8

Quantum Mechanics in Three
Dimensions

1

2 2 2
8-1 E:ﬁzﬂ2 Bl +|Ze| +|2
2m (\L, L, L,

2_2
L,=L,L,=L,=2L. Let :m’iz = Ey. Then E = Ey(4n? +n2 +n2). Choose the quantum
numbers as follows:
m ny M3 =
Ey
1 1 1 6 ground state
1 2 1 9 * first two excited states
1 1 2 9 *
2 1 1 18
1 2 2 12 * next excited state
2 1 2 21
2 2 1 21
2 2 2 24
1 1 3 14 * next two excited states
1 3 1 14 *

Therefore the first 6 states are 111, Wia1, Y112/ W12z Warar and Yy with relative energies

EE =6,9,9,12, 14, 14. First and third excited states are doubly degenerate.

0

83 n?=11
5.7 )
() E= L 71-2 n2=E e HZ
2mlL 2\ mL
(b) fly My Hj
1 1 3
1 3. 1 3-fold degenerate
3 1 1
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© Wi = A sin[%) sin[ff_’)sin(%j

CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

L (mxN , (3ryY ., (%z
y/131 = A Sm(TJ Sm(%} Sm(TJ

Wap = A sin[—waiz x ) sin(%) sin(%)

|
() ny=n,=ny=1and Ejy; = = =247 x107 J = 1.54 MeV

32 3(6.63x107%)"
8mL*  8(167x1077 )(4x107%)
(2 +12 +12)n?
(b) States 211, 121, 112 have the same energy and E = i =2E;; =3.08 MeV
(2% +2% +1%)1°

and states 221, 122, 212 have the energy E= =3Ey; =463 MeV.

gml>

The stationary states for a particle in a cubic box are, from Equation 8.10

¥(x, y, z, )= Asin(k;x)sin(k,y) sin(k3z).e"'E"”'i 0<x, y, x<L

|
(c) Both states are threefold degenerate. l
= elsewhere

My 7T , . .
where k; = 1T, etc. Since ¥ is nonzero only for 0 <x <L, and so on, the normalization

condition reduces to an integral over the volume of a cube with one corner at the origin:

1=[dx|dy[dz|¥(x, I = A® {? sin”(k; x)dx_L[ sinz(kzy)dy? sinz(ksz)dz}
0 0 0

L
.But kL. =mn;7, so the last

L
Using 2sin® 8=1—cos 26 gives | sin® (k; x)dx = Lol sin(2k;x)
0 2 4k i

term on the right is zero. The same result is obtained for the integrations over y and z. Thus,

3 32
normalization requires 1= AZ[%) or A= (—i—} for any of the stationary states. Allowing the

edge lengths to be different at L;, Ly, and Ly requires only that I be replaced by the box

i) 12 12
volume L;L,L; in the final result: A= {(i](i i]} S ) = (Ej where
L AL, ALy Lil.Ts %

V =L,L,L, is the volume of the box. This follows because it is still true that the wave must
varnish at the walls of the box, so that k,L; =#n;7, and so on.

L=[+1))"2n

34
4714 %107 Js =[1( +1)]¥* (M]

2z
(4714x107)* (2m)"

S——=1.996%10" = 20 = 4(4+1)
(6.63x107*)

I(I+1)=

sol=4.
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(@  L=[0+D]"2%; 483x10™ Js=[I0+1)]¥>h, so
483x10% Js)*
2= J)z ~ (458 x10%)" =12
(1.055x107* Js)
1~ 458 %10
(b) With L= Ik we get AL =# and %a—.%: 2.18x107%
Z =2 for He*
(a) For n=3, [ can have the values 0of 0, 1, 2
l = 0 —> ml = 0
I=1 = m=-1,0,+1
I=2 — m;=-2,-1,0,+1,+2
—z2
(b) All states have energy E; = = (13.6 eV)
E, =—604eV.
ke* Y Z2 . n? .
(a) E, =-| — | — | from Equation 8.38. But a, = 5 so with m, — 1 we get
2a9 A1 m, ke
2 4 2
2k n
2 452
(b)  Forn=3-2,E-E, Jﬁ:"k—ezzm(_lzﬁ_iz) with 4=656.3 nm for H (Z=1,
A 2mt \2?2 32
p=m,).For He*, Z=2,and u~m,,s0, 1= 224622 =164.1 nm (ultraviolet).
(  Forpositronium, Z=1 and y= 11;1 50, 1 =(656.3)(2) =1312.6 nm (infrared).
(a) Foradstate, I=2
L=[10+1)"*h=(6)/*(1.055x 107 J5)=2.58 x10™ Js
(b) For an f state, =3

L=[0+1)]"h=(12)"*(1055x10 Js) =3.65 x 10" s
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8-19

8-21

8-23

8-25

CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

" When the principal quantum number is 7, the following values of [ are possible:

1=0,1, 2, ..., n—~2, n—1. For a given value of ], there are 2]+1 possible values of m,;. The
maximum number of electrons that can be accommodated in the #n™ level is therefore:

n—1 - n—
2O+ D+ +D+. AR+ D+ +Qr-D+1)=2)"1+ 211:221”11.

=0 =0 =0
ko k(k+1) . ;
But 3= so the maximum number of electrons to be accommodated is
I=0
2n-1
% +#= ?7,2 P

3/2

1 1 r
o == | |2-— |7 Atr=a,=0529%10""" m we find
( ) WZS( ) 4(23_)1/2 (ﬂgj ( ao) 0

1 (1Y? i 12
WzJ%FW[;;] (2-1)e =(0‘380)[E]

3/2

= (0.380)[—-—-1—%} =9.88x10™ m™¥?
0529 %107 m

®)  |wa(ap)? =(988x10™ m™?)* =9.75x10% m

(0) Using the result to part (b), we get Py (ag) = 4m2|w . (ap)* =3.43x10"° m™.

6.63 %107 Js)(3x10°
@ Lode__ (sex NS0T ) e
@ ke 27(9x10° Nm?/C?)16x1077 C)
A him e he 2z

Te o e =T = 2xx137
(®) ro  ke?/m,c? ke«

2 2
© ag _W/mke® 1 he 1 _137

A, Wmpe 2nke® 27a 27

1 ‘ m ke Y dmch? drhc 47
R e =" = 4r(137
@ Ra, ( ? J[mckze';] ke* o (e

The most probable distance is the value of r which maximizes the radial probability density

P(r)= |rR(r)Jz. Since P(r) is largest where rR(r) reaches its maximum, we look for the most

d{rR(r)}
dr

. . . r )
For clarity, we measure distances in bohrs, so that — becomes simply r, etc. Then for the 2s
g

state of hydrogen, the condition for a maximum is

probable distance by setting

d » 1 -
0 :E?{(Zr ~r?)e "%} :{Z—Zr—E(Zr —rz)}e ¥2

equal to zero, using the functions R(r) from Table 8.4.
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or 0=4-6r+r? There are two solutions, which may be found by completing the square to
get0=(r-3)>-5orr=3% +/5 bohrs. Of these r =3 ++/5 =5.2364, gives the largest value of
P(r), and so is the most probable distance. For the 2p state of hydrogen, a similar analysis

gives 0= ;—{rze‘r" 2} = {Zr - %rz }e"/ 2 with the obvious roots 7 =0 (a minimum) and r =4 (a
r

maximum). Thus, the most probable distance for the 2p state is r= 4a,, in agreement with the
simple Bohr model.

To find Ar we first compute (rz) using the radial probability density for the 1s state of
hydrogen: P, (r)= —43—rze‘2"/“° . Then <r2> = [+*B, ()ir = isfr4e’2’/“°dr . With z= k, this is
0 %o 0

ag &
4
(’2) =73
“p

sm so
(%ﬂ) [z*¢"*dz . The integral on the right is (see Example 8.9) | 2% %dz = 4! s0 that
0 0

2 4(aY 2 2 2\Y/2 5, 212 : :

(r ):—3(7) (41)=3a; and Ar =((r )—(r) ) z[BaU —(1.5a4) ] =0.8664,. Since Ar is an
fp

appreciable fraction of the average distance, the whereabouts of the electron are largely

unknown in this case.

Outside the surface, LI(x) = . (to give F= -%H = _iz)' and Schrodinger’s equation is

x X c

R \d?w (A ; g i : :

15 . + ——J w(x) = Ey(x). From Equation 8.36 g(r)=rR(r) satisfies a one-dimensional
m, } dx x

2
Schrodinger equation with effective potential Ueff N=U@)+ I(;Fiz With I=0 (s states)
m,r

e
2

and U(r)=— AZe

the equation for g(r) has the same form as that for y(x). Furthermore,

w(0) =0 if no electrons can cross the surface, while g(O) =0 since R(0) must be finite. It
follows that the functions g(r) and y(x) are the same, and that the energies in the present

27,2
case are the hydrogeniclevels E, = —[ Zz ke ](—15] with the replacement kZe* - A.
ay I\

2 2
Remembering that a4, = —-h—f, wegetE, = —[ﬁj(—}—) n=1,72,..
ke n
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Atomic Structure

91  AE=2pzB=hf

2(9.27x10™ J/T)(0.35 T)=(6.63 %107 Js)f s0 f=9.79x10° Hz

9-3 (a) n=1;f0rn:1,I=0,mI:0,ms=i% — 2 sets
H Z ml ms
1 0 0 -1/2
1 0 0 +1/2
2n®=21)% =2
(b) For n=2 we have
" I iy ",
2 0 0 +1/2
2 1 -1 +1/2
2 1 0 +1/2
2 1 1 +1/2

Yields 8 sets; 2n% = 2(2)% =8. Note that the number is twice the number of m ; values,
Also that for each [ there are 2I+1 m; values. Finally, I can take on values ranging

n-1

from 0 to 7—1, so the general expression is s= ) 2(21 +1). The series is an arithmetic

0
progression: 2+6+10+14..., the sum of which is

5=

5= [4 +(n-1)4]=2n"

M RN R

[2a+(n—1)d] whereg=2,d=4

(c) n=3: 2AD+2(3)+2(5)=2+6+10=18=2x1%*=2(3)>=18

(d)  n=4: 2AD+23)+2(5)+27)=32=2n> = 24> =32

(e) n=5: B32+29)=32+18=50=2n%=2(5)%* =50

59




60 CHAPTER 9 ATOMIC STRUCTURE

Im
100 m/s

2d
the force, and hence the acceleration. Thus the deflection is d = %atz, orag= t_z for the

9.5 The time of passage is ¢ = =0.01 s. Since the field gradient is assumed uniform, so is

acceleration. The required force is then

_ M2d _2(108 w)(L66x107 kg/u)(107 m)

= 0o =359x107* N.
1075

The magnetic moment of the silver atom is due to a single unpaired electron spin, so

. e = é E - . 24
L _Z[Zm JSZ —2( J(ZJ_'UB =9.27x107" J/T.

e zmﬁ
Thus,
24
aB, _F, _3.59 xl(]kz‘1 N ~0.387 T/m.
dz g, 927x10°% N
9-7 The angular momentum L of a spinning ball is related to the angular velocity of rotation @ as

L=Iw. ], the moment of inertia, is given in terms of the mass m and radius R of the ball as

I :émRz. For the electron this gives
1=§(511><103 eV/c?)(3x10™ nm)’ =1840x107 eV nm?/c?.

1973
They ety Loy weting meiwd 3. (5 Ve _9286x107 ¢/nm. The
2 I 2 1840x107° eV nm?/c

equatorial speed is
v=Rw=(3x10"° nm)(9.286x107 ¢/nm)=278.6¢

B wommg
C

12
9-9 With s= %, the spin magnitude is || =[s(s + D]V2h= [%Jh The z-component of spin is

=m_.h where m, ranges from —s to s in integer steps or, in this case,

= —E, ——1—, + 1, +% . The spin vector § is inclined to the z-axis by an angle & such that

5z
m‘i
S T

TIs (@S2 (5122 as)rt o asV o asy o a5

or §=140.8°, 105.0°, 75.0°, 39.2°. The Q" does obey the Pauli Exclusion Principle, since the
spin s of this particle is half-integral, as it is for all fermions.
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) 1 . 1 1 |
9-11 Foradelectron, I=2; s=—; j=2+—, 2—— .
2 2 2 |
. 5 5 3 11 3 5 |

For ] == m] T e e e e e el

2 2" 2 22 22
5 3 3 1 1 3 |
For j=—; Pl Simeesy By ey |
2 20 2722 .
I
;. B |
9-13 (a) 41—‘5/2 —sn=41=3, ]=E |
5 7 1,1'2 35 1,/2 (35)1/2 |
e[ [22) :
® =[G+ g : 2 i
I
(c) J, =m;h where m; canbe —j, —j+1, ..., j—-1, j so here m; can be l.}

—E, —g’—, —l, -1—, E, -5— J, canbe —Eh, —'Ek, —lh, lh, Eh, or Eh
27 2 2 2 2 12 2 2 2 "X 2 2

by Equations 9.6 and 9.12 with a g-factor of 2, or U=}, - B= ?{ze }S B=2ugm.B.The |

€
magnetic field B originates with the orbiting electron. To estimate B, we adopt the equivalent
viewpoint of the atomic nucleus (proton) circling the electron, and borrow a result from

classical electromagnetismn for the B field at the center of a circular current loop with radius r:

|
|
|
9-15  The spin of the atomic electron has a magnetic energy in the field of the orbital moment given g
i
|

2k 2. .
B= ,;,u .Here k,, is the magnetic constant and z= imr? is the magnetic moment of the
¥

loop, assuming it carries a current i. In the atomic case, we identify r with the orbit radius and

the current i with the proton charge +e divided by the orbital period T = Eﬂ Then
v

JL where L =m,vr is the orbital angular momentum of the electron. Forap

electron /=1 and L= [1(Z+1)]1”3h: V21, so ,Ll=(28h

W2 = N2 =1.31x107* J/T. Forr we
B

e

take a typical atomic dimension, say 4ay(=2.12x 16-1° m) for a 2p electron, and find

5 2(107 N/A*)(131x107% J/T) _ p—
(212x10™° m)’

Since r, is i% the magnetic energy of the electron spin in this field is

U=tupB=2%(9.27x10" J/T)(0.276 T) =+2.56 x 107 J=+159x10" eV .

The up spin orientation (+) has the higher energy; the predicted energy difference between
the up (+) and down (-) spin orientations is twice this figure, or about 3.18 x 107 eV —a
result which compares favorably with the measured value, 5x 107 ev.

'S
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2.2

9-17 = From Equation 8.9 we have E = (g—%—](nlz +nj +13)
m

9-21

9-23

9-25

9-27

1.054 10"34 2/ 2 2 2 2
5T 208w o a5 vl o )

(a) 2 electrons per state. The lowest states have
(n2 +n3 +n3)=(1, 1, 1) = Egyy =94 eV)(1* +1* +1%) eV =282 eV.
For (nlz +nl +n§):(1, 1,2)or(1,2,1)or(2,1,1),

Eiyp =Eim =Epy =94 eV)(1% +1% +2%)=56.4 eV
Ein =2%(Eqqy + Eqpp +Em +Eopy )=2(28.2+3x56.4)=398.4 eV

() All 8 particles go into the (nf +n3 +n3)=(1, 1, 1) state, so
E iy =8xEj;; =225.6 eV

(a) 152252 2p*

(b) For the two 1s electrons, n =1, 1=0,m=0m==%x

For the two 2s electrons, n=2, =0, m; =0, m, =%

For the four 2p electrons, n=2, =1, m; =1, 0, -1, m, :i%.

All spins are paired for [Kr]4d10 and two are unpaired for [Kr]4d ?5s. Thus Hund's rule

would favor the latter, but for the fact that completely filled subshells are especially stable.

Thus [Kr]4d™® with its completely filled 44 subshell has the lesser energy. The element is
palladium (Pd).

A typical ionization energy is 8 eV. For internal energy to ionize most of the atoms would
2x8(L60x1077 J)

R between 10* K and 10° K.
00 X

require %kBT=8 eV:T=

(a) The L,, photon can be thought of as arising from the n=3 to # =2 transition in a one-
electron atom with an effective nuclear charge. The M electron making the transition
is shielded by the remaining L shell electrons (5) and the innermost K shell electrons
(2), leaving an effective nuclear charge of Z—7 . Thus, the energy of the L,, photon

_k? @-7? ke (27 ke’ 52-7)°

=— . Writing E=Hhf and
24, 32 it 2% gy 36 gE=H

should be E[L,]

2 ;

noting that ;ci =13.6 eV this relation may be solved for the photon frequency f.
2] .

5

Taking the square root of the resulting equation gives Jf = Eg(

13.6 eV
h

](2-7)‘

“ 2
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According to part (a), the plot of Jf against Z should have intercept =7 and slope

Ji(l% EV) - | 5036eY) __ 51410 Hz!2. From Figure 9.18 we find
36 36(4.14x107" eV s)

h
data points on the L, line [in the form (\/f, Z)] at (14, 74) and (8, 45). From this we

74—45
is \/? =0.21(Z-I) where Iis the intercept. Using (14, 74) for (\ff G Z) in this equation
gives the intercept I =7.3, but with (8, 45) for (/f, Z) we get [=6.9. Alternatively,

using both data pairs and dividing, we eliminate the calculated value of the slope to
e Wi This last approach affords the best experimental value for I based on

8 45-1
the available data and gives I = @%ﬂﬁ =

obtain the slope =0.21x10® HzY?. Thus, the empirical line fitting the L, data

6.3.

The average screened nuclear charge seen by the M shell electron is just
Z -1=Z-6.3, indicating that shielding by the inner shell electrons is not quite as
effective as our naive screening arguments would suggest.
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Statistical Physics

10-1  Using 71; =tjypy +1jppp +... We obtain:

_ 6 30 30 60 30
iy =My + P TP = (0)[1 2.87)+ (1)(1 287J * (0)[1 287} - (2)(1 2.87] +(0)[ﬁ77]
120 60 15 120 60 180 30
+(1)(1 287]+(3)(1 2.87) " (0)(1 287}r (1)(1 237) " (0)[1 287)+ (2)(1 287)+(4)[1 287]

60 90 180 120 ), of 6 15 60
+(O)[1 287]+ (2)[1 287J+(1)[1 287]+ (3)[1 287] +(5)[1 287]+(0)[1 287J+(2)(1 287J

15
+H4) ——=
{127 )
204120 + 120 + 180 + 120 + 360 + 120 +180 + 180 + 360 +30 +120 + 60
1287
1538 46
p(L‘E)~—4—"81—:m—1'563 8 _0.256.

One can find p(2E) through p(8E) in similar fashion.

10-3 A molecule moving with speed v takes # seconds to cross the cylinder, where d is the
v

wd :
cylinder's diameter. In this time the detector rotates @radians where = wt=——_This
v
2

means the molecule strikes the curved glass plate at a distance from Aofs= -246 =3 as
v

mmz ﬁ6.94x10-22 g and

1/2 -23
0 :[ngT] _ [(8)(1.38 x107% J/K)(850 K)] i

Tm (7)(6.94x107 kg)

1/2 12
Vo =(3kBT) =225 m/s Uons :[ZkBT) =184 m/s

m m
0x2 , 2
Srmsz(625 X 71') (0,10 m) —145 cm
60 s (2)(225) mys
S(U) =158 cm Smp =178 cm
65
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10-5

10-7

CHAPTER 10 STATISTICAL PHYSICS

Fita curve Ae ™ to Figure 10.2. An ambitious solution would use a least squares fit to

determine A and B. The quick fit suggested below uses a match only at 0 and 1E. P(E)= Ae™%F

thus P(0)=A and P(E;)= Ae ®% . From Figure 10.2 one finds P(0)=0.385 , and this gives

A=0.385. To determine B use the value P(1E) = 0.256 = Ae 2 =0.385¢ 25 thus ¢725 =0.665
In(0.665) 0.408
& &
determine the probability as follows P(0)=0.385, P(1E,)=0.256, P(2E;)=0170,

)E—(U.-';DBE/E]}

and B=- and so P(E)=(0.385 . This equation was used to

P(3E,)=0.113, P(4E,)=0.075, P(5E;)=0.050, P(6E;)=0033, P(7E,)=0.022, P(8E,)=0.015.

The exact values are P(0)=0.385, P(1E,;)=0.256 , P(2E;)=0167, P(3E;)=0.078,
P(4E,)=0.054, P(5E,)=0.027, P(6E;)=0.012, P(7E;)=0.003 9, P(8E;)=0.000 717 . These
values are plotted below. One sees that this approximation is good for low energy. There is
exact agreement for P(0) and P(1E) and small deviations for the next two values with
percent deviations for the higher energy values. ‘

0.40 )
0.35?
0.30
0.25
0.20
0.15
0.10
0.05
0

with a given energy

Probability of finding a particle

Energy

Ey=-p é=—£cosP=—pe
Ep =—p-£=-£c0s180°= +pe

so AE=Ep —Ey =2pe.
(b) Let n(2pe) be the number of molecules in the excited state.

n(2pe) g(2pe)AerelksT

— 28—2p£/kET

n(0) g(0)Ae°
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@.—_n—(%-fzg—):Ze‘mﬂ‘BT.For pzl.OXlO’SO Cm and .»';'=(1.0><1(]6 V/m),
1 n(0)

2pe (2)(1.0x107™® Cm)(1.0x10° V/m) 01449
kT (138107 J/K)T B

01499 or T=283K.

50 1.90 = 27 0149/T or 0.95 = ¢ *M*T  Solving for T, In(0.95) =

[n(1[0]  [n(2pe)/n(0))(2pe) _ [ze_2ps/kaT] [2pé]
1(2pe)+n0)  [n(2pe)+n@)]+1  2e 2PN 41

E=[n(2pe)][2pe]+

e
1+(1/2)e?e/keT
As T—0,E—0andas T—oo, E%%=§£‘E_
32 3

TP 2peN

dEmtal =NE= 1+ (1/2)€2p£/kgT

C= dEotal _ (Nkg/ 2)(2pg/kBT)252P£/kBT
ar [1+(1/2)e?/T |

2
By expanding e* where x = 2P% ne can show that C —0 for T— e as
B

e 2
c=(BNYPE ¥ 1) and c50 for T—0 asC= (2Nks )N 2p€/ (ks T 1, g the
9 kg TZ eZpE‘/kBT

maximum in C :[NkB ](xz) E ___bset B G [ﬁ)[d_x) =0. Taking
2 [1_,_(1/2)61] dl dx \dT

derivatives we get:

~x>e" (2+x4xex}_0
(1+(/2)e")” |L1+(/2)e"
Setting the first factor equal to 0 yields the minimain Cat 7'=0 and T =es, while the
second factor yields a maximum at the solution of the transcendental equation,

2 x

= +2 = £ This transcendental equation has a solution at x ~ 2.65, which

o
2 2 1449

corresponds to a temperature of EPE 9 on P = : =0.0547 K. The
kT 2.65kg 265

expression for heat capacity can be rewritten as C'= 4 ef—F | where

(1+(1/2)e7)
Nkg 2pe

A=

and x= EE Below is the sketch of C as a function of T
B B
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10-11

CHAPTER 10 STATISTICAL PHYSICS

The heat capacity is the change of internal energy with temperature. For both large
temperature (7 — ) and low temperature (7 — 0) the internal energy is constant
and so the heat capacity is zero. At T approximately equal to 0.0547 K there is a rapid
change of energy with temperature; so the heat capacity becomes large and reaches
its maximum value.

— k
U= E;—BT . Using a molar weight of 55.85 g for iron gives the mass of an iron atom:
m

5585 g (8)(1.38x107% J/K)(6 000 K)
m T e e
6.02x10% (7)(9.28x107 kg)

Since the speed of the emitting atoms is much less than ¢, we use the classical doppler shift,
f=fo(l£v/c). Then

=151x10 mys.

=928x107% kg. Thus, a‘:\/

A e faw _fol+0/0)—fy(l-/c) 20 _((151x10° mys)

=101x107°
fo fa fo ¢ 3.00x10° m/s

or 1 part per 100 000.

12E
11E
10E —
9E e,
8E
7E -
6F -o—
5E -e~

Poe
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fge =%x2+éx2+%x2+éx2+é—x2+—;—x2+%x2+éx2+%x2=z.00

e =8[%x2j+{%x1)= 89

+

O Ol o]

57577 x1)+(; ) 178
)s{Lxt)-155
)o(Lxt)o(Ent)o12

=
m
il
=
— /—‘\
X
b2

X
%]

o= o~ o
X
b3
+
TN TS T

=)
o
tm
1l
s
N
+

1 1 1 1 1
nloEz(gxl)+[§xl)+(9 )+(§X2J+(6X2)=0.777
1 1 1
=|=x2 —x1|+ 0.444
te [9x J+(9X) [9 )
1 1
nlzgz(;xlj+[§x1):0222
T (lx 1] —0111
9

= =
— —
[t w
x5 m
1l
=}
o
=}

Minimum energy occurs for all levels filled up to 9, corresponding to a total energy of 90E.
So Ep(0 K)=9E. Using Equation 10.2 the following plot is obtained.

1013 (a)

it

! 1 1 1 | | 1 1 1 L LY==l
0 T 2345678 91011121314 Energy
States

5 . For T=TE, kBTE :ha],SO

2 hafky Ty
C=(3R)[ hw] ( ¢

kBTE ehw/kBTE = 1)

hafhw
C= (3R}(m] ¢  __—(3R)
how (eftcu,ffmr _1) (e=1)

e

> =(3R)(0.9207) = 2.76R .

Using R=1.986 cal/mol K= C=5.48 cal/mol K.

From Figure 10.9, Tg lead =100 K, Ty aluminum = 300 K, Ty silicon =500 K.
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(©

2 Te/T 2
Using C= (3R)(IE~J (E— =(5.97 cal/mol K)[%] e"e/T heat capacities for
e TelT _

T ) (/T _1)2

lead, aluminum, and silicon were obtained. These results can be summarized in the
following tables.

Lead T =100 K

T(K) C(cal/(mol K)) T(K) C(cal/(mol K))
50 4.32 250 5.92

100 5.49 300 5.94

150 5.74 350 5.96

200 5.83 400 6.09
Aluminum T =300K

T(K) C(Cal/ (mol K)) T(K) C (cal/ (mol K))
50 0.536 250 5.30

100 2.96 300 5.509

150 432 350 5.62

200 4.97 400 5.70

Silicon Tg =500 K

T(K) C(cal/(mol K)) T(K) C(cal/(mol K))
50 0.027 600 5.64

100 1.02 650 5.67

150 2.55 700 5.74

200 3.64 750 5.7

250 4.97 800 5.78

300 476 850 5.81

350 505 900 5.84

400 5.25 950 5.85

450 5.41 1000 5.83

500 5.50 1050 5.85

5b0 5.59 1100 5.95

These values are now plotted on Figure 10.9 as shown.
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Al: Ep =11.63 eV

2 23 32
(a) Ep= § (B_nj orn= 8—”(-2&2&) S0
2m, \ 8w 5 h

8,,{(2)(9.1“10'31 kg)(11.63 eV)(16x107" J/eV
H=—

3/2
- ) =180x10% free electrons/m’.
3 (6.625x 107> Js)

PN, (2.7 g/cm® )(6.02>< 10% atoms/mole)

n’ = =
®) M 27 g/mole
n’=602x10% atoms/cm® =6.02x10% atoms;/m’
28
Valence = = 18)(—1028— =
n" 6x10

N B Y 3N\
Equation 10.46 gives Eg(0) in terms of v as Ep = [%J[W} . Substituting the mass of a

proton, and noting that A =64 for Zn, m =1.67 X 10% kg; N= i;— =32 and

V= gerB = g(ﬁ)(4.8 %107 m)3 =46x10™ m® yields

(6.62><10‘3”")ZIZS2 y (3)(32)
334x107% kg | (87)(46%107" m®)

Ey; =-§—EF =20 MeV

E=

3
J =53%x107"2 =33.4 MeV

These energies are of the correct order of magnitude for nuclear particles.

fop =[eE BT . 1]“1 ; Bp =7.05 V; kyT =(138x107% J/K)(300 K)=4.14x107 J=00259 eV
1 1

S O705/0059 1 106570 0.938 , thus 93.8%

At E=099Eg, frp =[e 07B/%T +1]7 =

probability.
p=0971 g/ em?®, M =230 g/mole (sodium)

"= Nap
M
n=(6.02x10% electrons/mole)(0.971 g [em®)(23.0 g/mole)

n=254x10%2 electrons/ cm® =2.54%10% electrons/m®

®  Eel [3”]2/3

" om\8x
B 2
[ (6625x107% Js)" |[3x2.54x10% electrons/m® *°
"1 (2x9.11x107 kg) 8

(a)

Ep=5.04x107" J=3.15 eV

_
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2B, V2 [2x504x107 77
(© === =
m 9.11x10™ kg

vp =1.05x10° m/s

1023 d=1mm=10" m; V=(10° m)’ =107 m®

|
|
|
12 32
The density of states = g(E) = CEY* = {S@%}EW ‘

¥2 [(40 eV)(16x107™ Jjev)]"? |
(6.626 x107% Js)’
g(E)=(8.50x10*)m™ J ! =(1.36 x 10%)m™ eV’ |
1
fFD (E}y= m O
1 1 ;

frp(40 eV)= 055 (E6a0 VKA 1 = =1

$(E)=8(2)"*7(9.11x10™ kg)

: |

So the total number of electrons = N = g(E)AE)Vfpp (E) or
N =(136x10% m™ eV™)(0.025 eV)(10~” m®)(1)=3.40x10".

N
10-25 Use the equation n(v) = 471'__111—026_,,“,2/ (2&T) where m is the mass of the O, molecule

V. (2rkgT)"?

inkg and %T is 10* molecules per cm®, Rewrite the equation in the form

32 5
n(v)= A, (%) v%e™ " where A, = 4?:/N ™ and A, =2—7:—. Use the exponential
L2 B

format for large and small numbers to avoid computer errors.

r Ay

i’.E—B;‘v2

(a) For T=300 K the equation can be rewritten as n(v) = Byv where

32
By =4, (;—20) and B, =;Ti)' Do a 21 step loop for v from 0 to 2 000 m/s storing

n300() as an array where i=1 to 21 and corresponds to v =0 to 2 000.

() Repeat the calculation in (a) except that the A’s are now divided by 1 000 and call the
array n1000(j) where j=1 to 21 and corresponds to v=0 to 2 000.

(0 Use a plot routine to obtain a graph similar to Figure 10.4 for the arrays obtained in
parts (a) and (b). To obtain the number of molecules with speeds between 800 m/s |
and 1 000 m/s do a summation. The number of molecules
= [n1000(9))(100) +[11 000(10)](100) where #1000(9) and 11 000(10) is the number
calculated in (b) for speed 800 m/s and 900 m/s, respectively.

1/2 2 12
(d) Vs =(%7BTJ P U = (Sﬂka i Vmp =( ZI:ET) . These quantities should appear

on your graph as shown in Figure 10.4.

_
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(b)
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For a metal g(E)= F(Z)_hgfume_}Eyz =DEY2 where D= 8(2) k;rme aid

m, =0.511 MeV/ ¢® and h=4136x107" €V 5. Using a loop calculate the array g(E)
for values of energy ranging from zero to 10 eV in steps of 0.5 eV. The array will be
21 dimensional, which can be plotted using a plot routine.

A
Ex(0)=——| ——| =7.05eV from Table 10.1. For T =0 and E; <E
2m, \ 8xV

B 1 1
fro = AE=Er)/ksT +1

n(E) =0.

=0

oo

+1_e

For T=0 and Eg =E,n(E)=(%)E%"Z.For T =0 and 0<E < Eg one has

1
feo = e~ +1

calculated in part (a). Use the same 0.5 eV steps in your loop.

=1. Therefore n(E)= g(E) where g(E) is obtained from the array

n(E)= g(E) fpp (E)
Now calculate fgp = ;(E‘_Ef)}"ﬂﬁ where T =1000 K in intervals of 0.5 eV for

E=0eV to 10 eV. Eg is determined for any temperature T numerically using the
electron concentration

N_% EV*4E

Vh‘ gn(E)dE = Djm kBT
that is of the order of 1072, The dependence of Ep on temperature is weak for metals
and will not differ much from its value at 0 K up to several thousand kelvin and

Ep

E - Eg should be less than 10, which means is large. Thus

B

% =D| EV2oE-Ee)T JF | This can now be evaluated numerically. Once Eg is
0
1

determined then the Fermi Dirac distribution function, fgp = TEEVRT 31" can be
e +

evaluated as an array using the same energy increments as before. The particle
distribution function, n(E), is the product of the arrays g(E) and fpp(E). Now n(E)

can be plotted as a function of energy.




