
8Yis: E, =

where
2m a0 +28
5:_1_t 197.3 eV nm/c ~0.0193 nm
K 2(0511x10° ev/c?)(100 eV)
and sg
Eh = ?127[2(197.3 eV m.n/C) - :n2(19.5 EV)
A0511x10° ev/c)(0.10 nm + 0,039 rm)
El =195 gy

By =229 eV) =780 eV

E <«
3=0)95 eV)=175.5> 1] therefore unbound
These ' '
Newto:iues Seem reasonable since there are only two bound states. The next step in
definiti ®thod is to calculate f(x) and f’(x) at the first guess value. Then use the
on of sIope and tangent:

o f®
f’(_x) Or Xp =X4 f’(x)

xl—x =

Use x, a5
diVE‘l‘gZenC:.i1 r{?W @stimate to evaluate x5, etc. Monitor x and f(x) for convergence and
Thus oyr ﬁr.St °¢ the first term of two of the Taylor series for the first guess of f'(x).

8uess would be x; =E=195 eV and

FB) = tan2 p, _ 4EU-E)

uZ
f(By<(2a\(2m /2 sin[(a/m)2mE)?]| 4 55T}
( h J[_E_] Cos3[(a/h)(2meE)lfz] +(U2J(

where 17 - 10 . ;
convergene E‘O eV and E= 19.5 eV . Calculate x, and keep repeating, watching for
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yy =A™ K =[2m(U - E)}¥*
Wy = Bcoskx +Csinkx ki = (2mE)Y? |
yg =De® +E'e™™

Wy =Feoskx+Gsinkx

dx dx
—Bk coska +Ck coska = KDe™ — KE’e™™ , Substitute C = % and B = A to obtain

py = He ™ |
dyy _dyn . - |
At x=0, y; = . Therefore A=B, iy yields KA =kC. Similarly at x=4:
x x
V/H=§1fm,Bcoska+Csinka=DeK“+E'e'K“ and r;i—"”ll—:dﬂ, |‘

Acoska+(%)sinka=DeK" +Ee™ :

—Aksinka + (%) coska = KDe™ — KE’e™ |

Solve for A in each equation and equate quantities to obtain

% N Ere—Ka e EK& ~ KE’E_K'I -
cos ka + (K/k)sinka —ksinka+Kcoska

Clear denominators and gather terms. After some algebra one obtains

D _ —K(cos ka + (K/a)sin ka) — (~k sinka + K cos ka)e %
E' [-ksinka+Kcoska—K(coska+(K/k)sinka)le®

This can be simplified to obtain

D 2e 2 [coska-+(1/2)[(K/k) - k/K]sinka]
E [(k/K)+K/k]sin ka

Impose the continuity conditions at x=a+b and let @ =k(a+b) and

pf=K(a+b)

Vm =V
Deﬁ+E’e”6=Pcosa+Gsma:w=l,and W _ Yy

De? +E'e# dx dx

—Fkcosa+Gksina 1

KDe? + KE’e™” = —Fkcos o+ Gksina = —
KDef +KEe™”

Set quantities equal to 1 equal to each other and clear fractions to obtain

(Fcosa+Gsin a)(KDeﬁ +KEe? )= (~Fk cos o+ Gkssin a’)(De'B +Ee7?).

.
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Divide by E and gather terms to obtain
PK[(BJ cosa+ (EJ(R} sin a}eﬁ - Fk[cos koo + (lc_) sin a:i'e“‘9
E’ KAFE K
= GK[(E-)[—Q) cos & — (B) sin a}eﬁ + GK[sina+ (L)(B) cos w]e'ﬁ
KNE’ E’ KNE’
Divide through by G and [%) to obtain

F_ (D/E’)eﬁ[cos a—(K/k)sin ] + e P[cosa +(K/k)sina]
G (D/E)e’[sina+(K/k)cosa]+ e~ P[sina—(K/k)cos o]

at x=2a, Wy =¥y, Fcosk(2a+b)+Gsink(2a+b)= He™ and Egl=d—;ll and
x X

dividing by (—K) we obtain %[Fk sink(2a +b) - Gcosk(2a+b)}= He ™™ . Both equations

are equal to the same quantity so set equal to each other.

Ecosk(2a+b)+Gsink(2a+b) :%[Pk sink(2a +b)—G cosk(2a+b)].

Now gather terms and divide by G and (— %) to obtain

F _cos k(2a+b) +(K/k)sink(2a +b)
G sink(2a+b)—(K/k)cosk(2a+b)

Equating the two expressions for é—

cosk(2a+b)+(K/k)sink(2a+b) _ (D/E")eP[cos a—(K/k)sina] + e P[cosa+ (K/k)sina]
sink(2a+b)—(K/k)cosk(2a+b) (D/E Ve [sina+(K/k)cos a]+ e~ P[sinar - (K/k)cos ]

Bringing all terms to one side gives a transcendental equation in E

f(E)= (D/E")eP[cos .~ (K/k)sina] + e Plcosa+(K/k)sina]
(D/E")eP[sina +(K/k)cos &) + e P[sina - (K/k)cos a]
_ cosk(2a +b)+(K/k)sink(a+b) _ 0
sink(2a +b) - (K/k)cos k(2a +b)

with U, 4, and b as parameters. This equation can be solved numerically with Newton
roots method used in the solution to 12-17(b). The form of the program will depend
strongly on the computer language used, including its subroutine (function, module)

structure. Assume you can write a module to calculate f(E) where a=b=1and

U =100. Qutput tabular values of E and f(E) and/or graph E and f(E). The Newton
method requires both function and its derivative to be used. This is algebraically
complicated so that it proves more practical to use a more interactive program. Use
the computer to calculate f(E) for any E you enter. Use trial and error to converge to
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12-19  (a)
(b)
(©)
1221  (a)
(b)
12-23  (a)

the values of E for which f(E) changes sign. Those are the values of E, which satisfy
the equation and are the bound states of the double square well.

The search procedure is: Guess one value of E and calculate f(E). Guess a second
value of E, not very different and calculate f(E).If the sign of f(E) changes,
interpolate a new E and calculate its f(E). If the sign of f(E) did not change,
extrapolate in a direction toward the smaller |f(E)|. Continue until AE, which causes
£(E) to change spin, is small enough for your needs. That is, less than 1 eV for this
problem, since you are looking for other splittings of the single-well energies at 19 eV
and 70 eV.

dn_d fola) (2Lydn_1)
di dal A ANdA A

Replacing dm and dA with Am and A4 yields

_ AAm (@ “”)
T oaL \dd
2
or |A4] =&—(n —ﬁﬂ) Since Al is negative for Am =+1.
2L A
83710~ m)*
|AA = (ﬂ—_s—)[s.ss — (837 nm)(3.8x10~* nm™)]|=36x10""" m=0.38 nm
(0.6x107° m)

(633x10 m)’ 5 .
A= T _67%10™° m=0.00067 nm=67x10™ nm

" (06x10° m)(1)
The controlling factor is cavity length, L.

[ See the figure below. |

Binduced

0540T

For a surface current around the outside of the cylinder as shown,

0.540 T)(2.50x107% m
orNI:ﬁ:( )( - ): 10.7 kA |.
o (4wx107) T-m/A

AV =IR

If R=0,then AV =0, even when I #0.
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(®)  The graph shows a direct proportionality.

150
;100
(mA) ¢,

0 ) . . 1

0 1 2 3 4
AV, (mV)

Slope ek A CD-SPEII 431 071
R AV  (3.61-1.356) mV

(9 Expulsion of magnetic flux and therefore fewer current-carrying paths could explain
the decrease in current.

(a) The currents to be plotied are
242 V-AV
I =(107° A)(eAV/095Y _q) I =
o = (107 A)(e Ty
The two graphs intersect at AV =0.200 V. The currents are then

ID - (1043 A)(EO.ZOU V/0.025V _ 1) =298 mA

Diode and Wire Currents

< 20 - Diode /?
é -m Wire - F
£ 10
QU
=
g I—I—H—H—I;./!—i'—/—:—l
04—o g —o—g—o—4 T 7
0 0.1 0.2 0.3
AV (volts)

242V -0.200V
Iy =—r———"" =298 mA. They agree to three digits. .. I, =Ty =| 2.98 mA
B

AV 0.200 V
Sl SO Pl EF1LO
(b) Ip 298x107° A

- -1
d(AV) dlp YTt A e V/0.025V
o =t = 839 Q
© i, {d(AV) 0.025V " L=
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Nuclear Structure

13-1

13-3

13-5

13-7

R=R,AY® where R, =12 fm;
(a) A=450 Ry, =(1.2)(4)"3 fm=19 fm

(b) A=238 s0 Ry =(1.2)(238)"? fm=7.44 fm

© Ry _744fm _ 3.0
Ry 19fm
Pnuc _ Miyuc Ve

= and approximately; Myyc =M aromic: Therefore
Patomic M atonac /Vatomic :

3
M:(T—D) where 7, =0.529 A =5.29%10™ m and R=12x10""° m (Equation 13.1
PaToMIC - :

11 \3
2 X m

where A=1). So that Pruc :(
PaTomIC

(@) The initial kinetic energy of the alpha particle must equal the electrostatic potential

energy of the two particle system at the distance of closest approach; K, =U =]—<q9~
Trnin
9x10° N m?/C2)2(79)(16x107 C)*
and 7, = k7Q = ( / ) _15 ) =455%107" m.
K, |05 MeV(1.6x10™ J/MeV)]
B Mol that K, ~Lmt=2 5
2 "min
1/2
2ka0 T [2(9%10° Nm?/Cc(ro)(16x10™" C)* ! ]
v= = — — =6.03x10° m/s
M i, 4(167x10™7 kg)(3x107" m)

E=—u-B so the energies are E; =+4B and E; =—uB. 4=2.7928x, and u, =5.05 x107% J/T
AE=24B=2x27928x505x107% J/Tx125T=353x10"* J=22x10"° eV

93
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139  We need to use the procedure to calculate a “weighted average.” Let the fractional

abundances be represented by f + fes =1, then

= m(* Cu)—m(* Cu) 64.951—62.95 u

1311 Lo
A
13-13  (a)

(b)

(©

feam( 65 Cu) + fﬁsm( o Cu)

(fes + fes)
m(® Cu) -mg, 6495 1—63.55 u

=M, We find

 foy =m0 2 030 or 30% and fu5 =1- fug =070 or 70%.

= %[1(1.007 276 u)+2(1.008 665 u)—3.016 05 u](931.5 MeV/u)=2.657 MeV/nucleon

The neutron to proton ratio, is greatest for 32 Cs and is equal to 1.53.

2
C, (N-Z)

Using E, =C,A—C, A% —~C(Z(Z-1)A™3 - the only variation will be in

the coefficients of C; and C, since the isotopes have the same A number. For 33 Pr

2
E, = (15.7)(139) - (17.8)(139)%% - 0.71(59)(139)"> — -23"15—;31)— =1160.8 MeV
E _E _g351 Mev
A 139
For 'Y La
2
E, = (15.7)139) — (17.8)(139)%* - 0.71(55)(54)(139) "> _23-2;& =1161.1 MeV
B _B _gas3mev
A 139
For % Cs
2
E, =(15.7)(139) — (17.8)(139)%° - 0.71(55)(54)(139)"> —% =1154.9 MeV
B _ B _gapg Mev
A 139

¥ La has the largest binding energy per nucleon of 8.353 MeV

The mass of the neutron is greater than the mass of a proton therefore expect the
nucleus with the largest N and smallest Z to weigh the most: '3 Cs with a mass of
138.913 u.

13-15  Use Equation 134, E, =[ZM(H)+ Nm,, - M(£X)]

(2)

For 3INe;

E, =[10(1.007 825 u)+10(1.008 665) - (19.992 436 1)](931.494 MeV/u)=160.650

%’L =8.03 MeV/ nucleon
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fb) For 3Ca
E, =[20(1.007 825 u)-+20(1.008 665) — (39.962 591 1)](931.494 MeV/u)=342.053

% =8.55 MeV/nucleon

©  For iNy;

E, =[41(1.007 825 u)+ 52(1.008 665) —(92.906 377 1)}(931.494 MeV/u)=805.768
%’— =8.66 MeV/nucleon

(d) For 90 Au

E, =[79(1.007 825 u)+118(1.008 665) —(196.966 543 1 u)](931.494 MeV/u)=1559.416
—ii =7.92 MeV/nucleon
AE= Ebf —Ey

For A =200; % =78 MeV so

E,; = (A;)(7.8 MeV) = (200)(7.8) = 1 560 MeV

Ey

For A=100; ) =8.6 MeV so

Eyy =(2)(100)(8.6 MeV) =(200)(8.6) =1720 MeV
AE = Ey ~E; =1720 MeV —1560 MeV =160 MeV

(a) The potential at the surface of a sphere of charge g and radius ris V = ﬁ If a thin
P P geq -
shell of charge dg (thickness dr) is added to the sphere, the increase in electrostatic
potential energy will be dU = Vdg = (kq )dq . To build up a sphere with final radius R,

p
k kq 4 3 4 3 Ze (23)3
the total willbe U = || — |dg; wh = =—gr’|——7—|=(=x IF
e total energy e g( rJ 7; where g=—ar°p=—mr Wl \F 50

that

dg = [?’E)rzdr

R3
2 _2\R )
= 3kzse _[r4dr:3k(ze)
R® J; 5R
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(b)

(©

(@)

(b)

(@

(b)

(©)

Combining Equations 13.8 and 13.11 we have N =

When NzZ:%, R=R,A"* and Ry =12x10"% m

_3KZe? _(3/5)(8988x10° N'm?/C*)(4/2)"(L602x10™ C)°
~ 5R (12x107° m)Aa¥?
=2.88x107 (A%?)]

u

For A=30, U=83x10"" =521 MeV.

Write Equation 13.10 as 1—5— =¢* sothat A= %ln(%) In this case %‘}—= 5 when
0

t=2h,so A i g0s a0,
2h

In2 In2

T i WO L S, ¢ . |,
Y271 T 0805 K

R, 10

From R=Rye™, A= %ln[—), A :—Lln(?) =558%102 h™ =155%x107° s7, and

R 4h

In2
T]/‘Z :T=124 h.

Ry =10 mCi=10x10" x3.7%10% decéuys/s=3.7><103 decays/s and R= AN so
_ Ry _37x10° decayss™

2 LB =2.39x10" atoms
55 % s

Ny

5.58x1072)(30)

R=Rye* = (10 mCie ¢ -187 mGi

ANyt |anya
A 0693Ty,

and since

1mCi=3.7x107 decays/s.

(5 mCi)(3.7x107 dps/mCi)

B =2.43x107
0693288 yr)B16x107 5y 0 oms

Therefore, the mass of strontium in the sample is

_ N,  243x107 atoms
Ny 6.022x10% atoms/mole

m (90 g/mole)=363x10"° g.

Let R, equal the total activity withdrawn from the stock solution.

Ry =(2.5 mCi/ml)(10 ml) = 25 mCi.
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"Let R} equal the initial specific activity of the working solution.

, 25 mCi
0™ 250 ml

=0.1 mCi/ml

After 48 hours the specific activity of the working solution will be

R’ =R =(0.1 mCifml)e”®FHSNEN 20,011 mCi/ml

and the activity in the sample will be, R =(0.011 mCi/ml)(5 ml)=0.055 mCi.

The number of nuclei that decay during the interval will be

Nl _Nz =N0(e_ﬂ't1 —egﬂtz).

First we find 4;

qon2_ 069 6107 K1 =297x107° s and

Ty

Ry _(40 £Ci)(3.7x10* dps/uCi)

. =498x10" nuclei

84 2.97x107° s~

Using these values we find

-1 . -1
N, ~N, = ( 498 x10™ )[e—(o.ow? h)aoh) 4 {0.0107 h')(12 h}] '

Hence, the number of nuclei decaying during the interval is

(a)

Ni—N, =9.46x10° nuclei.

Ty

3000
2000
1000

5001

300
200

1 1 (| ) L1 | | ER
0 1 2345678 9101112
e

¢/m

2=—slope=—120-I%80_ ¢ 55 et 2 417%10 min” and Ty, = 2 277 he.
(12—4) hr p

By extrapolation of graph to ¢ =0, we find (cpm), =4 x10% cpm

-k, = Ro _ (cpm)o/EFF
A A A

_ 4x10* dis/min

~=959x10° atoms

0

T 417x107% min”
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13-33  (a) Referring to Example 13.11 or using the note in Problem 35 R = RGe”‘“,

Ry =NyAd=13x10"2Ny(**C)2

r -[13 x107% x 25 g x6.02x10% atoms/mole ),
o 12 g/mole
0.693 5 .
where A=————————=384x10"" decay/s. So Ry =376 decay/min, and
5730%315%10 :

R=(3.76 x10%)exp|(~3.84x 107 57)x(23x10* y)x(3.15% 10 s/y)]

R =183 counts/min

(b) The observed count rate is slightly less than the average background and would be
difficult to measure accurately within reasonable counting times.

13-35  First find the activity per gram at time =0, Ry =Ny (14C), where

ND(“C) =T3% 10'1ZND(12C); i NO(HC) = (%)Na. Therefore % = [iNM—“J(IB xlOﬁ]z) and

the activity after decay at time ¢ will be £_ (&)—)e"“ = (%}(13 b 10'12)6"U where

mo\m
2=22 53510 min when £ =2 000 years.
12
10 . -1 T 5
5 o 3.2x107" min (1.3 %1012 )( 6.03%10% mole™ ) ” eu(3.2x1n 10 min=1)(2.000 y)(5.26x10° min/y)
m 12 g/mole
M 11.8 decays min~'g ™"
m

1337 (a) Let N; = number of parent nuclei, and N, = number of daughter nuclei. The
daughter nuclei increase at the rate at which the parent nuclei decrease, or

dN, _—dN;
dat dt
dN, = ANge "'at
N, = ANg [ e #dt = -Nye ™ +Const.

= /’l«Nl :ﬂNO]E'_E]i

If we require N, = Ny, when t =0 then Const = Ny, + Ny, . Therefore
NZ :NOZ +N01 —Nm_eitu. AndWhEn NGZ :U, N2 =N01(1—€—lr).

(b) Obtain the number of parent nuclei from Ny =N e+ and the daughter nuclei from

N, =Ny(1-e*) with Ny =10°, A= In2_08% 10693 h. Thus the quantities

Ty,

_ e—(0.069 3n)

Ny = 106719931 F ang N, = 106[1 are plotted below.




13-39

13-41

13-43

MODERN PHYSICS 99
1.0 ¢
9 p Ny(t)
8t
7t
NG 2L
x10 4
3}
2}
1k Ny(®)
] I L ] 1 1
0% 10 20 30

t(hours)

A number of atoms, dN = A Ndt, have life times of {. Therefore, the average or mean life time

f ; i 1%, e 4
- dN—so 7=—[ANtdt =—— | AN e " tdt =—.
san N, TR Ny e p

will be 3 (AN)

Q=(Muay, — Mgy, —Muy, (9315 MeV/u)
=(238.048 608 u — 234,043 583 u —4.002 603 u)(931.5 MeV/u)=2.26 MeV

(@) We will assume the parent nucleus (mass M,,) is initially at rest, and we will denote

the masses of the daughter nucleus and alpha particle by M, and M, respectively. '
The equations of conservation of momentum and energy for the alpha decay process
are

Myvy=Myv, 4y
M,c? = Myc? + Moc® + GjMdvg . (%}Ma,vi @
The disintegration energy Q is given by
1

Q=(M, -M, -M,)c* :&)Mdug + (E)Mavi (3)

Eliminating v, from Equations (1) and (3) gives

-G e
e
Q= @]Mavg[l +ﬁ—:] . Ka[l +]1‘\A4_f:]

Q 487 MeV

K, = = =4.79 MeV
1+M,/M 1+4/226

(b)

(0 K, =(4.87-4.97) MeV =0.08 MeV
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‘ M
(d)  For the beta decay of *°Bi we have Q=K (1 Y J Solving for K . and
Y

substituting M__ =5.486x10™ u and My =209.982 u (Po), we find
K = Q _ Q
i 4 - 4.6 N
¢ 1+5.486x10 u/209.982 u 1+261x10
Setting 2.61x107° =¢, we get K =Q(1+£)™ =Q(1 ~£) =Q(1-2.61x107°) for £<<1.

This means the daughter Po carries off only about three millionths of the kinetic
energy available in the decay. This treatment is only approximately correct since
actual beta decay involves another particle (antineutrino) and relativistic effects.

13-45  Q=(Myia1 — Mg )(931.5 MeV/u)

13-47

(a) Q=m(3Ca)—m(e*)—m(13K)=(39.962 59 u—0.000 548 6 u—39.964 00 u)(931L.5 MeV/u)

=-1.82 MeV
Q<0 so the reaction cannot occur.

(b) Using the handbook of Chemistry and Physics
Q=m( 3 Ru) - m(5He)—m( 33 Mo)=(97.905 5 u—4.002 6 u—93.904 7 u)(931.5 MeV/u)
=-1.68 MeV
(2 <0 so the reaction cannot occur.

© Using the handbook of Chemistry and Physics
Q= m{ 4 Nd) - m( 3 He) - m( 33’ Ce) = (143.909 9 u— 4002 6 u—139.905 4 u)

x(931.5 MeV/u)=1.86 MeV
(0> 0 so the reaction can occur.

We assume an electron in the nucleus with an uncertainty in its position equal to the nuclear
diameter. Choose a typical diameter of 10 fm and from the uncertainty principle we have

Ap ”Ihf 6.6x107% 75/107* m=6.6x10"" Ns.
Using the relativistic energy-momentum expression
E%:= (;m:)2 +(mocz)2
we make the approximation that pc = (A p)c >> m,c? so that

E=pc=(Ap)e=(66x10" Ns)(3x10° m/s)=19.8x107" J =124 MeV.

However, the most energetic electrons emitted by radioactive nuclei have been found to have
energies of less than 10% of this value, therefore electrons are not present in the nucleus.
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The disintegration energy, Q, is ¢ times the mass difference between the parent nucleus and
the decay products. In electron emission an electron leaves the system. That is

2X —%.1 Y+e¢ + where D has negligible mass and the neutral daughter nucleus has
nuclear charge of Z+1 and Z electrons. Therefore we need to add the mass of an electron to
get the mass of the daughter. The disintegration energy can now be calculated as
Q={MEX-M[}§,Y-m,]-m,+0}c* =[Ms X - M7, Y]c>.
Similar reasoning can be applied to positron emission Q‘X —)ﬁ'_l Y+e" +v and so
Q={MEX-M[2 ,Y-m,]|-m, +0}c* =[M4X - M Y -2m,|c*.
For electron capture we have 4 X +e~ —4,; Y +v, which gives

Q={MEX+m,- M5 Y+m,]+0}c* =[M§X - MZ Y]

In the decay JH —3 He + ¢+ the energy released is: E=(Am)c? =[Myy — My, Je? since the
mass of the antineufrino is negligible and the mass of the electron is accounted for in the
atomic masses of % H and % He. Thus,

E =(3.016 049 u—3.016 029 u](9315 MeV/u)=0.018 6 MeV =186 keV .

Npp =1.82x10"°(¥Rb atoms/g)
Ng, =1.07x10°(¥Sr atoms/g)

Ty Rb—£—5r) = 48107 y
(a) If we asstume that all the ¥ Sr came from ¥ Rb, then Ny = Noe““

1.82x%10% = (1.82 %101 +1.07 x10° )e—(mz/at.sxw‘").e

~In(0.944 47) = (&)t

4.8x10"
t=3.96x10" y
(b) It could be no older. The rock could be younger if some ¥ Sr were initially present.
(a) Starting with N =0 radioactive atoms at ¢ =0, the rate of increase is (production-
decay)
N _p_aN
dt

dN =(R— AN)dt
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Variables are separable

N t =
| g __ jdt—[l)ln(R ZN):t
N R=AN oy A R

) |

() 4\
(g ]

-{Eo-e

13-57 We have all this information: N ,(0)=2.50N,(0)

N,(3d)=4.20N,(3d)

N, (0)e 34 =420N, ()¢ +* =420 2= ) yee
2.50
iy o 25 3k,
42
3dA, m[zs]wcm
4.2
30698 _ 1 (25) r3a 0698 _ s one
s 42 60 d
Type =266 d
1359  N=Ny
’dN} —| ANpe ™|=Roe™
E_'u =£
R,
at_ Ry
R
R) Ty
In(R, /R)
t=T
2 2
25/0.1
If R=013Bq, t=5730 yrwzfﬂl% yr.
0.693
If R=011Bq, t=5730 yrl—n—(o'ﬁfig=6787 yIT.

The range is most clearly written as between 5 400 yr and 6 800 yr, without understatement.
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Let N be the number of U nudlei and N’ be 2 Pb nuclei. Then N = Nye™ and

Ny=N+N’so N=(N+N")e ™ or e :1+%. Taking logarithms, M:ln(1+%)

In2

Ty
with Ty, =4.47x10° yr, the age is:

9
f w 1n(1+—-1-ﬁ]=4.00x109 yr.
In2 1.164

T 7
where 1= k.3 m(l + ij. 1t Y 1164 for the U — ®Pb chain
In2 N N’

. Thus, t:[

/ N N_ ™ 9
. Solving for ives — = . With t=4.00x10

& 7 BIVESs 1M hi)
and Ty, =7.04 x10® yr for the 2 U—*"Pb chain,

A1+

From above, ¢

9
M:[}ﬂ]t:(m)(‘;.ooxm yr)

Lt ; ~3.938 and -~ = 0.0199.
7.04%x10% yr N

Ty
With £=4.00x10% yr and Ty, =1.41x10" yr for the ** Th—**®Pb chain,

P 2)(400x10° yr)

=0.196 6 and 5 =4.60.
N’

1.41x10" yr
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Nuclear Physics Applications

14-1  ®0=17.999160 18R =18.000 938
m, =1.008 6649 1H =1.007 825 all in u.

@  Q=[Mg +My +Mg—m,]c* =[-0.002 617 9 u][931.4943 MeV/u]=-2.4386 MeV
compared to —2.4563£0.000 2 MeV .

1.007 825

Mﬁ
17.999 160

(b) Ky, = _Q[l + M

] =(2.438 6 MeV)[l o ] =2.5751MeV

x
143 Q=(M, + Mgy =M ~M,)(931.5 MeV/u)

= (4.002 603 u+9.012.182 1 —12.000 000 u—1.008 665 u)(9315 MeV/u)
Q=570 MeV

145  Q=(m, +my —my —m,) 9315 MeV/u]
Q = [m(1H) =+ m(:.'Ll) —m(4He) = ma]u[9315 MeV/u]
O =[1.007 825 u +7.016 004 u — 4002 603 u— 4002 603 u][9315 MeV/u]
Q=17.35 MeV

147 @  Q=[m(*N)+m(*He)-m(”O)-m("H)|9315 MeV/u)
Using Table 13.6 for the masses.

Q = (14.003 074 u + 4,002 603 u—16.999 132 u~1007 825 u)(931.5 MeV/u)

Q=-119 MeV -
4H ; 14
Ry Ol EI): m(*N)]_ ~(-1.19 MeV)(l + M} =153 MeV
m(**N) 14.003 074

Q =[m("Li)+m(" H}- 2m(* He)|(9315 MeV/u)
Q=[(7.016 004 u+1.007 825 u) - (2)(4.002 603 u)}(931.5 MeV/u)
Q=17.35 MeV

(b)

105
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CHAPTER 14 NUCLEAR PHYSICS APPLICATIONS

(a) CM SYSTEM

v v
&o— --—@
M:: MX
p=MaV=MZV
K oy pz + pz __E_z_ MZ+MG
™M = =
2M, ZMZ 2 MaMz
LAB SYSTEM
v+ V
o— @
M, My

Plab = Ma('U'F V)(Eq 1)

1\/12_,+I\/.[‘i L r P,

=p| —£—= | for substituting v=—— and V=——in Eq. 1.

M, - M, M,
2 2

_ Pan _P [(M, +M,)/M, ]

K =
T aM, 2M,

. M, +M, M
Companng to KCM’ Klab =KCM e T Kth = ‘“Q 1+ i
M, M,

(b) First calculate the Q-value

Q =[m(*N) +m(*He)-m(” O)-m("H)|(9315 MeV/u)
Q =[14.003 074 u + 4,002 603 u-16.999 132 u—1.007 825 u}(931.5 MeV/u)

0 =-119 MeV
Then

X a1 m(4He)

=01 +—"=

th m( 14N)

002
Ky =—(-119 MeV) 1+——4 S =153 MeV
14.003 074

p 70 kg/m®
Moo, 167107 kg
0.223
419%10® m®x2m

=419%10% m™, 0.8Ry = Rpe ™%,

R=Rye™*, x=2m, R=08R,,n=

=2.66x10"° m? =0.0266b

08=e""%, nox=-In08, o= _—1111(0.8) =
nx
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14-13 EBquation 14.4 gives R =(Rynx)o. Using values of E and ¢, we have

R
@  —-%1_g0373,

Ry o
|
Ry
(b) —=0.066 3, and |
Ry, |
(©) Ros. =1 |‘
Ropm ‘
|
(d) Therefore we can use cadmium as an energy selector in the range 0.1 eV to 10 eV to |
detect order of magnitude changes in energy. |
14-15 (a) —g- = ¢ "% x = thickness in m, o = cross sectionin m? and ‘
0
f

n=# gold nuclei/m®
n=(6.02x10% atoms/mole)(1 mole/197 g)(19.3 g/cm?)
1=59x10% atoms/cm® =5.9x10%* atoms/m’ ‘

Taking x =5.1x 10~ m, we get

L. exp(-59x10% atoms/m® x500x107 m” x5.1x 10 m)=086
0

0.1 zA
N=086N Ny=————
® . " 1ex10® C
Ny =6.3x10" protons/s and N=61x10" protons/s
(©) The number of protons abs. or scat. per sec 0.14N, =87 x10%° protons/s
; ] y . ; ;
14-17  Since N=Ngye ™%, ——=-Nn o, where N = neutron density, n,= cadmium nuclei density,

; . . aN .
and ois the absorption cross-section. Thus, (—dt—) = —~Nn_ o vy, where vy, is the neutron
a

1
thermal velocity given by vy, = [ 5kgT
i

differentiating N=N De"“:(%] =-NA where A=
D

12 AN
J . The neutron decay rate, (E) , comes from

n D

0693 _0693 _ 0910 s~ Finally

Tl,’Z 636 s

(dN/dt)g . —NHCO”UHI _ 1,0V

(@Njaty,  -NA A
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Asn, =(8.65 g/cm®)(6.02x10% nuclei/112 g)
o=(2450 b)(10# cm’/b)
(L5)(1.38x107% J/K)(300 K)
o _{ 167x107 kg
A=109x107 s~
(dN/dt),

. a9 95%101
' (dN/dt),

12

14-19  E; = E(thermal) =%kBT =0.0389eV.E; = (%J E where n = number of collisions, and E is the

n
initial kinetic energy. 0.0389 = (%} (106). Therefore n=24.6 or 25 collisions.

1421  AE=c*(my —mg, —my, —1m,)
AE =(931.5 MeV/u)[235.043 9 11—140.913 9 u—91.897 3 u—2(1.008 7 u)]
AE=(9315 MeV/uw)[0.2153 u]=200.6 MeV

3V )1/3 A 4nr”

,80 —=
1%

14-23  (a) For a sphere: V =é7rr3 and 7 =(—— LA —= 48477 Y3
3 Am (4/3)zr

2
b) For a cube: V=1* and [=V"3, s0 %:%ZGV_VS.
2 2
()  Fora parallelepiped: V =24° and a=(2V)"*, so %: @—% =630V 72,
a

d) Therefore for a given volume, the sphere has the least leakage.
(e) The parallelepiped has the greatest leakage.

, M
1425 (a) off = Taelivered _ 3 Bi= %XV- =3333 MW

out

(b) Pheat = Pout - Pdelivered =3333-1000=2333 MW
(c) The energy released per fission event is Q = 200 MeV . Therefore

Rate < Fout _ 3:3333x10° W/200 MeV
Q 16x107° J/MeV

Rate =1.04x10% events/s
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235x107 kg/mole
6.0x10% atoms/mole
M =(104x10% events/s)(3.92x 107 kg /atom)(365 days)(24 h/day)x (3600 s/h) ‘

=134x10% kg |

(d) M= (Rate){ }(ﬁme) i!
|

9 |
(e) L (L][EE—] = M =37x107 kg/s. To compare with (d) we need the :
at dt ) (3x10° mys) '

2

mass for a year.
aM s "
—dz—(year) =(3.7x10 kg/s)(365 days)(24 h/day)x (3600 s/h)=117 kg. |

This is 8% of the total mass found in (d).

k2 (9x10° Nm?/C?)(16x107 C)°

|
1427 (@)  re=mtrp=(12x107 m)(2¥ +3"°)=270x10™" m

U=—-= =1.15%107"® J=720 keV
" r 2x107° m J
(© Conserving momentum: vy = o®p: O
’ mD + m:,-
1 5 1 o
(d) Emﬂvo =E(mD +myp)op +U @

Eliminating vy from (2) using (1), gives

1

E(mD +mT)mDv§ —Em?}vﬁ = (mp +mg)U or
lm%v% - [MJU:EU:E('?ZO keV)
2 My 3 3

—;—mZDUS =12 MeV.

(e) Possibly by tunneling.

14-29  (a) Q=K,+K, =176 MeV =(1.2)m 0 +é—m” vZ, Momentum conservation yields

m, v, =Mmy0,. Substituting v, = E[ﬂ—vn into the energy equation gives K, = ——m‘—”g—,
ma ma + mn
K, =—m’£—— Finally, K, = (4.003)(17.6 MeV) =141MeV, K, =3.45 MeV .
m, +m, 4.003 + 1.009

()] Yes, since the neutron is uncharged, it is not confined by the B field and only K, can
be used to achieve critical ignition.

——_——
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14-31 '(a) The pellet contains

[MBRB J(O.z g/ cma):[M(O‘s A ](0'2 e =10 g

3

" of %H%— iH “molecules.” The number of molecules, N, is

(1.05x10-” g

(6.02%10% molecules/mole) =1.26 x10™.
5.0 g/mole

Since each molecule consists of 4 particles (1H, jH, 2¢”), E=(4N )%kBT or

E 0.01(200x10° J)

- - =19x10° K.
6Nky  6(1.26x10%)(1.38x10™% J/K) 8

(b) The energy released =(17.59 MeV)(1.26 x 10" )(1.6x10™* J/MeV)=355 kJ.
gy

14-33  (a) Roughly %(15 x10° K) or 52x10° K since 6 times the coulombic barrier must be

surmounted.

®)  Q=Amc? =(12.000000 u+1.007 825 u—13.005 738 u)(931.5 MeV/u)
Q=1.943 MeV

The other energies are calculated in a similar manner and the total energy released is

(1.943+1.709 + 7.551 +7.297 + 2.242 + 4.966) MeV = 25.75 MeV .
The net effect is 2C+4p —»"2C + jHe.

© Most of the energy is lost since ©'s have such low cross-section (no charge, little mass,
etc.)

14-35 Total energy = number of ®Li nuclei (22 MeV)

23 §
= (0.075)(2 %10 -13 g) 6.02x10 nuclei
601g

About twice as great as total world's fuel supply.

(22 MeV)(1.60x10" J/MeV)=53%x10% ]
/

14-37  (a) N = number of IH,

(3x107° g)(6.02x10% pairs/mole)
5.0 g/mole
=3.61x20% pairs.

{H pairs in 3 mg =

Power Output =(10)(0.3)(3.61><102°)(17.6 MeV/fusion)(1.60x107" J/MeV)/S
=3.1x10° W
Power Input :(10)(5><1014 J/s)(lO_B s)/s=5><107 W
Net Power =(3.1x10° —5x107 ) W =3.0x10° W =3 000 MW




®)

1439 (a)

1441 (a)

(b)

14-43  (a)

{c)

1445 (a)

(®)

14-47
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1 day’s fusion energy = (3000 MW)(3 600 s/h)(24 h/day)=2.6x10' J. This is
26x10" ]

m =5.2x10° liters of oil or 5 million liters of oil!
X iter

equivalent to

kP2zZ, (9x10° Nm?/CP)(16x10™ C)’z,2,

; e =23%x107%2,Z,7

E

D-Dand D-T: Z; =Z, =1 and E=2.3x107" J=0.14 MeV
E=(931.5 MeV/u)Am =(9315 MeV/u)[(2x2.014102)—-4.002 603] u. E=23.85 MeV for
every two “H's. :

(317 x10% mi®)[(5 280 ft/mi)(12 in/ft)(0.025 4 myin)]’[10° g(HZO)/m3][1—;£5(§—)OJ
2

x[6.02x10™ protons/g(ED|(0.0156 * H/proton)(23.85 MeV/*H)(16x 107 J/MeV)’
=2.63x10% ]

33
263x107 J ( year Jz 119 billion years
7x10™ J/s A3.16 X107 s

10" sfem®

=10%/cm®
1s /m

n

211k T = (2x10M/cm®)(1.38 x 102 J/K)(8x10” K)(10° cm’ /m®)

2nkgT =2.2x10° J/m®
Bz

—— =~ 10(2nkgT) B =[204,(2nksT)]
2419

B=[20(47x107 N/A?)(22x10° J/m?)]** =235 T

1/2

For the first layer: I = I,e™#»%), for the second layer: I, = I,e"¥eu?®, and for the third
layer: %0 =I,e" ) 5o that I?D = [y Harthoatien) Using Table 14.2,

g hd s - =1.4%107° cm.

Tl few +Hpy (5.4+170+610)(cm™)

If the copper and aluminum are removed, then [ =1, e—(610+1.40x10‘3) =0.426,. About
43% of the x-rays get through whereas 33% got through before.

_h2_In2

=——=3.85cm
0.18

This means that x-rays can probe the human body to a depth of at least 3.85 cm without
severe attenuation and probably farther with reasonable attenuation.

————_



112

14-49

14-51

14-53

14-55

14-57

14-59
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(a) Assume he works 5 days per week, 50 weeks per year and takes 8 x-rays per day. # x-

rays = 2 000 x-rays per year and =0.0025 rem per x-ray.

2,000

(b) 5 rem/yr is 38 times the background radiation of 0.13 rem/yr.

The second worker received twice as much radiation energy but he received it in twice as

much tissue. Radiation dose is an intensive, not extensive quantity—measured in joules per
kilogram. If you double this energy and the exposed mass, the number of rads is the same in
the two cases, !

One rad — Deposits 107 J/kg, therefore 25 rad — 25x 10~ J/kg ‘
It M=75kg, E=(75 kg)(25x1072 J/kg)=188] |

One electron strikes the first dynode with 100 eV of energy: 10 electrons are freed from the
first dynode. These are accelerated to the second dynode. By conservation of energy the
number freed here, N is: (10)(AV) =(N)10) or 10(200 — 100) = N(10) so N =100. By the
seventh dynode, N =10° electrons. Up to the seventh dynode, we assume all energy is
conserved (no losses). Hence we have 10° electrons impinging on the seventh dynode from
the sixth. These are accelerated through (700 — 600) V. Hence E = (10°)(100)=10°% eV.In

addition some energy is needed to cause the 10° electrons at the seventh dynode to move to
the counter.

To conserve momentum, the two fragments must move in opposite directions with speeds v,
and v, such that

g5
mI'Ul =m202 or Uy = — Ui-
iy

The kinetic energies after the break-up are then K 1 =%mlvlz and

2
m m
Kz =%mzv% =%mz(’rﬂ—1) '()12 :[;I_l—]Kl .
2 2

The fraction of the total kinetic energy carried off by m, is

Ky Ky _ M
Ki+Ky  Ky+(my/my)Ky  my+m,

) My

and the fraction carried off by m, is 1- = :
1y “ 45 My + mz

(@)  AV=4zr’Ar=42(140x10° m)*(0.05 m)=123x10° m® ~10° m?

(b) The force on the next layer is determined by atmospheric pressure.

W =PAV =(1.013x10° N/m?)(1.23x10% m®)=125x10" [ ~10%




(c)

(@)

MODERN PHYSICS
1.25%10% J= i%(;deld), so yield =1.25x 10" J~10™ J

1.25%10™ J

=2.97x10* ton TNT ~10* ton TNT or ~ 10 kiloton

4.2x10° J/ton TNT

113
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Particle Physics

15-1

15-3

15-5

The time for a particle traveling with the speed of light to travel a distance of 3x107" m is
c1n~1s

ped 20

v 3x10° m/s

The minimum energy is released, and hence the minimum frequency photons are produced.
The proton and antiproton are at rest when they annihilate. Thatis, E=E; and K=0.To

conserve momentum, each photon must carry away one-half the energy. Thus,

Ein = Mfonin =—2§i =E, =938.3 MeV, Thus,

(9383 MeV)(L6x107° J/MeV)

— =2.26x10% Hz
6.63x107 J's

min
and

c _ 3x10° m/s

= = =132x10" m
WX fan 226%10% Hz

A

The rest energy of the Z° boson is Ey = 96 GeV. The maximum time a virtual Z® boson can
exist is found from AEAt =#.

h 1.055%107 J s

At=—= % =6.87x10% s.
AE (96 GeV)(L6x107" J/GeV)

The maximum distance it can travel in this time is
d=c(Af)=(3x10* m/s)(6.87 %107 5)=2.06x107* m.

The distance d is an approximate value for the range of the weak interaction.

115
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|

' 15-7  Use Table 15.2 to find properties that can be conserved in the given reactions

I Reaction 1 Reaction 2 l!
|

| (a) Charge: a+p—o>K +XF T tp—sr +X7 |
. (FFH V) -y =) 0E)
00V 00V |
(b) Baryon number:  (0)+(+1) = (0) + (+1) (0)+(+1) = (0) + (+1)
1 +1-+41V +1o41V
‘r () Strangeness: ()+(0) — (+D)+(-1) (0)+(0) = (0)+(+1)
‘ 0—0v 0—(-1) X

Thus, the second reaction is not allowed since it does not conserve strangeness.

|
'|
" 159  (a) p=r +7° (Baryon number is violated: 1 — 0+0)

(b) p+tp—op+p+a° (This reaction can occur)
‘ (c) p+p—op+at (Baryon number is violated: 1+1—1+0)
(d) xt =+, (This reaction can occur)
(e n—p+e +7, (This reaction can occur)
| 4] 7t syt +n (Violates baryon number: 0 — 0+1, and violates

muon—lepton number: 0 — -140.

15-11  (a) M —ety L:0—>1+0and L,:1—-0+0

(b) n—pte +o, L,:0—0+1+1

(© A s p+a’ Strangeness —1 — 0+0 and charge 0 —» +1+0
(d) p—et+a° Baryon number +1 — 0+0 and lepton number 0 —1+0
(e) 2 S5 n+al Strangeness -2 —0+0

22 5.3
+my s+ —(my +
15-13  (a) In Equation 15.16, Ky, = (s ifia £ m;) & o tih) ¢ where m;, is the mass
Ty
of the incident particle, m, is the mass of the stationary target particle, and m;, m,,

s, and my are the product particle masses. For  production,

(4’”:1)262 _(zmp)zcz

= E;m:pc‘2 =(6)(938.3 MeV)=5 630 MeV or 5.63 GeV.

th=
ZmP
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15-17

15-19

15-21
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(b) Using Equation 15.16 for the reaction p+p+n+T,
(2171Ij +2mn)2::2 —(Z.mjﬂ)zc2

ZmP

_ (4)(938.8+939.6)*MeVc® - (4(938.3)*MeV c? )]
- (2)(938.3 MeV)

th =

=5.64 GeV

Let E = efficiency in %
2

For Example 155, E =| 2 |x100= [M}cmo = 48%
K, 280 MeV

; 292 MeV

m +Cz
E=2 —Z x100=2[w]x100=46%
e 600 MeV

2
m_ .
For Bierdie’3, = (—;ij %100 = {M} %100 = 48%
h

2

,C
For Problem 13, E= 2{ ; ]x 100 = Z[M

5.63 GeV

]XIOO =33%
th

P p o Zt+y+X
dds+uud —»uds+0+7
The left side has a net 3d, 2u, and 1s. The right hand side has 1d, 1u, and 1s leaving 2d and 1u

missing. The unknown particle is a neutron, udd. Baryon and strangeness numbers are
conserved.

Quark composition of proton = uud, and of neutron = udd. Thus, if we neglect binding
energies, we may write:

m, =2m, +my (1)

and m, =m, +2m;, (2)
Solving simultaneously, we find:

= %(zm,, —m, )= %—[2(938.3 MeV/c?)-939.6 MeV/c?|=312.3 MeV/c?,

and from either Equations (1) or (2), m, = 313.6 MeV/ ¢* . These should be compared to the
experimental masses m, =5 MeV/ ¢* and my =10 MeV/ et

n=(u d d) Down quark
l decays to an up quark
. with the emission of a
time

virtual W minus.

p=(u d u
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15-23

15-25

15-27
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A photon travels the distance from the Large Magellanic Cloud to us in 170 000 years. The
hypothetical massive neutrino travels the same distance in 170 000 years plus 10 seconds:

(170000 yr) = v(170 000 yr +10 s)
v 170000 yr 1 1

¢ 170000 yr+10s  1+{105/[(17x10° yr)(3.156x107 s/yr)]] 1+186x1072

For the neutrino we want to evaluate mc? in  E=ymc?:

2 1+186x1072)* -1
me?=E_pf1-2 ~10Mev f1- ! — =10 MeV ( ) :
¥ c (1+1.86x107'2) (1+1.86x107%)
2(1.86x107"2
mc? =10 MeV ! =10 MeV(193x107°)=19 eV

Then the upper limit on the mass is

19 eV
m= 7
c
et B - S A Pt
¢ (9315x10° eV/c
myc® =1115.6 MeV A S p+rm

m,c* =9383 MeV (See Table 15.2 for masses)

mc* =139.6 MeV
The difference between starting mass-energy and final mass-energy is the kinetic energy of
the products.

K,+K,=377MeV and p, =—p,

Applying conservation of relativistic energy,

[(938.3 MeV)? +p%c2[/* ~938.3 MeV +[(139.6 MeV)?2 +p2c?]

Solving the algebra yields p,c=—p,c =100.4 MeV. Then

]1/2

K, =|(myc?)’ +(100.4 MeV)?

2 _
. —M,C =54 MeV

K, =[(139.6 MeV)? + (100.4 MeV)*["* ~139.6 MV =32.3 MeV

Time-dilated lifetime.

_09%x10™s  09x107 s

" -10
(1 _Uz/cz)m = (1 —(0.96)2)1/2 =3.214x107" s

T =y

distance = (0.96)(3x10° mys)(3.214x107" 5)=93 cm

2 _139.6 MeV =37.7 MeV.
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|

|

|
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I

1529 p+tp—p+zt+X
Q=M,+M,-M,-M_. -My
(From conservation of momentum, particle X has zero momentum and thus zero kinetic
energy.)
Q=(2)(70.4 MeV)=938.3 MeV +938.3 MeV —938.3 MeV -139.5 MeV — My
My =939.6 MeV

|
X must be a neutral baryon of rest mass 939.6 MeV/ ¢®. Thus X is a neutron. !

|
15-31  (a) The mediator of this weak interaction is a Z° boson.
(b) The mediator of a strong (quark-quark) interaction is a gluon. '

1533 (a) AE=(m, —m, —m,)c*. From Appendix B,
AE = (1.008 665 u—1.078 25 1)931.5 MeV/u =0.782 MeV

(b) Assuming the neutron at rest, momentum is conserved, p, = p, relativistic energy is

conserved, [(mpcz)'2 +(p2c2)]1/2 +[(mgcz)2 +(pfc2)]1/2 =m,c*. Since p, =p,.
2 21¥2 2 2742
[(938.3 MeV)™ + (pe)*] " +[(0511 MeV)? +(pe)* | =939.36 MeV
Solving the algebra pc=1.19 MeV . If p,c = ym,v,c =119 MeV, then,

yv, _ LI9MeV =~ * ;299 where x=2¢
¢ 0511MeV (1_x2)1/2 c

x* =(1-x%)5.423

x=22=0919
c
v, =0919¢=276x10° mys

(119 MeV)(16x1072 J/MeV)
3x10° m/s

Then m,v, =m,v, =

o, (119 MeV)(16x107 J/MeV)
e T (L67x107 kg)(3x10° mys)

. =3.80x10° m/s
v, =380 km/s =0.001 266¢

(c) The electron is relativistic, the proton is not.

BE 5 (1602177 x10™ C)(115 TH(1.99 m) _ 686 MeV
- a 78 — Voy = —

Pz =0 = i a88x 10 2 (kg - m/s)/(MeV/e) ¢
(1602177 %107 C)(1.15 T)(0.580 m) 200 MeV

P :eBrf =

5.344 288 x 102 (kg - m/s)/(MeV/c) c
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(b)

(©)

(d)

1537 (a)

(b)

(©)

Let pbe the angle made by the neutron’s path with the path of the " at the moment
of decay. By conservation of momentum:

p,, cos p+(199.961 581 MeV/c)cos64.5°=686.075 081 MeV/c
- p, cOs@=599.989 401 MeV/c 6]
p. sing=(199.961581 MeV/c)sin64.5°=180.482380 MeV/c ' @)

From (1) and (2):

= /(599.989 401 MeV/c)* +(180.482380 MeV/c)* =627 MeV/c.

E. =J(p +C)2+(m ? =/(199.961581 MeV)? +(139.6 MeV)? =244 MeV

= (pae) + (e J(sze 547 022 MeV)? +(939.6 MeV)? =1130 MeV

Ez* i En = 243.870 445 MeV +1129.340 219 MeV =1 370 MeV

g, =\/E2+ —(pz+c)z = J(1373.210 664 MeV)? - (686.075 081 MeV)* —1190 MeV
my, =1190 MeV/c?

=1.154 4. Solving for v,

b where pe|1 2] 21373210664 MeV
z M i 1189.541 303 MeV
v=0.500c.

If 2N particles are annihilated, the energy released is 2Nmec?. The resulting photon

2Nmc” ; .
momentum is p= & 2NN 2Nme . Since the momentum of the system is

¢ c
conserved, the rocket will have momentum 2Nmc directed opposite the photon

momentum, p=2Nmec.

Consider a particle that is annihilated and gives up its rest energy me® to another
particle that also has initial rest energy mc? (but no momentum initially).

= pzcz + (mcz )2

Thus (2mc* )2 =pic? +(mc2)z. Where p is the momentum the second particle acquires
as a result of the annihilation of the first particle. Thus 4(mc* )2 =pic? +(mr:2)2 ,

p? = S(mcz)z. So p =+/3me. This process is repeated N times (annihilate % protons

and % antiprotons). Thus the total momentum acquired by the ejected particles is

~3Nme, and this momentum is imparted to the rocket.

p=«/§ch

Method (a) produces greater speed since 2Nmc > 3Nme.




